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We consider a directed compact site lattice animal problem o/ ttienensional hypercubic lattice,
and establish its equivalence with (i) the infinite-state Potts model and (ii) the enumerafibn-of)-
dimensional restricted partitions of an integer. The directed compact lattice animal problem is solved
exactly ind = 2,3 using known solutions of the enumeration problem. The maximum number of
lattice animals of size: grows as exrn@~1/¢), Also, the infinite-state Potts model solution leads to
a conjectured limiting form for the generating function of restricted partitionsifor 3, the latter an
unsolved problem in number theory.

PACS numbers: 05.50.+q

An intriguing aspect of lattice statistics is that seem-pared to the usual directed lattice animals [1], the present
ingly totally different problems are sometimes related tomodel generates compact animals since it excludes con-
each other, and that the solution of one problem can oftefigurations with unoccupied interior sites. In addition, we
be used to solve other outstanding unsolved problems. AkeepL,, L, finite, so that there exists a maximum animal
example is thel = 2 directed lattice site animals solved size ofL;L,.
by Dhar [1] who used Baxter's exact solution of a hard- LetA,(L;, L,) be the number of distinat-site compact
square lattice gas model [2,3] to deduce its solution. Iranimals that can grow of . In considering animal prob-
this Letter we consider a directedmpactsite lattice an- lems, one is primarily interested in finding the asymptotic
imal problem ind dimensions, and show that it is re- behaviorA, (L, L,) for largen. It is clear that by keep-
lated to (i) the infinite-state Potts model dndimensions ing Ly, L, finite the asymptotic behavior will depend on
and (ii) the enumeration df/ — 1)-dimensional restricted the relative magnitudes of, Li,L,. The study of enu-
partitions of an integer. The known solutions of restrictedmerations is facilitated by the use of generating functions.
partitions in two and three dimensions [4,5] now solve theln the present case we define the generating function

corresponding compact lattice animal problems, and, sim- LiL,
ilarly, the established solution of the infinite-state Potts G(Li,Lyst) = 1+ D Au(Ly, Lo)t". (1)
model [6] leads to a conjectured limiting form for the gen- n=1

erating function of restricted partitions far > 3, which ~ For example, the generating function for the< 3 lattice

is an outstanding unsolved problem in number theory. Fois

clarity of presentation, we present details of discussions G(B3.3:0) =1+t + 22 + 365 + 3t* + 315

for d = 2. Considerations in higher dimensions are sim-

ilar, and relevant results will be given. + 31 + 200 + 8 + 10 (2)
Directed compact lattice animals and restricted parti- \we observe thati,(L,, L,) reaches a maximum at ~

tions of an integer.-Starting from the origin {1,1} of LiLy/2.

anL; X L, simple quartic latticel whose columns and | et p,, i = 1,2,...,L,, be the number of occupied

rows are numbered, respectively, by=1,...,L; and sjtes in theith column of £. One observes that our

j=1...,L,, a site animal grows in the directions of growth rule implies the restriction

increasingi andj. In contrast to the previously consid-

ered directed animal problem [1] for which a site j} Ly=m=h=-=h,=0. (3)

can be occupied when either the sfie— 1,/} or the  In addition, one has the (one-dimensional) sum rule

site{i, j — 1} is occupied, we introduce a more restricted L

growth rule. Our rule is that a sifg, j} can be occupied Z hi =n, 4)

only when both{i — 1,;} and {i,j — 1} are occupied. i=1

(When applying the growth rule, sites with coordinateswherenr is the animal size. It is convenient to regard (4)

i =0 orj =0 are regarded as being occupied.) Com-as specifying the partitions of a positive integerinto
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sums of integer#;, and the condition (3) ensures that all I |1 1

partitions are distinct. Ther,(L,L,) is precisely the c(a)= \/2|: " In(1+ a) + \/Eln(l + ;)} =c(a™"),
number of distinct ways that an integeris partitioned

into at mostL, parts with each part less than or equal to a =1L/L,. (11)
L,. This leads to a classic restrictpdrtitio numerorum Assuming a Gaussian distribution fa,(L,L) near its
problem dating back to Gauss [4]. Particularly, thecentern = L2/2 (a = 1), it can be shown [11] that
generating function (1) can be evaluated in a closed form J3

5,7] An(L,L) ~ (—)2”5, n~1L%2. (12

2mn
G(Ll’LLz; 1) = O/ (On 0z, o ®) 1t therefore appears safe to conclude that the asymptotic
where (1), = [1,—,(1 — 7). Note that, despite its ap- pehavior of A,(L,,L,) assumes the universal form of
pearance, all zeros in the denominator are canceled angd-1.cv7 wherec is a constant which decreases with in-
(5) is a true polynomial i as shown in (2). The gener- creasing:. The initial value ofc is 7+/2/3 = 2.5651....
ating function (1) is known as the Gaussian polynomial offor 5, < {L,, L,}. Its value decreases tda) < c(1) =

the “q coefficient.” . N 24/2In2 = 1.9605... for n ~ L;L,/2 and eventually to
There areL,L, + 1 terms in (1) whose coefficients ¢ for » ~ L,L, when the lattice is fully occupied. This
satisfy the sum rule is to be compared with the asymptotic behaién =3/
Rk L+ L, of the usual directed animals [1].
bt n; An(Ly, La) = L (©) Equivalence with an infinite-state Potts model.

and the symmetry neighbor interactionss on an 1. x Ls simple quartc.
C _ LiLs L1 1 2

_ G(L1, L2: 1) — ! G(Ll’[jz’t ). (") lattice with the special boundary conditions shown in
While these two properties are relatively easy to prove [S]Fig. 1. It has been recently conjectured [12] that zeros of
the Gaussian polynomial possesses a unimodal propertjhe Potts partition function on this (self-dual) lattice lie on
namely, A,-1(Li,L2) < Au(L1,Ly) for n =1LiL>/2,  the unitcirclelx| = 1 in the Réx) > 0 half plane for all
which is very deep. A combinatorial proof of this 7, andL,, wherex = (eX — 1)/¢'/2. As a by-product
unimodal property appeared only very recently [8]. of our analysis, we shall establish this conjecture in the

The Gaussian polynomial can be inverted by the; = o |imit.

Cauchy integral to yield The high-temperature expansion of the Potts partition
1 1 function assumes the form [13
Au(Ly,Ly) = oy f_ZleG(Ll’LZ;Z)dZ, (8) [13]

where the integration is taken over a contour inside Z1,1,(q,x) = Z xR, (13)
|z| = 1, enclosing the origin. The asymptotic behavior of bond config
A, (L1, L,) for largen can be deduced by applying saddlewhere the summation is taken over &@*> bond-
point analyses to (8). For < min{L,, L,}, the rows and covering configurations of the latticeh and »n are,
columns of L are never fully filled so that the partition respectively, the numbers of bonds and connected clusters
of n is actually without restrictions. Then, the classic (including isolated points) of each configuration. In the
analysis of (8) by Rademacher [9] with(L;,L,;z) large g limit, the leading terms in (13) are of the order
effectively replaced by the Eulerian produei,! yields of g“%*!. This factor can be achieved by taking,
the celebrated Hardy-Ramanujan [10] result for example, the fully covered bond configuration of

{ o n=1,b = 2LL, with the weightgX2*1x?1l2 |t is
A, (L, L)) ~ ——= eXF<7T\/i>, n < min{L, L,}. then convenient to introduce the reduced= «) Potts

4n+/3 3 partition function
(9) = |i —(LiL,+1) 14

Clearly, the asymptotic behavior of,(L,, L,) changes Yi,0,(0) = omda Z1,.1,(4: ). (14)
as n increases, and the partition af becomes more
restricted. Whem,, (L, L,) assumes its maximum value
at n = L1L,/2 (the unimodal property), the leading
contribution can be obtained by observing that the left-
hand side of (6) consists df;L, + 1 positiveterms of
which the largest term is of the order &V, wherec is a
constant. It follows that to the leading order the largest
term is well approximated by the sugh', **). This leads
to the asymptotic behavior

An(Ly, Ly) o eV n ~ L1Ly/2,  (10)
where FIG. 1. A4 X 3 lattice with 13 sites and 24 edges.
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We now establish the identity right triangle with perpendicular siddsand 0L /27. It
Yo, 1,(x) = LLG(Ly Ly x72) follows _that the density of the zeros @f); on the circle

’ |z] = 1is a constant equal to

= G(Ly,Ly;x%). (15) »
H;(0) = L*/4m. (18)

To prove (15), we consider the generation Xf, ,,
from a systematic removal of bonds starting from the fullyConsequently, from (5), the density of zeros of
covered configuration. Generally, to hold the number  G(L1, L»; ) in the complex plane is also a constant and
b/2 constant, the minimum one can do is to decrelase equal to Hy,.,(6) — Hy,(6) — H.,(6) = L1Ly/27.
by 2 while increasing: by 1. Thus, one always looks for This leads tog(#) = 1/2, and the integral (16) can be
sites connected to exactly two neighboring sites. Startingvaluated, yielding
from the fully covered configuration, one observes from ’
Fig. 1 that there is only one such site, namely, the site fx?) = {Inlx Il > 1,
{1,1} at the lower-left corner, which is connected to the 0, el <1,
two sites {1,2} and {2,1}. Removing the two bonds confirming the known first-order transition of the infinite-
connecting to {1,1}, one creates a configuratiomo# 2  state Potts model [6,15].
and b = 2L,L, — 2 with the weight x> = x?l1l2x2, Results in d dimensions-The above consideration can
We regard the now isolated site {1,1} as a one-site animalbe extended t@ dimensions [16]. Define directed com-

Repeating this procedure, one next looks for the onepact lattice animals which grow from the origin ofda
site animal configuration sites which are connected talimensional hypercubic lattic€ of sizeL; X --- X L,
exactly two neighboring sites. There are now two suchn the d-positive directions subject to the constraint that
sites, namely, {1,2} and {2,1}. By removing the two a site{ii,i»,...,is} can be occupied only when the
bonds connected to either of the two sites, one finds theites{i;, is,...,i; — 1,...,is}, s = 1,2,...,d are all oc-
next term in the reduced partition function havimg= 3,  cupied. LetA,(L;,L,,...,L,) be the number of directed
b = 2L;L, — 4 and the weigh2x? = 2x?L1l2x~4, The compact animals of siza. ThenA,(L,L,,...,Ly) is
resulting configurations now have two isolated sites whictlthe number of distinct partitions of a positive integer
can be regarded as two-site animals. Continuing in thig into sums of nonnegative integers(n;,ny,...,nq—1)
fashion, it is recognized that the process of creatingassociated with vertice§ii, ns,...,ng—1} of a (d — 1)-
isolating sites (by removing two bonds at a time) followsdimensional hypercubic lattice, or, explicitly,

(19)

precisely our rule of growing directed animals dh. It L L Ly

follows that we have established the first line of (15). The n= Z Z Z m(ny, ..., ng-1),
second line of (15) now follows from (7). It should be m=1 m=1  ng =1

pointed out that our proof of (15) works equally well for m(ny,...,ng—1) >0, (20)

the Potts model with anisotropic reduced interacti&is
andK,. The reduced partition function is again given by
(15) but with the replacement of by x;x,, wherex; =
(X — 1)/ /q. We have also established that all zeros
of Z;, 1,(%, x) are on the unit circldx| = 1, verifying a (21)
conjecture of [12] in the; = < limit. whenevem; =< nj,n, = nb,...,ng—1 = njy_,. This de-
Since all zeros of the Gaussian polynomial are on thgj o (7 — 1)-dirr’1ensionafl restricted partition [5].

unit circle |x| = 1, one can introduce a per-site reduced |, 5 similar fashion one defines the generating function
free energy for they = « Potts model as [12,14]

such that

0 = m(ni,né,...,n&,l) = m(nl’n29"-’nd*1) = Ld»

LiLyLy
P = ,lim (LiL2) "' ING(Ly, Ly; x7) G(Li.Ly,....Lgst) =1+ > Au(Ly,La.....Lot",
1’77%_'00 n=1
=f 2@ In(e? — x*)de, (16) (22)

and, analogous to (15), establishes [16] that the generating
function (22) is precisely the reduced partition function of
the infinite-state Potts model [17] ofi, provided that one

whereL,L,g(0) is the density of zeros ofi(L;, L,; x?)
on the unit circle in the complex? plane. To determine

g(a), we note that the zeros ¢f);, = §=1 (1 —tP)are jdentifiest = x¢ andx = (K = 1)/q"/1.
ate'’r, where But explicit expressions of the generating function (22)
0cp = 2m€/p, p=12,...,L; are known only ford =2 andd = 3. Ford =2itis
given by (5), and fod = 3 itis [5,7]
{=1,2,....p. a7

N t Y A 1 e g
This implies that, ag ranges from 1 td., the number of G(Li,L,,L3;t) = [zl llrlq ,
zeros on an arc of the unit circlg = 1 between the real (1,4 ai L), sl i1
axis and any anglé is equal todL?/4, the area of the (23)
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where A, (L1, L,, L3), which we expect as id = 2 to occur at

L L H
_ _ n ~ Li1L,L;/2 and is the same as that6f{L;, L,, L3; 1),
[t] = ,!:[l(t)p» (t) = ,!:[1(1 =), (24) s [18]

We observe from (23) that zeros 6{L, L,, L3; t) are on
the unit circle|t] = 1 with a uniform density.L,L3 /2,
leading again to the per-site reduced free energy (19) with n~ LiLyL3/2, (25)
x? replaced byx® in agreement with the known solution

[6]. In addition, the asymptotic behavior of the Iarge|stwhere

1/3 1/3 1/3
o
clay, ar, a3) = 2_1/3|:<—1> + (%> + (ﬁ) :|f(011,012, asz),
an a3 g
3

t(ay, a2, a3) = (x1xz + xpx3 + x3x1) "' Z [x7 Inx; — (1 = x)*In(1 — x)], (26)
i=1

An(L1, Ly, L3) « exfe(ar, ag, az)n™’],

with x; = (1 + a; + 1/ay) L a; = L;/Ly,i,j,k in | Grants No. NSC 84-2112-M-001-93Y and No. 84-0501-
cyclic order of 1,2,3. Particularly, forL; = L, = [-001-037-1312, and G.R. acknowledges the support
Ly =L, one hasc(1,1,1) = 2239InV/3 — 3In4) = of a Lavoisier grant from the Ministere des Affaires
1.245907. Expressions (10) and (25) suggest the asympEtrangéres.

totic behavior

An(Ly, Lo, ..., Ly) « explcn@=D/4)
}’l~L1L2...Ld/2 (27)
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