
J .  Phys. A: Math. Gen. 20 (1987) 5299-5309. Printed in the U K  

Dimensional reduction and correlation functions 
on 3~ lattice models 

A Georgest, D Hansel$, P Le Doussalt and J M Maillard§ 
? Laboratoire de Physique Thiorique, Ecole Normale Supirieure, 24 rue Lhomond, 75231 
Paris Cedex 05, France 
$ Centre de Physique Thiorique, Ecole Polytechnique, Groupe de Recherche du CNRS 
no 48, Route de Saclay, 91 128 Palaiseau, France 
4 Laboratoire de Physique Thiorique et Hautes Energies, 4 place Jussieu, Tour 16, 75230 
Paris Cedex 05, France 

Received 16 February 1987 

Abstract. The exact calculation of an infinite number of correlation functions for general 
cubic and HC'P anisotropic lsing models on their 'disorder variety' is described. The 
intra-plane correlation functions are found to be exactly the same as for a two-dimensional 
free-fermion Ising model. This allows us to characterise the intersection between the 
disorder and critical variety which displays in general anisotropic scaling with non-trivial 
exponents. 

1. Introduction 

Many exact simple solutions for lattice models of statistical mechanics called 'disorder 
solutions' have been obtained in the last fifteen years (Stephenson 1970, Welberry and 
Galbraith 1973, Verhagen 1976, Enting 1977, 1978, Rujan 1982, Peschel and Rys 1982, 
Dhar 1983). Most of these solutions are obtained for two-dimensional models but 
there are a few examples of such exact solutions for three-dimensional models (Wel- 
berry and Miller 1978, Enting 1977, Rujan 1982, Domany 1984, Jaekel and Maillard 
(1985). 

These simple solutions are provided by some local condition bearing on the 
Boltzmann weight of the elementary cell generating the lattice (Jaekel and Maillard 
1985). A straightforward consequence of this local condition is a certain decoupling 
of the spin degrees of freedom: for instance, the partition function per cell of these 
three-dimensional models reduces, when the model is restricted to a certain subvariety 
of the parameter space corresponding to this local condition, to the partition function 
of the isolated elementary cell generating the lattice. For correlation functions in two 
dimensions a similar dimensional reduction occurs: this has been illustrated on the 
two-dimensional example of the checkerboard Ising (or Potts) model (Dhar and 
Maillard 1985). In that case it has been shown that an infinite number of correlation 
functions can be calculated on the disorder varieties, thanks to a dimensional reduction 
from two to one dimensions. One purpose of this paper is to show for the example of 
two particular models that similar dimensional reductions occur for three-dimensional 
Ising models. An infinite number of correlation functions can be calculated exactly. 
For instance, the intra-plane correlation functions reduce to the correlation functions 
of a two-dimensional model (free-fermion models in the examples of the paper). 
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2. Disorder condition on a cubic Ising model 

The cubic three-dimensional Ising model studied here has been defined by Jaekel and  
Maillard (1985). The elementary cell of the model has three different coupling constants 
(figure l ( a ) ) .  These cells are arranged in a staggered way as indicated by figure l (c ) .  
The Boltzmann weight of the elementary cubic cell is 

We require, and this is our  local disorder condition, that the Boltzmann weight W 
associated with the elementary cube is actually independent of the four spins U; at the 
bottom of the cube when one sums over the spin configurations of the spins T;  at the 
top  of the cube: 

1 W ( K ,  K ' ,  L ) = h ( K ,  K ' ,  L )  independent of ut. ( 2 )  
7, 

A straightforward calculation shows that this (disorder) condition is satisfied when 

tanh' L tanh 2K +tanh 2 K ' = 0 .  (3) 

K' 

-K 

Figure 1. ( a )  Spins and the three coupling constants corresponding to the elementary cube 
of the lattice (green cube). ( b )  Alternative elementary cell of the lattice: the red cubes. 
( c )  The staggering of the elementary cubic cells. 
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For some appropriate boundary conditions on the lattice (detailed in Jaekel and  
Maillard (1985)) the partial summation over all the spins at the boundary leads to the 
disappearance of all the elementary cubes of the first layer and one recovers the same 
boundary conditions for the next layer. One can iterate this procedure recursively and 
‘eat’ the whole lattice in that way. What remains after this decimation procedure is 
just a multiplicative factor for each elementary cube. This leads to the following 
partition function per site of this cubic Ising model restricted to the disorder condition 
(3): 

Z s i t e ( 3 ,  = A (4) 

A similar decimation procedure can be performed to calculate correlation functions 
exactly for the three-dimensional model above when condition (3)  is satisfied. This is 
a generalisation of the method introduced by Dhar and Maillard (1985) to calculate 
an infinite number of correlation functions on the checkerboard Potts (or Ising) model. 
For that purpose one remarks that the lattice can also be obtained from another 
elementary cell: the elementary cubic cell depicted in figure l ( b ) .  Let us denote by 
‘green’ and  ‘red’ these two kinds of cubic elementary cells corresponding respectively 
to figure l ( a )  and figure l ( b ) .  The following obvious remark holds: when the condition 
(2) bearing on the red cubes is satisfied, the symmetric condition bearing on the green 
cubes is simultaneously satisfied. Hence when one sums over the configurations of 
the spins at the bottom of the green cube the Boltzmann weight of the green cube is 
independent of the configurations of the spins at the top  of that cube. With appropriate 
boundary conditions for the bottom of the lattice (symmetric to the previous top one) 
one can integrate over the spin configurations from the top layers of spins downwards 
recursively ‘eating away’ the red cubes, and from the bottom layer upwards by 
integrating over the green cubes. Figure 2 (a )  and figure 2(6)  show what remains of 
the lattice after such a decimation: an n-point intra-plane correlation function reduces 
to an  n-point correlation function of a two-dimensional free-fermion Ising model 
whose elementary cell will be defined below (see figure 6 ) .  

Let us now consider n-point correlation functions that are not intra-plane correlation 
functions. When one encounters in such a decimation procedure a point (of some 
n-point correlation function) the decimation of the cube can no longer be performed. 
To fix ideas let us concentrate on the green cubes: equation (2) is actually satisfied 

( U )  (b l  

Figure 2. ( U )  What remains of the cubic lattice after the last but one step of the upward 
and downward decimation procedure. ( 6 )  What remains of the cubic lattice at the last 
step of the decimation procedure. 
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for the Boltzmann weight W but not for this Boltzmann weight multiplied by one of 
the Ising spins ( W (  K ,  K ’, L )  + U ,  W (  K ,  K I ,  L ) ) .  The corresponding green cube cannot 
be removed using the disorder condition (2) and (3 ) .  Therefore it is no longer possible 
to sum over the spins at the bottom of the red cube to remove in that way the four 
red cubes connected to that cube (see figure 3). 

This situation is repeated at  any step and leads to a pyramid of green cubes. This 
pyramid is not infinite because of the decimation upwards over the red cubes. Let us 
concentrate first on the two-point correlation functions. One is led to distinguish 
between two different situations. In the first situation, one of the points is at the top 
of the pyramid while the other one is inside. On the contrary in the second case, the 
other point is outside the pyramid. This is the three-dimensional generalisation of the 
distinction that occurs for the checkerboard models (Dhar and Maillard 1985) where 
one has to distinguish between the correlation functions that are ‘spacelike’ and the 
ones that are not. 

Figure 4(a) illustrates the case of a two-point correlation function for which the 
other point is inside the pyramid (the line joining the two points has even been chosen 
to be vertical). This two-point correlation function reduces, thanks to this decimation 
procedure, to a two-point correlation function on a lattice made of an infinite square 
lattice for which an upward-pointing and a downward-pointing pyramid are glued. 

Figure 4( b )  illustrates the other situation for which the second point is outside the 
pyramid having the first one at its top. One can easily be convinced that the decimation 
not only limits the pyramid but also makes this pyramid not full inside. In that case 
the two-point correlation is the same as that of an infinite square lattice distorted 
locally by the surface of the pyramid. 

Figure 3. The pyramid of cubes that cannot be removed in the decimation procedure. 

L._i<.’ 
io  I I b )  

Figure 4. Two-point correlation function and its associated lattice. ( a )  ‘Timelike’, ( b )  
’spaceli ke’. 
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Figure 5. N-point correlation function and its associated 
described in the text. 

lattice for cases 

Of course, it is a straightforward matter to generalise these results to n-point 
correlation functions. Figure 5(a)  illustrates the case where the n-point correlation 
functions reduce to n-point correlations on a surface made of the infinite square lattice 
distorted locally by a finite set of pyramids. The most general situation (figure 5 ( b ) )  
corresponds to the case where the n-point correlation function reduces to n-point 
correlation on an infinite square lattice which is deformed locally by a finite set of 
empty pyramids and on which finite lattices like the one depicted in figure 4 are glued. 

3. Intra-plane correlation functions and critical behaviour 

When condition (2)  is satisfied the intra-plane correlation functions are the same as 
the correlation functions of a two-dimensional free-fermion model on a square lattice 
with coupling constants K and K ‘  displayed as indicated in figure 6. Note that this 
lattice is deduced from a layer of the three-dimensional lattice by changing K ‘  in - K ’ ,  
as a result of the decimation procedure. The calculation of the correlation functions 
of that particular free-fermion model can, in principle, be performed using Toeplitz 
determinants (McCoy and Wu 1973) but this is quite tedious: for that reason we deal 
only with the nearest-neighbour correlation functions. They can be deduced from the 
partition function of this fully frustrated two-dimensional Ising model by performing 
a partial derivative with respect to K or K ’ ,  respectively. 

The exact calculation of this partition function has been performed using the well 
known Vdovitchenko-Feynman counting rules (Vdovitchenko 1965). 
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Figure 6. The fully frustrated two-dimensional Ising model with coupling constants K and 
K ' .  

Basically it amounts to calculating (for this model) a 1 6 ~  16 determinant with 
coefficients depending on K and K'. This determinant, the corresponding result for 
the partition function, and also the criticality condition, are given in the appendix. 
When K = K '  one verifies immediately that the partition function of the model is the 
same as the one of the fully frustrated Villain model (Villain 1977). 

The critical condition of the model is not an algebraic relation between the two 
high-temperature variables tanh K and tanh K '  but splits into two infinite coupling 
conditions: 

(1- tanh2K)(1-tanh '  K ' )=O.  ( 5 )  

In  fact the criticality condition corresponds to K and K '  both infinite. If only one 
of the coupling constants is infinite the model is not critical: it is equivalent to decoupled 
elementary squares. 

We expect both intra-plane (&) and between planes (6,) correlation lengths to 
diverge at the intersection of (3) with the critical variety and thus ( 5 )  must be the exact 
equation of this intersection. This equation is reminiscent of the criticality condition 
for the Villain model. As for this model, despite the fact that the critical temperature 
is zero, the critical exponents are nevertheless non-trivial. One has, for example, vli = 
(Gabay 1980) and vlI = CO. The critical behaviour of the intra-plane correlation functions 
is thus two dimensional in nature (though with 'exotic exponents') and this is also 
true of all 'spacelike' correlation functions. On the other hand, we expect correlation 
functions in the vertical direction to exhibit a genuine three-dimensional critical 
behaviour with exponents v L  and v1 (corresponding to the transition in the dynamics 
of the two-dimensional model). At the intersection between the disorder and the 
critical variety, one thus obtains anisotropic scaling with non-trivial exponents. This 
occurs despite the fact that the partition function restricted to the disorder variety is 
perfectly analytic. That such a mechanism is indeed possible without putting constraints 
on the exponents has been illustrated in Georges et a1 (1986). 

4. The general cubic Ising model 

It is possible to generalise the previous three-parameter cubic Ising model to a 
twelve-parameter cubic Ising model with one coupling constant for each bond of the 
cubic elementary cell (see figure 7(a)) .  The disorder variety now becomes of 
codimension 5 (Jaekel and Maillard 1985) and similarly the intra-plane correlation 
functions reduce, when these five conditions are satisfied, to the correlation functions 
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Figure 7. ( a )  The twelve coupling constants of the elementary cubic cell. ( 6 )  The two- 
dimensional Ising model with eight coupling constants. 

of a two-dimensional free-fermion model with eight coupling constants (see figure 
7(  b ) )  satisfying an involved condition resulting from the elimination of the vertical 
coupling constants with the five disorder equations. The partition function of this 
eight-parameter model and its critical variety have been calculated and it seems that, 
in this case, one obtains an intersection at non-zero temperature. The exact expression 
of such a variety is too large to be written in this paper. It is amusing to note that 
disorder solutions in turn exist for this eight-parameter two-dimensional model. The 
disorder condition amounts to imposing the two equations: 

( 6 a )  tanh K,+ tanh K ,  . tanh K 2 .  tanh K ,  = 0 

and 

tanh K12+tanh K , ,  tanh K I o '  tanh K 9 = 0 .  ( 6 b )  

Therefore one can imagine two successive dimensional reductions: one for this model 
restricted to a certain codimension 5 manifold of the parameter space and a new 
dimensional reduction restricted to a submanifold of the previous one. 

5. The hexagonal close packed Ising model 

All these decimation procedures that have been detailed on the cubic lattice can, of 
course, be applied in a straightforward way to other three-dimensional lattices such 
as the HCP lattice. A disorder solution exists for the Ising model on this lattice (as 
found by Welberry and Miller (1978) in a more general case). This disorder solution 
can also be understood very simply by introducing a local criterion similar to ( 2 )  
bearing on the Boltzmann weight corresponding to the elementary tetrahedron cell of 
the lattice (see figure 8). The Boltzmann weight is 

W((+r, a;, u k ,  U / )  = exp(Klu ,q  +K2uPk K ~ U P I +  K12u;uk + K2,uk(+/+ KI,qu/.  (7) 
The disorder criterion amounts to writing that, summing over the spin at the top of 
the tetrahedron, the Boltzmann weight becomes independent of the three other spins: 
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Figure 8. The tetrahedron elementary cell and the four nearest-neighbour coupling con- 
stants. 

I f  K:,, ( K , ,  K 2 ,  K,)  denotes the coupling constants obtained from the star-triangle 
transformation on the coupling constant K , ,  the previous disorder condition gives 

K, , - tK&,(K, ,K, ,K, )=O (9) 

thus defining a codimension 3 variety. 
The decimation procedure detailed on the cubic lattice just amounts to ‘eating’ the 

H C P  lattice from the top using the upward pointing tetrahedron and from the bottom 
using the downward pointing tetrahedron. Under this procedure one will recover the 
fact that the intra-plane correlation functions are the same as that for the anisotropic 
triangular Ising model with the coupling constants K Lo. 

These correlation functions are not analytical on the critical variety of this triangular 
model. Note that, when turning to the variables K , ,  the expression of that variety 
takes the form of the critical variety of an anisotropic hexagonal lattice. This provides 
the link with the dynamical interpretation of Domany (1984). In slight contrast with 
the cubic case, the intra-plane correlation functions simply exhibit the standard two- 
dimensional critical behaviour with T ~ !  = :, vIl = 1. One thus has the following situation: 
in the six-dimensional parameter space of the model there exists a three-dimensional 
variety for which a dimensional reduction of the model occurs. Some correlation 
functions of the model are singular for a two-dimensional subvariety of the previous 
critical variety. The discussion of the phase diagram of such a model has been sketched 
by many authors (Rujan 1982, Domany and Gubernatis 1985) in the K ,  = K z  = K, ,  
K 1 2  = K z 3  = K I 3  case. Apparently one has an example of a ‘Lifshitz surface’. 

These drastic simplifications of the n-point correlation functions are a straightfor- 
ward consequence of the fact that the decimation procedure can be performed from 
both the top  and the bottom of the lattice. This is a remarkable symmetry of the model 
and i t  is not satisfied in general, for instance when the Boltzmann weight corresponding 
to the upward pointing tetrahedron is more complicated than (7).  However there exist 
other interesting classes of disorder solutions: let us impose, for instance, in addition 
to the disorder condition (8), the following ‘linearity’ condition on the Boltzmann 
weight of the upward pointing tetrahedron elementary cell: 

It can be seen quite easily that two-point (n-point) correlation functions simplify 
drastically when conditions (8) and (10) are satisfied. Their calculation reduces to a 
random walk problem in two dimensions. 
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6. Conclusion 

The disorder solutions are known to correspond to particular subvarieties of the 
parameter space of the model where some dimensional reductions occur. An analysis 
of three-dimensional Ising models and of their n-point correlation functions has been 
sketched in this paper. It shows clearly that these dimensional reductions depend on 
the quantity one deals with: it exhibits a dimensional reduction from dimension three 
to dimension zero for the partition function to be compared with a dimensional 
reduction from dimension three to dimension two for an infinite number of correlation 
functions. 

These last results also mean that the study of the model in the vicinity of the 
disorder variety (2) is much more complicated than in the case of the two-dimensional 
model (Georges et a/ 1986) where the first-order term of an  expansion in the vicinity 
of (2)  was just a simple algebraic expression. For this three-dimensional model even 
this first-order term is some involved elliptic function (the nearest-neighbour two-point 
correlation function of a two-dimensional free-fermion model). Finally these precise 
examples also underline the following points: for the checkerboard Ising model the 
dimensional reduction associated with the disorder solution reduces the correlation 
functions of the two-dimensional model to the one of a one-dimensional lattice. 
Therefore the partition function and the correlation function have no singularities 
when one restricts the model to the disorder condition for finite values of the parameters 
(though interesting non-analytic behaviour arise in the region where the disorder and  
critical varieties are asymptotic one to the other (see Georges et a1 1986)). This is no 
longer the case for three-dimensional models where the correlation functions can be 
non-analytical when one restricts the model to the disorder conditions: the disorder 
variety can actually contain a non-trivial critical subvariety ( a  surface in the case of 
the anisotropic HCP lattice). This generalises the known situation where the disorder 
variety was just a line and  the critical subvariety a Lifshitz tricritical point (Rujan 
1982, Domany and Gubernatis 1985). On this critical subvariety, we expect anisotropic 
scaling to occur with non-trivial critical exponents. Let us also remark that the examples 
detailed in this paper emphasise the importance of the model for which the decimation 
procedure can be performed from both the top and the bottom of the lattice. The 
existence of other interesting classes of disorder solutions (‘linear’ ones) has been 
mentioned in the case of the HCP lattice (see also Rujan 1986). Let us finally mention 
that all these results have a simple dynamical interpretation through the equivalence 
of ‘disorder solutions’ of equilibrium spin models with probabilistic cellular automata: 
this will be the subject of a future paper. 
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Appendix 

The partition function per site of the two-dimensional free-fermion model can be 
calculated using the Vdovitchenko-Feynman counting rules (Vdovitchenko 1965); this 
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amounts to calculate a 16 x 16 determinant. For the anisotropic Ising model with two 
coupling constants corresponding to the horizontal and vertical bonds one deals with 
a 4 x 4 determinant. Here the determinant is a 16 x 16 one because as a consequence 
of a bigger elementary cell, there are four kinds of different sites on the square lattice 
denoted by A, B, C, D (see figure 6 ) .  The 16x 16 matrix is 

where w = exp(ir /4) ,  W = exp(-ir/4) and a, p, y, 8 are 4 x 4  matrices: 

where t = tanh K and T = tanh K ' .  
The calculation of this determinant has been performed using the formal language 

REDUCE 3.1 (Hearn 1984). This leads to the following exact expression for the partition 
function per site 

In z = 1 / 2 r 2  Jo2" dql  dq, I n ( X ( q , ,  q 2 ) )  

where 

X(41, 42) = A +4B(cos 41 -cos 42) 

+ C [ ~ C O S ~ ~ , + ~ C ~ S ~ ~ ~ - ~ C O S ( ~ , + ~ Z ) - ~ C O S  ( q l - q 2 ) ]  

with 

A = ( t 2  - 1 ) 2 (  T 2  - 1 ) 2 (  1 + 2 t 2 +  2 T 2 +  t 4 +  T 4 +  8 t2T2+ 2 t4T2+ 2 t2T4+ t4T4) 

B = [( t 2 -  1 ) ' ( r 2 +  l ) t  + ( T 2 -  1 ) ' (  T 2 +  1) TI 

C = ( t 2 - 1 ) 2 ( T 2 - l ) 2 t Z T 2 .  

The critical variety for this model is obtained when the argument of the logarithm 
vanishes: this happens when q1 = q2 = 0. The condition simplifies remarkably and in 
fact splits into two trivialisation conditions: 

X(0 ,O)  = O+( 1 - tanh' K )4( 1 - tanh' K')4 = 0. 
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