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lLksumd. Nous r66xam1~lo~ls la param6trisatio~l du mod+le h huit vertex sym6trique et ses

g4n4ralisatio~ls (mod+les £ seize-vertex),
en soulig~la~lt le role jou4 par une "pre-A~lsatz de Bethe"

rel16e aux
relations quadratiques de Frobenius

sur les fonctions th4tas. Cette relation correspond
£ une relation d'e~ltrelaceme~lt de detlx courbes elliptiqtles ide~ltiques, y2 "

P3(z)
=

4z~

g2z g3. Diverses expressions explicites de quantit6s assoc16es aux
fonctions elliptiques (g2> g3>

modules des fo~lctio~ls elliptiques,...) so~lt do~l~l4es. Nous consid4ro~ls, tout partictllibreme~lt, les

sous-cas du modble £ seize-vertex pour lesquels les trois racines de P3(z) peuvent 6tre donn4es

explicitement par une expression simple. De plus, deux sorts-var14t6s alg6briques pour lesquelles
apparait une

multiplication complexe sont donn4es explicitement sur l'exemple du modble de

Baxter. Les diverses sym4tries de ces mod+les sont examin6es £ la lumi+re de la g60m6trie
alg6brique effective. Notls montrons qu'il existe une relation 4troite entre la physique des mod+les

et les sym6tries et transformations agissant sur les var16t6s alg6briques Ies param6trisant.

Abstract The elliptic parametrization of the symmetric eight-vertex model and its general-
izations (sixteen-vertex models) is revisited, underlying the role played by a

"pre-Bethe Ansatz"

condition closely related to the quadratic Frobenius relation on theta functions. This relation

corresponds to an intertwining of two identical elliptic curves y~
=

P3(z)
=

4z~
g2z g3.

Explicit expressions for various quantities associated to the elliptic functions (g2, g3, modulus of

the elliptic functions,...)
are given. One concentrates on stlbcases of the sixteen-vertex model for

which the three roots of P3(z)
can be given explicitly in

a
simple form. Moreover, two algebraic

subvarieties of the Baxter model, for which complex multiplication occurs, are
given explicitly.

The various symmetries occurring in these models are understood in the light of effective alge-
braic geometry. We show that there is a close relation between the physics of the problems and

the symmetries and transformations acting on the algebraic varieties parametrizing the models.

(*) Unit6 assoc16e au C-N-R-S- (UA 280)
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1. Introduction.

It has been shown ill that integrable models in lattice statistical mechanics are necessarily
associated with algebraic varieties. Up to now, only genus zero, or one, algebraic curves

(up to

the noticeable exception of the chiral Potts model [2, 3]) have occurred
as a recurrent feature

of exactely solvable models in statistical mechanics [4-6]. This leads to elliptic or rational

parametrizations, which are relevant for the description of the solutions of the Yang-Baxter
equations [7, 4], for the explicit construction of the Bethe Ansatz [8, 9], or the exact calculation

of the partition function using the so-called "inversion trick" [7, 10, II]. It has also been shown

that these curves have a set of automorphisms corresponding to an infinite group (denoted T in

the sequel) generated by the inversion relations of the model ill]. This explains the occurrence

of genus zero, or one, algebraic
curves in so many integrable models of statistical mechanics

ii Ii. More recently, it has been shown that these (elliptic or
rational) curves can be generated

as
orbits of the group T [12-14]. This group happens to be closely related to a symmetry group

of the Yang-Baxter equations (isomorphic to the affine Weyl group A(~~, see [15, 16]), however,
it not only acts as a symmetry of integrability, but is

a symmetry group of the whole phase
diagram whatever the model ii?].

In the parameter space of the sixteen-vertex model, the orbits of the group T stay on

elliptic curves [18]. The whole parameter space of the general sixteen-vertex model is thus

parametrized in terms of these elliptic curves. An analysis of a "pre-Bethe Ansatz" equation
leads to an algebraic modular invariant which gives

a
canonical foliation of the parameter

space [18]. This algebraic expression is actually invariant by all the symmetries of the model,
in particular the weak-graph transformations jig] (linear transformations on the R-matrix),
and the group T (non-linear transformations on the R-matrix). This gives therefore the most

appropriate parametrization to describe the physics of the model and the best candidates for

criticality and disorder conditions [4, 20, 18].

In the following,
we revisit the elliptic parametrization of the sixteen-vertex model [18] and

its submodels, underlying the role played by
a

"pre-Bethe Ansatz" equation closely related

to the quadratic Frobenius relation
on

theta functions [21-23]. This equation corresponds
to an intertwinning of two (identical) elliptic curves: y~ =

P3(z)
=

4z~
g~z g3. Various

quantities associated to the elliptic functions (g2>g3> modulus of the elliptic functions,.. are

given explicitly. One underlines subcases of the sixteen-vertex model for which the three

roots of P3(z)
can

be given in
a

simple form. Some algebraic subvarieties for which complex
multiplication occurs [24-26], are also emphasized. The symmetries of the sixteen-vertex models

are
understood in the light of (effective) algebraic geometry. In particular, one underlines

a
subgroup of syrrtmetry isomorphic to the permutation group of three elements 53. This

algebraic geometry point of view leads to discriminate the various symmetries of the model and

understand their (often subtle) relations. For instance, one has to distinguish the weak-graph
transformations (irrelevant parameters to be "gauged-away"), the group T (a key symmetry

to understand the integrability of the models),
a modular group [27] and, more generally, the

transformations of elliptic functions (isogenies): Landen transformations [28],.. For some

sixteen-vertex models, these last symmetries (which amount to multiplying the ratio of the

period of elliptic functions) correspond to the renormalization group. This approach, and

this point of view, are not restricted to the sixteen-vertex model,
or more generally to two-

dimensional models.
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2. General case: the sixteen-vertex model.

Let us consider the sixteen-vertex model on a square lattice [29]. The Boltzmann weights are

arranged in a 4 x 4 matrix R of entries r(( corresponding to the configuration:

[
J

We use the notation for R :

a e
f'd'

R=
~ ~

(2.I)

d

f e'

'~

The model is insensitive to a
rescaling of all entries by

a common factor. The (complexified)
parameter space is thus the projective space CP15.

A number of transformations act on R and correspond to symmetries of the parameter space:
the group G of "gauge-like" transformations, which are linear transformations on the matrix

R (weak-graph transformations [19, 30], see also p. 456 of [29] in the particular case of the

sixteen-vertex model) and the group T of syrrtmetries generated by the inversion relations of

the model [12, 13]. The group T can be represented in terms of birational transformations

in the parameter space CP15 (12]. For this model, a detailed analyzis of the compatibility
between the (linear) group G and the (non-linear) group T has been performed in [18]: this

compatibility
can be typified in a

modular invariant which foliates the parameter space. This

modular invariant gives the best candidates for the critical (and disorder) varieties [1, 4, 18,
31, 32 ]. It has to be compared with the invariants of the linear group G only (the "Hilbert's

syzygies" [33, 34]), introduced by Perk and Wu [35] or Gwa and Wu [36]. Unfortunately, for

the most general sixteen-vertex model, the algebraic expressions associated with this modular

invariant are homogeneous polynomials of degree 24 in the sixteen homogeneous parameters of

the model, which are the sum of several millions of monomials [18],... Any exact calculation

with such expressions is hopeless, and it is necessary to concentrate on sixteen-vertex models

for which factorizations of the modular invariant occur. One illustrates here, on subcases of the

sixteen-vertex model for which such factorizations occur, the analyzis of these models from the

point of view of algebraic geometry. The key point of this study is grounded on the analysis of

biquadratic equations associated to the model (more precisely associated to the construction

of a "pre-Bethe Ansatz" for the model) [18].

Since T is
a symmetry group of the model,

one seeks for subcases of the sixteen-vertex model

compatible with the group T. The study of the subcases of the sixteen-vertex model (defined by
equalities between the entries of the associated 4 x 4 R-matrix) has been performed elsewhere,
leading to a

restricted list of such "admissible patterns" [12, 13, 37, 38]. Actually, one only
has 62 admissible patterns which

can
be classified into eight classes [38] :

the most general sixteen-vertex model depending
on

sixteen homogeneous parameters

four admissible classes depending on ten homogeneous parameters

three admissible classes depending on eight homogeneous parameters. For instance, one
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of these three classes corresponds to the following 4 x 4 R-matrix:

a e f d

R=
~

(2.2)

d

f
e

~

Admissible patterns of less than eight homogeneous parameters are subcases of the pre-

vious admissible classes, obtained by imposing more equalities between the entries.

The well-known symmetric eight-vertex Baxter model [39, 8], can
be

seen as a
subcase of

most of these admissible patterns.
Note that, among these parameters, some of them may be irrelevant and "gauged-away"

(using the weak-graph duality transformation [19]). In this framework, one can, for instance,
recall a (ten parameter-dependent) subcase of the sixteen-vertex model defined by equalities
between the entries up to a sign given by the following 4 x 4 R-matrix:

a e
f' d'

g b c' -f'
~~

h
c

b
-e

d

-h -g a

which can be reduced to the (four parameter-dependent) symmetric eight-vertex model by
weak-graph duality transformations (see p. 170 of [19]).

3. Biquadratic equations: towards Bethe Ansatz.

3, I GENERALITIES. It is not necessary to recall the relevance of the Bethe Ansatz to solve

two-dimensional lattice models in statistical mechanics, or one-dimensional quantum Hamilto-

nians [21, 7, 4, 29, 9, 39]. The method due to Bethe [40, 21] aims at a direct determination

of the eigenvectors. The relation between the Bethe Ansatz and other features of integrability
(infinite number of conserved quantities, family of commuting transfer matrices, Yang-Baxter
equations,...) will not be detailed here (see [21]).

The explicit construction of the Bethe Ansatz
on

the symmetric eight-vertex Baxter model

[8] is explained simply in [9]. The details of this very construction will not be given here.

Let us
just recall that it amounts to build eigenvectors made up of linear combinations of

product vectors. One of the keys to the Bethe-Ansatz [8, 9] is the occurrence (see Eqs. (B.10),
(B.lla)) in [8] of vectors which are pure tensor products of the form (v © w) and which R

maps onto other pure tensor products (v'4l w'). In the case of elliptic parametrization, such

a property is related to the so-called quadratic Frobenius relations on theta functions [22, 21,

23], which may give
a representation of a

Zamolodchikov algebra [41]. It is worth recalling
that the Zamolodchikov algebra is an "almost" [42] sufficient condition for the Yang-Baxter
equation to be satisfied.

Let us write that R maps a pure tensor product onto a pure tensor product in the general

case
of the sixteen-vertex model. Denoting:

~
(i)

~
(i) ~, (l ~, (l

p ' q ' P' ' q'

this "pre-Bethe Ansatz" equation reads:

R(v © w)
= ~

v'© w' (3.1)
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where ~ is
a

multiplicative factor, yielding the two biquadratic relations:

e~ + e~ p + e7 p' + e6 pP' + e5 P~ + e4 P'~ + e3 P~P' + e2 PP'~ + et P~P'~
=

0 (3.2)

f9 + f8 q + f7 q' + f6 qq' + f5 q~ + f4 q'~ + f3 q~q' + f2 qq'~ + ii q~q'~
=

0 (3.3)

where the e(s and f]s
are quadratic polynomials of the homogeneous parameters at,.. ,d4 of

the R-matrix [18].
These two biquadratic equations yield the same elliptic curve [18, 43, 38, 9] (see next subsec-

tion). The transformation p -
p' (or q -

q') actually corresponds to a
shift of some parameter

describing the elliptic curve (let
us see

for instance Eq. (4.100) in [9]). In the case of the Baxter

model, this enables to build eigenvectors made up of linear combinations of product vectors

[9]. This
can be seen as

the first step to build the Bethe Ansatz.

3. 2 SYMMETRIES AND INVARIANTS OF THE BIQUADRATIC RELATIONS. The two biquadra-
tic relation (3.2) and (3.3) actually differ for the above mentioned patterns [38], except for

a

few ones for which they remarkably identify. A group GBethe acts naturally on the biquadratic
equations (3.2) and (3.3). GBethe is isomorphic to s12 x s12 x s12 x s12 (18]. The four copies of

s12 act respectively on v, w, v', w'. GBethe has
a

linear action
on the 4 x 4 matrix R :

~
~

~l/ g2/ ~ 91R 92R (3.4)

where giL>g2L>giR>g2R are s12 matrices, I-e- homographic transformations on p,p',q,q',
or

equivalently, linear transformations on the e(s and f)s. GBethe generalizes the weak-graph
duality transformations acting

on R jig, 30]. The group G of weak-graph transformations is a

subgroup of GBethe with giL = giR and g2L = g2R

~
~ gl g2

~ R gl 'g2 (3.5)

The elliptic parametrization of (3.2) (or (3.3)) is obtained
as

follows: the discrirninant D of

(3.2), considered
as a

quadratic polynomial in p, is a polynomial in p' of the form:

D=Ao p'~+4Ai P'~+6A2P'~+4A3P'+A4 (3.6)

The transformations of D under s12 transformations acting
on the vector v' (homographic

transformations of p') have two fundamental invariants g2> g3 and the modular invariant J
=

g( / (g( 27g() [44, 45]

g2 =
AoA4 4AiA3 + 3A( (3.7)

g3 =
AoA2A4 + 2AiA2A~ ADA( A4A( A( (3.8)

g2 and g3 are
also invariant (since D is) under s12 transformations acting on the vector v

(homographic transformations of p). Let us
denote A the discriminant of the degree four

polynomial D. A reads:

~ g~ ~~gl (~'~)

Similar calculations can be performed exchanging the role of p and p' in equation (3.2): they
lead to the same g2 and g3. More remarkably, the same analysis

on equation (3.3),
seen alter-

natively
as a

quadratic polynomial in q with quadratic coefficients in q' (or polynomial in q'
with polynomial coefficients in q), leads to exactly the same g2 and g3 [18]. Therefore,

one can



244 JOURNAL DE PHYSIQUE I N°2

associate to (3.2), (3.3) and also to the elliptic curve corresponding to the orbits of T in CP15

[18], the same Weierstrass's canonical form, y~
=

P3(z)
=

4z~ g2z g3 [43, 46] (~) (see also

next Sect.).
In this framework, an algebraic variety is of particular interest: the one for which the elliptic

parametrization degenerates into
a

rational one, for J
= oo, or

equivalently A
=

0. This yields
candidates for algebraic criticality, and disorder conditions, appearing on the same level 11, 4].
Unfortunately, these algebraic conditions are too involved: it is necessary to concentrate on

models for which factorizations of A occur [38].

3.3 COMMENT ON THE ISING MODEL IN A MAGNETIC FIELD. One of the interests of the

sixteen-vertex model, beside the fact that it is
a generalization of the symmetric eight-vertex

Baxter model, is that it has many subcases relevant for statistical mechanics on lattices [29].
In particular, the (anisotropic) nearest neighbour Ising model in a

magnetic field
on the square

lattice,
or even the checkerboard Ising model in a magnetic field (see pp. 350-354 of [29]),

are subcases of the sixteen-vertex model. One can imagine that the critical manifold of the

Ising model in
a

magnetic field (see [47, 35]) could be given by the vanishing condition of

the discriminant A [18] restricted to the subcase of the sixteen-vertex model corresponding to

the Ising model in a magnetic field. In fact, the straight approach of section (3.2) actually
fairs, since equations (3.2) and (3.3) degenerate. They factorize in p and p' (resp. q and q')

:

F(p) G(p')
=

0. Conversely, such a factorization of the biquadratic equations means that the

sixteen-vertex model is equivalent to a
checkerboard Ising model in a magnetic field. Some

more
sophisticated approach should be introduced to cope with such "singular" cases.

Other cases where the approach of section (3.2) seems to fail, correspond to subcases of the

sixteen-vertex model for which the discriminant A is already equal to zero. It will be shown in

section (5.2), on the example of the six-vertex model (which
can be seen as a critical subcase

of the syrrtmetric eight-vertex model, see pp. 271-272 of [4]), how singularities inside already
critical subvarieties may occur.

4. Analysis of the biquadratic equations.

Let us illustrate the analysis of the biquadratic equations (3.2) and (3.3) for particular ad-

missible patterns for which factorizations of A occur. Consider the particular forms 4~i(~, y)
and 1b2(~, y) of the biquadratic equations (3.2) and (3.3) for model (2.2) (which contains the

Baxter model
as a

subcase). The biquadratic equation (3.2) reads:

~l(~, Y) " ~l (~~Y~ + 1) + e2 (~Y~ + ~) + e3 (~~Y + Y) + e4 (~~ + Y~) + e6 ~Y

"
~~ A~(y) + 2~B~(y) + c~(y) (4.i)

=
y~ Ay(~) + 2yBy(~) + Cy(~)

where
~

and y denote here p and p'. The other biquadratic equation (3.3) reads 1b2(~, y)
=

0,
where

z
and y denote q and q', and where the e;'s are replaced by the f;'s. The "canonical

equation", lbi(z, y)
=

0, implies (see [43, 46]):

dy dz

@% "
~ /m (4.2)

(1) The new
variable z is given by the ratio of

an
Hessian and of 4l(1, y).
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where

Q(z)
=

Bv(z)~ Av(z)Cv(z) and P(Y)
"

Br(Y)~ Ar(Y)Cr(Y)

are two different degree four polynomials in respectively
z

and y, but having the swne funda-

mentaJ invariants g2 and g3 (18, 44, 45]. P(y) reads:

P(y)
=

Ao v~ + 4Ai Y~ + 6A2 v~ + 4Ai + Ao (4.3)

where the A;'s can be written in terms of the coefficients of WI (z, y) :

Ao
=

e( 4eie4> 4Ai
=

2e2e6 4 (et + e4) e3, 6A2
=

e( + 2e( 4 (e( + e( + e()

The polynomial Q(z) is obtained from the polynomial P(z) by exchanging e2 and e3.

In the general case
(2.2),

one can
find two different homographic transformations: X

=

Hi (z) and Y
=

H2(v) to rewrite (4.2)
as:

~/(1 k2~) (1 Y2)
~

~/(l k2i~) (1 X2) ~~ ~~

where k is the modulus of the elliptic functions. Then, by integration, one obtains Hi (~) /H2 (v)
sn(2u, k)/sn(2u + 2q, k), thus parametrizing the relation between ~ and y. This will be seen

explicitly on a particular example, in subsection (4.I).
Remarkably, for model (2.2), the analysis can be simply performed introducing the three

roots ri> r2 and r3 of the Weierstrass's canonical form (elliptic curve) associated to lbi(z, y)
[43, 46]:

y~
=

4z~
g2z g3 =

4 (z ri) (z r2) (z r3) (4.5)

The invariants g2> g3 and A read in terms of the roots:

g2 "
-4 (ri r2 + r2r3 + r3ri

,
g3 "

4 ri r2r3>

~
" g~ ~~ g(

"
~~ (~1 ~2)~ (~2 ~3)~ (~3 ~l)~

An elementary calculation shows that the results simplify in terms of two expressions a
and fl

defined by:

a =
A2 Ao

fl
=

(Ao + 4Ai + 3A2 (Ao 4Ai + 3A2)

or
in terms of the e;'s:

" ~~~ ~e~ ~~l ~e( ~e~ + ~~ele4)

fl
"

( (e6 + 2ei + 2e2 + 2e3 + 2e4) (e6 + 2ei 2e2 2e3 + 2e4)

(e6 2ei + 2e2 2e3 2e4) (e6 2ei 2e2 + 2e~ 2e4)

The roots ri, r2> r3 (with ri + r2 + r3 =
0 as it should) read:

and the invariants read respectively:

g2 =
Al + 3A( 4A(, g3 =

(A2 Ao) (2A( AoA2 Al)
,

A
=

(Ao + 4Ai + 3A2) (Ao 4Ai + 3A2) (A( 3AoA2 + 2A()~
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or in terms of a and fl:

g2 =
(3a~ + fl)

,
g3 =

(a + Ql) (a @)
a, A

= (3a + @) ~

(3a @)~ fl
4 8 64

(4.6)
In the e =

f
= g =

h
=

0 limit, where the model reduces to the Baxter model, both conditions

fl
=

0, and 3a + vfl
=

0, are respectively the disorder conditions [21, 20, 4] and the critical

conditions [4] (see Appendix A). Both conditions read A
=

0, which means that the elliptic
parametrization of the model degenerates into

a
rational one. Expressions of a

and fl are given
in Appendix A, in terms of the entries of some sixteen-vertex models.

CANONICAL FORM FOR A BIQUADRATIC EQUATION. Homographic transformations
on ~

and y (corresponding to GBethe introduced in subsection (3.2)) can be used to reduce WI (~, y),

or 1b2(~, y), to some simple canonical forms i$i(z, y) (resp. 1b2(~, y)). Let us introduce other

expressions a, a', (, I' and p in order to write simply
o and fl

with:

a = e6 + 2ei + 2e2 + 2e3 + 2e4 a'
= e6 + 2ei 2e2 2e3 + 2e4

(
= e6 2ei 2e2 + 2e3 2e4> f'

= e6 2ei + 2e2 2e3 2e4 (4.7)

p =
4 (et e4)

One
now

considers the following homographic transformations
on z

and y in equation (4.1):

~ -
p>(H(~)), y -

p~(H(y)) (4.8)

where:

H(~)
=

~
and P>(~J

=
>

z (4.9J

The values of I and ~ are defined by:

~,~, ~,j
l~= and ~~=

Of Of'

The homographic transformations (4.8) enable to cancel coefficients e2 and e3

4(z, y)
= 7 (z~y~ +1) + 2b zy (~~ + y~) (4.10)

~~~~~

"

i
~

G
~~'~~~

It now becomes simple to give an explicit elliptic parametrization of model (2.2). For example,
for a subcase of (2.2) given by e =

f
= g =

h, (see also Appendix A):

a e e d

~~ ~~'~~~

d

e e

~
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one has:

a =
a'

=
4 c'd', f

=
4 a[b', f'

=
4 a[b', p =

2 (a[a[ + b'~ c'~ d'~)

~~~~~'

,

a+b+c+d+4e
,

a+b+c+d-4e
~i "

~ ,
~2 " ~

,

a+b-c-d
,

a-b+c-d
,

a-b-c+d
(~'~~)

2 '
~

2 '

~
2

generalize the duality transformation of the Baxter model (see p. 205 of [4], see also below Eq.
(5.4)). Then one can write:

which gives
an

elliptic parametrization of model (4.12).

a~ "~PSn(v+Q>-k)

a[
=

~~~ p sn(v + q, -k)

b'
= p sn(v q, -k) (4.15)

c'
= p sn(2q, -k)

d'
= -p k sn(v + q, -k)sn(v q, -k)sn(2q, -k)

where sn, cn and dn are the Jacobian elliptic functions [48, 49] and k is given by:

~2 ~2
k + =

(4.16)
k 7

and 2 q given by (see also p. 42 of [8] or p. 143 of [9]):

b
=

cn(2q, -k) dn(2q, -k) and 7 "
-k sn~(2q, -k) (4.17)

This can be easily generalized to model (2.2). Equations (4.13, 4.14) can
be simply under-

stood from the fact that model (2.2) is equivalent to the asymmetric eight-vertex model up to

weak-graph transformations (the weak-graph transformations associated to H(~),
or

-H(z),
in (4.9)). Let us note that condition fl

=
0, for which the parametrization reduces to a

rational

one, means that one of the new variables (4.13) vanishes. It is clear on the invariants (4.14)
that the parametrization degenerates in such cases.

5. The Baxter model.

5.I ELLIPTIC PARAMETRIZATION OF THE BAXTER MODEL. An important subcase of

models (2.2) and (4.12) is the symmetric eight-vertex Baxter model [4, 8]. Its R-matrix is

given by:
a 0 0 d

~~'~~

d

0 0

~
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WI and 1b2 actually identify and read:

16(z, y)
= 7 (~~y~ + 1) + 2bzy (z~ + v~) (5.2)

with:
~ ~ ~ ~

~ ~~~ ~
~ ~ 2ai ~

~~'~~

which corresponds,
on

the coefficients of equation (4.I), to: et = 7, e2 " e3 =
0, e4 =

-1 and

e6 #
2 b. One has the elliptic parametrization:

z =
k sn(2u, -k) and y =

k sn(2u +

2q, -k), with k, the modulus of the elliptic function, and the shift q defined by equations
(4.16) and (4.17).

Transformation k
-

Ilk immediately pops out from equations (4.16). Another transforma-

tion plays a special role: the (low-to-high temperature) duality transformation of the Baxter

m~el (see p. 205 of [4], see also Appendix B). It is a weak-graph transformation jig] which

~~ ~

0 -
0*

#
)(a + b + C + d) b

-
b~

# ((0 + C
d)

~ ~
~~ ~° ~ ~ ~~ ~

~
~ ~° ~ ~ ~~

~~ ~~

llrom section (4),
one can evaluate the expressions of Ao, At, A2,

a
and fl

:

Ao
=

47, At
=

0, A2
= (b~ 7~ 1) =

4 (k + j17

a=((-7~+b~-67-1)
=

(k+)-6)7,

@=2(7+b-1)(7-b-1)=-2(k+ +2)7
k

The roots of the elliptic curve (4.5) can be written in terms of 7 and b
as follows:

ri "
(-7~ + b~ + 67 1) = lk +

j
+

)
7, (5.5)

r2 "
(-7~ b~ + I)

=

-(
(k + () 7, (5.6)

r3 "
(-7~ + b~ 67 1) = (k +

j
6) 7 (5.7)

This gives the following expressions for the fundamental invariants g2 and g3 and the discrim-

inant A
:

g2 =
(7~ + b~ + 147~ 2b~ 27~b~ + 1)

4
~

~~ l

~)3
~ ~

k~
~

g3 =

(
(7~ b~ + 1) (-7~ + b~ + 67 1) (-7~ + b~ 67 1)

8
~

~ l

~j
~ l) ~ l )

27~ ~
k

~
k

~
k

~

A
=

256 7~(7 + b 1)~(7 b 1)~(7 b + 1)~(7 + b + 1)~

=
256 7~ (k + 2) (k +

j
+ 2)
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In addition to the modulus k of the elliptic functions,
one can also introduce the modulus ko,

and its complementary modulus k[, defined from the roots of the Weierstrass's canonical form

(4.5)°

~2 r2 r3 (7 + b + 1)(7 b + 1)
°

ri r3 47

~12 ~2 ~i ~2 (7 + l)(~7 + + l)
° °

ri-r3 47

One notes that most of the equations of the previous section remain unchanged for model

(4.12) (see also Appendix A). One also notes that ko is related to the above modulus k, by a

Landen transformation [28] and the transformation k
-

Ilk,
as follows:

k + + 2
=

~~ ~ ~ ~)(~ b c + d)(a + b
c

d)(a + + c + d)
k 4abcd

4 a*b*c*d*
(5.10)

~ abcd

It may happen that the modulus k is not in the interval [0, Ii. One thus has to follow
a

"rearrangement procedure" (see p. 268 of [4]) which amounts to use the symmetries of the

eight-vertex models (negate
or permute the homogeneous parameters of the model a, b, c

and d, or perform
a

duality transformation (5.4)) in order to be in the so-called "principal
regime" [4], and consequently have a "rearranged" modulus kr in the interval [0, Ii. This rear-

rangement procedure corresponds to symmetries of the model represented by transformations

on the homogeneous parameters of the model a, b, c, d, or transformations on the modu-

lus: the duality (5.4), the transformation which permutes k and its complementary modulus

k'(k
-

k'= Wt, imaginary Jacobi transformation),
Three distinct cases, depending

on
the value of b and 7 given by (5.3), namely the ferro-

electric, antiferroelectric and disordered phases, have to be distinguished in order to dassifiy
the various phases of the model (see for instance p. 246 of [4]). In the disordered regime the

right-hand side of (5.9) is negative: k is no
longer in the interval [0, Ii and has to be replaced

by kr.

5.2 RATIONAL REDUCTION FOR THE BAXTER MODEL. The critical varieties of the sym-

metric eight-vertex model come from equation (5.9), with k
=

+I. Four disorder conditions

also come for the Baxter model, from equation (5.10) with k
=

I two already known (p. 274

of [4]) and two emerging from the analysis of the (two-layer) diagonal transfer matrix [31] (see
also Appendix A, Eq. (A4)). It is interesting to look in parallel at equations (5.9) and (5.10)
which are both associated to a

rational parametrization of the model: the critical subvarieties,

(a+b+c-d)(a+b-c+d)(a-b+c+d)(a-b-c-d)=0
(7+b+1)(7-b+1)=0, k(=0, k[~=l, k=+I

JOURNAL DE PHYSIQUE T 3, N' 2, FEBRUARY lW3 IO
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and the disorder subvarieties,

(a+b+c+d)(a+b-c-d)(a-b+c-d)(a-b-c+d)=0
(7-b-1)(7+b-1)=0, k(=I, k[~=0, k=-I

Other rational cases can
be considered: the elliptic parametrization also reduces to a

rational

parametrization (that is A
=

0), when one of the four parameters a, b, c, d vanishes, which

yields:

7 =
0 or oo, k(

= oo, k[~ = oo, k
=

0 or oo

The six-vertex model [9, 29] is such
a case: it is obtained from the eight-vertex model by setting

d
=

0.

The six-vertex model corresponds to ferroelectric (b > I) and antiferroelectric (b < -I)
eight-vertex Baxter model in the k

-
0 limit. In the disordered regime, -I < b < +I, the

rearrangement procedure gives that the d
-

0 six-vertex limit is the k
-

I limit (and not the

k
-

0 limit
as a

straight limit of (5.9) would suggest, see page 271 of [4])(~). In other words,
in the disordered regime, the six-vertex model is the condition for the eight-vertex model to

be critical. Conversely,
a

critical eight-vertex model can be mapped onto a
"disordered" six-

vertex model. This example shows that one can have critical points inside an already critical

variety (the condition for the symmetric eight-vertex model to reduce to the six-vertex model,
that is d

=
0 or 7 =

0). In this example, the critical subvarieties of an already critical variety
cannot be obtained from the condition for the elliptic parametrization to reduce to a

rational

one
(A

=
0). The critically condition for the six-vertex model actually corresponds to impose

an additional condition: to restrict to the limits of this disordered regime: b
=

I or
b

=
-1.

6. Symmetries of models with elliptic parametrization: isogenies of elliptic func-

tions for the Baxter model.

6. I MODULAR GROUP AND THE BAXTER MODEL: A 53-SYMMETRY. From the three roots

ri> r2 and r3> one can define three periods w;, I
= 1, 2, 3 such that: 7 (w;)

= r;, 7 (w;)
=

0

and 7" (w;)
=

-2 (r; r;) (r; rk), ((I, j, k) cyclic permutations of (1[ 2, 3)), where 7(z) is

the elliptic Weierstrass function. The fundamental periods WI and w~ define
a

lattice period.
The ratio of the periods, r =

w3/wi, is given by:

,( r2

r =

i~ ~$@
=

i~ fi (6.1)
~,

'

ri-r3

with It(z) being the elliptic integral function:

«/2 d§l
(6 2)~~~~

(l ~2 sin~ §l)
~~~

In terms of the modulus of the elliptic functions, the modular invariant J(r) reads:

Jir)
=

f
=

j l~' kl +
II

~

~

6
~

2 f
~~

k] (k] 1) 27 27 o;
(6.3)

(2) Under the duality transformation (5A), the six-vertex condition d
=

0 also maps onto a
disorder

condition a + d
=

b + c, (d*
=

0). This illustrates ag~n the relations between the critical and disorder

subvarieties, for which the parametrization becomes rational.
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with: k(;
=

k(, I/k(, I k], II (I k])
,

k]/ (k] I)
,

(k( I) /k(, (I
=

1,
.,

6). The ko;'s
correspond to transformations generated by the elementary transformations

on
the modulus ko

such
as ko

-
I/ko,

or ko
-

k[
=

@@ (complementary modulus). These transformations

permute the three roots ri, r2> r3. The modular invariant J(r) is thus given
as

the sum over

a group of transformations isomorphic to the permutation group of three elements: S~ (see
pp. 720 and 754 of [27]). This symmetry group, and its representation as transformations on

the modulus k, the modulus ko> its complementary modulus k[, the three roots ri, r2, r~, the

variables p, p', q, q' and the four homogeneous parameters a, b, c, d, are given in Appendix B.

This group is closely related to the above mentioned rearrangement procedure.
These six transformations belong to a

larger group of transformations of the elliptic func-

tions: the modular group [27], which is a group of transformations preserving the lattice period
of the elliptic functions and of course the modular invariant J(r). This group of the transfor-

mations reads
on r :

ar + fl
r -

7r + b

1° ~)being an
SL(2, Z)-matrix (ab fl7

=
1). For instance, transformation

r - r +1,
7

becomes
on the modulus k k

-
+ik/k'. One remarks that taking into account the (subtle)

compatibility between the group r and the weak-graph duality group G, a
modular invariant

J emerges [18] (it is even invariant by the larger group GBethe) the modular group thus comes

naturally from the analysis of symmetry groups of quite different nature.

6.2 THE LANDEN TRANSFORMATION AND THE BAXTER MODEL. Equations (5.9) and

(5.10) also underline the role played by the Landen transformation [28] on
models for which

an elliptic parametrization
occurs. As far as moduli of elliptic functions

are
concerned, the

Landen transformation amounts to barter k to ki
=

2vil(1+ k). Using ki and its complemen-
tary modulus k( =

fi,
one sees that the left-hand side of equations (5.9) and (5.10) read

respectively -4 k(~/k/ and -4/k). The transformation discovered by Landen [28] corresponds
to the transformation (~, k)

-
(~j, kj) according to:

~~k/ (I k/z/) k/z/ (I xl)
=

0 (6.4)

This transformation yields the differential equality:

~/(1
i~~l

k/~/) l +

~
~/(l

2~~l
k2~2)

~~ ~~

The Landen transformation is associated to the multiplication of r, the ratio of the two periods
of the elliptic functions, by

a
factor two. It does not belong to the modular group [27] (ab

fl7 # 1). It is however
a transformation of the elliptic functions. It is important to note that

this transformation
on

the elliptic parametrization of our models
can

actually be seen as an

exact generator of the renormalization group of the models for which the critical varieties

read k
=

+I, or J
= oo

(the Baxter model is such a
model). The iteration of the Landen

transformation,
or

of its inverse transformation:

~
l @@

~~ ~~
j ~ /~q

i

converges to the two remarkable varieties k
=

0 and the critical varieties k
=

+I. This is

quite clear
on r. The iteration of the transformation

r -
2 r has two fixed points, r =

0 and
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r = oo, which means
that one of the two periods becomes infinite: the parametrization becomes

rational. Other remarkable transformations can
also be introduced and identified with (exact)

generators of the renormalization group: the Legendre, the Jacobi(~), transformations (see

p. 525 of [48]) which correspond to multiply r
by 3, 5, 7, These transformations are also

algebraic transformations generalizing (5.8), (6A) and (6.5).

6. 3 COMPLEX MULTIPLICATION FOR THE BAXTER MODEL. Let F(z) be an
elliptic func-

tion. Within the framework of symmetries and transformations of elliptic functions, it is

well-known that, for every integer m, one can
write F(mz)

as a
rational function of F(z). An

important question is:
are

there some
other values of

m
for which F(mz)

can
be expressed

as a
rational function of F(z)? When such

a
situation occurs, F is said to have complex mul-

tiplication [28, 24~26]. This situation occurs
only when

r
belongs to an

imaginary quadratic
field (I.e. is a solution of

a
quadratic equation Cr~ + (D A)r B

=
0, where A, B, C, D

are integers, the discriminant (D A)~ + 4BC being negative), then there exists an algebraic
relation between this function and the

same
function where its arguments have been multiplied

by I, I being any number in the quadratic field 16(r).

The simplest examples of complex multiplication
are g2 "

0 (I.e. J(r)
=

0, for
r =

w3/wi
"

e~~'/~) also called the "equianharmonic"
case [28, 48], and g3 =

0 (I.e. J(r)
=

I, for r =
I)

also called the "lemniscatic" case [28, 48]. In these two cases the lattice period has clearly
additional symmetries (invariance under the rotation of 2~/3, ~/2, ). Of course, one can

try to find systematically other cases for which complex multiplication occurs, imposing J(r)
to be an algebraic integer [50](~). This is quite involved: let

us restrict here, only to the

two conditions g2 =
0 and g3 =

0, and write explicitly, for the Baxter model, these algebraic
subvarieties for which additional symmetries occur for the elliptic functions (and hopefully for

the physics of the model!).

1. g3 "
0

:
The "lemniscatic" cases (see pp. 658-662 of [28] and p. 524 of [48]).

72-62+1=o

~ xi ~z)zj
=

0

; ;#;
k(=~, k[~=~, r=I, J(r)=I, k=+I

2 2

For simplicity the notations z; =
(a, b, c, d), (I

=
1,

,

4) have been introduced.

7~-b~+67+1=0

~ xl ~ z)z) ~ 24ziz2z3z4
"

0

; ;#;

k(=)~~, k[~=)+~, r=I, J(r)=I, k=+3~2eV5

where e =
+1.

(~) Not to be confused with the previously mentioned imaginary Jacobi transformation r -
-1/r.

(~) When complex multiplication occurs, the modular invariant J(r) is necessarily
an

algebraic

integer (I.e. a
complex number satisfying an

algebraic equation with rational integral coefficients, the

coefficient of the highest degree term being equal to 1).
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2. g2 "
0 The "equianharmonic" cases (see p. 652 of [28] ).

7~ b~ + 1+ 2i@
=

0

~ xl ~ z)z) ~
8iViziz2z3z4

=
0

I I#I

k(
=

e~'~/~, k[~ =
e~'~/~,

r =
e~'~/~, J(r)

=
0, k

= (2e + Vi) I

where e =
+1.

These results
can

straightforwardly be generalized to more general models (see Eq. (4.6)
with Appendix A).

7. Conclusion.

Syrrtmetries of different nature occur on
lattice models of statistical mechanics. These sym-

metries and their relations
can

be understood on simple examples of two-dimensional vertex-

models for which elliptic parametrization occurs. These symmetries have been analyzed here

for sixteen-vertex models, in the light of effective algebraic geometry. Heuristically,
one has to

distinguish the "gauge-like" weak-graph transformations (which emphasize the irrelevant pa-

rameters to be "gauged-away" ), the symmetry group r generated by the inversion relations on

the model, which correspond to highly non-trivial transformations. r underlines
some

"spectral
parameter" on elliptic curves, enabling the construction of the Bethe Ansatz for the model,

or

the calculation of the partition function using the inversion trick [4, 10, iii. In the framework

of elliptic parametrization, other symmetries can
be considered: the modular group, and more

generally, the transformations of elliptic functions (isogenies) such as the Landen transforma-

tion (which do not preserve the modular invariant ): this last symmetry identifies with
an exact

transformation of the renormalization group of the models for which the critical varieties read

k
=

+I, or J
= oo.

These various symmetries have to be compatible. The compatibility be-

tween the weak-graph transformations and the group T is a little bit subtle and involved, and

has been detailed elsewhere [18]. The compatibility between T and the modular group, or more

general transformations of elliptic functions,
can

be understood simply when one remarks that

T actually leaves invariant the modulus of the elliptic function, or
the modular invariant.

Some symmetries
are at the cross-roads of these different symmetries: for instance the

duality (5A) and,
more generally, the group of subsection (6.I) isomorphic to 53 (analyzed in

Appendix B), can be
seen as

weak-graph transformations, but can also be seen to play
a

role

in the modular invariant (see Eq. (6.3)), in the group T and in the rearrangement procedure
described in section (5.I).

We think that the distinction between such different kinds of symmetries (with their subtle

relations) is a fruitful approach to analyse lattice models in statistical mechanics (seeking for

exact results
even

in dimensions greater than two). Clearly, there is
a one-to-one, correspon-

dence between the physics of the problems (relevant
or

irrelevant variables, critical manifolds,
renormalization group, ...) and the symmetries and transformations acting on the algebraic

varieties parametrizing the models.
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Appendix A.

Values of
o

and fl for the Baxter model and
some

of its generalizations.

1 The 4 x 4 matrix of the symmetric eight-vertex Baxter model (four parameters) reads:

a 0 0 d

~_
0 b

c 0

0 c b 0

d

0 0

~

The coefficients e;'s and f;'s of the biquadratic equations (3.2) and (3.3) read respectively:

~l ii Cd, e2 "
f2

" e3 "
f3

"
0, e4 "

f4
"

~ab, e6 "
f6

"
a~ + b~ C~ d~

The two expressions a and fl introduced in section (4) read:

60
=

-2a~b~ 2a~d~ 2a~c~ 2b~d~ 2b~c~ 2d~c~ + a~ + b~ + d'+ c~ 24 abcd

4fl= (a-d+c-b)~(a+b-c-b)~(a-d+b-c)~(a+d+b+c)~

One verifies immediately that:

3a @
=

-16 abcd

3a + @
=

(a + b + c
d)(a b

c
d)(a + b c + d)(a b + c + d)

a
@

=
(-2a~b~ 2a~d~ 2a~c~ 2b~d~ 2b~c~ 2d~c~

3

+ a~ + b~ + d~ + c~ + 24 abcd)

~ ~
fi ~ j_~~2~2 ~ ~2 ~2 ~ ~2 ~2 ~~2 ~2 ~~2 ~2 ~~2 ~2 ~ ~4 ~ ~4 ~ ~4 ~ ~4)

~

Equation (3)
o + j$

=
0 corresponds to the critical varieties of the model.

2 Let us
consider the five parameter-dependent vertex-model given by the following 4 x 4

R-matrix:

a e d

~
c

d

e e

~

It is a subcase of model (2.2) for
e =

f
= g =

h. The coefficients e;'s and f;'s in equations
(3.2) and (3.3) read respectively:

el"fl"cd-e~, e2"f2"~e3"~f3"~e(a+b-c-d)
e4=f4"e~-ab, e6=f6=a~+b~-c~-d~

a
and fl of section (4) read:

6a
=

16 e~ac +16 e~ad +16 be~c + 16 be~d +16 ce~d +16 e~ab 8 e~a~

8e~b~ 8e~d~ 8e~c~ 2a~b~ 2a~d~ 2a~c~ 2b~d~ 2b~c~ 2d~c~

32 e~ + a~ + b~ + d~ + c~ 24 abcd (Al

4fl=(a-d+c-b)~(a+d-c-b)~(a-d+b-c)~(a+d+b+c-4e)
(a+c+b+d+4e)
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One also verifies that:

9a~ fl
=

-16 (ac c~ 2e~ + cd + cb) (da 2e~ d~ + cd + db) (A2)
(ab 2e~ b~ + cb + db) (a~ ac + 2e~ da ah)

The vanishing of (A2) gives good candidates for the critical varieties of these models. The

first four factors of the vanishing condition of fl (Eq. (Al))
are disorder conditions,

as can

be seen directly on a disorder criterion [31, 38] (such
a

local disorder criterion corresponds to

equation (3.I) for p =
p' and q =

q'). The local disorder conditions [31] actually read (see also

[38])

R(u © v)
=

I
u © v

(A3)

and:

R~(u t9 v)
= ~ u t9 v

(A4)

with:

u

ii)
v

ii)

Equation (A.3) gives
a + d

=
b + c, for p = q =

+I, and
a

d
=

+(b c), for p = -q =
+1.

3 Let
us

consider the following eight-parameter (arrow-reversal invariant) vertex-model given
by the 4 x 4 R-matrix (2.2):

a e f d

~
~

g b
c

h

h
c b g

d f
e a

The coefficients e;'s and f;'s in equations (3.2) and (3.3) read respectively:

ei=cd-hf, e2=ce+gd-bf-ha, e3=af+hb-ed-cg,
e4=ge-ab, e6=a~+b~+h~+f~-e~-d~-c~-g~,
fi=cd-ge, f2=cf+hd-ga-be, f3=ae+gb-fd-ch,
f4=hf-ab, f6"a~+b~-h~-f~+e~-d~-c~+g~

a
and fl then read:

°"
a~+ ~-c2- 2_~~~ ~ ~p ja
~)~ i ~[

4(af
+

h[- el
1$~)j~[[~/

+ hi ce gd)2

(~+d-j_~_~
~~f~b)(a-g+e+d_~~~~~~~~~f~cd)(ab-ge)

(a-d+e+~~~

~~~~h)(a-d-j+~~

~f~b)

(a+d_~

~f~h-c)(a+h_~~~

~~~~g+h)

~~~~~~~+C)(a+h+c+i~~j(j[jj)

The first six factors of the vanishing condition of fl correspond to disorder conditions, as can

be checked directly (Eq. (A3) and (A4) with p,q =
+1).
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Appendix B.

The Baxter model and its biquadratic forn~.

Let us consider the biquadratic equation (3.2) for the Baxter model (which identifies with Eq.
(3.3) for this model):

16 (z, y 7~, b~, u)
= 7~ (z~y~ + 1) + 2b~zy u (z~ + y~) (Bl)

where:

7~ =
cd, b~

=

~ ~ ~
~

,
u =

ah (82)
~ ~

2

~ ~

The modulus ko, given by the anharmonic ratio of the three roots (5.5) and of the point at

infinity reads:

~2 j~
~ ~

~j
(7u + bu + U) (7u bu + U)

0~ 2> 3, 1> ~~~
u

Two generators Al A2 of the action of the group introduced in subsection (6.I), isomorphic
to the permutation group a3> have the following representation

on
the modulus ko

~2
At (kl)

= ~~
°

j
A~ (kl)

=
i kl

o

with A(
=

A]
=

I, Al A2Ai
=

A2AiA2 where I is the identity transformation.

Their associated homographic transformations on z
(or y) read:

~~~~~
+

~
~~~~~ ~~

Let us
give the representation of this order six group as

transformations on 7~, b~, u, ri, r2>

r3, k(, k[~, k, a, b, c, d, with ki denoting the Landen modulus (ki =

2vil(1+ k))

I Pi P2 Pi P2 P2 Pi Pi P2 Pi

z-I z+I ,lz-I) ,(z+I)~~~ ~~z+1 ~~~~ ~~z-I ~~
z+1

~~~
z-I

27u 7u+b~-u -27u -7u-b~+u -7u+bu-u 7u-bu+U
2 b~ 2 (7~ + u) 2 b~ 2 (7~ + u) 2 (-7u + u) 2 (-7u + u)

2u -7~+b~+u 2u -7~+b~+u 7~+b~+u 7u+b~+u

r1 r1 r3 r2 r3 r2

r2 r3 r2 r3 ri ri

r3 r2 ri ri r2 r3

k(
j

I k(
j k2

k(

~,~
l

~,~ k[~
~ )(

o @ o ~,2 °

°
~

°
~

l k[~ k[~ l

k
~ ' -k

~ ' l + 2iki 2k/ -1 2iki 2k/

2a a+b+c+d 2a a+b+c+d a+b-c+d a+b-c+d

2b a+b-c-d 2b a+b-c-d a+b+c-d a+b+c-d

2c a-b+c-d -2c -a+b-c+d a-b-c-d -a+b+c+d

2d a-b-c+d 2d a-b-c+d a-b+c+d a-b+c+d
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