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Research context

Computer algebra = effective mathematics + algebraic complexity

o effective mathematics: what can be computed?
o algebraic complexity: how fast?

Efficient computer algebra for functional equations

o equations as data structures +v5ast? —-5=0
o algorithmic proofs of identities Yio () =2"
o complexity-driven algorithms 3N in O(N)

Ultimate goals
o automatic computations on functional equations
o computer-driven resolution of difficult problems
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Research context

Computer algebra = effective mathematics + algebraic complexity

o effective mathematics: what can be computed?

o algebraic complexity: how fast?

Efficient computer algebra for functional equations

0 equations as data structures exp(t) asy'(t) = y(t),y(0) =1
o algorithmic proofs of identities Yr(—1)k (Zk")3 = (=1)"CH(n
o complexity-driven algorithms N!=1x2x---x Nin O(N)

Ultimate goals

o automatic computations on functional equations

o computer-driven resolution of difficult problems e.g., in combinatorics
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~ An nnocentloking) combinaorial quesion

Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.
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Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of G-walks of length n confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

<fi>L\::: %::

NN o Algebr fo Lattice Path Combinalorics



Teaser 1: This problem can be solved using computer algebra!

Teaser 2: The answer has a nice closed form!

(3n)!

m, and a4, =b, =0 if3 does not divide m.

a3y = bz, =

Teaser 3: A certain group attached to the step set {1, +, \} is finite!



Let S be a subset of Z4 (step set, or model) and pg € z4 (starting point).

Example: 6 = {(1,0),(—1,0),(1,-1),(=1,1)}, po = (0,0)
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Let S be a subset of Z4 (step set, or model) and pg € z4 (starting point).

A path (walk) of length n starting at pg is a sequence (po, p1,- .., pPn) of
elements in Z¢ such that p; 1 — p; € & for all i.

Example: & = {(1,0),(-1,0),(1,-1),(-1,1)}, po = (0,0)
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Let S be a subset of Z4 (step set, or model) and pg € z4 (starting point).

A path (walk) of length n starting at pg is a sequence (po, p1,- .., pPn) of
elements in Z¢ such that p; 1 — p; € & for all i.

Let € be a cone of R? (if x € € and r > 0 then 7 - x € €).

Example: & = {(1,0),(-1,0),(1,-1),(-=1,1)}, po = (0,0) and € = R%

Y
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Combinatorial context: lattice pa

Let & be a subset of Z¢ (step set, or model) and py € Z¢ (starting point).

A path (walk) of length 1 starting at pg is a sequence (pg, p1,.-.,Pn) of
elements in Z¢ such that p; 1 — p; € S for all i.

Let € be a cone of R? (if x € € and r > 0 then 7 - x € €).

Example: & = {(1,0), (-1,0),(1,-1),(-=1,1)}, po = (0,0) and € = R%

Questions
o What is the number a;, of n-step walks contained in ¢?
o For i € ¢, what is the number 4,,,; of such walks that end at i?
o What about their GF's A(t) = ¥, a,t" and A(t;x) = ¥, ; ay,ix't"?
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Many discrete objects can be encoded in that way:

o discrete mathematics (permutations, trees, words, urns, ...)

e statistical physics (Ising model, ...)

e probability theory (branching processes, games of chance, ...)
e operations research (queueing theory, ...)



Why count walks in cones?

Many discrete objects can be encoded in that way:

o discrete mathematics (permutations, trees, words, urns, ...)

e statistical physics (Ising model, ...)

e probability theory (branching processes, games of chance, ...)
e operations research (queueing theory, ...)
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TOPICS fo be covered include (out are ot iimited fo) : Available online 21 January 2010 In celebration of the Sixth International Conference on Lattice Path Counting and
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bhdp Analt ot et misnomer, is relation with the method of images and possible origins from physics and
Submission g;;og‘:";zl s G;‘:g;‘;:e;sz"“ - Brownian motion, and the earliest evidence of laice path techniques and solutions.
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combinatoric sfructures dissertation.

General Information

© 2010 Elsevier V. Al rights reserved.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



An old topic: ballot proble

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths that start at the origin
and never touch the x-axis, consisting of a upsteps ,” and b downsteps \,

Reflection principle [Aebly, 1923]: paths in IN? from (1,1) to T(a + b,a — b)
that do touch the x-axis are in bijection with paths in Z? from (1,—1) to T

Answer: (paths in Z? from (1,1) to T) — (paths in Z? from (1,—1) to T)
a+b—-1\ (a+b—-1\ a—-bla+b
a—1 b—1 ) a+b\ a
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An old topic: ballot proble

Suppose that candidates A and B are running in an election. If @ votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (a — b)/(a + b).

Lattice path reformulation: find the number of paths that start at the origin
and never touch the x-axis, consisting of a upsteps ,* and b downsteps

Reflection principle [Aebly, 1923]: paths in IN? from (1,1) to T(a + b,a — b)
that do touch the x-axis are in bijection with paths in Z? from (1,—1) to T

Answer: when a = n + 1 and b = n, this is the Catalan number
co_ L (mi1y_ 1 (o
"Toan4+1\n+1) n+1\n
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.but still a topical issue
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Chapter 10

Lattice Path Enumeration

Christian Krattenthaler
Universitit Wien

CONTENTS

101 Introduction ...
10.2 Lamice paths without restrictions .
103 Linear boundaries of slope 1 ...
10.4  Simple paths with linear boundaries of rational slope, I .
10.5  Simple paths with linear boundaries with rational slope, 11
10.6  Simple paths with a piecewise linear boundary
10.7  Simple paths with general boundaries ......
10.8  Elementary results on Motzkin and Schriider paths
10.9 A comtinued fraction for the weighted counting of Motzkin paths
10.10 Lattice paths and orthogonal pelynomials
10.11 Motzkin paths in & strip .
10,12 Further results for lattice palhs inthe plane
10.13 Non-intersecting latice paths .
10.14  Lattice paths and their turns
10.15 Multidimensional lattice paths
10.16 Multidimensional lattice paths bounded by 2 hyperplane
10.17 Multidimensional paths with a general boundary
10.18 The reflection principle in full generality ...
10.19  g-Counting of lattice paths and Rogers-Ramanujan identit
10.20 Self- avmdmg walks .
References .....
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A (very)

Rational series [folklore]
If & C Z% s finite and ¢ = RY, then
no. 1
a, = |6|", ie. A(t) = rg)unt" = el
More generally:
At x) = Zan;,-xit" = 1_1%):;’@
n,i s€ES
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Also well-known

Algebraic series [Bousquet-Mélou, Petkovsek, 2000]

If & C Z% is finite and € is a rational half-space, then A(t;x) is algebraic,
given by an explicit system of polynomial equations.

— 1 -4t

Example: For Dyck paths (ballot problem), A(t;1) = Y Cyt" = 5

n>0
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10/ 51









Approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Algorithmes Efficaces
en Calcul Formel

. Alin Bostan
E)‘perlmenta]. Frédéric Cryzak
Marc Grusti

Maﬂlema._tics Romain LEBRETON

Grégoire LECERF

mn Actlon ” Bruno SaLvy

Eric Scrost
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> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset & of

{\// <_r \I T/ /‘/ _>/ \U \J/}

> Example with n = 45,i = 14, j = 2 for:
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> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset & of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

e e e e e

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).
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Lattice walks with

> From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in IN? starting at (0,0) and using steps in a fixed subset & of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

.

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).

> Specializations:
o fu.0,0 = number of walks of length 7 returning to origin (“excursions”);
© fn = Lij>0 fu;ij = number of walks with prescribed length n.
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> Complete generating function:

F(bx,y) = i(z fm]xy’>f" € Qlx,y][[A)

1,j=0
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> Complete generating function:

F(bx,y) = i(z fm]xy’>f" € Qlx,y][[A)

1,j=0
> Specializations:
o GF of excursions: F(£0,0);
o GF of walks: F(t1,1) Z fut";
n>0
o GF of horizontal returns: F(t1,0);
o GF of diagonal returns: “F(t0,00) := [x°] F(t;x,1/x).
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Generating functions

> Complete generating function:

F(t;2,9) i():fm]xyf)t" € QL ][[1].

i,j=0

> Specializations:

o GF of excursions: F(£0,0);

o GF of walks: F(t;1,1) Z fut";
n>0

o GF of horizontal returns: F(t1,0);

o GF of diagonal returns: “F(t;0,00)" := [xo] EF(t;x,1/x).

Combinatorial questions:
Given &, what can be said about F(; x,y), resp. fn;,-,j, and their variants?
o Structure of F: algebraic? transcendental? solution of ODE?
o Explicit form: of F? of fy; ;?
o Asymptotics of f,.00? of f;;?
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Generating functions and

> Complete generating function:

F(t;2,9) i(zfm]xyf)t" € QL ][[1].

i,j=0

> Specializations:

o GF of excursions: F(£0,0);

o GF of walks: F(t;1,1) Z fut";
n>0

o GF of horizontal returns: F(t1,0);

o GF of diagonal returns: “F(t;0,00)" := [xo] EF(t;x,1/x).

Combinatorial questions:
Given &, what can be said about F(; x,y), resp. fn;,-,j, and their variants?
o Structure of F: algebraic? transcendental? solution of ODE?
o Explicit form: of F? of fy; ;?
o Asymptotics of f,00? of fn?

Our goal: Use computer algebra to give computational answers.
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Among the 28 step sets & C {~1,0,1}2\ {(0,0)}, some are:
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Among the 28 step sets & C {~1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,



Among the 28 step sets & C {~1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
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Among the 28 step sets & C {~1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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Small-step

Among the 28 step sets & C {~1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
One is left with 79 interesting distinct models.

Is any further classification possible?
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The 79 models

HOIHOH
HIAOH
HOATK
HOHOK
HOAICHK
AT AIGH
PRGN
HOKHAHHOCH
A A

i%%%%%%
X

AORAKK



The 79 models

P i

FLATIAE

*Cartness marsiniquonsts’
Tavia, 134

Bolte 3 - Collection Colbrant
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Two important mo

6={l« 7 Fs(tix,y) = K(t;x,y)

S={",,+,—} Fstxy) =Gtxy)

D
SRS
A

Example: A Kreweras excursion.
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Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: E * g
Gessel: E E
Gouyou-Beauchamps: ; E

King walks: %
Tandem walks: E E
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Algebrai

o N n
Generating function: G(t;x,y) = Z Z Zgnl]t”x’y’ € Qx, y][[t]]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t (xy+x+ W i ;)G(t,x,y)

1 11 1
—t (; + 5?) G(50.y) =t (G(t%,0) = G(t0,0))

/|
© ©
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Algebraic ref

0 n n
Generating function: G(t;x,y) = 2 Z Egm]t”x’yf € Q[x, y|[[]]
n=0i=0j=0

“Kernel equation”:
Gtxy) =1+t (xy+x+ =+ 1)G(Exy)
;X Y) = xy+x w ' x ;XY
1 11 1
—t (— aF ;y) G(t,O,y) — tx—y (G(t, x,O) — G(t,0,0))

X

/|
© ©

Task: Solve this functional equation!

NN o Algebr fo Lattice Path Combinalorics



Algebraic refor

0 n n
Generating function: G(t;x,y) = 2 Z Egm]t"x’y] € Q[x, y|[[]]
n=0i=0j=0

“Kernel equation”:
Gy =1+t (xyt+x+ —+ )G Eay)
X Y) = Xy Xx xy ' x XY
1 11 1
—t (_ + ;y) G(:09) =t (G(6%,0) = G(5:0,0)

X

/|
© ©

Task: For the other models — solve 78 similar equations!
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S(t) = Dgsat" € QU] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
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S(t) = Dgsat" € QU] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};

& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;
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S(t) = Dgsat" € QU] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *t1 € Q(n).
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S(t) = Lpgsat" € Q[[H]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *t*t € Q(n). E.g.,

m1—p; 2SnOVD G e q

Vi
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S(t) = Lalosnt" € Q[[]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n). E.g.,

b
2F (uc

t) =y @n®n @) (@ 1).

n=0 (C)” nt’

20 / 51



S(t) = Toosat" € Q[[t]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n). E.g.,

b
A (u c

) f ”"( I @ =@+ 1) (a0 1),

d)u(e)n n!
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S(t) = Epgsat" € Q[[t]] is
> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};

& D-finite if ¢, (£)S") (£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if s’;—zl € Q(n).

Characterization of { hypergeometric } N { algebraic }.
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> S € Q[[x,y,t]] is algebraic if it is the root of a polynomial P € Q[x,y, t, T].
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> S € Q[[x,y,t]] is algebraic if it is the root of a polynomial P € Q[x,y, t, T].

> S € Q[[x,y,t]] is D-finite if it satisfies a system of linear partial differential
equations with polynomial coefficients
8 815

Zaltx, Zb t,x,y) chtxy)atl— .
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Main

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

1/3 2/3 1 3> 4G
K(t;0,0) = 3F 27 | = .
(£:0,0) 32( 3/2 2 ‘ ngo(n+1)(2n+1)
Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1|, » > (5/6)n(1/2)n 10
G(t;0,0) = 3F. < 16t ) =) ey (AT
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(t;x,y) and G(¢;x,y)?
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Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

00 b (1323 18\ s 4G
K(t/OIO)—SPZ( 3/2 2 \27“)—th '

n=0

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1 2 o (5/6)n(1/2)n ,, \on
G(t;0,0) = 3F. < 16t > = Y L (4)2,
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(; x,y) and G(; x,y)?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, ) is algebraic.

Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.
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Main results (I): algebr

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

e 13231, S ),
K(t,OIO)—BB( 3/2 2 ‘27t>_n§)(n+1)(2n+1)t ’

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1 2> o (5/6)n(1/2)n ,, \2n
G(£0,0) = 3F 162 ) = Y A2L2A LS gy
(£0,0) 32( 5/3 2 L 63, W

Question: What about the structure of K(£; x,y) and G(¢; x,y)?
Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, ) is algebraic.
Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
> Guess'n'Prove method, using Hermite-Padé approximantsJr

t Minimal polynomial P(x,v,t, G(t;x,y)) = 0 has > 10! terms; ~ 30Gb (!)
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Main results (I): algebraici

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

' _ 1/3 2/3 1 3\ ad 4”(377) 3n
K(tIOIO)—st( 3/2 2 ‘27t>_n;m1)(m+1)t '

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

5/6 1/2 1|. o > (5/6)n(1/2)n 10
G(t0,0) = 3F < 16t ) = Y TS (4)2n,
372\ 5/3 2 EO (5/3)n(2)n

Question: What about the structure of K(; x,y) and G(t; x,y)?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, ) is algebraic.
Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
& Guess'n’Prove method, using Hermite-Padé approximants®

> Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]

t Minimal polynomial P(x,y,t, G(tx,y)) = 0 has > 10'! terms; ~ 30Gb (!)
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 Main resls (1) Expliitform for Gxy)

Theorem [B., Kauers, van Hoeij, 2010]
Let V =1+ 4% 4 36t* +396t° + - - - be a root of

(V—-1)(1+3/V)% = (16t)?,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

6A(U(V+1)—2V)V¥2  y(W-1)*(1-Wy) V32
x(P-V(UE-8U+9-V))? — Hy+)(I-W)(Wxy+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof.
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Main r

Theorem [B., Kauers, van Hoeij, 2010]
Let V = 1+ 4> + 36t* + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

6A(U(V+1)—2V)V¥2  y(W-1)*(1-Wy) V32
x(P-V(UE-8U+9-V))? — Hy+)(I-W)(Wxy+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof.
> Proof uses guessed minimal polynomials for G(t;x,0) and G(;0,v).
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Main results (I

Theorem [B., Kauers, van Hoeij, 2010]
Let V = 1+ 4> + 36t* + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

4(U(V+)—2V)V32 y(W—1)*(1-Wy)V 32
X(P-V(WP8U+I—V))?  Hy+D(I-W)(W2y+1)? 1
(1+y+x%y + x2y?)t — xy tx(y+1)

> Computer-driven discovery and proof.
> Proof uses guessed minimal polynomials for G(t;x,0) and G(;0,v).
> Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]
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First guess, then prove [Pdlya, 1954]

wnires | GUESSinG and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



g(t) := G(V£0,0) Z (5/6)u(1/2) (16t)" is algebraic.

(5/3)n (2




=i - B0

(16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.



=, (5/6)0(1/2)n

g(t) == G(V£0,0) = )

n=0

5/3)(2), (161" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.



=, (5/6)0(1/2)n

g(t) == G(V£0,0) = )

n=0

5/3)(2), (161" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.



A typical gue

Theorem

g(t) :== G(V£0,0) Z (5(22)" 1(2)23" (16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y.5" gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t)=Y ;o rat" being algebraic, it is D-finite, and so is (r4):
(n+2)(3n+5)r,.1 —4(6n+5)2n+1)r, =0, ro=1

= solution r, = (75%16" = gn, thus g(t) = r(t) is algebraic.
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Main results (III): Models with D-Finite F(#;1,1)

OEIS S DPol size LDE size Rec size OEIS & Pol size LDE size Rec size
1]a005566 & — (3,4 (22 [13lasizrs X —  (5,24) (9, 18)
21A018224 X — (3,5 (2,3) ||14|A151314 @&  —  (5,24) (9,18)
3|a151312 (K — (3,8 (4,5) [15|a151255 Ny —  (4,16) (6, 98)
4|A151331 3B —  (3,6) (34 ||16/A151287 R —  (5,19) (7,11)
5|A151266 YT —  (5,16) (7,10) |17]A001006 &; 2,2) 2,3 @1
6|A151307 F —  (5,20) (8 15) [18la120400 TR 2,20 (23 (@1
7(a151291 ° — (5,15 (6,10) [|19/A005558 Y —  (3,5) (2,3)
8la151326 ¥ —  (5,18) (7,14)
9]a151302 K,  —  (5,24) (9,18) [20|A151265 < (6,8) (4,9) (6 4)
10/A151329 38 —  (5,24) (9,18) |21|A151278 > (6,8) (4,12) (7, 4)
11|A151261 &y  —  (4,15) (5,8) |22/A151323 & (4,4 (2,3 (1)
12|A151297 R —  (5,18) (7,11) ||23|A060900 5 (8,9) (3,5 (2 3)

Equation sizes = (order, degree)

> Computerized discovery: enumeration + guessing [B., Kauers, 2009]

> 1-22: Confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]

> 23: Confirmed by a human proof in [B., Kurkova, Raschel, 2013]

Alin Bostan

Computer Algebra for Lattice Path Combinatorics



http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Main results (III): Models with D-Finite F(#;1,1)

OEIS & algebraic? asymptotics OEIS & algebraic? asymptotics
1|A005566 <> N au lyglarsio7s % N 12030 2V0)
2 |A018224 X N 20 liglarsize B N YEMCT oy
3(A151312 K N vee'  |115A151255 N N 24f <2f i
4|A151331 38 N L8 llp|A151287 R N 22 2247 (2;\)
5(a151266 Y N 5 /3.3 l7/ac01006 Y g\/? 3
6|Aa151307 3 N 1/2 5 |lisla2o400 B Y \f <
7|a5121 YT N sh=n [[19)A005558 RN LE
slatsiz2e ¥ N 2o¢)
9la151302 K N 1/ 22 |20A1s1265 0 Y e
10/a151320 & N 1/ 7, |21ja1s1278 S Y ﬁ%ﬁ/ S
1ja1s261 b N 28RN Iolaisizs gy % o
12|A151297 g N B3F2EB" a3lA060000 #5 Y o

A=14V3 B=14v3, C=1+v6 A =743V j— /251

> Computerized discovery: conv. acc. + LLL/PSLQ [B., Kauers, 2009]
> Confirmed by human proofs using ACSV in [Melczer, Wilson, 2015]

Alin Bostan

Computer Algebra for Lattice Path Combinatorics



http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900
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The group of

C ONTEMPORARY
Goy Fyole MATHEMATICS

2
Vadim Malyshey. —— ——
Random Walks

SR Qatier- Plag, Algorithmic Probability
Algebraic Methods, and Combingtorics
Bepettee

and Applcaions
Wonuel E. Lodser
Robert 5. Molsr
b= Marni Mishna
Andrew Rechnitzer
Edifors

$ I

1 1
The characteristic polynomial xg := x + p +y+ v is left invariant under

v =(x1) own= (1)
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The group of a mo

C ONTEMPORARY
Goy Fyole MATHEMATICS

S
b
Random Walks
SR Qatier- Plag, Algorithmic Probability
Algebraic Methods, and Combingtorics
poen L
o
Manuel E. Liodser
Robert S. Mailer
=D s
Andrew Rechnitzer
Ediitors.
&
R e
b e

1 1
The characteristic polynomial xg := x + p +y+ v is left invariant under

v =(x1) own= (1)

and thus under any element of the group
1 11 1
wo={en(v3) (23) ()}
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The grou

C ONTEMPORARY
s MATHEMATICS
Coi
Vadim Malyshey. —— —
T e s Algorithmic Probability
Alpebic Mthods, and Combingatorics
Cte

— Wonuel E. Uodser
Robert S. Moler
b= Marni Mishna
Andrew Rechnitzer
Edifors

Bome

. . 1 . 1 .
The polynomial xg:= ) x'y/=1Y Bi(y)x'=Y Aj(x)y
(ij)e& i=—1 =1
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The group of a

C ONTEMPORARY
Goy Fyoe MATHEMATICS

C
Vadim Malyshey —— —
Random Walks
GV Qatter. Plag Algorithmic Probability
Methe and Combingatorics
etgettee
Fhs

— Wonuel E. Uodser
Robert S. Moler
b= Marni Mishna
Andrew Rechnitzer
Edifors

o
i

. . 1 . 1 .
The polynomial xs:= ). x'y/=1Y Bi(y)x'= ) Aj(x)y isleft
(i,j)es i=1 =1
invariant under

_(, A1 _(Ba1
R G i) L Cr )]

o]

NN o Algebr fo Lattice Path Combinaorics



The group of a mo

C ONTEMPORARY
Goy Fyoe MATHEMATICS

Roudol Tasnogorodski
Vadim Malyshey.

T e s Algorithmic Probability
and Combingatorics

Algebaic Methods,
Boundary Value Problems
and Appications

— Manuel E. Liadser

Robert 5. Maler
b Marni Mishna
Andrew Rechnitzer
Ediors
e
LB I

. . 1 . 1 .
The polynomial xs:= ). x'y/=1Y Bi(y)x'= ) Aj(x)y isleft
(i,j)es i=1 =1
invariant under

Aq(x) 1) (B—l(y) 1 )
X, = X, 7~ | X, = o 7
U O verc 1) IR LS G
and thus under any element of the group

Je = (¢,9).
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Order 4,
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Order 4, order 6,
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Order 4, order 6, order 8§,
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Ex

Order 4, order 6, order 8§, order oo,

30 / 51
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_ An mportant concepttheorbitsum (08) .

When Gg is finite, the orbit sum of & is the polynomial in Q[x, x~1,y,y1]:

0Sg = Y (—1)"0(xy)
[dS9S

1 1
0 — ey — = Ly
> For 4 models, the orbit sum is zero:

-

E.g., for the Kreweras model:

O = x- _l +ix_ x4 l_xl =0
%—yxyyxy y V' W

Computer Algebra for Lattice Path Combinatorics
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79 models
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23 admit a finite group
[Mishna’07]

79 models

56 have an infinite group
[Bousquet-Mélou, Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(0S #0)
23 admit a finite group [Gessel, Zeilberger'92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM’10] + [B., Kauers'10]

56 have an infinite group
[Bousquet-Mélou, Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(0S #0)
23 admit a finite group [Gessel, Zeilberger'92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM’10] + [B., Kauers'10]

56 have an infinite group — all non-D-finite
[Bousquet-Mélou, Mishna’10] o [Mishna, Rechnitzer’07] and
[Melczer, Mishna’13] for 5 singular models
e [Kurkova, Raschel’13] and
[B., Raschel, Salvy’13] for all others
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Thekernel J=1—1t-Y;i\ce Xyl =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-
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The kernel ] =1—1t-}; jes Xyl =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:

J(tx,y)xyF(t;x,y) = xy — txF(;x,0) — tyF(t;0,y)

33 /51



The kernel ] =1—1t-}; jes Xyl =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

() (3 y) (5 g)-

Kernel equation:

J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
—J(Gx,y) RyF(E 3y) = — 3y +1F(6 5,0) + tyF(£0,y)

33 /51

NN o Algebr fo Lattice Path Combinalorics



D-Fi

The kernel ] =1—1t-}; jes Xyl =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

(v) (5 5) (0 g)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
— J(t2%,y)3YE(5 5, y) = — 3y + 13 F (5 5,0) + tyF(£0,y)
J(xy) LI L 1) = 11— LE(5 1,0) — (50, )

33 /51
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The kernel ] =1—1t-}; jes Xyl =1 —t(x—i— % +y+ %) is
invariant under the change of (x,y) into, respectively:

Gv) (3g) (0 g).

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
—Ly+tIF(tL1,0) + tyF(0,y)

1_ 10)y—tifp(t:0 1

L tLF(t1,0) — t1F(50,])

—xi . Ir(t.0 1
xy—l—th(t,x,O)—i—tyF(t,O,y)

) =
_](t;x' )xyF(t’x’ )
J(t2,y) 3 yE (5, y) =
—I(txy)x F(tix, 1) =

1
x

33/5
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The kernel ] =1—1t-}; jes Xyl =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(£0,y)
— J(t2%,y)3YE(5 5, y) = — 3y + 13 F (5 5,0) + tyF(£0,y)
J(Exy) 3 F(6 3 5) = 13 — t3F(65,0) = tyF(£0, )
—J(t; xy)x F(t;x, ) —xy+th(t;x,0)+t;7F(t;0,%)

1
x

Summing up yields the orbit equation:
XY= Yt xy oy
Y ()% (xy F(tx,y)) = 1Gxy)

0eg

33 /51
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The kernel ] =1—1t-}; jes Xyl =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:
J(tx,y)xyF(t;x,y) = xy — txF(x,0) — tyF(t;0,y)
—J(&x,y) 3yF(t 1, y) = — 1y + EF(E 3,0) + tyF(£0,y)
J(Exy) 3 (6 3 3) = 1y — t7F(t,0) = t5F(50, §
—J(t xy)x F(t;x, ) —xy+th(t;x,0)+t;7F(t;0,%)

1
x

Taking positive parts yields:

[y Y (—1)%0(xy F(t;x,y)) = [x”y”]
0eg

k:\'—‘

Y- Yty X
J(t;x,y)

33 /51
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The kernel ] =1—1t-}; jes Xyl =1 —t(x+ % +y+ %) is
invariant under the change of (x,y) into, respectively:

(0) (3 3) (5 5)-

Kernel equation:
J(tx,y)xyF(t;x,y) = xy — txF(x,0) — tyF(t;0,y)
—Ly+tlF(51,0) + tyF(0,y)

1_ 10)—tlp(t.0 1

y tl +F(t; +,0) tyP(t,O, )
—x1 . 1pt.0 1
xy—i—th(t,x,O)—i—tyF(t,O,y)

) =
_](t;x' )xyF(t’x’ )
J(Ex )y E( 3 5) =
—](txy)x F(tx, )

1
x

Summing up and taking positive parts yields:
R TR
WEExyY) =y =

33/5
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The kernel ] =1—1-}; jecs xiyl =1 —t(x-l— % +y+ %) is
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(t;0,y)
S CEAE: yP(t,x,y) T+ EE( 3, 0) + tyF(£0,y)
CEANETACEA) %—-(/X,O)—fF(tofl)
—J(tx, )x F(t; x,y) —xy L txF(t; x,O)—i—tyF(t,O,}—/)

1
x

GF = PosPart S
kernel

NN o Algebr fo Lattice Path Combinaorics
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The kernel ] =1—1-}; jecs xiyl =1 —t(x-l— % +y+ %) is
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t;x,y)xyF(t;x,y) = xy — txF(t;x,0) — tyF(t;0,y)
S CEAE: yP(t,x,y) T+ EE( 3, 0) + tyF(£0,y)
CEANETACEA) %—-(/X,O)—fF(tofl)
—J(tx, )x F(t; x,y) —xy L txF(t; x,O)—i—tyF(t,O,}—/)

1
x

GF = PosPart (%) = D-finite [Lipshitz, 1988]
er
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D-Finiteness via th
iyl 1 11 s

The kernel | =1—t-Y;hee x'y =1 —t(x-l- Liy+ y)
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t; x,y)xyF(t; x,

—J(txy) tyF(t Ly

y) = xy — txF(£;x,0) — tyF(£0,y)
) =
¢ 1 1)
)=

— 3+ 13 F(53,0) + tyF(£0,y)
j— txF(55,0) = (50, )

J(&xy) 5y F(t 5
1
—Xy +th(t,x,0) +tyF(t,0,y)

—J(tx, )x F(t; x,

GF = PosPart <%) = D-finite [Lipshitz, 1988]

> Argument works if OS # 0: algebraic version of the reflection principle

RN o Algebr fo Lattice Path Combinorics
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D-Finiteness via th
iyl 1 11 s

The kernel | =1—t-Y;hee x'y =1 —t(x-l- Liy+ y)
invariant under the change of (x,y) into, respectively:

Gv) (Gry) (0 g)-

Kernel equation:
J(t; x,y)xyF(t; x,

—J(txy) tyF(t Ly

y) = xy — txF(£;x,0) — tyF(£0,y)
) =
¢ 1 1)
)=

— 3+ 13 F(53,0) + tyF(£0,y)
j— txF(55,0) = (50, )

J(&xy) 5y F(t 5
1
—Xy +th(t,x,0) +tyF(t,0,y)

—J(tx, )x F(t; x,

GF = PosPart <%) = D-finite [Lipshitz, 1988]

> Creative Telescoping finds a differential equation for PosPart(OS/ker)
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Main r

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of ,F; expressions.
o Among the 19 x 4 specializations of Fg (;x,y) at (x,y) € {0,1}2, only 4
are algebraic: for & = Q at (1,1),and & = % at (1,0),(0,1),(1,1)

34 /51
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Main results (IV): explicit ex

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of ,F; expressions.

o Among the 19 x 4 specializations of Fg (;x,y) at (x,y) € {0,1}2, only 4
are algebraic: for & = “E at (1,1),and & = % at (1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

3 31 16x(1+x)
2 2
F%(tll t/ 1+4x)3 2F1( 2 >d

(14 4x)?
=1+ 3t + 1812 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -
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Main results (IV): explicit expressions for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of , F; expressions.

o Among the 19 x 4 specializations of Fg(;x,y) at (x,y) € {0,1}?, only 4
are algebraic: for & = Q at (1,1),and & = %ﬁ t(1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

F%(tll t/ 1+4x)3 2F1<§2§ 16X(1+X)>d

(1+4x)?
=1+ 3t + 1812 + 105> + 684+* + 4550¢° + 31340£° + 219555¢7 +

> Computer-driven discovery and proof; no human proof yet.
> Proof uses creative telescoping, ODE factorization, ODE solving.
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Hypergeometric Series Occurring in Explicit Expressions for F(¢; x, y)

S occurring o Fy w S occurring > Fy w
CE A e v A e
3 XK 2F1<i1% w) % B XK p1<i1% w> %Zt(ztﬁ)l;
o B on(Hle) me B on(Rle) el
5 Y zH(il% w) 64t* 15 ,A 2F1<%1% w> 6414
6 P 2F1<%1% w) 6(?11;)12) 16 &K, Fl@ﬁ w) eétiit;)lz)
7T () v & a(ife)
g zpl(%l% w> % 18 R 2F1<%1% w> 272(2t + 1)
9 X zH(ili w) % 19 5?‘ 2F1<%1% w> 1642
0 X 2F1<%1% w) %

> All related to the complete elliptic integrals fon/z(l — k2 sin? G)i% de
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Theorem [B., Raschel, Salvy, 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg (£;0,0), and in particular Fg (t; x, 1), are non-D-finite.
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Main resul

Theorem [B., Raschel, Salvy, 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg (£;0,0), and in particular Fg (t; x, 1), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova, Raschel, 2013] Human proof that Fg (£; x, y) is non-D-finite.
> No human proof yet for Fg (+;0,0) non-D-finite.
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Main results (V): non-D-

Theorem [B., Raschel, Salvy, 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg (£;0,0), and in particular Fg (t; x, 1), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova, Raschel, 2013] Human proof that Fg (£; x, y) is non-D-finite.
> No human proof yet for Fg (+;0,0) non-D-finite.

> [Bernardi, Bousquet-Mélou, Raschel, 2016] For 9 of these 51 models,
Fs (t;x,y) is nevertheless D-algebraic!

> [Dreyfus, Hardouin, Roques, Singer, 2017]: hypertranscendence of the
remaining 42 models.
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The 56 models with infinite group

ACHRR AR ACK AR K
KKK A A
AR ORI K
AR RO XA AK
KR AR HOK
RORKKK

In blue, non-singular models, solved by [B., Raschel, Salvy, 2013]
In red, singular models, solved by [Melczer, Mishna, 2013]
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Bample thescarecrows
[B., Raschel, Salvy, 2013]: Fg(£;0,0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [t"'| Fs (t;0,0)

1,0,0,2,4,8,28,108,372,...

is~ K-5"-n~% witha =1+ 7t/ arccos(1/4) = 3.38339%...
[Denisov, Wachtel, 2013]

The irrationality of « prevents Fg (£;0,0) from being D-finite.
[Katz, 1970; Chudnovsky, 1985; André, 1989]

38 /51
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Summar

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (t;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q

(4) the group Gg is finite (and |Gg | = 2-min{/ € N* | 5 € Z})

(5) the step set & has either an axial symmetry, or zero drift and
cardinality different from 5.

39 /51
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Summary: Classi

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (t;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg| = 2 - min{¢ € N* | % ez}

(5) the step set & has either an axial symmetry, or zero drift and
cardinality different from 5.

Moreover, under (1)-(5), Fs (£ x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(i))e& (i))e&  (i))e6
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Summary: Classification

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (t;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group G is finite (and |G| = 2 - min{¢ € N*| £ w1 €Z))

(5) the step set & has either an axial symmetry, or zero drift and
cardinality different from 5.

Moreover, under (1)—(5), Fs (£; x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(i))e& (i))e&  (i))e6

In this case, F (f; ¥, ) is expressible using nested radicals.
If not, Fs (£ x,y) is expressible using iterated integrals of o F; expressions.
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quadrant models &: 79

— ™~

|Ga|<co: 23 |Gs| = oo: 56

N |

orbit sum # 0: 19  orbit sum = 0: 4 asymptotics + GB

Kernel method + CT  Guess'n’Prove non-D-finite

D-finite algebraic
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Ext

2D quadrant models: 527

— T~

|Gs| < oo: 118 |Gg| = 00?: 409
orbit sum # 0: 95 orbit sum = 0: 23  non-D-finite?
kernel method: 94 CA: 22: reducible to A
| Kreweras/Gessel
D-finite I | |
D-finite D-finite algebraic

[B., Bousquet-Mélou, Kauers, Melczer, 2015]
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Extensions: Walks in

2D quadrant models: 527

— T~

|Gs| < oo: 118 |G| = 00?: 409
orbit sum # 0: 95 orbit sum = 0: 23  non-D-finite?
kernel method: 94 CA: 22: reducible to A
| Kreweras/Gessel
D-finite | | |
D-finite D-finite algebraic

[B., Bousquet-Mélou, Kauers, Melczer, 2015]

> [Du, Hou, Wang, 2015]: proofs that groups are infinite in the 409 cases,
and GF are non-D-finite in 366 cases.

> [Kauers, Yatchak, 2015]: extension to 4% = 65536 models with mult. < 3.
1457 D-finite, 79 algebraic, 3 pearls: %

41/51
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A pearl among mo

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2015]
Lete, = # {}Z" — walks of length 7 in IN? from (0,0) to (0, O)}

(en)n>0 = (1,0, 3, 0,26, 0,323, 0, 4830, 0, 80910, .. .)

Then
_ 6(6n+1)!(2n+1)!

= Bn)l(dn +3)1(n+ 1)1

> Current proof is computer-driven.
> Open problem: find a human proof.

42/51
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Ext

quadrant models with steps in {—2, —1,0, 1}2: 13110

|
\ \

|orbit| < oco: 240 lorbit| = oco: 12 870
\ | |
OS # 0: 431 0OS=0:9 « rational: 16 « irrational: 12 854
D-finite D-finite? non-D-finite? non-D-finite

[B., Bousquet-Mélou, Melczer, 2017]

e Example: For the model A

>0,,>0

xyF(tx,y) =[x y~7] (x —2x*2)(y —(x— xfz)y,l)

1—txy14+y+x2y-1)

43 /51
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Two pearls among the 9 difficult models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2017]

For the model % , writing ¢(t)
— 11
LY (4

108144)° then F(t1/2;0,0) is equal to

A2t—1)3 ’
o))

2
3
3t 6t

‘P(f)) +2F (7%1

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2017]
For the model X, F(£0,0) is equal to

(1—24U+120U% — 144 U3) (1 —4U)
(1-3U)(1-2U)3/2(1-6U)%2

7

where U = t* + 5318 + 436312 + - . - is the unique series in Q[[t]] satisfying

U(l-2u)®(1-3uP(1-6U)’ =t (1-4U)*

Alin Bostan Computer Algebra for Lattice Path Combinatorics



Extensio

231 ~ 67 million models, of which ~ 11 million inherently 3D
3D octant models & with < 6 steps: 20804

— T~

|G| < o0: 170 |Gs| = o0?: 20634
orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?
[B., Bousquet-Mélou, Kauers, Melczer, 2015]

> Open question: are there non-D-finite models with a finite group?
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Extensions: Walks wi

23°~1 ~ 67 million models, of which ~ 11 million inherently 3D
3D octant models & with < 6 steps: 20804

— T~

|Gs| < o0: 170 |G| = o0?: 20634
orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?
[B., Bousquet-Mélou, Kauers, Melczer, 2015]
> Open question: are there non-D-finite models with a finite group?

> [Du, Hou, Wang, 2015]: proofs that groups are infinite in the 20634 cases

> [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models
found with |Gg| < oo and orbit sum 0 (instead of 19)
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19 mysterious 3

g 7
7 7
/ /
/ / )/
/ / i / /
7 T a8 IL/’ 7 S
”* f’* T
7 7 7 7 7
/ / I / /
/ /
i i
N N
IA TAN
/ /
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Two different computations suggest:
Ky, 7o C - 256 / 3325757004174

so excursions are very probably transcendental
(and even non-D-finite)
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@ Computer algebra may solve difficult combinatorial problems
© Classification of F(t;x,y) fully completed for 2D small step walks

@ Robust algorithmic methods, based on efficient algorithms:
e Guess'n’Prove
e Creative Telescoping

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x,y) ~ 30Gb.
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Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t;x,y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:
e Guess'n’Prove
e Creative Telescoping

© OO

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(; x,y) = 30Gb.

Lack of “purely human” proofs for some results.

Open: is F(#;1,1) non-D-finite for all 56 models with infinite group?

Many beautiful open questions for 2D models with repeated or large
steps, and in dimension > 2.

NN o Algebr fo Lattice Path Combinatorics
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Future reasearch _

Fundamental computer algebra

o structured power series and matrices Hermite-Padé approximants
o basic operations on operators (mod p) x and Hadamard ©®
o factorization of operators (mod p) p-curvature

Computer algebra for functional equations

o minimality of operators (order vs. total size) desingularisation
o faster guessing structured and certified
o faster Creative Telescoping 4G, reduction-based
Applications
o Combinatorics solving discrete PDEs
o lattice walks symmetries, various groups
o algorithmic hyper-transcendence diff. Galois and Tutte invariants
o other classes of combinatorial objects urns, maps
o Number theory transcendence of values of E- and G-functions
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