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Abstract 

The quasiclassical limit of the integrable statistical 3D lattice model known as the Zamolodchikov-Bazhanov-Baxter 
model is considered. We obtain a classical equation of motion for the scalar field, defined on the cubic lattice in 2 + l- 
dimensional space-time, and show that it can be seen as a generalization of the Miwa equations. @ 1997 Elsevier Science 
B.V. 
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1. Introduction 

There are now many integrable models in math- 
ematical physics with one spatial and one temporal 

dimension, like the KdV, sine-Gordon equations etc. 
These models are relatively well studied both in 
their classical and quantum formulations [ 11. The 

next natural step on the way to “realistic” 3 + l- 
dimensional models must be the study of integrable 
models with two spatial dimensions. Much infor- 

mation is already available on such models as the 
Kadomtsev-Petviashvili equations [ 21 and other 
classical equations. On the other hand, there exists a 
quantum 2 + 1 -dimensional model based on Zamolod- 

chikov’s solution of the tetrahedron equations, the 
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Zamolodchikov-Bazhanov-Baxter model [3-51. 
Many of its integrable structures and properties have 

still to be understood: one can, for instance, mention 
the problem of generalizing the Bethe ansatz for such 

3D models. Moreover, no connection has yet been 
established between this very model and any classi- 
cal integrable model in 2 + 1 dimensions, however 

the well-known correspondence between classical 
transfer matrices and quantum Hamiltonian has been 
studied by Baxter and Quispel: they have actually de- 
rived a two-dimensional quantum Hamiltonian com- 
muting with the layer-to-layer transfer matrix of the 
three-dimensional Zamolodchikov-Bazhanov-Baxter 
model [6]. 

In fact, there are (at least) two types of three- 
dimensional models: classical models and quantum 
models. One should, however, recall the paper by 
Kashaev and Reshetikhin [7], where a relation be- 
tween the quantum affine Toda theory and the Hirota- 
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Miwa equation has been established” [9]. There is 
another approach linking the tetrahedron equation and 

classical dynamical systems: it amounts to introduc- 

ing a classical “functional 5 tetrahedron equation”. 

One should also recall the paper by Kashaev where 
discrete three-dimensional equations are shown to be 
associated with the (local) Yang-Baxter relations: 
Kashaev in particular shows how one can construct 
certain operator solutions to the tetrahedron equations 

[ 121. For now, the approach we will develop here 
seems to be very different from that of the paper 

by Kashaev [ 121, and the possible interconnections 
between these two approaches remain to be clarified. 

The aim of this paper is to obtain a quasiclassical 

limit of the Zamolodchikov-Bazhanov-Baxter lattice 

model [3-51. The main idea is to regard the limit 
when the number of colors N of the model tends to 
infinity as the usual limit for the l/ii expansion in 
the quasiclassical approach (N N l/h). In such a 
way we will obtain a model in which field variables 
are defined on the cubic lattice and satisfy a discrete 

equation which turns out to be a generalization of the 
Miwa6 equations [ 91. 

The paper is organized as follows. The definition 

of the Zamolodchikov-Bazhanov-Baxter model is re- 
called in Section 2. In Section 3, a l/n derivation of 

the equation of motion for the classical field is sug- 

gested. Section 4 shows how these equations of motion 
can be reduced, under some restriction, to the Miwa 

equations. A brief discussion is given in Section 5. 

4 In fact, the Hirota-Miwa equations could also be called McCoy- 

Perk-Wu equations [ 81: they were actually also discovered in the 

framework of the (two or n-point) correlation functions of the 

anisotropic two-dimensional lsing model by McCoy, Perk and Wu. 
These equations were seen as a (double) discrete generalization 

of the Painleve equations. 

5 More details can be found in Ref. [ lo,11 I. 
6 The Miwa equation (discrete B-KP) has four terms instead of 

three in the Hirota-Miwa equation (discrete A-KP). The Miwa 

equation can be written c-?=, aj.r(n+cj) .r(n-cj) = 0, where 

x4=, cj = 0 and (~4 = LYE ~2 as. The (Yj'S are some constants 

that can be arbitrarily changed by multiplying r by an exponential 

of quadratic form in n. In a suitable continuous limit it reduces 
to the B-KP equation, while it is itself equivalent to the whole 
B-KP hierarchy (see for instance Refs. [ 91). In a particular limit 
(namely aj = E. pi, 6 --f 0, pj being fixed) the Miwa equation 

reduces to Hirota’s three-term equation associated with the discrete 

Toda system (see for instance Ref. [ 131): cl, ,B, ~(n + ej) 

T(H-ej)=O. 

2. The Zamolodchikov-Bazhanov-Baxter model 

The Zamolodchikov-Bazhanov-Baxter (ZBB) 

model [ 3-51 is a statistical model defined on a three- 

dimensional cubic lattice. To each elementary cube of 
the lattice a Boltzmann weight function is assigned. 
It depends on eight spins located at the corners of 
the cube, and some extra parameters called “spec- 
tral parameters”. To each configuration of the lattice 

spins the product of all the corresponding Boltzmann 
weights is assigned. The partition function of the 

model is the sum of such products over all spin config- 
urations. The integrability of the model follows from 
the existence of a commutative set of layer-to-layer 
transfer matrices [4,14,15]. 

In order to describe the Boltzmann weight function 

of the ZBB model, let us introduce some auxiliary 
functions and fix the notations. Such notations were 
already used in Ref. [ 161. 

First, let us introduce a positive integer N, called 
the number of colors. The spin variables, like spin a 
in the following formula, takes integer values modulo 
N. Let p be a complex number. Then introduce the 

function 

a A(P) 
w@(a) =n--- 

& 1 - PUS' 

where 

0 =exp(2ri/N), Am = 1 _PN. (2) 

The Boltzmann weight, assigned to an elementary 
cube of the lattice, is 

e d 

Fig. 1. Elementary cube of the lattice. 
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Fig. 2. A “pile” formed by a line of n cubes in the front-to-back direction of the lattice with periodic boundary. 

c w(psld - h + C_)w(p1 la - g + e_) 
= 

b w(p4(e-c+~)W(P2lf--++) 

x Ji(ctb-g-h) 
(3) 

The integrability of the model is satisfied [ 41 provided 

plp3 = 0~ ‘p2p4. (4) 

The summation over the dummy central spin & is 
shown in Fig. 1. 

Let us now consider a projection of the cubic lat- 
tice in the front-to-back direction as shown in Fig. 2. 
Each “pile”, formed by n cubes in the front-to-back 
direction, will be considered as a weight for a two- 

dimensional model with quite involved spin interac- 
tions (see Ref. [ 41) , 
W(A B, C, D) 

= ~W~ak+ll~k+l.bk+l.akIbk,ck,dt+lldk+l~ 

k 

(5) 

where A (B, C, D) denotes the sequence of spins 
A = {ak} . . Here k corresponds to a labeling of the 

layers (see Fig. 2, see also Ref. [4] for more details). 
Each W takes into account the “hidden” summation 

over the “dummy” variables &k. It is useful to consider 
those spins as the very spins of a 2D lattice by choosing 
the sub-orbit in the space of the spin states of the type 

c &k = 0 (6) 

for each W. This trick does not change the partition 
function [ 41. With this restriction, the model is noth- 
ing but the generalized chiral Potts model [ 171. 

One can introduce internal Spins flk obeying 

ek=gk-uk+lr (7) 

213 

b k+l 

ck+l 

Fig. 3. Modified Boltzmann weight. 

dkt I 

so that relation (6) holds automatically (see Fig. 3). 

Therefore, the elementary cube on the kth position 

depends on (a, b,c,d,u)k and (a, b,c,d,a)k+l, as 
shown in Fig. 3. 

3. Quasiclassical limit 

Let us now discuss how one can obtain a “classical” 

version of the ZBB model. 
In a quantum field theory, described in terms of a 

path integral, the partition function is usually defined 

as 

A solution to the classical equation of motion 

$##4) =o (9) 

is the saddle point configuration for the path integral 

(8). 
In order to obtain an equation like (9) for the ZBB 

model, let us apply some simple heuristic considera- 
tions. Namely, when N tends to infinity, let us formally 
perform the following changes, 
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257 

N 1 a &i 
~=n, a=i ,..., _. (10) 

Then 

7i 

w(pla) = exp 
( J - i (1 -pe’$)t$ 

> 
11 +O(h.)l, 

0 

(11) 

where IpI < 1. Leaving only the leading terms in the 
1 /Ti expansion, one obtains the following form for the 

partition function, 

~-1 (n JSspin)exp(y), (12) 

and one can now apply Eq. (9) to ( 12). 
Differentiating “the action” S[ spins] with respect 

to the (continuous) spins, one gets the “classical equa- 
tions of motion”. In fact there are two different types 
of equations of motion, corresponding respectively to 

the derivatives over Z-type spins and over Z-type spins. 
The a/d& derivative, being applied to the action cor- 

responding to (5)) gives 

(1 -g,(W) (1 -&3(k)-‘) 

(1 -,92(k)-‘) (1 -g4(k)-‘) 

= (1 -g1(k+ 1)) .(l -gs(k+ 1)) where the g( k)‘s are assigned to the corresponding 

(l-g2(k+l)~(l-g4(k+l)) 
(13) 

links, surrounding the black spin. 

where a function g(k), assigned to the links of the 2D 
lattice, is defined as 

g,(k) =pl .exp[i(Zk-&-I -F+Ck-I)], (14) 

gi being the link between Z and Tj spins as shown in 
Fig. 4, and similarly for g2, g3, g4, according to Fig. 4, 
with the “white” Z-type spin inside. 

The indices of the g’s always correspond to the in- 
dices of the former parameters p, as can be seen in 
Fig. 5. In some formulae below it is implied that the 
four links belong to a common vertex, as in Fig. 4, 
while in others it is implied that they surround a pla- 
quette, as in Fig. 6. 

In order to obtain the derivative of the action 
S[spins] with respect to a black (i.e. a-type) spin, 
one has to consider eight Boltzmann weights sur- 
rounding this spin. The equation of motion reads 

Fig. 4. Element of the 2D lattice, white D Inside. 

Fig. 5. One 2D layer. 

(1 -gl(k)). (1 -gz(k)) 
(1 -a(k)). (1 -a(k)) 

= (1 -gl(k+ l)-‘1 . (1 -g3(k+ I)-‘) 

(1 -gz(k+ I)-‘). (1 -g4(k+ 1)-l)’ 
(15) 

According to definition ( 14) of the g’s there exists, 
in each front-to-back layer and for each plaquette, an 

identity 

a(k) .gxtk) =gz(k) .a(k). ( 16) 

The field variables have been assigned to the links of 
the 2D lattice with black and white vertices so that 

B 

2 1 

C 

0 

A 

3 4 

D 

Fig. 6. Vertex variables 
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Eqs. ( 13) and ( 15)) together with condition ( 16), 
define the evolution of these variables. 

It can be well suited to avoid the “segregation” of 
vertices, replacing somehow the two equations (13) 
and (15) by a single one. For this purpose let us in- 
troduce the variables fn, instead of the g,, as follows, 

f3 =g3, f4 =g4, f2 =g,‘, fl =g,‘. (17) 

Then the difference between white and black vertices 

disappears, and one gets for the surrounding of each 
vertex 

f2 (l-fl)‘(l-f3) .f; u-f;).u-f;) 

fi’(l-f2N-f4) =f:‘u-f;bu-.f~)’ 

(18) 

where the f,,‘s correspond to the kth front-to-back 
layer, and the f:‘s to the k + lth layer. For each pla- 
quette one then has the following condition, 

fi. _ .f4 

.fl -z 
(19) 

4. Connection with Miwa equations 

Let us now establish a relation between Eq. ( 18), 
together with condition (19), on the one hand, and 
some known equation in discrete space-time, on the 
other. It will be shown that the system (18, 19) is, to 

some extent, more general than the well-known Miwa 

equations [ 91. 
First of all, let us introduce the new variables q,,,, 

instead of the f,,.‘s, so that ( 19) holds automatically. 
The cp’s will not be associated with the links, but with 
the vertices of the lattice. Let each f, corresponding 
to some link, be the ratio of the p’s corresponding, 
respectively, to the bottom end and upper end of the 
link, for example (see Fig. 6)) 

f, = E! 
Pi3 ’ 

f2 = (PC 
‘PB ’ 

f3==& f4=E. (20) 

Then, the equation for the (D’S reads (see Fig. 7 for 
notations) 

Fig. 7. Location of the variables 4 and $. 

(21) 

Again the notation 40’ corresponds to the k + 1 th layer. 

The second step is a little bit more complicated. 
Instead of solving Eq. (21) in its full generality, we 

are going to introduce some ansatz which reduces the 
number of variables by half. Namely, let us introduce 

new variables $... belonging to a half of theplaquettes, 
as depicted in Fig. 7. 

Then let us set each cp be equal to the product of 

two neighboring e’s, regardless of whether they are 
situated “horizontally” or “vertically”. For instance 

VK=$A.~~ PL=$A.$&, . . . (22) 

It will be seen, from the calculations below, that this 

ansatz does not lead to any contradiction: the ansatz 

is actually compatible with the equations of motion. 
Now the equation for the $‘s obtained from (2 1) 

and (22) reads 

+E ’ @3 (tit3 -tic) ’ (‘hV - @A> p. 

tiC”tb (‘h-$E).(+3-#A) 

= c*~-~~,:~(&-~~> 

C& - (Ird_>. c$$ - Icl$>’ 
(231 

The remarkable fact is that both sides of (23) are 
products of the corresponding sides of the equation 

(24) 
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with the same equation, where the indices are changed 
as follows, 

E + A, D-+B, d+C, B--+F. 

The last step is the substitution 

yielding 

x$xV -&xd = A D X” X’ - x; XL 

XkXB - XLXz x;xg - x;x; 
(26) 

X’ and X” correspond respectively to the k + 1 th and 
k + 2th layers. Here the r.h.s. is obviously the same 

as l.h.s., but “shifted” by a unit of time. So, the 1.h.s. 

of (26) is an integral of motion. Still, it can depend 
on spatial coordinates, but if one sets it to be equal to 

a constant A (independent of the spatial coordinates), 
one obtains the well-known Miwa equation 7 [ 91 

XkXD - XhXd - A. Xi& + A. x&& = 0. 

(27) 

5. Conclusion 

In quasiclassical limit have changed dis- 

crete variables into (complex) vari- 
g(k). The of “continual integral” 

(8) in the quasiclassical limit takes place in a neigh- 

borhood of some “trajectory” which is a stationary 

point of the functional 5’. This stationarity condition 
is formulated as a local equation, and that is exactly 
what could be seen as the equation of motion for the 
classical model corresponding to the quantum ZBB 
model. 

The deduced classical equation of motion seems to 
be a new “integrable” equation in 2 + l-dimensional 

space-time. Actually, we managed to establish a con- 
nection between this new equation and the Miwa equa- 
tions by using the ansatz (22), which reduces the 
number of variables by half and is compatible with 

the time evolution. 

’ Relation (27) is the Miwa equation c%, oj r(n + Cj) r(fl- 

ej) = 0 (where c;=, ej = 0 and (~4 = culalaj) with ad = A, 

(Y3 = -A, a* = -1, cy, = 1. 

Acknowledgement 

This work has been performed in the Centre Emile 

Bore1 during the “Integrable Semester”. We would 
like to thank H. Au-Yang, P Kulish, B.M. McCoy, 
T. Miwa, J.H.H. Perk, CM. Viallet and F.Y. Wu for 
many fruitful discussions on 3D integrability. I.K. has 

been supported by the Steklov-CNRS joint program 

and a grant of the Russian Foundation for Fundamen- 
tal Research, project 96-01-00708. S.S. has been sup- 

ported by a grant of the Ministirre de 1’Enseignement 
Suptrieur et de la Recherche and by the INTAS- 
ICFPM grant 93-2492-ext. 

References 

121 

131 
141 
[51 
[61 

[71 

181 

[91 

IlO1 

L111 

[I51 
[I61 

L171 

V.E. Zakharov, What is Integrability?, Springer Verlag Series 

in Non-linear Dynamics ( 199 1) ; 
L.D. Faddeev, Integrable Models in 1 + 1 Dimensional 

Quantum Field Theory, Les Houches Lectures, 1982 (North- 

Holland, Amsterdam, 1984); 

L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in 

the theory of solitons (Springer, Heidelberg, 1986). 
B.B. Kadomtsev and B.I. Petviashvili, Sov. Phys. Dokl. 15 

(1970) 539. 
A.B. Zamolodchikov, Commun Math. Phys. 79 ( 198 1) 489. 
V.V. Bazhanov and R.J. Baxter, J. Stat. Phys. 69 ( 1992) 453. 

V.V. Bazhanov and R.J. Baxter, J. Stat. Phys. 71 ( 1992) 839. 
R.J. Baxter and G.R.W. Quispel, J. Stat. Phys. 58 (1990) 
411. 
R.M. Kashaev and N.Yu. Reshetikhin, Affine Toda field 

theory as a 3-dimensional integrable system, Berkeley 

preprint ( 1995). 

B.M. McCoy, J.H.H. Perk and T.T. Wu, Phys. Rev. Lett. 46 

(1981) 757; 

J.H.H. Perk and H.W. Capel, Physica A 89 ( 1977) 265; 

J.H.H. Perk, Phys. Lett. A 79 ( 1990) 1. 
T. Miwa, Proc. Japan Acad. 58A (1982) 9: 

E. Date, M. Jimbo and T. Miwa, J. Phys. Sot. Japan 52 

(1983) 766. 
V.V. Bazhanov, SM. Sergeev and V.V. Mangazeev, Quantum 

dilogarithm and the tetrahedron equation, preprint IHEP. 95. 

141 (1995), to be published. 
S.M. Sergeev and R.M. Kashaev, On pentagon, ten-term, 

and tetrahedron relations, preprint ENSLAPP-L-6 11196, 
submitted to Commun. Math. Phys. ( 1996). 

R.M. Kashaev, Lett. Math. Phys. 35 (1996) 389. 
R. Hirota, J. Phys. Sot. Japan 50 (1981) 3785. 
V.V. Bazhanov and Yu.G. Stroganov, Tear. Mat. Fiz. 52 

(1982) 105. 
R.J. Baxter, Physica D 18 (1986) 321. 
V.V. Mangazeev, R.M. Kashaev and Yu.G. Stroganov, Int. J. 

Mod. Phys. A 8 (1993) 587. 
V.V. Mangazeev, V.V. Bazhanov. R.M. Kashaev and Yu.G. 

Stroganov, Commun. Math. Phys. 138 ( 1991) 393. 


