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Abstract. We consider a family of birational measure-preserving transformations of two

variables, depending on one parameter, for which simple rational expressions with integer

coefficients, for the exact expression of the dynamical zeta function, have been conjectured, together

with an equality between the (multiplicative rate of growth of the) Arnold complexity and the

(exponential of the) topological entropy. This identification takes place for the birational mapping

seen as a mapping bearing on two complex variables (acting in a complex projective space). We

revisit this identification between these two quite ‘universal complexities’ by considering now

the mapping as a mapping bearing on two real variables. The definitions of the two previous

‘topological’ complexities (Arnold complexity and topological entropy) are modified according to

this real-variables point of view. Most of the ‘universality’ is lost. However, the results presented

here are, again, in agreement with an identification between the (multiplicative rate of growth

of some) ‘real Arnold complexity’ and the (exponential of some) ‘real topological entropy’. A

detailed analysis of this ‘real Arnold complexity’ as a function of the parameter of this family of

birational transformations of two variables is given. One can also slightly modify the definition

of the dynamical zeta function, introducing a ‘real dynamical zeta function’ associated with the

counting of the real cycles only. Similarly, one can also introduce some ‘real Arnold complexity’

generating functions. We show that several of these two ‘real’ generating functions seem to have

the same singularities. Furthermore, we actually conjecture several simple rational expressions for

them, yielding again algebraic values for the (exponential of the) ‘real topological entropy’. In

particular, when the parameter of our family of birational transformations becomes large, we obtain

two interesting compatible nontrivial rational expressions. These rational results for real mappings

cannot be understood in terms of any obvious Markov’s partition, or symbolic dynamics hyperbolic

systems interpretation: the birational transformation is far from being hyperbolic, it is measure

preserving. It would be useful to know whether this relation between the Arnold complexity and

the topological entropy, as well as the rationality of the degree generating functions and dynamical

zeta functions, are a consequence of the measure-preserving property of the mapping.

1. Introduction

The purpose of this paper is to sketch a classification of birational transformations based on

various notions of ‘complexity’. In previous papers [1–3] an analysis, based on the examination
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of the successive (bi)rational expressions corresponding to the iteration of some given birational

mappings, has been performed. When one considers the degree d(N) of the numerators (or

denominators) of the corresponding successive rational expressions for the N th iterate, the

growth of this degree is (generically) exponential with N : d(N) ≃ λN . The quantity λ has

been called the ‘growth complexity’ [4] and it is closely related to the Arnold complexity [5].

A semi-numerical analysis, enabling one to compute these growth complexities λ for these

birational transformations, has been introduced in [1, 2]. It has been seen, on particular sets

of birational transformations [6], that these ‘growth complexities’ correspond to a remarkable

spectrum of algebraic values [4].

These ‘growth complexities’, summing up the (asymptotic) evolution of the degree of the

successive iterates, amount to viewing these mappings as mappings of (two) complex variables.

However, when one considers the phase portrait of these mappings, one also gets some ‘hint’ of

the ‘complexity’ of these mappings seen as mappings of (two) real variables. In the following,

we will consider a one-parameter-dependent birational mapping of two variables. On this

very example, it will be seen, considering phase portraits corresponding to various values

of the parameter, that these ‘real complexities’ vary for the different (positive) values of

the parameter. Two universal (or ‘topological’) measures of the complexities were found

to identify [1, 2], namely the (multiplicative rate of growth of the) Arnold complexity [5] (or

growth complexity) and the (exponential of the) topological entropy [1]. The topological

entropy, ln(h), is associated with the exponential growth hN of the number of fixed points

(real or complex) of the N th iterate of the mapping: looking at various phase portraits,

corresponding to different values of the parameter (see below), it is tempting to define, in

an equivalent way, a ‘real topological entropy’ associated with the exponential growth hN
real

of the number of real fixed points only of the N th iterate of the mapping. This notion of

‘real topological entropy’ would actually correspond to the ‘visual complexity’ as seen on

the phase portrait of the mapping. Such a concept, corresponding to the evaluation of the

real complexity hreal of the mapping seen as a mapping bearing on real variables, would be

less universal: it would have only ‘some’ of the remarkable topological universal properties

of the topological entropy. Similarly, it is also tempting to slightly modify the definition of

the Arnold complexity [5]. The Arnold complexity [5], which corresponds (at least for the

mappings of two variables) to the degree growth complexity [2, 3], is defined as the number

of (real or complex) intersections of a given (generic and complex) line with its N th iterate:

it is straightforward to similarly define a notion of ‘real Arnold complexity’ describing the

number of real intersections of a given (generic) real line with its N th iterate. This real-

analysis concept is, at first sight, also very well suited to describe the ‘real complexity’ of the

mapping as seen in the phase portrait (see figure 2). Recalling the identification, seen on this

one-parameter family of birational mappings, between the (multiplicative rate of growth of

the) Arnold complexity and the (exponential of the) topological entropy [1, 2], it is natural to

wonder if this identification also works for their ‘real’ partners, or if, as common sense would

suggest, real analysis is ‘far less universal’, depending on a lot of details and, thus, requires a

‘whole bunch’ of ‘complexities’ (Lyapounov dimensions, . . .) to be described properly.

In order to see the previous identification even more clearly, one can also slightly modify

the definition of the dynamical zeta function, introducing a ‘real dynamical zeta function’

associated with the counting of the real cycles only, and, similarly, one can also introduce

some ‘real Arnold complexity’ generating functions. We will show that several of these two

‘real’ generating functions seem to have the same singularities. Furthermore, we will actually

conjecture several simple rational expressions for them, yielding, again, algebraic values

for the (exponential of the) ‘real topological entropy’. In particular, when the parameter of

our family of birational transformations becomes large, we will get an interesting nontrivial



Real Arnold complexity versus real topological entropy 1467

rational expression. These rational results for real mappings cannot be simply understood by

any ‘obvious’ Markov’s partition, or symbolic dynamics hyperbolic interpretation.

Let us first recall, in the following two sections, some previous results† and notations.

2. Growth (Arnold) complexity for a birational mapping

A one-parameter family of birational mappings of two (complex) variables has been introduced

in previous papers [2, 7, 8] (see definition (3) in [2]). This mapping actually originates from

a lattice statistical mechanics framework that will not be detailed here [7, 9–11]. This one-

parameter family of maps is a particularly interesting test family as it is integrable for a certain

set of values of the parameter, has ‘nongeneric’ behaviour at a certain countable set of values

of the parameter, and has ‘generic’ behaviour at all other values. Furthermore, these maps

have quite complicated dynamics, yet the maps themselves are sufficiently simple to perform

some explicit theoretical analysis. In the following, we will use the extreme simplicity of this

mapping of two (complex) variables to first compare two quite universal (topological) notions

of ‘complexity’ namely the growth complexity λ, which measures the exponential growth of

the degree of the successive rational expressions encountered in an iteration (a notion which

coincides with the (multiplicative rate of growth of the) Arnold complexity‡ [5]), and the

(exponential of the) topological entropy [12, 13]. In section 4.3, we will go a step further and

compare, more particularly, the notion of ‘real’ Arnold complexity versus the notion of ‘real’

topological entropy. These two notions will be seen to be suitable to describe the properties

of the mapping seen as a mapping of real variables.

2.1. A one-parameter family of birational transformation

Let us consider the following birational transformation (see (3) in [2]) of two (complex)

variables kǫ , depending on one parameter ǫ:

kǫ : (y, z) −→ (y ′, z′) =

(

z + 1− ǫ,
z− ǫ

z + 1
· y

)

. (1)

This map is the product of two involutions, I1 : (y, z)←→ (−z,−y) and

I2 : (y, z) −→ (y ′, z′) =

(

−
z− ǫ

z + 1
· y, ǫ − 1− z

)

. (2)

These two involutions have the lines z = −y and z = (ǫ−1)/2 as fixed-point sets, respectively.

The inverse transformation k−1
ǫ is nothing but transformation (1) where y ↔ −z:

(y, z) −→ (y ′, z′) =

(

y + ǫ

y − 1
· z, ǫ − 1 + y

)

. (3)

In spite of its simplicity, birational mapping (1) can, however, have quite different

behaviours according to the actual values of the parameter ǫ. For example, for ǫ = 0, as

well as ǫ = −1, 1
2
, 1

3
or 1, the mapping becomes integrable, whereas it is not [8] for all other

values of ǫ.

Let us now compare, in the following, two notions of ‘complexity’ (Arnold complexity

versus topological entropy) according to various values of ǫ.

† Note, however, that sections 2.3, 3.1, 3.3, and 3.4 provide new results.

‡ More precisely the Arnold complexity CA(N) is proportional (for plane maps) to d(N), the degree of the N th

iteration of the birational mapping which behaves like d(N) ≃ λN . This ‘degree notion’ was also introduced by

Veselov in exact correspondence with the general Arnold definition [5]. Note that the concept of Arnold complexity

is not restricted to two-dimensional maps.
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Figure 1. Complexity λ, for kǫ , as a function of ǫ.

2.2. Semi-numerical approach for the growth complexity λ

The (growth) complexity λ, which measures the exponential growth of the degrees

of the successive rational expressions one encounters in the iteration of the birational

transformation (1), can be obtained by evaluating the degrees of the numerators, or equivalently

of the denominators, of the successive (bi)rational expressions obtained in the iteration process.

One can actually build a semi-numerical method [1, 2] to get the value of the complexity

growth λ for any† value of the parameter ǫ. The idea is to iterate, with the birational

transformation (1), a generic rational initial point (y0, z0) and to follow the magnitude of

the successive numerators, or denominators, of the iterates. During the first few steps some

accidental simplifications may occur, but, after this transient regime, the integer denominators

(for instance) grow like λn, where n is the number of iterations. Typically, a best fit of the

logarithm of the numerator as a linear function of n, between n = 10 and 20, gives the value of

λ within an accuracy of 0.1%. Let us remark that an integrable mapping yields a polynomial

growth of the calculations [10]: the value of the complexity λ has to be numerically very close

to 1.

Figure 1 shows the values of the complexity growth λ as a function of the parameter ǫ.

One should note from figure 1 that all the values of ǫ (except a zero measure set) give a growth

complexity λ ≃ 1.618. The calculations have been performed using an infinite-precision‡

C-library [14]. This semi-numerical analysis [2] clearly indicates that, beyond the known

integrable values [8] of ǫ, namely −1, 0, 1
3
, 1

2
, 1, two sets of values { 1

4
, 1

5
, 1

6
, . . . , 1

13
} and

{ 3
5
, 2

3
, 5

7
} are singled out. This suggests that the growth complexity λ takes lower values than

the generic one on two infinite sequences of ǫ values, namely ǫ = 1/n and ǫ = (m−1)/(m+3)

for n and m integers such that n > 4 and m > 7 and m odd.

† Due to the use of high precision arithmetic in these computer calculations, the values of ǫ are only rational numbers.

‡ The multi-precision library gmp (GNU MP) is part of the GNU project. It is a library for arbitrary precision

arithmetic, operating on signed integers, rational numbers and floating point numbers. It is designed to be as fast as

possible, both for small and huge operands. The current version is 2.0.2. Targeted platforms and software/hardware

requirements are any Unix machines, DOS and others, with an operating system with reasonable include files and a

C compiler.
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2.3. Generating functions for the degree growth of the successive iterates

Performing exact formal (Maple) calculations, one can revisit all these results using the stability

of some factorization schemes [2,4,6] associated with these iteration calculations. For instance,

one can consider, for various values of ǫ, the degrees of the successive rational expressions one

encounters when performing the successive iterates, and build various generating functions†

corresponding to these successive degrees. In particular, having singled out a set of ǫ values,

one can revisit these various values, to see how the generic growth complexity λ ≃ 1.618

becomes modified, and deduce the degree generating functions, and the associated complexity

λ, in each case. Let us denote by Gǫ(t) the degree generating function, corresponding, for some

given value of the parameter ǫ, to the degree of (for instance) the numerator of the z component

of the successive rational expressions obtained in the iteration process of transformation (1).

At this stage, it is worth recalling, again, the notion of Arnold complexity [5] which

corresponds to iterating a given (complex) line and counting the number AN of intersections

of this N th iterate with the initial line. It is straightforward to see that these Arnold complexity

numbers AN are closely linked to these successive degrees (see, for instance, [1,2]). Actually,

if one considers the iteration of the y = (1 − ǫ)/2 line‡, the generating function of the AN

‘almost’ identifies (often up to a simple t/(1 + t) factor) with the degree generating functions

Gǫ(t). The expansions of the ‘Arnold’ generating functions Aǫ(t), and the degree generating

functions Gǫ(t), are in agreement (up to order 15 for the ‘Arnold’ generating functions and

order 10, or 11, for the degree generating functions) with the following rational expressions

(for m > 4):

Aǫ(t) =
t

1 + t
·Gǫ(t) =

t

1− t − t2

A1/m(t) =
t

1 + t
·G1/m(t) =

t

1− t − t2 + tm+2

A(m−1)/(m+3)(t) =
t

1 + t
·G(m−1)/(m+3)(t) =

t

1− t − t2 + tm+2

for m = 9, 13, 17, 21, . . .

A(m−1)/(m+3)(t) =
t · (1− t (m+1)/2)

1 + t
·G(m−1)/(m+3)(t) =

t · (1− t (m+1)/2)

1− t − t2 + tm+2

for m = 7, 11, 15, . . .

(4)

where the expression for Gǫ(t) is valid for ǫ generic and the expressions for G1/m(t) are valid

for m > 4, the G(m−1)/(m+3)(t) for m > 7 with m odd. One also has for various integrable

value of ǫ:

A−1(t) =
t

1 + t
·G−1(t) =

t

1− t2
A0(t) =

t

1 + t
·G0(t) =

t

(1− t)(1 + t)

A1(t) =
t · (1− t)

1 + t
·G1(t) =

t

1− t2

A1/3(t) =
t · (1 + t) · (1− t)2

1 + t4
·G1/3(t) =

t · (1 + t)

1− t3

A1/2(t) =
t

1 + t
·G1/2(t) =

t · (1− t9)

(1− t) · (1− t2) · (1− t3) · (1− t5)
.

(5)

† Similar calculations of generating functions have been performed [2] using other representations of the mapping

related to 3× 3 matrices [11]. These generating functions, denoted Gǫ(x) in [2], are deduced from the existence of

remarkable stable factorization schemes [2,4,6]. These results are in complete agreement with the one given here for

the mapping of two variables (1) (see for instance equations (11)–(14) in [2]).

‡ Which is known to be a singled-out line for this very mapping [2] (see also, sections 4.2, 5). However, similar

calculations can be performed with any other ‘generic’ line (which excludes, for instance, the line y = z+ 1 which has

no fixed points of kN
ǫ for any N ). We have found, in our computer experiments, that y = (1− ǫ)/2 (or z = (ǫ−1)/2)

seem to yield more ‘regular’complexity numbers AN .
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These various ‘exact’ generating functions are in agreement with the previous semi-

numerical calculations. In particular, the first expression in (4) yields an algebraic value

for λ in agreement with the generic value of the complexity λ ≃ 1.618 of figure 1 (and figure 1

in [2]).

Remark. Due to the use of infinite precision computer calculations, one may think that our

analysis is only restricted to rational values of ǫ. This is not the case: using formal calculations

one can also perform this analysis of the successive degrees, or successive AN , for arbitrary

values of ǫ. It can be shown that the singled-out values of ǫ for which λ could be different

from the generic λ ≃ 1.618 value can only be algebraic numbers (like (40) and (41) sketched

in section 4.2 including, of course, the previously mentioned 1/m and (m−1)/(m+3) rational

values). Of course, these formal calculations are much more ‘time consuming’ and can only

be used to analyse in detail a few specific values of ǫ.

3. Dynamical zeta function and topological entropy

It is well known that the periodic orbits (cycles) of a mapping k strongly ‘encode’ dynamical

systems [15]. The fixed points of the N th power of the mapping being the cycles of the mapping

itself, their proliferation with N provides a ‘measure’ of chaos [16, 17]. To keep track of this

number of cycles, one can introduce the fixed-points generating function

H(t) =
∑

N

#fix(kN ) · tN (6)

where #fix(kN ) is the number of fixed points of kN , real or complex. This quantity only

depends on the number of fixed points, and not on their particular localization. In this respect,

H(t) is a topologically invariant quantity. The same information can also be coded in the

so-called† dynamical zeta function ζ(t) [13, 19] related to the generating function H(t) by

H(t) = t d
dt

log(ζ(t)). The dynamical zeta function is defined as follows [15, 18, 19]:

ζ(t) = exp

( ∞
∑

N=1

#fix(kN ) ·
tN

N

)

. (7)

The topological entropy [12] log h is‡

log h = lim
N→∞

log (#fix(kN ))

N
. (8)

If the dynamical zeta function is rational, h will be the inverse of the pole of smallest modulus of

H(t) or ζ(t). If the dynamical zeta function can be interpreted as the ratio of two characteristic

polynomials of two linear operators† A and B, namely ζ(t) = det(1− t · B)/ det(1− t · A),

then the number of fixed points #fix(kN ) can be expressed from Tr(AN ) − Tr(BN ). In this

case, the poles of a rational dynamical zeta function are related to the (inverse of the zeroes

of the) characteristic polynomial of the linear operator A only. Since the number of fixed

points remains unchanged under topological conjugacy (see Smale [24] for this notion), the

† The dynamical zeta function has been introduced by analogy with the Riemann ζ function, by Artin and Mazur [18].

‡ This definition (see for instance [13, 20]) is not the ‘standard’ definition mathematicians are used to, namely a

topological entropy defined for a continuous map of a compact set. However, since we are not interested in flows

but rather in discrete maps we prefer to take a definition for the topological entropy in terms of the rate of growth of

periodic points.

† For more details on these Perron–Frobenius, or Ruelle–Araki transfer operators, and other shifts on Markov partition

in a symbolic dynamics framework see, for instance, [19, 21–23]. In this linear operators framework, the rationality

of the zeta function, and therefore the algebraicity of the (exponential of the) topological entropy, amounts to having

a finite-dimensional representation of the linear operators A and B.
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dynamical zeta function is also a topologically invariant function, invariant under a large set

of transformations, and does not depend on a specific choice of variables. Such invariances

were also noticed for the growth complexity λ. It is thus tempting to make a connection

between the rationality of the complexity generating function previously given, and a possible

rationality of the dynamical zeta function. We will also compare the singularities of these two

sets of generating functions, namely the growth complexity λ, and h the (exponential of the)

topological entropy.

Some results for the dynamical zeta function. Let us now obtain the expansion of the

dynamical zeta function of the mapping kǫ , for generic values of ǫ. We can first concentrate

on the specific‡, but arbitrary, value ǫ = 21
25

. Of course, there is nothing special about this

specific ǫ = 21
25

value: the same calculations have been performed for many other generic

values of ǫ yielding the same number of (complex) fixed points and, thus, the same dynamical

zeta function. The total number of fixed points of kN
ǫ , for N running from 1 to 14, yields the

following expansion for the generating function H(t) of the number of fixed points:

Hǫ(t) = H21/25(t) = t + t2 + 4t3 + 5t4 + 11t5 + 16t6 + 29t7 + 45t8

+76t9 + 121t10 + 199t11 + 320t12 + 521t13 + 841t14 + · · · . (9)

This expansion coincides with the one of the rational function§

Hǫ(t) =
t · (1 + t2)

(1− t2) · (1− t − t2)
(10)

which corresponds to a very simple‖ (conjectured) rational expression for the dynamical zeta

function

ζǫ(t) =
1− t2

1− t − t2
. (11)

An alternative way of writing the dynamical zeta functions relies on the decomposition of the

fixed points into irreducible cycles:

ζǫ(t) =
1

(1− t)N1
·

1

(1− t2)N2
·

1

(1− t3)N3
· · ·

1

(1− t r)Nr
· · · . (12)

For generic values of ǫ, one gets the following numbers of irreducible cycles: N1 = 1, N2 = 0,

N3 = 1, N4 = 1, N5 = 2, N6 = 2, N7 = 4, N8 = 5, N9 = 8, N10 = 11, N11 = 18, . . . . It

has been conjectured in [2] that the simple rational expression (11) is the actual expression of

the dynamical zeta function for any generic value of ǫ (up to some algebraic values of ǫ, see

below and in section 4.2). Similar calculations have been performed for the other values of ǫ

that have been singled out in the semi-numerical analysis [3]. For the nongeneric values of ǫ,

ǫ = 1/m with m > 4, we have obtained expansions compatible with the following rational

expression:

ζ1/m(t) =
1− t2

1− t − t2 + tm+2
. (13)

‡ Another generic value of ǫ, close to the 1
2

value where the mapping is integrable [8], namely ǫ = 13
25
= 0.52, has

been analysed in some detail in [2]. For this value ǫ = 0.52, the enumeration of the number of fixed points, n-cycles

and the actual status of these fixed points (elliptic, hyperbolic, points . . .) are given in [2].

§ Valid for generic values of ǫ, up to some algebraic values of ǫ corresponding to cycle-fusion mechanisms—see (40)

and (41) below and [3].

‖ As far as symbolic dynamics is concerned, one can associate, to a dynamical zeta function such as (11), a clipped

Bernoulli shift with the ‘pruning rule’ to forbid substring −11− (that is 1 must be always followed by 0) in any

sequence of 0 and 1. However, constructing the Markovian partitions (if any!), yielding this simple pruning rule for

the symbolic dynamics, has not been done: mapping (1) is not hyperbolic (even weakly hyperbolic), it will be seen

below (see section 3.3) that it is measure preserving.
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For the other nongeneric values, namely ǫ = (m−1)/(m+ 3) with m > 7 odd, the expansions

are not large enough to conjecture a unique formula valid for any m. For m = 7 (namely

ǫ = 3
5
), one actually gets a dynamical zeta function given by (13) for m = 7 and this might

also be the case for m = 11, 15, . . . . For m = 9, 13, . . . , the expansions are in agreement

with a (1 − t − t2 + tm+2)-singularity. Comparing the various rational expressions in (4)

corresponding to generic, and nongeneric, values of ǫ, with (11) and (13), respectively, one

sees that the singularities (poles) of the dynamical zeta function happen to coincide with the

poles of the generating functions of the growth complexity λ, for all the values of ǫ. In

particular, the growth complexity λ and h, the exponential of the topological entropy, are

always equal for this very mapping.

Let us just mention, here, that the modification of the number of fixed points, from the

‘generic’ values of ǫ to the particular values (1/m, (m − 1)/(m + 3)), corresponds to the

disappearance of some cycles which become singular points (indetermination of the form

0/0). These mechanisms will be detailed in [25, 26]. Actually, the ‘nongeneric’ values of

ǫ, like ǫ = 1/m, correspond to such a ‘disappearance of cycles’ mechanism which modifies

the denominator of the rational generating functions, and, thus, the topological entropy and

the growth complexity λ. In contrast, there actually exists for kǫ , other singled-out values

of ǫ, like ǫ = 3 for instance, which correspond to fusion of cycles (see section 4.2): in the

ǫ → 3 limit, the order-three cycle tends to coincide with the order-one cycle, which amounts

to multiplying the dynamical zeta function (11) by 1 − t3. Such a ‘fusion-cycle’ mechanism

does not modify the denominator of the rational functions, and thus the topological entropy

and the growth complexity λ, remain unchanged.

To sum up. Considering a (very simple) one-parameter-dependent birational mapping of only

two (complex) variables, we have deduced an exact identification between the (multiplicative

rate of growth of the) Arnold complexity, that is the growth complexity λ, and the (exponential

of the) topological entropy for all the various ǫ cases (generic or not). As a byproduct, one finds

that these two complexities correspond, in this very example, to simple algebraic numbers.

3.1. A canonical degree generating function

This identification result is not completely surprising: the dynamical zeta function is a quite

‘universal’ function, invariant under a large set of topological conjugations [24], and the

concept of Arnold complexity (or the degree growth complexity λ) also has the same ‘large’

set of (topological and projective) invariances [5].

Actually, as far as degree generating functions are concerned, it is natural to introduce,

instead of some generating functions of the degrees of the numerator of the z component of

the N th iterate, a more ‘canonical’ degree generating function GHom
ǫ (t) associated with the

birational mapping (1) written in a homogeneous way (see the bi-polynomial mapping (4)

in [2]). Iterating (1), written in a homogeneous way, and, factoring out at each iteration step

the greatest common divisors, one gets a new degree generating function GHom
ǫ (t) well suited,

at first sight, to describe such large (topological and projective) invariances.

A simple calculation shows that this (projectively well-suited) degree generating function

reads (for generic ǫ)

GHom
ǫ (t) =

1

(1− t) · (1− t − t2)
. (14)

For the ǫ = 1/m particular values (m > 4), and for the two integrable values, ǫ = 1
2

and 1
3
,
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one gets, respectively

GHom
1/m (t) =

1− tm+3

(1− t) · (1− t − t2 + tm+2)
(15)

GHom
1/2 (t) =

1− t9

(1− t)2 · (1− t3) · (1− t5)
+

t2 · (1− t6)

(1− t)2 · (1− t2) · (1− t5)
(16)

GHom
1/3 (t) =

1− t6

(1− t3)(1− t2)(1− t)2
+

t4

(1− t3)(1− t)2
. (17)

Since the expansions for the infinite set of values of the form (m− 1)/(m + 3) for m > 7, can

only be performed up to order 11 (or 12), it is difficult to ‘guess’ any expression valid for any

m such as (15). Recalling the results (4) given in section 2.3 for the degree growth generating

functions, one may suspect that, among these (m − 1)/(m + 3) for m > 7 values (m odd),

one should make a distinction between m = 7, 11, 15, . . . on one side, and m = 9, 13, 17, . . .

on the other side. In fact, up to order 11, all our calculations for various (m − 1)/(m + 3)

values for m > 7 (ǫ = 3
5
, 2

3
, 5

7
, 3

4
, 7

9
, 4

5
, . . .) are in agreement with a general equality between

GHom
(m−1)/(m+3)(t) and GHom

1/m (t). More details are available in appendix A.

One gets simpler expressions for the integrable values ǫ = 0, 1 and ǫ = −1:

GHom
0 (t) = GHom

1 (t) =
1 + t2

(1− t)2
and GHom

−1 (t) =
1

1− t
. (18)

Note that GHom
ǫ (t) verifies the simple functional equation GHom

ǫ (t) + GHom
ǫ (1/t) = 1, for

ǫ = −1, 1
2
, 1

3
, and GHom

ǫ (t) = GHom
ǫ (1/t) for ǫ = 0, +1.

For ǫ = 1
2

we have not written any dynamical zeta function ζ1/2(t) since, for such an

integrable birational mapping, there exists, at (almost) any order N of iteration, an infinite

number of fixed points of order N (all the points of some elliptic curves [8]) and, therefore,

our previous ‘simple’ definition (7) for the dynamical zeta function is no longer valid.

A possible universal relation. One can imagine many simple relations between the ‘canonical’

degree generating function, GHom
ǫ (t), and the dynamical zeta function, ζǫ(t). For instance, for

a generic ǫ, one gets (among many . . .) the relation (1− t) ·(1− t2) ·GHom
ǫ (t) = ζǫ(t), however

this relation is no longer valid for ǫ = 1/m. One would like to find a ‘true universal’ relation

between ζǫ(t) and GHom
ǫ (t), that is a relation independent of ǫ (generic or nongeneric). In

order to achieve this goal one might think of exchanging ζǫ(t), and GHom
ǫ (t), for projectively

well-suited generating functions taking into account the point at∞, namely a dynamical zeta

function taking into account the fixed point at ∞ (see (52) in [3]), ζ (∞)
ǫ (t), and GHom

∞ (ǫ, t)

defined as follows:

ζ (∞)
ǫ (t) =

ζǫ(t)

1− t
and GHom

∞ (ǫ, t) = GHom
ǫ (t) +

t

1− t
. (19)

One verifies immediately that the relation

GHom
∞ (ǫ, t) = (1 + t) · ζ (∞)

ǫ (t) or equivalently (1 + t) · ζǫ(t) = (1− t) ·GHom
ǫ (t) + t

(20)

is actually verified for generic values of ǫ, as well as for the nongeneric values of the form

ǫ = 1/m, and also some nongeneric values of the form ǫ = (m−1)/(m+3) (see appendix A).

A similar relation for the two-parameters family of birational transformations depicted in [1–3]

will be detailed elsewhere. Relation (20) should give some hint for a true mathematical proof

of the relation between Arnold complexity and topological entropy (with some well-suited

mathematical assumptions, see section 3.4).
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Remark. Recalling the ‘Arnold’ generating functions Aǫ(t), (see (4)), which identifies ‘most

of the time’ (namely ǫ generic, ǫ = 1/m, m > 4, ǫ = (m + 1)/(m + 3) for m = 9, 13, 17, . . .)

with the new well-suited generating function GHom
∞ (ǫ, t), up to a simple multiplicative factor

t/(1 + t)2, one can rewrite, for these values of ǫ (generic or not), relation (20) as

t · ζǫ(t) = (1− t2) · Aǫ(t). (21)

3.2. Status of these rational results

The expansions obtained here (and in the following) are not numerical results but exact results.

Of course, given a power series up to order 14, there are many rational expressions (Padé

approximants . . .) which reproduce the power series up to this order. As far as the Arnold

complexity generating functions are concerned, one must say that the occurrence of rational

expressions for the (degree) Arnold complexity generating functions is a direct consequence

of the stability of some factorization scheme [4, 6], describing the simplifications occurring

when one iterates a birational transformations which originates from the composition of a

matrix inverse and some permutations of the matrix entries [4,6]. Of course one can imagine,

for a very large number of iterations, some breaking of this factorization scheme. However,

the very large number of birational examples we have studied [4, 6], strongly support the

assumption of the stability of this factorization scheme, at least for this particular class of

birational transformations. As far as the dynamical zeta function is concerned, one should not

see (10) or (11) (and similar rational dynamical zeta functions given in the following . . .) as the

simplest possible Padé approximants among an infinite set of other possible rational expressions

(with the same simplicity prejudice that is used to justify Padé approximant analysis in lattice

statistical mechanics for instance), but rather as the relation

dA(t) · ζǫ(t) = 1− t2 + O(t15) (22)

where dA(t) is the denominator of the rational expression of the Arnold complexity generating

function, namely 1− t − t2.

In the framework of hyperbolic systems, or more generally weakly hyperbolic systems,

or, in the even more general framework introduced by Conley [27] and extensively studied

by Easton [29] or Fried [28], of isolated blocks, one may have a rationality prejudice for

dynamical zeta functions. However, our rational results for (complex) birational mappings

cannot be simply understood in term of any ‘obvious’ Markov’s partition, or any symbolic

dynamics hyperbolic interpretation: our mapping does not belong to the previous frameworks.

Let us show here that our mapping is actually a measure-preserving† mapping [30].

3.3. Measure-preserving mapping

A measure-preserving mapping is a mapping that is conjugate to an area-preserving mapping:

it can be rewritten, up to a quite complicated, and possibly singular transformation, into an

area-preserving map [30]. Measure-preserving mappings were studied by Poincaré [31].

Calculating the Jacobian of transformation (1), one gets

det

[ dy ′

dy
dz′

dy
dy ′

dz
dz′

dz

]

= det

[

0 z−ǫ
z+1

1 y(1+ǫ)

(z+1)2

]

= −
z− ǫ

z + 1
. (23)

Let us note that the line y = z + 1 is a line where the successive points of the iterations

‘seem’ to accumulate (see the various figures in section 4.1). As far as seeking an invariant

† JMM would like to deeply thank R Quispel for an illuminating discussion on measure-preserving maps.
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measure for mapping (1) is concerned, one should thus have a higher density near this singled-

out line. The line y = z + 1 is actually a globally invariant line on which transformation (1)

reduces to a simple translation:

kǫ : (y, z) −→ (y − ǫ, z− ǫ). (24)

Clearly no fixed points of any order can exist on this singled-out line. For generic values of ǫ this

corresponds to the only (algebraic) covariant of transformation (1), namely c(y, z) = y−1−z

(of course, they are many more for integrable values of ǫ). Under transformation (1) the

covariant c(y, z) = y − 1− z transforms with a cofactor which is simply the Jacobian (23):

kǫ : y − 1− z −→ y ′ − 1− z′ = −
z− ǫ

z + 1
· (y − 1− z). (25)

In other words, the Jacobian can always be written as the ratio c(y ′, z′)/c(y, z) (where c(y ′, z′)

is the covariant taken at the image point (y ′, z′)) which is the key ingredient for having

a measure-preserving map (see relation (2.20) in [30]). Actually, introducing a change of

variables (y, z) → (u, v) such that the Jacobian of this change of variables will be equal to

the inverse of this covariant, will change our measure-preserving map into an area-preserving

map:

det

[ du
dy

dv
dy

du
dz

dv
dz

]

=
1

y − 1− z
. (26)

They are an infinite number of such change of variables. One (not very elegant) solution

amounts to imposing (u, v) = (y, v(y, z)), the Jacobian (26) reading

dv

dy
=

1

y − 1− z
(27)

which can easily be integrated into v = ln(y−1−z), its inverse being (y, z) = (u, u−ev−1).

Rewriting the mapping in these (u, v) variables one gets

(u, v) −→ (u′, v′) = (u− ev − ǫ, v + ln(V )) where V =
u− ev − 1− ǫ

ev − u
. (28)

One easily verifies that mapping (28) has a Jacobian equal to 1 everywhere. It is an area-

preserving map.

As far as the previously introduced topological notions are concerned (dynamical zeta

functions, Arnold complexity, topological entropy), it is clear that they remain unchanged for

the area-preserving mapping (28).

To our knowledge, there is no nontrivial† result available in the literature on the possible

rationality of the dynamical zeta function of measure-preserving, or area-preserving mappings.

To our knowledge, there is no nontrivial result available on the possible relation (identification)

between Arnold complexity and topological entropy for area-preserving maps.

3.4. Some comments on the relations between various entropies and complexity measures

One should recall that relations between degree complexity and topological entropy are

extensively discussed in the mathematical literature (see e.g. Katok and Hasselblatt [32]).

We do not want to mention here the well known inequalities between the metric entropy and

the topological entropy, or even the more general order-q Renyi entropies [33]: this will be

the subject of a forthcoming publication. We want, here, to look at the relations between two

† Of course, one can certainly find many area-preserving mappings for which h, the exponential of the topological

entropy, (or λ) is an integer, namely the degree of the associated homogeneous polynomial transformation. We are

interested in nontrivial mappings for which h, or λ, are algebraic numbers that are not integers.
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topological complexities, namely the topological entropy and Arnold complexity, and, in the

following, their real adaptations. In this respect, one must certainly mention the relations,

and inequalities, given by Newhouse [34] relating the topological entropy of a smooth map to

the growth rates of the volumes of iterates of smooth manifolds†. For C∞-smooth mappings,

Yomdin proved the opposite inequality, thus showing the coincidence of the growth rate of

volumes and topological entropy [36, 37]. One should also recall the paper by Friedland [38]

which shows that the entropy is the same as the volume growth for rational self-maps of

complex projective space P 2: in that case, the Arnold complexity coincides with the growth

of homology [39] which should be the same as the volume growth.

In fact, it is not completely clear whether one can use all these mathematical theorems

for our birational measure-preserving mappings. When mathematicians study birational

transformations they tend to focus on the indeterminacy set where a birational map cannot

be defined and are very worried about the bad things that might arise when this set grows with

the iteration. In order to avoid such mathematically unpleasant proliferation of singularities

they work in a framework which is a very ‘smooth’ one, with a point of departure of

diffeomorphisms. The conceptual framework, and even the definitions of the topological

entropy, being slightly different, it is difficult to see if these theorems really apply. Let us

just point out here that, fortunately, the indeterminacy locus is far from being a dense set: it

is very tame for mappings (1). From Jacobian (23), one gets that the critical locus is the line

z = ǫ, its critical image being the point (y, z) = (1, 0). This is a point of indeterminacy

for k−1
ǫ . By inspection (or from the y ↔ −z symmetry) the point of indeterminacy for kǫ is

(y, z) = (0,−1). Both critical points belong to the singled-out line y = 1 + z on which the

action of kǫ (or k−1
ǫ ) reduces to a simple shift (see (24)). The backwards and forwards iterates

of these two critical points can thus be easily described‡.

From a more ‘down-to-earth’ point of view the comparison between topological entropy

and Arnold complexity can be understood as follows. The components of kN
ǫ (y, z), namely yN

and zN , are of the form PN (y, z)/QN (y, z) and RN (y, z)/SN (y, z), where PN (y, z), QN (y, z),

RN (y, z) and SN (y, z) are polynomials of degree asymptotically growing like λN . The Arnold

complexity amounts to taking the intersection of the N th iterate of a line (for instance, a simple

line like y = y0, where y0 is a constant) with another simple (fixed) line (for instance y = y0

itself or any other simple line or any fixed algebraic curve). Let us consider the N th iterate of

the y = y0 line, which can be parametrized as

yN =
PN (y0, z)

QN (y0, z)
zN =

RN (y0, z)

SN (y0, z)
(29)

with line y = y0 itself. The number of intersections, which are the solutions of

PN (y0, z)/QN (y0, z) = y0, grows like the degree of PN (y0, z)−QN (y0, z)·y0: asymptotically

it grows like ≃λN . On the other hand, the calculation of the topological entropy corresponds

to the evaluation of the number of fixed points of kN , that is, the number of intersections of

the two curves: PN (y, z)−QN (y, z) · y = 0 and RN (y, z)− SN (y, z) · z = 0 which are two

curves of degree growing asymptotically like ≃λN . The number of fixed points is obviously

bounded by ≃λ2N . The exponential of the topological entropy, namely h, is thus bounded by

the square of λ: h 6 λ2.

In fact, we have found a possible example where this upper bound seems to be actually

reached. Let us consider the quadratic transformation (B · C 6= 1):

(y, z) −→ ((A− y − Bz) · y (A− Cy − z) · z). (30)

† Schub conjectured that the topological entropy of a smooth map on a compact manifold is bounded by the growth

of the various algebraic transformations that it induces [35].

‡ Furthermore, this also enables us to understand why the values ǫ = 1/m, m = 1, 2, 3, 4 . . . are special.
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The mapping is not bipolynomial or birational. The dynamical zeta function reads (up to

order 5 only, the calculations becoming really large) for this noninvertible mapping:

ζ(t) =
1

(1− t)4(1− t2)5(1− t3)20(1− t4)60(1− t5)204
· · · (31)

from which one can conjecture that

ζ(t) =
1− t2

1− 4t
. (32)

This provides an example for which h = λ2 = 4. Therefore, it seems that the identification

of h and λ is not valid in general†. It seems that the identification of h and λ might be related

to the ‘very tame’ proliferation of singularities of the (birational) transformations (1), or it

might be a consequence of the measure-preserving property of the mapping. This is a quite

complicated analysis that we do not want to sketch here. Let us just say that this identification

seems to be a valid one in our particular example (1).

4. Real dynamical zeta function and real topological entropy

As far as the growth complexity λ is concerned, the generic values of ǫ (that is the values

different from the previous 1/m, (m − 1)/(m + 3) singled-out values) are all on the same

‘complexity footing’ (see figure 1). This is clearly confirmed by the exponential growth of

the computing time during the iteration process, which seems to be similar for all these values

(and clearly smaller for the 1/m, (m − 1)/(m + 3) particular values). It is, however, worth

noting that these generic values, which are all on the same λ-footing, clearly yield phase

portraits which are quite different and, obviously, correspond to drastically different ‘visual

complexities’ of the phase portrait of the mapping. This ‘visual complexity’ corresponds to

the (exponential) growth of the number of (real) fixed points of the mapping seen as a mapping

bearing on two real variables. The previous definitions of the dynamical zeta function ζǫ(t) and

of the generating function Hǫ(t) counting the number of fixed points, can be straightforwardly

modified to describe the counting of real fixed points:

Hreal(t) =
∑

N

HR
N · t

N = t ·
d

dt
log(ζ real(t)) where ζ real(t) =

∑

N

zR
N · t

N (33)

where the number of real fixed points HR
N grow exponentially with the number N of iterates,

like ≃hN
real. A quick examination of various phase portraits for various ‘generic values’ of

the parameter ǫ seems to indicate quite clearly that this ‘real topological entropy’ log(hreal)

varies with ǫ, in contrast with the ‘usual’ topological entropy log(h). An obvious inequality

is hreal 6 h.

4.1. ‘Phase portrait gallery’

Let us give here various phase portraits corresponding to different (generic except the first

one) values of ǫ. Note the different scales for the frames of these various phase portraits. For

most of the phase portraits given in figures 2–9 around 300 orbits of length 1000, starting from

randomly chosen points inside the frame†, have been generated (only points inside the frame

are shown).

† One can imagine that some equality like h = λ ·hsing could be valid, where hsing could correspond to the exponential

proliferation of bifurcations or singularities. Such speculative ideas remain to be studied.

† With a special nonrandom treatment of the regular elliptic parts of the phase portraits.
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Figure 2. Phase portraits of kǫ for ǫ = 1
100

(left) and for ǫ = 9
50

(right).
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Figure 3. Phase portrait of kǫ for ǫ = 33
100

. Figure 4. Phase portrait of kǫ for ǫ = 48
100

.

On these various phase portraits, one gets, near the integrable value ǫ ≃ 1
3
, quite different

phase portraits which seem, however, to have roughly the same number of (real) fixed points

(see figures 3 and 6). On these various phase portraits, one also sees, quite clearly, that the

number of fixed points seems to decrease when ǫ crosses the integrable value ǫ = 1
2

and ǫ = 1,

going, for instance, from ǫ = 0.48 to 0.51 (see figures 4 and 7) or from ǫ = 0.9 to 1.1 (see

figures 5 and 8). These results will be revisited in section 5. Of course, exactly on the integrable

value ǫ = 1, the phase diagram corresponds to a (simple) foliation of the two-dimensional

parameter space in (rational) curves (linear pencil of rational curves, see [8]):

1(y, z, 1) =

(

yz

y − z− 1

)2

= ρ or equivalently
yz

y − z− 1
= ±ρ1/2 (34)

where ρ denotes some constant. For the other integrable values one also has either a linear

pencil of rational curves, namely yz = ρ for ǫ = 0, as well as

1(y, z,−1) =
1

(1 + z− y)2
= ρ or equivalently (y − z) · (y − z− 2) =

1

ρ
− 1 (35)
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for ǫ = −1, or a linear pencil of elliptic curves for ǫ = 1
2
, namely

1(y, z, 1
2
) =

(1 + z + 2yz) · (1− y + 2yz) · (1 + z− y − 2yz)

(1 + z− y)2
= ρ (36)

and also

1(y, z, 1
3
) = ((5 + 3z− 3y + 9yz) · (1− z− y + 3yz) · (1 + z− y − 3yz)

×(1 + z + y + 3yz))/(1 + z− y)2 = ρ

for ǫ = 1
3
. One also remarks that ǫ = 3, which corresponds to the generic λ ≃ 1.618 growth

complexity, also yields a remarkably regular phase portrait, ‘visually’ similar to a foliation

of the two-dimensional parameter space in curves, suggesting a ‘real topological complexity’

hreal very close, or even equal to 1. This fact will also be revisited in section 5. In order to

describe, less qualitatively, the ‘real topological complexity’ hreal as a function of the parameter

ǫ, we have calculated in section 4.3, the first (10, 11 or even 12) coefficients of the expansions

of H real
ǫ (t), and of the ‘real dynamical function’ ζ real

ǫ (t), for various values of ǫ.
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Figure 9. Phase portraits of kǫ for ǫ = 3 (left) and for ǫ = 15 (right).

4.2. Number of real fixed points as a function of ǫ

Let us now try to understand why (and how) hreal varies as a function of ǫ, and why some other

values of ǫ, like ǫ = 3, different from the previous 1/m and (m−1)/(m+3) nongeneric values,

seem to play a special role. The method used to obtain the fixed points of the N th iterate of kǫ

has been detailed in previous papers [1,2]. Let us just mention here that, due to the symmetries

of this mapping, there exist four singled-out lines, namely y = (1 − ǫ)/2, z = (ǫ − 1)/2,

y = −z and y = z + 1. The inverse transformation k−1
ǫ being identical to kǫ where y has been

permuted with −z, one can understand the line y = −z as a ‘mirror’ between past and future

in the iteration process. From the decomposition (2) of (1) into involutions I1 and I2 one can

easily show that if M = (y, z) is a fixed point of order N of (1), its image I1(M) = (−z,−y)

is also a fixed point of order N . Recalling the Jacobian of transformations kǫ and k−1
ǫ , one

easily verifies that these Jacobians (see (23)) are equal to 1 on the lines y = (1 − ǫ)/2 and

z = (ǫ−1)/2, respectively. Line z = (ǫ−1)/2 is also the set of fixed points of involution (2).

An analysis of the set of the first-order fixed points (N 6 8) shows that the first three lines,

namely y = (1− ǫ)/2, z = (ǫ−1)/2 and y = −z, play a key role in classifying all these fixed

points [40]. It can be seen, for N 6 8, that there always exist a fixed point in these N -cycles

which belongs, either to line y = −z or to the y = (1− ǫ)/2 (or equivalently z = (ǫ − 1)/2)

line. We call the fixed points, corresponding to line y = −z, the ‘P-type’ points. We call the

fixed points, having a representative on y = (1 − ǫ)/2, or equivalently z = (ǫ − 1)/2, the

‘Q-type’ points [25, 26].

For N > 9, other N -cycles with no points lying on these three lines do occur: other

remarkable sets occur like y + z̄ = 0 (see [2, 3]). We call the fixed points, corresponding to

this ‘remaining’ set of points, the ‘R-type’ points [25, 26].

One can use these localization properties to get, very quickly, a subset of all the fixed points,

namely (for instance) the Q-type fixed points (one representative in the N -cycle belongs to

line y = (1 − ǫ)/2 or z = (ǫ − 1)/2). These calculations can be performed quite efficiently

since one can eliminate the y variable (y = (1 − ǫ)/2) and, thus, reduce the calculations to

looking for the roots (real or not) of an ǫ-dependent polynomial in this remaining z variable.
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One gets, for the first values of N , the following polynomial expressions relating z and ǫ:

Q1(z, ǫ) = 2 · z− (ǫ − 1) = 0 Q3(z, ǫ) = z− (ǫ − 2) = 0

Q5(z, ǫ) = (3ǫ − 1) · z2 − 2 · (ǫ − 3) · (2ǫ − 1) · z + (ǫ3 − 5ǫ2 + 10ǫ − 4) = 0, . . . .
(37)

However, it can be seen that the cycles deduced here fromQ1, Q3, Q5, also have a representative

on y = −z and are thus also of the P-type. The first genuine Q-type cycles occur for

N = 8, 10, 12, . . . . In order to avoid any double-counting with P-type points, from now on

we denote Q-type fixed points as the fixed points such that one representative in the N -cycle

belongs to the line y = (1− ǫ)/2 or z = (ǫ − 1)/2 but none on y = −z.

It is easy to see that the number of real roots z, of one of these QN (z, ǫ) = 0

(N = 8, 10, 12, . . .) conditions, varies with ǫ by intervals. The changes of this number

of real roots take place at algebraic values of ǫ (resultant of QN (z, ǫ) in z). The details of

the calculations, and a description of these polynomials, are given elsewhere [25,26,40]. The

number of the fixed points of the Q-type (see [25, 40]) is, thus, a function of ǫ constant by

interval, the limits of the intervals corresponding to some algebraic values (resultants deduced

from the QN by eliminating z). For illustration, in figure 10 we plot the real roots: z, as a

function of ǫ, for Q10.

Let us give, for order 10, a few examples of these algebraic ‘threshold’ real values of ǫ

corresponding to the real roots of such Q-type polynomials (37):

5ǫ2 − 10ǫ + 1 = 0 5ǫ4 − 96ǫ3 + 114ǫ2 − 40ǫ + 1 = 0. (38)

The roots of the first polynomial are of the form (40). The ‘threshold’ values of ǫ are thus

given by two real roots ǫ ≃ 0.1055 and 1.8944. The second polynomial only gives two real

roots ǫ ≃ 0.027 03 and ≃17.9549.
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Similar calculations can be performed for the fixed points of the P-type (see [25, 40])

corresponding to the line y = −z (see [25, 26]). One can also get the real roots z of P10 as a

function of ǫ. The algebraic values of ǫ, occurring in this case, are, again, the two roots of the

first polynomial in (38) together with the only two real roots ǫ ≃ 0.1561 and 0.5013 of the

polynomial

ǫ8 − 26ǫ7 + 343ǫ6 − 2052ǫ5 + 6367ǫ4 − 7178ǫ3 + 3625ǫ2 − 824ǫ + 64 = 0 (39)

as well as two real roots ǫ ≃ 0.008 999 and 0.1316 of a polynomial of degree 24 in ǫ that will

not be presented here. The last set of points of the R-type (see [40]), which corresponds to fixed

points that are neither of the P-type nor the Q-type, give the real roots ǫ ≃ 0.2338, 0.514 34,

and 33.2517, corresponding to polynomial ǫ3 − 34ǫ2 + 25ǫ − 4 = 0. On all these algebraic

values of ǫ, one can see a variation of the total number of fixed points (P-type, Q-type and

R-type) of order 10 (see insertion in figure 10). These values are in fact particular examples

of families of algebraic ǫ values. The simplest family of singled-out algebraic values of ǫ

corresponds to the fusion of an N -cycle with the 1-cycle, and reads

ǫ =
1− cos(2πM/N)

1 + cos(2πM/N)
or equivalently cos(2πM/N) =

1− ǫ

1 + ǫ
(40)

for any integer N (with 1 < M < N/2, M not a divisor of N ). Other cycle-fusion mechanisms

take place yielding new families of algebraic values for ǫ. For instance, the coalescence of the

(3×N)-cycles in the 3-cycle and the coalescence of the (4×N)-cycles in the 4-cycle yield,

respectively (with some constraints on the integer M that will not be detailed here),

cos(2πM/N) = 1−
3

4

ǫ(ǫ − 3)2

(1− ǫ)(1 + ǫ)
cos(2πM/N) = 1− 32

ǫ(1− ǫ)2

(1 + ǫ)2(1− 2ǫ)
. (41)

Status of the fixed points. The fixed point of kǫ , which is elliptic for ǫ > 0, becomes hyperbolic

for ǫ < 0. For three iterations (N = 3) one finds that moving through the ǫ = 1
3

value also

changes the status of these fixed points from elliptic to hyperbolic. In fact, the algebraic values,

like the ones depicted in (40) or (41), also occur in such changes of status from elliptic to

hyperbolic (see [25, 26]). Therefore, the number of elliptic fixed points, or hyperbolic fixed

points, is not as ‘universal’ as the total number of (complex) fixed points; however it has ‘some

universality’: for a given value of N , the number of elliptic (resp. hyperbolic) fixed points

depends on ǫ also by intervals (staircase function). This has, again, to be compared with the

dependence of the growth complexity λ, seen as a function of ǫ, depicted in figure 1. The fact

that the number of hyperbolic versus elliptic fixed points, as well as the number of real versus

nonreal fixed points, is modified when ǫ goes through the same set of values, like (40) or (41),

seems to indicate that a modification of the number of real fixed points is not independent

of the actual status of these points (hyperbolic versus elliptic). This phenomenon, in fact,

corresponds to a quite involved, and interesting, structure that will be sketched in [26].

4.3. Some expansions for the ‘real dynamical zeta function’ and H real

Let us recall some results corresponding to ǫ = 0.52, in particular the product

decomposition (12) of the dynamical zeta function [2, 3]. In [2, 3], the number of irreducible

cycles Ni (see (12)), as well as the number of irreducible cycles corresponding to hyperbolic

points, elliptic points, real points is detailed (see table 1 in [3]). These results (and further

calculations) enable us to write, for ǫ = 0.52, the ‘real dynamical function’ ζ real
ǫ (t) as the

following product:

ζ real
52/100(t) =

1

(1− t)(1− t3)(1− t4)(1− t5)2(1− t7)2(1− t8)(1− t9)4(1− t10)2
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×
1

(1− t11)6(1− t12)12(1− t13)16
· · · (42)

yielding the following expansion for ζ real
ǫ (t) and H real

ǫ (t):

ζ real
52/100(t) = 1 + t + t2 + 2t3 + 3t4 + 5t5 + 6t6 + 9t7 + 13t8 + 20t9 + 28t10

+40t11 + 65t12 + 97t13 + · · ·

H real
52/100(t) = t + t2 + 4t3 + 5t4 + 11t5 + 4t6 + 15t7 + 13t8 + 40t9 + 31t10

+67t11 + 152t12 + 209t13 + · · · .

(43)

The number of real nth cycles of the P-type, Q-type and R-type, denoted Pn, Qn, and Rn

respectively, are given in table B.4 in appendix B. For the Rn one cannot reduce, in contrast

with the P-type or Q-type analysis, the calculations to a unique variable: one is obliged to

perform a first resultant calculation where one eliminates one of the two variables and another

resultant calculation where one eliminates the other one, and check back, in the Cartesian

product of these possible solutions, the solutions which are actually fixed points. In order

to get integer values that can be trusted, one needs to perform these (Maple) calculations

with more than 2000 digits for order 12, but then one faces severe memory limitations in the

formal calculations. We have been able to find integer values for the Rn for orders larger

than 12; however it is clear that these integers are just lower bounds of the true integers

(insufficient precision does not enable one to discriminate between fixed points that are very

close). Therefore, we prefer not to give these integers here, and put a (*) in the tables in

appendix B when we encounter these computer limitations.

The total number, Tn, of real cycles of the P-type, R-type and Q-type actually corresponds

to the exponents in the product decomposition (42) for the ‘real dynamical zeta function’.

Unfortunately, these series are not large enough to ‘guess’ any possible (and simple, like (11))

rational expression for ζ real(t), if any. Series (43), however, give a first ‘rough estimate’ for the

‘real topological complexity’ hreal: hreal ≃ (97)1/13 ≃ 1.4217 or else hreal ≃ 2091/13 ≃ 1.508,

clearly smaller than the exact algebraic value for h corresponding to (11): h ≃ 1.618 03.

Let us consider other values of ǫ.

For ǫ < 0, one finds out that all the fixed points seem to be real and, thus, one can

conjecture for ǫ < 0 (but ǫ 6= −1)

ζ real
ǫ<0(t) =

1− t2

1− t − t2
and hreal = h ≃ 1.618 03. (44)

The number of cycles of the P-type, Q-type and R-type is given order by order in table B.1

in appendix B. These successive integer values for the total number of irreducible real cycles,

Tn, yield

ζ real
ǫ<0(t) = (1/((1− t)(1− t3)(1− t4)(1− t5)2(1− t6)2(1− t7)4

×(1− t8)5(1− t9)8(1− t10)11))

×(1/((1− t11)18(1− t12)25(1− t13)40(1− t14)58(1− t15)90

(1− t16)135(1− t17)210(1− t18)316)) · · · . (45)

With obvious notations, introducing ‘restricted’ dynamical zeta functions ζP
ǫ<0(t) ζ

Q
ǫ<0(t) and

ζR
ǫ<0(t) (corresponding to a product decomposition into irreducible cycles similar to (45),

but where the cycles are of the P-type, Q-type and R-type, respectively), the real dynamical

zeta function ζ real
ǫ<0(t) can be written as the product of these three expressions: ζ real

ǫ<0(t) =

ζP
ǫ<0(t) · ζ

Q
ǫ<0(t) · ζ

R
ǫ<0(t). The restricted dynamical zeta function ζR

ǫ<0(t) reads (see table B.1

in appendix B):

ζR
ǫ<0(t) = 1/((1− t9)2(1− t10)2(1− t11)6(1− t12)10(1− t13)20

×(1− t14)30(1− t15)60(1− t16)88(1− t17)156(1− t18)238 · · ·). (46)
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Similar expressions can be written for ζP
ǫ<0(t) and ζ

Q
ǫ<0(t) (see table B.1 in appendix B). These

restricted dynamical zeta functions do not seem to be the (product) expansions of any simple

rational expression: only their product is a remarkably simple rational expression. When the

number of iterations gets large, it seems that hR , the growth rate of periodic points of the

R-type, seems to dominate and thus h ≃ hR . One has the following expansion for ζR
ǫ<0(t)

multiplied by the polynomial (1− t − t2):

(1− t − t2) · ζR
ǫ<0(t)

= 1− t − t2 + 2t9 + 2t11 + 2t12 + 4t13 + 10t15 − 2t16 + 8t17 − 3t18 · · · .

It might also be possible that the coefficients in the right-hand side of (47) could be bounded

by a polynomial growth.

Remark. One can see the singled-out role played by these Q-type and P-type fixed points as

related to the possible decomposition of (1) into the product of two involutions (reflections).

From this decomposition, it can be seen that every intersection of the (globally) invariant set of

points of one involution with the image a (globally) invariant set of points under some iterate

is actually a periodic point. Therefore, one could suggest that there might be a simple relation

between the Arnold complexity and the numbers of Q-type and P-type, rather than the total

number of periodic points. One sees, for the ǫ < 0 case, that this is probably not correct.

For ǫ = 3, one has, at every order of iteration up to order 12, a unique real fixed point

(the fixed point of order one but, of course, many complex fixed points) yielding

H real
3 (t) =

t

1− t
and ζ real

3 (t) =
1

1− t
(47)

and, for ǫ very close to 3, the expressions of H real(t) and ζ real(t) cannot be distinguished (at

the orders where we have been able to perform these fixed points calculations) from

H real
ǫ≃3(t) ≃

t · (1 + t + 4t2)

1− t3
and ζ real

ǫ≃3(t) ≃
1

(1− t) · (1− t3)
(48)

which just correspond to add an additional 3-cycle.

Expressions (47) are in agreement with the phase portrait of figure 9 for ǫ = 3. This

indicates that, seen as a mapping of two real variables, the mapping ‘looks like’ an integrable

mapping: the ‘real topological complexity’ hreal seems to be exactly equal to 1 for ǫ = 3 (and

hreal ≃ 1 for ǫ ≃ 3). The ‘real topological entropy’ log(hreal) seems to be exactly zero for ǫ = 3

and is, thus, drastically different from the generic ‘usual’ topological entropy log(1.618 03 . . .).

The possible foliation of the two-dimensional space in (transcendental) curves is discussed†

elsewhere [41].

Miscellaneous examples are given in appendix B. In particular, the number of real cycles

of the P-type, Q-type and R-type is given in table B.6 for ǫ = 11
10

, yielding the following

expansion for the real dynamical zeta function:

ζ real
11/10(t) = 1 + t + t2 + 2t3 + 2t4 + 2t5 + 3t6 + 5t7 + 5t8 + 6t9 + 10t10 + 12t11 + 13t12 + · · ·

(49)

clearly yielding a value for hreal close to 1 (e.g., hreal ≃ (13)1/12 ≃ 1.238) significantly smaller

than h ≃ 1.618. This result has to be compared with the equivalent one for ǫ = 9
10

or for

† In particular it is shown that at least three of the (real) curves of the phase portrait correspond to divergent series

satisfying an exact functional equation [41].
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ǫ = 21
25

:

ζ real
21/25(t) =

1

(1− t)(1− t3)(1− t4)(1− t7)2(1− t8)(1− t10)2(1− t11)4(1− t12)2
· · ·

= 1 + t + t2 + 2t3 + 3t4 + 3t5 + 4t6 + 7t7

+9t8 + 10t9 + 15t10 + 23t11 + 28t12 + · · · (50)

yielding a larger value for hreal: hreal ≃ (28)1/12 ≃ 1.32. This expansion is actually compatible

with the following simple rational expression and for its logarithmic derivative H real
21/25:

ζ real
21/25(t) =

1 + t2

1− t + t2 − 2t3
and H real

21/25 =
t (5t2 + 2t4 + 1)

(1 + t2) · (1− t + t2 − 2t3)
. (51)

Note that all the coefficients of the expansion of the rational expression (51) and of its

logarithmic derivative H real
21/25 are positive (in contrast with a Padé approximant (75) given

in appendix C for ǫ = 2
3

which is ruled out because coefficient t54 of its expansion is negative).

If this simple rational expression is actually the exact expression for the real dynamical zeta

function ζ real
21/25(t) this would yield the following algebraic value for hreal: hreal(

21
25

) ≃ 1.353 21.

For ǫ = 9
10

, one gets the same product decomposition, at least up to order ten. The number

of nth cycles of the P-type, Q-type and R-type for ǫ = 9
10

are given in appendix B. One thus

sees that hreal decreases when ǫ crosses the ǫ = 1 value.

For ǫ = 1
4

we have obtained (see appendix B)

ζ real
1/4 (t) = 1/((1− t)(1− t3)(1− t4)(1− t5)2(1− t7)

×(1− t8)(1− t9)3(1− t10)2(1− t11)4(1− t12)4(1− t13)8 · · ·)

= 1 + t + t2 + 2t3 + 3t4 + 5t5 + 6t6 + 8t7 + 12t8

+18t9 + 25t10 + 34t11 + 48t12 + 70t13 + · · · . (52)

The ‘nongeneric’ values ǫ = 1/m and (m−1)/(m+ 3) require a special and careful analysis†.

However, as was seen for ζ(t), one clearly verifies, on all these ‘real dynamical zeta function’

ζ real(t), that the coefficients in these expansions are continuous in ǫ near these points except

at these very values of ǫ where one gets smaller integers and, possibly, smaller values for

hreal (the limit at the left and on the right of hreal are equal and larger than hreal on these very

‘nongeneric’ values).

The numbers of irreducible real n-cycles of the P-type, Q-type and R-type are given in

appendix B for miscellaneous values of ǫ: ǫ = 11
100

, 5, 10, 50. We also give, in appendix C, for

various values of ǫ (ǫ = 9
50

, 31
125

, 12
25

, 17
25

, 66
125

, 3
4
, 3

2
), the product decomposition and expansions

for ζ real
ǫ (t) up to order 11.

Similar calculations of the expansions of H real
ǫ (t) and ζ real

ǫ (t), for many other values of

the parameter ǫ, have been performed. For most of these other values of ǫ the series are not

large enough to ‘guess’ a rational expression (if any) for the ‘real dynamical zeta function’

ζ real(t); however all these results confirm that hreal varies with ǫ when ǫ is positive, while

hreal is constant (except ǫ = −1) when ǫ < 0. When ǫ is positive, the estimates of hreal

are in agreement with the ‘visual complexity’ as seen on the phase portraits (see the previous

section). In particular, one finds that hreal roughly decreases as a function of ǫ in the intervals

[0+, ≃ 1
10

] and [≃ 1
3
, 1−], and increases in the interval [≃ 1

10
, ≃ 1

3
] (with a sharp decrease near

ǫ ≃ 1
2

and ǫ ≃ 1), that hreal is close or very close to one when ǫ belongs to an interval [1+,

† Some fixed points near these ‘nongeneric’ values (ǫ ≃ 1/m) disappear on these very values stricto sensu: they

become singular. One has to verify carefully that all the points obtained in such calculations are fixed points and not

singular points.
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≃16] and that hreal grows monotonically with ǫ for ǫ > 16 to reach some asymptotic value in

the ǫ → ∞ limit. It will be seen, in the next section, that the ‘real topological complexity’

hreal, in the ǫ → ∞ limit, tends to a value hreal ≃ 1.429 clearly different, again, from the

generic ‘topological complexity’ h ≃ 1.618.

4.4. Seeking for rationality for the ‘real dynamical zeta function’

Recalling the large number of rational expressions obtained for the dynamical zeta functions [2,

3] and the degree generating functions [2, 4, 6], one may have a rationality ‘prejudice’ for

these ‘real dynamical zeta functions’ ζ real
ǫ (t), calculated for a given value of ǫ. However,

the occurrence of any symbolic dynamic, and associated Markov partition, is far from being

natural in this real analysis framework [27–29]. If one bets on the rationality of the real

dynamical zeta function ζ real
ǫ (t) (see (33)), it must, however, be clear that ζ real

ǫ (t) depends on

ǫ in a very complicated way (piecewise continuous functions, devil’s staircase?). If, for some

given value of the parameter ǫ, the partial dynamical zeta function ζ real
ǫ (t) actually corresponds

to a rational expression, one should, in fact, have an infinite set of such rational expressions

associated with the infinite number of steps (intervals† in ǫ) in the ‘devil’s staircase’. The

actual location of these ‘steps’, that is, the limits of these intervals in ǫ, corresponds to an

infinite number of values of ǫ like (40) or (41) (and others [26]). For a given ǫ, the calculations

of the first terms of the expansion of the ‘real dynamical zeta function’ ζ real
ǫ (t) do not rule

out, at the order for which we have been able to perform these calculations (10, 11), rational

expressions (see, for instance, [41]).

The number of real nth cycles of the P-type, Q-type and R-type, for ǫ = 50, is given

in table B.9 in appendix B. At order 11, the number of irreducible real cycles, and therefore

the expansion of the ‘real dynamical zeta function’ are the same for ǫ = 50, 100, 1000, . . . .

For ǫ = 50, 100 one has a product expansion for the dynamical zeta function identical, up to

order 11, to the product expansion corresponding to the large-ǫ limit (see (53) below). These

expansions are, however, different at order 12, see appendix B.

For ǫ large enough, one gets the following cycle product decomposition:

ζ real
ǫ=∞(t) = 1/((1− t)(1− t3)(1− t5)2(1− t7)2(1− t8)2

×(1− t9)2(1− t10)3(1− t11)4(1− t12)6 · · ·) (53)

corresponding to the number of real P-type, Q-type and R-type n cycles for ǫ = 20 000

given in table B.11 in appendix B. Note that one gets the same table (up to order 16) for

ǫ = 1000, 100 000, 1000 000.

One finds out easily that these results, for the ‘real dynamical zeta function’ ζ real(t), are

(up to order 12) actually in perfect agreement with (the expansion of) the rational expression

ζ real
ǫ=∞(t) =

1 + t

1− t2 − t3 − t5
=

1− t2

(1− t − t2) + t4 · (1− t + t2)
(54)

yielding an algebraic value for hreal: hreal ≃ 1.4291. If one ‘believes’ in some symbolic

dynamic coding interpretation, or in the existence of a linear transfer operator‡, matrix A,

such that the denominator of (54), 1− t2− t3− t5, can be written as det(Id − t ·A), one finds

† In contrast with the situation for the ‘standard’ dynamical zeta function which is equal to one generic universal

expression (like (11)), up to a (zero measure) set of values of ǫ (see figure 1).

‡ For more details on linear transfer operators in a symbolic dynamics framework see, e.g., [19, 21–23].
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that a possible choice for this transition matrix is

A =











0 0 1 0 1

1 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0











. (55)

In contrast with a Markov transition matrix, this matrix is not such that the sums of the entries

in each row, or column, are equal.

5. Real Arnold complexity

As with the topological entropy, the Arnold complexity can be ‘adapted’ to define a ‘real

Arnold complexity’. The Arnold complexity counts the number of intersections between a

fixed (complex projective) line and its N th iterate [5]: let us now count the number of real points

which are the intersections between a real fixed line and its N th iterate. With this restriction to

real points we have lost ‘most of the universality properties’ of the ‘usual’ (complex) Arnold

complexity. For various values of ǫ, we have calculated the number of intersections of various

(real) lines with their N th iterates. In contrast with the ‘usual’ Arnold complexity [5], which

does not depend on the (complex) line one iterates (topological invariance [24]), it is clear

that the number of real intersections depends on the chosen line, but one can expect that the

asymptotic behaviour of these numbers for N large enough will not depend too much of the

actual choice of the (real) line one iterates. Actually, we have discovered for this very example

that this seems to be the case (except for some nongeneric lines). Furthermore, the real line

y = (1 − ǫ)/2, which is known to play a particular role for mapping (1) (see section 4.2),

is very well suited to perform this number of intersection calculations†: for this particular

line the successive numbers of intersections are extremely regular, thus enabling one to better

estimate this asymptotic behaviour λN
real of the ‘real Arnold complexity’; but, of course, similar

calculations can be performed with an arbitrary (generic) line. The quantity λreal can be seen

as the equivalent, for real mappings, of the growth complexity λ (see section 2.2 and [4]). Let

us try to obtain λreal for various values of ǫ.

As for the semi-numerical method detailed in section 2.2, we have again developed a C-

program using the multiprecision library gmp [14], counting the number of (real) intersections

of the y = (1 − ǫ)/2 real line (for instance) with its N th iterate. This program does not

calculate the precise location of the intersection points: it is based on Sturm’s theorem‡. All

these calculations have been cross-checked by a (Maple) program calculating the numbers of

intersections using the sturm procedure in Maple§. The results of these calculations are given

in figure 11.

Let us denote by AN the number of (real) intersections for the N th iterate. In order to

estimate ‘real growth complexity’ λreal we have plotted A
1/N

N , for various values of the number

† Again, these calculations could (and actually have) been performed with another real line. We have just found

experimentally that this very line yields more regular results and, furthermore, enables one to perform the calculations

at a higher order.

‡ Assuming that a polynomial P(x) has no multiple roots, one can build a finite series of polynomials corresponding

to the successive Euclidean division of P(x) by its first derivative P ′(x). See, for instance, [42] for more details on

the Sturm sequences and Sturm’s theorem.

§ The sturm procedure one can find in Maple gives the number of real roots of a polynomial in any interval [a, b], even

the interval [−∞, +∞]. The procedure sturm uses Sturm’s theorem to return the number of real roots of polynomial

P in the interval [a, b]. The first argument of this sturm procedure is a Sturm sequence for P , which can be obtained

with another procedure, sturmseq, which returns the Sturm sequence as a list of polynomials and replaces multiple

roots by single roots.
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Figure 11. A representation of λreal(ǫ) by A
1/N

N , as a function of ǫ, in the [0, 1] interval, for

N = 13 (full curve) 14 (dashed curve), and 15 (dotted curve). The singled-out ǫ = 1/m values for

m = 2, 3, 4, 5, . . . and ǫ = (m− 1)/(m + 3) for m = 7, 9, . . . clearly play a special role for these

various ‘staircase functions’ in the large-N limit.

of iterations (N = 13, 14, 15), as a function of ǫ, in the range [0, 1] where λreal has a quite

‘rich’ behaviour.

This behaviour should be compared with the ‘universal’ behaviour shown in figure 1.

From figure 11, one sees that the singled-out values ǫ = 1/m, as well as ǫ = (m− 1)/(m + 3)

for m = 7, 9, . . . , seem, again, to play a special role in the large-N limit. Of course, recalling

the results of section 4.2, it is clear that A
1/N

N is a staircase function of ǫ, for N finite, the limits

of each interval corresponding to algebraic values (like (40)) sketched in sections 4.3, 4.2.

These algebraic values form an infinite set of values which accumulate everywhere in the

[0, 1] interval. What is the limit of these functions A
1/N

N (ǫ) when N becomes large: a devil’s

staircase or a (piecewise) continuous function? The ‘shape’ of A
1/N

N , as a function of ǫ, is

‘monotonic enough’ (see figure 12) in different intervals, namely ǫ < 0, and in the intervals

of ǫ roughly given by [0+,≃1/10], [≃ 1
10

, ≃ 1
3
], [≃ 1

3
, 1−], [1+,≃16.8] and [≃16.8,∞], such

that one may expect that the infinite accumulation of these algebraic values (like (40)) could

yield a perfectly continuous function λreal(ǫ) (except on the nongeneric values ǫ = 1/m and

ǫ = (m−1)/(m+3)) and not a devil’s staircase-like function. This question remains open at the

present moment. When ǫ varies from−∞ to∞ the behaviour of the ‘real growth complexity’

λreal, as a function of ǫ, is not as ‘rich’ as in the interval [0+, 1−] depicted in figure 11. One

finds that λreal is close, or extremely close to, 1 in quite a large interval [1+,≃16.8] and that

it increases monotonically with ǫ in the [≃16.8,∞] interval to reach some asymptotic value

in the ǫ → ∞ limit. In fact, a logarithmic scale in ǫ is better suited to describe λreal as a

function of ǫ. Figure 12 represents λreal, more precisely A
1/13
13 , as a function of log(2 + ǫ). For

ǫ = −1, 0, 1
3
, 1

2
, 1 we know that λreal will be exactly equal to 1 (integrable cases [8]). On these

points (represented by squares in figure 12), as well as on the ǫ = 1/m and ǫ = (m−1)/(m+3)

nongeneric points, λreal is not continuous as a function of ǫ. We have not represented these
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Figure 12. A representation of λreal by A
1/13
13 , as a function of ǫ, in a log(2 + ǫ) logarithmic scale.

The integrable points ǫ = −1, 0, 1
3
, 1

2
, 1 are represented by squares.

other nongeneric points. They have to be calculated separately.

A first estimate of λreal, for ǫ large, is λreal ≃ (214)1/15 ≃ 1.430 08. We are now ready to

compare the ‘real topological entropy’ and the ‘real Arnold complexity’ for different values of

ǫ, and see if the identification between h, (the exponential of) the topological entropy, and λ,

characterizing the (multiplicative rate of growth of the) usual Arnold complexity, also holds for

their ‘real partners’, namely hreal and λreal. Actually, one finds that this identification (which is

obviously true for ǫ < 0) also holds for ǫ = 3. One gets numerical results for various values

of ǫ (for which we have estimated the ‘real’ topological entropy log(hreal) (see section 4.3))

quite compatible with this identification. In particular, for ǫ large, we see that these two ‘real

complexities’ give extremely close results, namely hreal ≃ 1.4291 and λreal ≃ 1.43.

6. Real Arnold complexity generating functions: seeking rationality

As with the introduction of the ‘real dynamical zeta functions’ ζ real(t), one can introduce the

generating function of the previous ‘real Arnold complexities’ AN :

Aǫ(t) =
∑

N

AN · t
N . (56)

Recalling the large number of rational expressions obtained for the dynamical zeta functions [2,

3] and the degree generating functions [2, 4, 6], one may have, again, a rationality ‘prejudice’

for these ‘real Arnold complexity generating functions’. Let us try to see if the expansions of

these generating functions Aǫ(t) coincide, for some given values of ǫ, with the expansion of

some (hopefully simple) rational expressions. For any negative value of ǫ (except ǫ = −1,

see (63)) the expansion of the ‘real Arnold complexity’ generating function Aǫ(t) is equal, up

to order 15, to

Aǫ<0(t) =
t

1− t − t2
(57)

in agreement with (44). The h = λ equality being probably not valid in general (see (30), (32)),

one should not expect, in the most general birational framework, a similar equality to hold for



1490 N Abarenkova et al

hreal and λreal. We have just compared hreal and λreal for a family of mappings for which the

h = λ equality seems to be valid. If an equality between two ‘real’ complexities exists, they

are clearly the best candidates: they are both invariant under conjugations by any arbitrary real

function. The fact that for any ǫ < 0 (ǫ 6= −1) hreal = h and λreal = λ strongly suggests that

the equality hreal = λreal could be valid for any ǫ.

In order to compare more carefully hreal and λreal, and find some possible nontrivial

rational expressions for Aǫ(t), let us give, in the following, miscellaneous expansions of Aǫ(t)

for various values of ǫ.

6.1. Expansions for the ‘real Arnold complexity’ generating functions

In fact, we have not only calculated the real Arnold complexities A13, A14 and A15 required

to plot figures 11 and 12, but actually obtained all the coefficients, up to order 13, for 2000

values of ǫ, and up to order 15 for 200 values of ǫ. We thus have the expansion of Aǫ(t) up to

order 13 (resp. 15) for several thousand values of ǫ.

The expansion of Aǫ(t) for ǫ = 0.52 for which the expansion of the real dynamical zeta

function has been given previously (see (42) and (43)). One gets the following expansion:

A52/100(t) = t + t2 + 2t3 + 3t4 + 5t5

+6t6 + 11t7 + 11t8 + 16t9 + 29t10 + 33t11 + 46t12 + 73t13 + · · · . (58)

This series yields a first rough approximation ofλreal corresponding toλreal ≃ (73)1/13 ≃ 1.391,

clearly smaller than the generic complexity λ ≃ 1.618 03, and in good enough agreement with

the estimation of hreal one can deduce from (43), namely hreal ≃ (93)1/13 ≃ 1.417. Of course,

these two series are too short to see if an identity like hreal = λreal really holds.

Considering hreal as a function of ǫ, it is clear that the general shape of this ‘curve’ looks

extremely similar to the curve corresponding to λreal as a function of ǫ (see figures 11 and 12);

it is also constant for ǫ negative, gets very close to 1 around ǫ ≃ 3, grows monotonically for

ǫ > 10 and tends to a nontrivial asymptotic value hreal ≃ 1.4291.

Therefore, in order to get some hint of a possible hreal = λreal identity, it is necessary to see

if this relation holds for various values of ǫ for which hreal and λreal can be calculated exactly or

for which very good approximations can be obtained: namely ǫ < 0, all the integrable values,

or ǫ = 3 and its neighbourhood.

For ǫ = 3, the ‘real Arnold complexity’ generating function Aǫ(t) is equal, up to order

15, to the simple rational expression

A3(t) =
t

1− t
(59)

which is in perfect agreement with the result for the ‘real dynamical zeta function’ ζ real
ǫ=3(t)

(see (47)). For ǫ very close to 3 one gets

Aǫ≃3(t) ≃
t

1− t
+

t3

1− t3
=

t · (1 + t + 2t2)

1− t3
(60)

again in good agreement with (48).

Integrable values for ǫ. For ǫ = 1
2
, the generating function for the ‘real Arnold complexity’,

Aǫ(t), is equal, up to order 38, to the expansion of the rational expression

A1/2(t) =
t (1− t7)

(1− t)2(1− t5)(1 + t)
+

t4(1− t9)

(1− t)(1− t5)(1− t6)(1 + t)

+
t5

(1− t5)(1− t3)(1 + t)
+ 2

t28

1− t5
(61)
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to be compared with A1/2(t) given in (5).

For ǫ = 1
3

the calculations corresponding to the generating function for the ‘real Arnold

complexity’ are, in contrast, quite trivial, yielding

A1/3(t) =
t · (1 + t)

1− t3
= A1/3(t). (62)

For ǫ = −1 the generating function for the ‘real Arnold complexity’ is equal, up to

order 15, to the rational expression

A−1(t) =
t

1− t2
= A−1(t). (63)

For ǫ = +1 the generating function for the ‘real Arnold complexity’ is equal, up to

order 15, to the rational expression

A1(t) =
t

(1− t2) · (1− t)
= A1(t). (64)

All these results have to be compared with the generating functions (5).

Nongeneric values for ǫ. The nongeneric values of ǫ require special attention. For instance,

for ǫ = 1
4

one obtains the following expansion†:

A1/4(t) = t + t2 + 2t3 + 3t4 + 5t5 + 6t6 + 8t7 + 11t8 + 17t9 + 23t10

+31t11 + 44t12 + 63t13 + 90t14 + 128t15 + 183t16 + · · ·

and for ǫ = 1
5

one gets

A1/5(t) = t + t2 + 2t3 + 2t4 + 4t5 + 4t6 + 6t7 + 7t8 + 12t9 + 15t10

+19t11 + 28t12 + 33t13 + 53t14 + 77t15 + · · · . (65)

Since ǫ = 1
5

is a nongeneric value (it is of the form 1/m), the previous expansion (65) can be

compared with the ones corresponding to values very close to 1
5

but not equal: for instance

ǫ = 99
500

and ǫ = 101
500

which are given in appendix D, or, closer to ǫ = 1
5

ǫ = 999
5000

and ǫ = 1001
5000

:

A999/5000(t) = A1001/5000(t) = t + t2 + 2t3 + 3t4 + 5t5 + 6t6

+9t7 + 13t8 + 18t9 + 27t10 + 41t11 + 66t12 + 89t13 + · · · . (66)

Similar expansions, corresponding to values close to the nongeneric value ǫ = 1
4
, are given

in appendix D. All these results show that, as with the situation for the customary topological

entropy or the growth complexity λ (see figure 1), λreal is continuous as a function of ǫ near the

nongeneric values of ǫ ≃ 1/m; however, exactly on these very nongeneric values λreal takes

smaller values (continuous function up to a zero measure set).

Remark. It is natural to compare the expansion corresponding to ǫ = 3
5

with the one

corresponding to ǫ = 1
7
, since ǫ = 1

7
and ǫ = 3

5
have the same topological entropy (growth

complexity λ) associated with 1 − t − t2 + tm+2 for m = 7 (see relation (13)). One gets for

ǫ = 3
5

A3/5(t) = t + t2 + 2t3 + 3t4 + 2t5 + 5t6 + 9t7

+8t8 + 11t9 + 14t10 + 18t11 + 24t12 + 29t13 + 41t14 + 51t15 + · · ·

and for ǫ = 1
7

A1/7(t) = t + t2 + 2t3 + t4 + 4t5 + 7t6 + 7t7

+8t8 + 13t9 + 16t10 + 22t11 + 36t12 + 43t13 + 65t14 + 87t15 + · · · .

† These Maple calculations have been performed with 6000 digits, but they are already stable with 2000 digits.
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These two expansions do not seem to yield the same value for λreal (λreal(
3
5
) ≃ 511/15 ≃ 1.2997

and λreal(
1
7
) ≃ 871/15 ≃ 1.3468) although they share the same growth complexity λ.

The expansions of Aǫ(t) near ǫ = 3
5

are given in appendix D.

Miscellaneous values of ǫ. For most of the values of ǫ the expansions are not long enough

to ‘guess’ rational expressions (if any). One can, however, get some estimates of λreal that can

be compared with hreal.

For ǫ = 21
25

one gets the following result:

A21/25(t) = t + t2 + 2t3 + 3t4 + 3t5 + 6t6

+7t7 + 11t8 + 12t9 + 21t10 + 25t11 + 36t12 + 45t13 + 69t14 + · · · .

This expansion seems to yield the following estimated value for λreal: λreal(
21
25

) ≃ 691/14 ≃

1.3531, to be compared with (50). In fact, this expansion is actually compatible with the

expansion of the rational expression

A21/25(t) =
t · (1 + t + t2 + t3 − 2t4)

(1− t)(1 + t)2(1− t + t2 − 2t3)
. (67)

Note that the rational expression (67) has actually the same singularity that the rational

expression (51) suggested for the real dynamical zeta function ζ real
21/25(t). All the coefficients

of the expansion of (67) are positive (in contrast to (75) given in appendix C which is ruled out

because coefficient t54 of its expansion is negative). If this simple rational expression were

actually the exact expression for A 21
25

(t) it would yield the following algebraic value for λreal:

λreal(
21
25

) = hreal(
21
25

) ≃ 1.353 21.

Some results for ǫ larger than 1 (again obtained with 6000 digits) are given in appendix D

(ǫ = 3
2
, ǫ ≃ 2 and ǫ = 4, 5, 6, 10, 20, 30). These series indicate that an estimated value for

λreal could correspond to λreal very close to 1 for ǫ = 3
2
, ǫ ≃ 2, and ǫ = 4, . . . , 10, and even

quite close to 1 for ǫ = 20.

6.2. ‘Real Arnold complexity’ generating functions for ǫ large

Examination of figure 12 shows that λreal goes to some nontrivial limit, λreal ≃ 1.429, in the

large-ǫ limit. Let us examine the expansion of Aǫ(t) for various increasing values of ǫ, in

order to study this ǫ →∞ limit. The expansions of Aǫ(t) for ǫ = 40, 50, 100, 500, 1000 are

given in appendix D, up to order 13.

For ǫ large the expansion of Aǫ(t), the generating function for the ‘real Arnold complexity’,

is equal, up to order 15, to (for instance† for ǫ = 20 000)

A20 000(t) = t + t2 + 2t3 + 3t4 + 5t5 + 8t6 + 11t7 + 17t8 + 24t9

+35t10 + 51t11 + 72t12 + 105t13 + 149t14 + 214t15 + · · · (68)

which actually coincides with the expansion of the simple rational expression

A∞(t) =
t · (1 + t4)

(1− t2 − t3 − t5) · (1− t)
=

t · (1 + t4)

(1− t − t2) + t4 · (1− t + t2)
. (69)

This last result has to be compared with the equivalent one for the ‘real dynamical zeta function’

ζ real
ǫ=∞(t) (see (54) in section 4.4). These two nontrivial rational results, for ǫ large, are in perfect

† These calculations have to be performed with at least 6000 digits. With a number of lower than 2000 digits one

gets smaller coefficients: the precision is not large enough to distinguish between very close intersection points.
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agreement, yielding the same algebraic value for the two ‘real complexities’ hreal and λreal,

namely hreal = λreal ≃ 1.429 108 32.

All the results displayed in this section seem to show that the identification between hreal

and λreal actually holds.

Remark. Recalling the ‘universal’ relation (20), or more precisely (21), which gives (for

ǫ generic and for ǫ = 1/m, m > 4, ǫ = (m + 1)/(m + 3) for m = 9, 13, 17, . . .) a ratio

ζǫ(t)/Aǫ(t) equal to (1− t2)/t , one can look at the ‘real ratio’ ζ real
ǫ (t)/Aǫ(t). Of course, for

ǫ < 0, this ‘real ratio’ is also equal to (1 − t2)/t ; however in the ǫ →∞ limit it tends to be

equal to (1− t2)/t/(1 + t4). Therefore one should not expect any simple ‘universal’ relation

like (20) between ζ real
ǫ (t) and Aǫ(t).

These various Arnold complexity generating functions Aǫ(t) were associated with the

iteration of the (real or complex) line y = (1− ǫ)/2. One can introduce a generating function

for each line (or fixed curve) one iterates. The corresponding series become slightly more

difficult to extrapolate but give similar results, particularly the asymptotic values for λreal.

The sensitivity of the previous analysis, according to the chosen curve one iterates, will be

discussed elsewhere.

It would be interesting to see if the ‘real dynamical zeta functions’ ζ real
ǫ (t) or the ‘real

degree generating functions’ Aǫ(t) might also be rational expressions for other values of ǫ or,

even, if these ‘real generating functions’ might be rational expressions for any given value of

ǫ. In this last case there should be an infinite number of such rational expressions: it is clear

that they could not all be ‘simple’ like (54) or (69).

7. Conclusion

The results presented here seem to be in agreement with, again, an identification between λreal,

the (asymptotic) ‘real Arnold complexity’, and hreal, the (exponential of the) ‘real topological

entropy’ for the very example of two-dimensional mapping analysed in this paper. In contrast

with the ‘universal’ behaviour of the ‘usual’ Arnold complexity, or topological entropy,

displayed in figure 1, λreal and hreal are quite involved functions of the parameter ǫ, which

the birational transformations depend on (see figures 11 and 12).

We have, however, obtained some remarkable rational expressions for the real dynamical

zeta function ζ real
ǫ (t) and for a ‘real Arnold complexity’ generating function Aǫ(t). In

particular, we have obtained two nontrivial rational expressions (54) and (69) (yielding

algebraic values for hreal and λreal).

There is no simple ‘down-to-earth’ Markov partition, symbolic dynamics, or hyperbolic

systems interpretation of these rational results: mapping (1) is actually a measure-preserving

map. The indeterminacy set of this mapping is very small and does not ‘proliferate’ under

successive iterations as one could expect for generic birational transformations. It would be

useful to know whether the large set of the algebraic and rational results presented here are a

consequence of the measure-preserving property of the mapping or of the favourable behaviour

of the indeterminacy set under successive iterations.
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Appendix A. Dynamical zeta functions versus homogeneous degree generating

functions for nongeneric values

We consider here various nongeneric values of the form (m−1)/(m+ 3) (with m > 7, m odd).

For ǫ = 3
5

(corresponding to m = 7) the homogeneous generating function defined in

section 3, is

GHom
3/5 (t) = 1 + 2t + 4t2 + 7t3 + 12t4

+20t5 + 33t6 + 54t7 + 88t8 + 142t9 + 228t10 + 366t11 + · · ·

which is compatible with the expansion of the rational expression

GHom
3/5 (t) =

1− t10

(1− t) · (1− t − t2 + t9)
.

Recalling a possible rational expression for the corresponding dynamical zeta function [3]

ζ3/5(t) =
1− t2

1− t − t2 + t9
(70)

one immediately verifies that the ‘universal’ relation (20) actually holds.

For ǫ = 2
3

(corresponding to m = 9) the homogeneous generating function defined in

section 3, is

GHom
2/3 (t) = 1 + 2t + 4t2 + 7t3 + 12t4 + 20t5

+33t6 + 54t7 + 88t8 + 143t9 + 232t10 + 375t11 + 605t12 + · · · .

This could be the expansion, up to order 12, of the simple rational expression

GHom
2/3 (t) =

1− t12

(1− t) · (1− t − t2 + t11)
. (71)

These results should be compared with the expansion of the dynamical zeta function.

Unfortunately, here, the series for the dynamical zeta function are not sufficiently large

to allow any ‘safe conjecture’. A possible exact expression does not seem to be equal to

(1− t2)/(1− t − t2 + t11), but could be [3]

ζ2/3(t) =
1− t2 − t11 − t12 − t13

1− t − t2 + t11
or

1− t2 − t11 − t12

1− t − t2 + t11
. (72)

The ‘universal’ relation (20) is verified with (71) together with (1− t2)/(1− t − t2 + t11), but

not with (71) together with (72). One can, however, imagine that the ‘universal’ relation (20)

could be slightly modified on some of these (m − 1)/(m + 3) values (m = 9, 13, . . .). For

instance, (71) and (72) verify (up to order 12) the simple relation

t · ζ2/3(t)− (1− t) ·GHom
2/3 (t) + 1− tm+2 − tm+3 = 0 where m = 9. (73)

These calculations need to be revisited.

For ǫ = 5
7

(corresponding to m = 11) the homogeneous generating function defined in

section 3 is

GHom
5/7 (t) = 1 + 2t + 4t2 + 7t3 + 12t4 + 20t5

+33t6 + 54t7 + 88t8 + 143t9 + 232t10 + 376t11 + 609t12 · · · .
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This could be the expansion of

GHom
5/7 (t) =

1− t14

(1− t) · (1− t − t2 + t13)
.

For ǫ = 3
4

(corresponding to m = 13) the homogeneous generating function is

GHom
3/4 (t) = 1 + 2t + 4t2 + 7t3 + 12t4 + 20t5

+33t6 + 54t7 + 88t8 + 143t9 + 232t10 + 376t11 + 609t12 + · · · .

This series is not large enough. It could be the expansion of the simple expression

GHom
3/4 (t) =

1− t16

(1− t) · (1− t − t2 + t15)
.

Appendix B. Number of real fixed points of the P-type, Q-type and R-type

Let us just give the number of real nth cycles of the P-type, Q-type and R-type for miscellaneous

values of ǫ in increasing order.

For ǫ < 0 (and ǫ 6= −1) one gets the results presented in table B.1.

For ǫ = 11
100

, 1
4
, 52

100
, 9

10
, 11

10
, 5, 10, 50, 100, and 20 000, one gets the results presented in

tables B.2–11.

Table B.1. Number of real nth cycles of the P-type, Q-type and R-type for ǫ < 0.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 1 2 2 4 4 6 8 12 12 20 24 30 38 54 65

Qn 0 0 0 0 0 0 0 1 0 1 0 3 0 4 0 9 0 13

Rn 0 0 0 0 0 0 0 0 2 2 6 10 20 30 60 88 156 238

Tn 1 0 1 1 2 2 4 5 8 11 18 25 40 58 90 135 210 316

Table B.2. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 11
100

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 1 2 1 2 1 4 5 8 5 10 11 14 14 20 21

Qn 0 0 0 0 0 0 0 0 0 1 0 3 0 3 0 5 0 5

Rn 0 0 0 0 0 0 0 0 0 0 * * * * * * * *

Tn 1 0 1 1 2 1 2 1 4 6 * * * * * * * *

Table B.3. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 1
4

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn 1 0 1 1 2 0 1 0 3 1 4 2 8

Qn 0 0 0 0 0 0 0 1 0 1 0 2 0

Rn 0 0 0 0 0 0 0 0 0 0 0 0 0

Tn 1 0 1 1 2 0 1 1 3 2 4 4 8
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Table B.4. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 52
100

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn 1 0 1 1 2 0 2 0 4 1 4 2 6 2 8

Qn 0 0 0 0 0 0 0 1 0 1 0 2 0 4 0

Rn 0 0 0 0 0 0 0 0 0 0 2 8 10 * *

Tn 1 0 1 1 2 0 2 1 4 2 6 12 16 * *

Table B.5. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 9
10

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 1 0 0 2 0 0 1 4 0 2 1 6 1 6 3

Qn 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 4 0 5

Rn 0 0 0 0 0 0 0 0 0 0 * * * * * * * *

Tn 1 0 1 1 0 0 2 1 0 2 * * * * * * * *

Table B.6. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 11
10

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pn 1 0 1 0 0 0 2 0 0 1 2 0 2 1 2 1 4

Qn 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Rn 0 0 0 0 0 0 0 0 0 0 0 * * * * * *

Tn 1 0 1 0 0 0 2 0 0 2 2 * * * * * *

Table B.7. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 5.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 0 0 0 0 0 0 0 2 0 0 1 0 0 2 0

Qn 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Rn 0 0 0 0 0 0 0 0 0 0 0 * * * * * * *

Tn 1 0 1 0 0 0 0 0 0 0 2 * * * * * * *

Table B.8. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 10.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 0 2 0 0 1 0 0 2 0 2 1 0 0 2 1

Qn 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

Rn 0 0 0 0 0 0 0 0 0 0 0 * * * * * * *

Tn 1 0 1 0 2 0 0 2 0 0 2 * * * * * * *

Table B.9. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 50.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 0 2 0 2 1 2 0 4 1 4 1 2 2 6 3

Qn 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 3 0 3

Rn 0 0 0 0 0 0 0 0 0 2 0 * * * * * * *

Tn 1 0 1 0 2 0 2 2 2 3 4 * * * * * * *
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Table B.10. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 100.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pn 1 0 1 0 2 0 2 1 2 0 4 1 6 1 6 2 8 3

Qn 0 0 0 0 0 0 0 1 0 1 0 3 0 2 0 3 0 6

Rn 0 0 0 0 0 0 0 0 0 2 0 * * * * * * *

Tn 1 0 1 0 2 0 2 2 2 3 4 * * * * * * *

Table B.11. Number of real nth cycles of the P-type, Q-type and R-type for ǫ = 20 000.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pn 1 0 1 0 2 0 2 1 2 0 4 1 6 1 6 2

Qn 0 0 0 0 0 0 0 1 0 1 0 3 0 4 0 7

Rn 0 0 0 0 0 0 0 0 0 2 0 2 * * * *

Tn 1 0 1 0 2 0 2 2 2 3 4 6 >8 >9 >14 >17

Appendix C. Expansions of some real dynamical zeta functions

Let us just give some additional expansions for ζ real
ǫ (t) for increasing values of ǫ.

For ǫ = 9
50

, one obtains the following expansions for ζ real
ǫ (t):

ζ real
9/50(t) = (1/((1− t)(1− t3)(1− t4)(1− t5)2(1− t6)

×(1− t7)2(1− t8)3(1− t9)4(1− t10)3(1− t11)8)) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 5t5 + 7t6 + 10t7 + 16t8 + 24t9

+34t10 + 52t11 + · · ·

yielding the following ‘rough’ approximation for hreal: hreal ≃ (52)1/11 ≃ 1.432.

For the ‘nongeneric’ value ǫ = 1
5
, ζ real

1/5 (t) reads

ζ real
1/5 (t) = (1/((1− t)(1− t3)(1− t4)(1− t5)2(1− t6)

×(1− t7)(1− t9)4(1− t10)2(1− t11)5(1− t12)4)) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 5t5 + 7t6 + 9t7 + 12t8 + 20t9

+28t10 + 39t11 + 55t12 + · · ·

yielding the following ‘rough’ approximation for hreal: hreal ≃ (55)1/12 ≃ 1.3964. For ǫ = 1
5

the previous Qn and Rn are equal to zero up to order 12. The exponents in (74) are thus the

Pn.

For ǫ = 31
125

, 12
25

, 66
125

, 2
3
, 17

25
, 3

4
, 3

2
, one obtains, respectively, the following expansions for

ζ real
ǫ (t):

ζ real
31/125(t) = (1/((1− t)(1− t3)(1− t4)(1− t5)2(1− t6)

×(1− t7)2(1− t8)(1− t9)4(1− t10)5(1− t11)12)) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 5t5 + 7t6 + 10t7 + 14t8 + 22t9

+34t10 + 54t11 + · · ·

yielding the approximation for hreal: hreal ≃ (54)1/11 ≃ 1.437;

ζ real
12/25(t) = (1/((1− t)(1− t3)(1− t4)(1− t5)2(1− t7)2

×(1− t8)(1− t9)6(1− t10)5(1− t11)10)) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 5t5 + 6t6 + 9t7 + 13t8 + 22t9

+33t10 + 49t11 + · · ·
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yielding the following rough approximation for hreal for ǫ = 12
25

: hreal ≃ (49)1/11 ≃ 1.424 and

ζ real
66/125(t) = (1/((1− t)(1− t3)(1− t4)(1− t7)2(1− t8)

×(1− t9)4(1− t10)2(1− t11)4)) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 3t5 + 4t6 + 7t7 + 9t8 + 14t9

+19t10 + 27t11 + · · ·

yielding hreal ≃ (27)1/11 ≃ 1.349 for ǫ = 66
125

.

For ǫ = 2
3

(that is (m− 1)/(m + 3) for m = 9) the real dynamical zeta function reads

ζ real
2/3 (t) = (1/((1− t)(1− t3)(1− t4)(1− t7)2(1− t8)

×(1− t9)2(1− t10)2(1− t11)4(1− t12)2)) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 3t5 + 4t6 + 7t7 + 9t8 + 12t9 + 17t10 + 25t11

+32t12 + · · · (74)

yielding hreal ≃ (32)1/12 ≃ 1.3348. Let us note that one must be careful converting

systematically a series to a rational function (Padé approximation). Up to order 12,

expansion (74) is in agreement with the expansion of the following simple rational expression:

1 + t + t3 − t6

1− t2 − 2t4 + t5 − t6
=

(1 + t + t3 − t6) · (1− t)

1− t − t2 + t3 · (1− t + t2)2
(75)

which is reminiscent of the exact expression (54). However, one easily finds that the coefficient

of t54 in (75) becomes negative (the coefficients grow like ≃(−1.5252)N ). Expression (75)

cannot be the exact expression of a (real) dynamical zeta function.

For ǫ = 17
25

, the real dynamical zeta function reads

ζ real
17/25(t) =

1

(1− t)(1− t3)(1− t4)(1− t7)2(1− t8)(1− t9)2(1− t10)2(1− t11)4
· · ·

= 1 + t + t2 + 2t3 + 3t4 + 3t5 + 4t6 + 7t7 + 9t8 + 12t9

+17t10 + 25t11 + · · ·

yielding hreal ≃ (25)1/11 ≃ 1.3399.

For the nongeneric value ǫ = 3
4

(that is (m− 1)/(m + 3) for m = 13) the real dynamical

zeta function reads

ζ real
3/4 (t) = (1/((1− t)(1− t3)(1− t4)(1− t7)2(1− t8)

×(1− t9)3(1− t10)(1− t11)2(1− t12))) · · ·

= 1 + t + t2 + 2t3 + 3t4 + 3t5 + 4t6 + 7t7 + 9t8 + 13t9

+17t10 + 23t11 + 30t12 + · · ·

yielding hreal ≃ (30)1/12 ≃ 1.3277.

Finally, for ǫ = 3
2
, the real dynamical zeta function reads

ζ real
3/2 (t) =

1

(1− t)(1− t3)(1− t7)2(1− t10)2
· · ·

= 1 + t + t2 + 2t3 + 2t4 + 2t5 + 3t6 + 5t7 + 5t8 + 6t9 + 10t10 + 10t11 + · · ·

yielding hreal ≃ (10)1/11 ≃ 1.233.
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Appendix D. Expansions of the ‘real Arnold complexity’ generating functions

We give here a few expansions for the ‘real Arnold complexity’ generating functions Aǫ(t).

Let us first give the expansion of Aǫ(t) corresponding to ǫ = 2
3

in order to compare it with (74)

and (75):

A2/3(t) = t + t2 + 2t3 + 3t4 + 3t5 + 6t6 + 7t7

+11t8 + 14t9 + 21t10 + 29t11 + 37t12 + 51t13 + · · ·

yielding the following estimation for λreal ≃ (51)1/13 ≃ 1.3531 to be compared with

hreal ≃ (32)1/12 ≃ 1.3348 from (74). The coefficients of the expansions of ζ2/3(t) and

A2/3(t) are very close. Up to order ten, the ratio ζ2/3(t)/A2/3(t) coincides with the expansion

of

ζ2/3(t)

A2/3(t)
≃

1− t2

t
·

1− t5

1− 2t4 + t5
. (76)

The expansion of Aǫ(t) corresponding to the nongeneric value ǫ = 3
4

(that is (m− 1)/(m + 3)

for m = 13) reads

A3/4(t) = 1 + t + t2 + 2t3 + 3t4 + 3t5 + 6t6 + 7t7

+11t8 + 12t9 + 21t10 + 27 · t11 + 36t12 + 47t13 + · · · . (77)

The expansions of ζ3/4(t) and A3/4(t) are again very close. Expansion (77) yields the estimation

for λreal ≃ (47)1/13 ≃ 1.3446 to be compared with hreal ≃ (30)1/12 ≃ 1.3276 from (76).

Let us now give the expansion of Aǫ(t) corresponding to values very close to the nongeneric

value 1
4
, for instance ǫ = 99

400
and ǫ = 101

400
:

A99/400(t) = t + t2 + 2t3 + 3t4 + 5t5 + 6t6

+9t7 + 13t8 + 22t9 + 33t10 + 47t11 + 70t12 + 101t13 + · · ·

and

A101/400(t) = t + t2 + 2t3 + 3t4 + 5t5 + 6t6

+9t7 + 13t8 + 22t9 + 33t10 + 47t11 + 70t12 + 109t13 + · · · .

Near the nongeneric value ǫ = 1
5
, for instance for ǫ = 99

500
and ǫ = 101

500
, one gets

A99/500(t) = t + t2 + 2t3 + 3t4 + 5t5 + 6t6

+9t7 + 13t8 + 18t9 + 27t10 + 37t11 + 62t12 + 89t13 + · · ·

and

A101/500(t) = t + t2 + 2t3 + 3t4 + 5t5 + 6t6

+9t7 + 13t8 + 18t9 + 27t10 + 41t11 + 66t12 + 85t13 + · · · .

Near the nongeneric value ǫ = 3
5
, for instance for ǫ = 299

500
and ǫ = 301

500
, one gets the same

expansions:

A299/500(t) = A301/500(t) = t + t2 + 2t3 + 3t4 + 3t5 + 6t6

+11t7 + 11t8 + 16t9 + 21t10 + 29t11 + 42t12 + 57t13 + · · · .

For the nongeneric value ǫ = 1
10

one obtains the following result:

A1/10(t) = t + t2 + 2t3 + t4 + 3t5 + 8t6

+9t7 + 11t8 + 16t9 + 21t10 + 31t11 + 48t12 + 58t13 + · · · .
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We finally give some results for ǫ > 1 (again obtained with 6000 digits). Let us give the

expansion of Aǫ(t) for ǫ = 3
2
, for ǫ near ǫ = 2, for instance for ǫ = 2001

1000
or ǫ = 1999

1000
and for

ǫ = 4, 5, 6, 10, 20, 30, 40, 50, 100, 500 and 1000 respectively:

A3/2(t) = t + t2 + 2t3 + t4 + 3t5 + 2t6 + 3t7 + 3t8 + 2t9 + 3t10

+3t11 + 4t12 + 3t13 + · · ·

Aǫ≃2(t) = t + t2 + 2t3 + t4 + t5 + 2t6 + t7 + 3t8 + 2t9 + t10

+3t11 + 2t12 + 3t13 + · · ·

A4(t) = t + t2 + 2t3 + t4 + t5 + 2t6 + t7 + t8 + 2t9 + 3t10

+t11 + 2t12 + 3t13 + t14 + · · ·

A5(t) = t + t2 + 2t3 + t4 + t5 + 2t6 + 3t7 + t8 + 2t9 + 3t10

+t11 + 2t12 + 3t13 + 3t14 + · · ·

A6(t) = t + t2 + 2t3 + 3t4 + t5 + 2t6 + 3t7 + 3t8 + 2t9 + 3t10

+3t11 + 4t12 + 3t13 + · · ·

A10(t) = t + t2 + 2t3 + 3t4 + 3t5 + 2t6 + 3t7 + 3t8 + 4t9 + 5t10

+5t11 + 4t12 + 5t13 + · · ·

A20(t) = t + t2 + 2t3 + 3t4 + 5t5 + 4t6 + 5t7 + 3t8 + 8t9 + 11t10

+7t11 + 10t12 + 21t13 + · · ·

A30(t) = t + t2 + 2t3 + 3t4 + 5t5 + 4t6 + 5t7 + 9t8 + 8t9 + 11t10

+11t11 + 14t12 + 25t13 + · · ·

A40(t) = t + t2 + 2t3 + 3t4 + 5t5 + 4t6 + 5t7 + 9t8 + 10t9 + 15t10

+11t11 + 14t12 + 29t13 + · · ·

A50(t) = t + t2 + 2t3 + 3t4 + 5t5 + 4t6 + 7t7 + 9t8 + 10t9 + 15t10

+17t11 + 22t12 + 37t13 + · · ·

A100(t) = t + t2 + 2t3 + 3t4 + 5t5 + 8t6 + 7t7 + 9t8 + 16t9 + 19t10

+29t11 + 36t12 + 51t13 + · · ·

A500(t) = t + t2 + 2t3 + 3t4 + 5t5 + 8t6 + 11t7 + 17t8 + 24t9 + 35t10

+47t11 + 64t12 + 93t13 + · · ·

A1000(t) = t + t2 + 2t3 + 3t4 + 5t5 + 8t6 + 11t7 + 17t8 + 24t9 + 35t10

+51t11 + 72t12 + 101t13 + · · · .
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