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Abstract. We recall some non-trivial, non-linear functional relations appearing in various do- 
mains of mathematics and physics, such as lattice statistical mechanics, quantum mechanics, or 
enumerative combinatorics. We focus, more particularly, on the analyticity properties of the so- 
lutions of these functional relations. We then consider discrete dynamical systems corresponding 
to birational transformations. The rational expressions for dynamical zeta functions obtained 
for a particular two-dimensional birational mapping, depending on two parameters, are recalled, 
as well as some non-trivial functional relations satisfied by these dynamical zeta functions. We 
finally give some functional equations corresponding to some singled out orbits of this two- 
dimensional birational mapping for particular values of the two parameters. This example shows 
that functional equations associated with curves, for real values of the variables, are actually 
compatible with a chaotic dynamical system. 

Keywords: functional relations, inversion relations, Yang-Baxter equations, rational dynamical 
zeta functions, discrete dynamical systems, birational mappings, Cremona transformations, ana- 
lyticity assumptions 

1. Introduction 

Functional equations emerge quite naturally in various domains of mathematical physics 
like lattice statistical mechanics, quantum mechanics, or enumerative combinatorics. 
They occur surprisingly in domains where one does not expect, at first sight, so much 
structure and constraints (anharmonic oscillator, cubic Ising model, etc.). In most 
cases, they are related to some deep mathematical Structures, running from Rogers-  
Ramanujan identities to zeta functions. Let us recall briefly some miscellaneous exam- 
ples which will make it clear that, despite the various domains of  mathematical physics 
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from which they originate, functional equations may present some remarkable common 
features. 

Let us first recall in a purely enumerative combinatorics framework [79] some ex- 
amples (given, for instance, by Polya [72, 73]) of functional equations on some associ- 
ated enumeration generating functions. For instance, one can recall (see [73, p. 73]) the 
functional equation1: 

x 
1 + ~ - ( r (x )  3 + 3. r(x). r(x 2) + r(x 3)) = r(x) (1.1) 

or even a functional equation on a generating function of two variables (see [72, p. 44]): 

= 1 + x . O ( x , y ) . ¢ ( x 2 , y  2) 

+-6"xY @(x,y)3_3.O(x,y).O(x2, y2)+Z.O(x3, y3) ). (1.2) 

Another simple functional equation of this type is 

P(x) = (t - x)-p(x2). (1.3) 

This functional equation has a simple solution with a natural frontier 2 (which is the 
unit circle), namely, 

P ( x )  = N ( 1 -  x 2n) = 1 - x -  x 2-}- x 3 - x 4-}- x 5 q- x 6 -  x 7 - x 8"+- x 9 + x 1 0 - x  11 

n = 0  

+ x  12 _ x t3 _ x 14 q- x t5 _ x I6 q- x 17 .}_x 18 _ x t9 q- x 20 

- x  21 - x 22 -}- x 23 -}- x 24 - x 2 5 " ' "  ( 1 . 4 )  

In contrast with example (1.4), which is analytical inside the unit circle, many of such 
functional equations yield divergent series which may or may not be Borel summable 
[83]. In this enumerative framework, the occurrence of infinite products is often men- 
tioned [72]. At this point, one can also recall the relation [39]: 

c ~  c o  n = e ~  

= I ]  
n = l  " n l ' =  n = I  

where tn enumerates the number of rooted unlabeled trees on n vertices (see 
[72, p. 105]). These infinite products and their associated analytical properties have 
to be compared with the ones that will be recalled, as seen below, in Section 3 on 
dynamical zeta functions and their associated Well product decomposition (see (3.15) 
below). 

Thus, in the framework of enumerative combinatorics, generating functions [92] 
and functional equations on these generating functions occur naturally. However, one 
may argue that these "tree-like Polya-enumerations" often yield functional equations 

1 On a generat ing function count ing the number  of  trees with k carbon atoms [73]. 

2 One  should not be prejudiced that a function with a natural frontier is necessarily a function with very 
involved analytical  properties. The so-calIed Chazy III differential equation is an  example  o f  a differential 
equation having the PainIev6 property and solutions with natural  frontiers [40, 41]. 
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with some "dilatation" symmetry, x --+ x 2, possibly yielding functional equations with 
natural frontiers (see (1.3)), while the functional equations corresponding to graph enu- 
merations on euclidean lattices (see (1.6) and (2.8) below) yield functional equations as- 
sociated with a shift of some spectral parameter (0 --+ 0 + 9~, or multiplicatively x -+ ~. x; 
see (t .6) and (2.12) below). It is clear that enumeration problems on trees and euclidean 
lattices (square, triangular, cubic, etc.; see below) are very different. One does not ex- 
pect the same "growth" of the number of graphs 3, and thus, the growth of the coef- 
ficients of the associated generating functions will be quite different. Consequently, 
one may expect that the analytical properties of the corresponding generating functions 
could be very different (natural frontiers, essential singularities, Darboux singularities, 
or confluent singularities, in several complex variables, etc.). 

Let us now recall some non-linear functional equations emerging quite naturally in 
lattice statistical mechanics. Firstly, in the solution of the hard hexagon model [20], the 
partition function per site has been seen to verify an exact functional relation as (with 
some well-suited normalizations) 

Z(u). Z(u + rl) = 1 + Z(u - 2rl) , (1.6) 

where Z(u) has some periodicity property, namely, Z(u + 5rl) = Z(u). The solution 
of the hard hexagon model happens to be some eulerian product-like solution, and 
thus, functional equation (1.6) can just be interpreted as a Rogers-Ramanujan-like iden- 
tity on an infinite eulerian product (see also all the Rogers-Ramanujan-like identities 4 
associated with the so-called RSOS-models [9] and the related q-series [8]). 

It is important to note that functional equation (I .6) is not restricted to the partition 
function per site of the model (largest eigenvalue of the transfer matrix) only. There 
actually exists a functional relation on the transfer matrix exactly similar to relation 
(1.6) (with suitable normalizations [20], just replace Z(u) by T(u)). In this spirit, one 
should also mention the fusion hierarchies" and related functional equations [93]. It 
has been shown that the "fused transfer matrices" satisfy, for some periodic boundary 
conditions, functional equations. Of particular interest are the fused transfer matrices 
T (q'r) (u) corresponding to rectangular Young tableaux of q rows and r columns, which 
verify a whole hierarchy of functional equations: 

Z (q'r) (u) .  T (q'r) (u - Tl) 

= T(q+l ' r ) (u ) 'T (q- l ' r ) (u - ' l ] ) - l -T(q ' r+l ) (u ) 'Z(q ' r -1 ) (u-T l ) .  (1 .7 )  

In another context, let us mention that functional relation (1.6) actually identifies 
with a functional relation bearing on the Stokes multipliers [38, 84, 85] of the following 
irregular differential equation (see, for instance, [84, 85]): 

y" - (x 3 + 9~) .y = 0 (1.8) 

which reads 

f()~) +f(033.)-f(3~/03) = 1, where 03 5 = 1. (1.9) 

3 The occurrence of loops in the counting of graphs in the euclidean lattices versus the absence of loops on 
trees is very similar to the "pruning rules" [45] in the framework of symbolic dynamics versus "unprunexl" 
symbolic dynamics [45]. 

4 See also the various bosonic versus fermionic representations for character formulas in [29]. 
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Another example comes with the Jost functions of  the anharmonic quantum oscil- 
lator, where Voros [91] has shown that the generating function of the spectrum of the 
anharmonic quartic oscillator, namely, the Fredholm determinant A(~,): 

A(Pv) = 1 - , (1.10) 

where )Vn denotes the eigenvatues of  the Hamiltonian, verifies the functional equation: 

4.A()v) .A(m)~).2~(m2)v) = A()V) +A(m)~) +A(m2)v) + 1, where 0)3 = 1 .  (1.11) 

These functions are explicit examples of  the so-called resurgent functions of Ecalle [47, 
91]. 

One thus sees that similar (or exactly the same) functional equations in one complex 
variable may have simple eulerian product-like solutions (and they can be interpreted 
as Rogers-Ramanujan-l ike identities) or much more complicated functions (resurgent 
functions of  Ecatle [47, 91], etc.) and then the interpretation corresponds to see these 
functional equations as one of the functional equations satisfied by zeta functions (for 
instance, of an anharmonic quantum oscillator [91]), the analytical structure of the zeta 
functions being much more complex. 

Let us also point out some differential equations leading to "special functions" like 
the transcendental Painlev~functions [64, 70, 82]. Let us recall the fact that Painlev6 
differential equations can be seen as self-similar reductions of integrable PDE's  (KdV 
equations, etc.) [60]. Such "self-similar" reductions can even be generalized to discrete- 
Painlev6 equations. Discrete-Painlev6 equations can be seen as (highly non-trivial dis- 
crete) reductions of  discrete-KdV equations (see the work of Nijhoff et al. [51,67-69]). 
The iteration of some discrete Painlev6 recursions can be seen to yield not curves, as 
in integrable mappings (see, for instance, [32]) but surfaces. Actually, if one considers 
the Arnold complexity [ 11 ] of these discrete Painlev6 mappings, it can be seen that one 
has a polynomial growth of the iteration calculations 5. 

From these examples, it is tempting to segregate, on one side, "nice functions" 
often corresponding to elliptic functions, or to Abelian varieties (theta functions of  sev- 
eral variables, etc.) or even corresponding to "nice" transcendental functions like the 
Painlev6 equations [64, 70, 82], etc. and, on the other side, chaotic systems where no 
exact results can be found, even functional equations. The "frontier" between these 
two worlds could be the existence of non-linear, non-trivial functional equations such 
as (1.6), the question being to know to which world (the "nice" world or the "chaotic" 
one) analytically involved functions like the resurgent functions [47], like (1.11) belong 
to. 

Considering non-linear, non-trivial functional equations as a possible "frontier" 
seems well-suited because this gives a large enough framework to work with (impos- 
ing the existence of differential equations, or PDE's,  with an additional structure, or 

5 We think that this polynomial growth property [3l, 33] is not a consequence of the discrete Painlev6 equa- 
tions themselves, but rather the underlying integrable discrete-KdV equation (existence of Lax pairs, 
...) and of the associated Abelian varieties, the polynomial growth being inherited from these Abelian 
varieties [31]. 
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other differential structures 6, would restrict too much the set of  "nice" functions 7). Be- 
yond, the question of  the analyticity properties of the solutions (if any) of  functional 
equations is an extremely difficult one [84]: A functional equation, as in (1.9), can cor- 
respond to solutions of drastically different analytical properties, running from simple 
elliptic functions [20] (see (1.6)) to resurgent functions [91]. Functional equations thus 
provide a very interesting framework, large enough to be able to find many results and 
constraintfull enough to get many highly non-trivial results, 

Functional equations clearly yield a lot of "structure" and constraints but they may 
also yield very complicated analytical properties. The analyticity properties of  resurgent 
functions is in general so involved, even when they satisfy simple functional equations 
like (1.11), that one may think that a segregation between a nice world and a chaotic one 
is not very well-defined. In fact, at least in the framework of dynamical systems (and 
especially discrete dynamical systems), this separation is clear and not "fuzzy". The 
growth complexity [1,2, 89] of  the calculations (or for two-dimensional mappings, the 
Arnold complexity [11]), or the topological entropy [1,2, 6,11], of  a system are actually 
a well-suited way of  segregating between the "nice" world (polynomial growth) and the 
"chaotic one". A non-zero topological entropy means that the system is chaotic [1,2] 
and thus, no simple analytical property should be expected at first sight. 

Therefore, we will try in this paper to address, with a special emphasis on a "com- 
plexity growth point of  view ''8, the previously raised questions: Does the existence of  
a functional equation means that the system belongs to the "nice world"9? Does chaos 
automatically mean that no functional equations can be found for the system? To which 
world does the resurgent functions of  Ecalle [47, 91] belong when they actually satisfy 
a simple functional equation like (1.11) ? 

In this paper, we will thus try to address the question of a possible "functional 
equation frontier" between a "nice world" and a chaotic one, and the related question 
of the analytieity properties of the solutions of functional equations as follows: We will 
first recall several known results of  lattice statistical naechanics and graph enumerative 
combinatorics, which clearly belong to the "nice world" (and beyond; see (2.8), etc.). 
We will then consider discrete dynamical systems and introduce some new results [1 -  
3] on birational transformations, for which exact expressions of  the dynamical zeta 
function for a particular family of birafional transformations of two variables, depending 
on two parameters, have been conjectured. This will provide a new set of  functional 
equations with other analyticity properties (simple rationality). Finally, considering a 
particular case of  the previous two-dimensional examples ( a  = 0 and e = 3), we will 
also provide an example of  the "non-algebraic integrability of a reversible dynamical 
system of the Cremona type" as introduced by Rerikh [76]. This E = 3 example will 
actually be seen to correspond to solutions of  non-linear functional equations. This will 

6 Let us recall that finite difference functional equations are not like differential equations; even the simplest 
theorems of existence of solutions do not exist most of the time. 

7 We would return to the old idea of getting archives of "special functions" to solve problems, 
8 See also the rate of growth of groups and the growth of graphs and of Riemannian manifolds, for instance, 

in [421. 
9 The answer to this question drastically depends on the framework one considers: functional equations 

bearing on functions of several complex variables, or of one complex variables, etc.; see the conclusion 
of this paper. 
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allow us to address the following question: Does "transcendental integrability ''1° exist? 
These last discrete dynamical examples will shed some light on the "amount" of 

structures, constraints, and analyticity properties that come, or may come, automatically 
with a functional equation. In particular, it will be seen that it is crucial to segregate 
between the analyticity properties of  a function seen as a function of one (or several) 
complex variable(s) and the analyticity properties on this function seen as a function of 
one (or several) real variable(s). 

The first part of  our paper is a review of functional relations occurring in various 
domains of  mathematical physics. Some of  these results are obtained by those involved 
in lattice statistical mechanics, other results are known by researchers involved in enu- 
merative combinatorics, or in field theory or particle physics, etc. A first motivation of  
our paper is to put together these various functional relations in order to see the emer- 
gence of some common universal features. Beyond this preliminary review, we will go 
a step further, in the framework of discrete dynamical systems, and provide some new 
results, in particular relations (4.12) and (4.13) in Section 4. 

2. Functional Equations Emerging from the Inversion Relation 

The inversion trick [15,87] is known to give a fantastic short cut to calculate exactly the 
partition functions per site of  several two-dimensional lattice models (or to obtain the 
exact S-matrix from the unitarity relation and crossing symmetry in S-matrix theory). 
Basically, one has to combine two very simple functional relations: 

S(O)'S(-O)=Kknown(O)=F(O)'F(-O), and: S ( 0 ) = S ( £ - 0 ) ,  (2.1) 

where Kknown (e) denotes some known and simple expression (often explicitly of  the 
form F ( e ) - F ( - 8 ) ,  where F (e )  is known). Naively, as a first approximation, a 
simple solution of the first equation is S(e) = F(8) ,  but it does not satisfy the sec- 
ond equation S(e) = S ( £ -  e). It is easy to satisfy the second one, writing the solution 
as S(8) = F (0 ) .  F()~ - 8), but now the first equation is no longer satisfied. Again, the 
first equation can be verified by dividing by some "counterterms" and so on at every 
step of some iterative process which will give S(e) as an infinite product (over a group 
generated by the two involutions e + £ - e and 8 -+ - 8 ) ,  satisfying the two functional 
equations. This solution is called the "minimal solution" since it corresponds to the 
minimal compulsory set of poles and zeroes of any solution of (2.1). Other solutions 
have more poles and zeroes and, more generally, more involved analytical behaviors. 
However, if one assumes this minimal analyticity assumption (only this compulsory set 
of  poles and zeroes), the solution is unique. 

2.1. Functional Equations Emerging from the Inversion Relation Beyond the 
Yang-Baxter Equations Framework 

Let us first consider the anisotropic Ising model on a square lattice. There actually 
exists an inversion relation [15, 16] on this two-dimensional model: 

Z(Kt, K2) . Z ( -K t ,  K2 + ire~2) = 2i-sinh(2K2). (2.2) 

lo For instance, for two variables, one would have a foliation of the plane in curves that are not algebraic, 
these transcendental curves being the orbits of the iteration of some transformation [76]. 
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Of course, one has 

Z(K1, KZ) = Z(K2, K1), (2.3) 

a consequence of the permutation symmetry of  the two coupling constants. It has been 
shown by Baxter in [ 16] that the partition function per site can actually be calculated or- 
der by order, using some "resummed" high-temperature expansions from the functional 
equations (2.2) and (2.3), together with an analyticity assumption on the "resummed" 
high-temperature expansions, namely, that only tanhZ(K1) = 1 poles occur in these ex- 
pansions. 

For that purpose, it is convenient to define the reduced (high-temperature normal- 
ized) partition function per site by 

Z(K1, K2) where ti = tanhKi, i = 1,2. (2.4) 
A(tl, t2) = 2coshK1 coshK2 

The reduced partition function then satisfies the inversion relation [ 16]: 

lnA(tt,  t2) + lnA(1/t l ,  - t2)  = ln(1 - t2). (2.5) 

Actually, writing the (high-temperature normalized) partition function A(tl, t2) as a 
resummed expansion: 

lnA(tl, t 2 ) =  112 an, m'tZmt~ n = ~_Rn(t 2) "t 2". (2.6) 
n~m n 

Baxter [16] has shown that 

Rn(t 2) = Pzn-l(t2)/(1 - t 2 )  2n-1 . (2.7) 

The functions Rn are rational, with numerator and denominator of degree 2n - 1 in t 2. 
The denominator has only a simple pole of degree 2n - 1 at t 2 = 1 in the complex t~ 
plane. This analyticity property (only t 2 = 1 poles) is closely related to the star-triangle 
integrability of  the model [19]. 

One must point out that this is another kind of analyticity assumption. It is not 
an analyticity assumption on some complex "spectral" parameter 0 corresponding to 
an elliptic parametrization of the model (see the minimal analyticity assumption in 0 
above), but on one of  the two high temperature variables of  this anisotropic model. 
Although these two sets of analyticity assumptions are quite different in nature, they 
both achieve the goal of calculating exactly the partition function per site [16, 62]. 

Let us consider the anisotropic standard scalar q-state Potts model on a square lat- 
tice. There actually exists an inversion relation II on this two-dimensional model [56]: 

Z(b, c). Z(1/b,  2 - q - c) = (c - 1). (1 - q - c), (2.8) 

where b and c denote the exponential of the coupling constants of the anisotropic two- 
dimensional Potts model on a square lattice. Of course, one has the following simple 
obvious functional equation inherited from the geometrical symmetries: 

Z(b, c) = Z(c, b). (2.9) 

1 t Even beyond the integrable star-triangle critical framework [56], 
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The anisotropic standard scalar q-state Potts model is not generically Yang-Baxter inte- 
grable (except at the first order transition point, for q > 4, or at the second order critical 
point, for 0 < q < 4). At these critical points 

( b - 1 ) . ( c - l ) = q  or ( b + l ) . ( c + l ) = 4 - q ,  (2.10) 

the inversion trick gives the correct expression of the partition function per site [56, 57]. 
These results can be generalized to the checkerboard standard scalar Potts model 

[74]. Instead of the previous two variables, one now has four variables: a, b, c and d. 
Let us introduce [56, 57] a rational parametrization of the model: 

a - 1  u - t  b - 1  v - t  
- -  - t .  - -  - t .  

a + q - 1  1 - t 3 u  ' b + q - 1  1 - t 3 v  ' 

c - 1  w - t  d - 1  z - t  
- -  = t . - -  = t .  ~ ,  (2.11) 
c + q - 1  1 - t 3 w  ' d + q - 1  1 - t  z 

where t is one of the roots of: t 4 - (q - 2) • t 2 + 1 = 0. With these notations, the criti- 
cal condition of the square lattice now reads uvwz = 1 and the inversion relation (2.8) 
becomes 

( t2 1 t2) 
Z ( u , v , w , z ) ' Z  t~t '  -v' tZw ' Z 

l + t  2 - - u / t ) . ( 1 - t g u )  ( 1 - - w / t ) . ( 1 - - t 3 w )  i/2 
_ t 2 ( ( 1 - ~ - - - -  t-~ ff ~ - - - t ~ g  ) (2.12) 

Combined with the obvious geometrical symmetry C4~ of the square lattice: 

Z(u, v, w, z) = Z(v, u, z, w) . . . .  , (2.13) 

the "minimal" solution of the partition function per site can be written as 

( )2 q F(u )F(1 /u )  F(v )F(1 /v )  F ( w ) F ( 1 / w )  
Z(u, v, w, Z) = 7 "  1 - tu 1 - tv 1 - tw 

whereF(u) reads 

F(Z) = f i  1 - t4n-lz 

n=l I Z ~ '  

F(z)F(1/Z)  

1 - t z  
(2.14) 

Functional equations (2.12) and (2.13) are exactly similar to (2. t). It is straightforward 
to verify that the "minimal" solution (2.14) actually verifies the inversion relation for the 
checkerboard model (2.12) and the C4~ symmetry of the square lattice (2.13) (this solu- 
tion has a larger set of symmetries, namely, it is invariant with respect to $4, the group of 
permutation of the four variables a, b, c, d). This solution has all the poles singularities 
inherited from the right-hand side of the inversion relation (2.12) and from the action 
of the group generated by the inversion relation and symmetry of the square C4v, and it 

(2.15) 
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has only this minimal set of singularities. It can be called the "minimal" solution since 
it has all the "compulsory" singularities and only these ones. However, this "minimal" 
solution happens to be the correct one only on the critical condition u v w z  = 1. Be- 
yond this critical condition u v w z  = 1 (which means in fact that the model is no longer 
Yang-Baxter integrable), the inversion relation (2.12) (or (2.8)) is still valid [56], but 
the "minimal solution" does not yield the correct partition function per site [57]. This 
can be seen, quite clearly, on the large q expansion of the standard scalar q-state Ports 
model on an anisotropic square lattice [57], as well as on the checkerboard lattice [74]. 
These large q expansions enable us to see very clearly that, beyond criticality, the "true" 
partition function per site, which actually verifies the functional equations (2.12) and 
(2.13), is a much more involved function of the four variables than the minimal solution 
(2.14). What are the analyticity properties of this function? This question is raised here 
in more than one complex variable. For instance, recalling the minimal solution (2.14), 
one immediately sees that the logarithm of this expression is the sum of the same func- 
tion of u, v, w, and z, while the large q expansion of the actual partition function per site 
gives an expression mixing these four variables. The partition function can be expressed 
in terms of some normalized high-temperature partition function lnA(u, v, w, z) as the 
following expansion [74]: 

lnA(u, v, w, z) = t 2 - t3 t4 -~- (vwz + uwz + uvz + uvw) 2 

t 5 
+-~ . (u + v + w + z + vwz + uwz + uvz + uvw) 

1 
+ u2vZz2 q- uZvZw2)) .jr -]-t6" ( ~  -- x " (V2W2Z2-[-U2W2Z2 . - . . ( 2 . 16 )  

Functional relations (2.12) and (2.13) mean that the partition function per site can be 
seen as a generalization to several complex variables o f  automorphic functions [71]. 
However, automorphic functions of several complex variables are much more compli- 
cated (multivalued) functions [58] than automorphic functions of one variable 12. What 
kind of analyticity in four variables are we discovering here with expansion (2.16), mix- 
ing the variables u, v, w and z ? Does it simply amount to adding some branch cuts to the 
simple (infinite product of) poles and zeroes (see (2.14))? Does the "true partition func- 
tion" have some kinds of complicated confluent singularities in these four variables? 
Does it correspond to even more complicated analytical structures? To characterize 
the analyticity properties of this function of several complex variables is a puzzling 
question. 

In fact, there is nothing specific with two-dimensional lattice models. Let us con- 
sider the anisotropic Ising model on a cubic lattice. There actually exists an inversion 
relation on this three-dimensional model [591: 

Z(K1, Kz, K3).Z(-K1,  K2 + irc/2, -K3) = 2i. sinh(2K2). (2.17) 

Of course, one has the permutation of the three coupling constants symmetry: 

Z(KI, K2, K3 = Z(K2, KI, K3) = Z(K1, K3, /(2) . . . .  • (2.18) 

12 See the theta-Fuchsian series of Poincar6, or simply Poincar6 series [71 ]. 
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One can actually check this inversion relation on this three-dimensional model through 
resummed high temperature expansions [54], introducing again the (high-temperature 
normalized) partition function per site: 

( ) lnA(tl, t2, t3) = In 2coshKicoshK2coshK3 = }-~Rn, m(tl).t~ .t 2m. 
n,m 

The inverse functional relation reads [59]: 

lnA(tl, t2, t3) -'[-lnA(1/tl, -t2, -t3) --- ln(1 - t 2) + In(1 - t2). (2.20) 

These calculations show that, combining the functional equations (2.17) and (2.18) 
yield drastic constraints on the "resummed high temperature" expansions (2.19) but, un- 
fortunately, insufficient to get the partition function per site of the cubic Ising model or- 
der by order [54]. These constraints however are extremely precious to build and check 
high temperature series [54]. In order to get, order by order, this resummed expansion 
(2.19), one has to "inject" at each order, some information (namely, the coefficients of 
t N1 • t N2'  t N3 in the standard anisotropic high-temperature expansion of the cubic Ising 
model [54], for some N1, N2, N3). Instead of finding out an infinite number of coeffi- 
cients to obtain the rational functions Rn, m (tt 2) in the resummed expansion (2.19), one 
just needs to provide, because of the functional equations (2.18) and (2.20), afinite num- 
ber of coefficients at each order. The number of these coefficients, which corresponds 
to the "missing information", grows exponentially, like pN with the order N = n + m 
(compare this exponential growth of the computing time for a non-integrable model, 
like the three-dimensional Ising model, with the polynomial time required for an inte- 
grable model; see Subsection 2.3 below). This/1 is the exact equivalent of the growth 
complexity )~ (or exponential of the topological entropy [1, 2]) that we will introduce 
in Subsection 3.1 for discrete dynamical systems. It would be interesting to compare 
this "growth of the missing information", characterized by/1, for the two-dimensional 
non-critical Potts model and for the three-dimensional Ising model. 

Performing calculations in the high-temperature variables, ti's, is the only strategy 
we have at our disposal for the cubic Ising model since we do not have any "canonical 
foliation" of the parameter space in algebraic curves which would enable us to consider 
analyticity properties in one complex variable 0. Even when one has such a nice fo- 
liation of the parameter space in (elliptic or rational) curves, it is difficult to compare 
a minimal analyticity assumption in the "spectral parameter" 0 and the analyticity as- 
sumption of having only (1 - t~) poles in the resummed high temperature expansion. 
However, recalling the Baxter model, it has been shown [88] that one actually has only 
( 1 - t 2) poles in the resummed expansion; it seems that Yang-Baxter integrability often 
provides both analyticity properties in 0 and tt, each of them being sufficient to deter- 
mine accurately the partition function. However, only the inversion trick in the spectral 
variable 0 provides a closed (infinite product) formula for the partition function per site 
of the Baxter model [62]. 

One can even write similar "inversion" relations for an anisotropic three-dimensional 
standard scalar q-state Potts model in a magnetic field on a cubic lattice: 

Z(a ,b , c ,h ) .Z (1 /a ,  1 / b , Z - q - c ,  1 / h ) = ( c - 1 ) . ( 1 - q - c ) ,  (2.2I) 

Z(a, b, c, h) = Z(b, a, c, h) = Z(a, c, b, h) . . . .  . (2.22) 
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Again, one has the rational parametrization (2.11) but, this time, on a, b and c only. 
Of course, again, the resummed high temperature expansion cannot be obtained order 
by order from (2.21) and (2.22). One notes that, at this level, one cannot make any 
difference between the functional equations verified by the partition function per site 
on the cubic lattice and on the triangular lattice! When there is no magnetic field 
(h = 1), the functional equations (2.21) and (2.22) give a minimal solution which can 
be seen as a (triangular) limit of (the checkerboard) (2.14). This minimal solution is 
actually the correct one for the anisotropic triangular Potts model at criticality but is, of 
course, far from encapsulating the "complexity" of the cubic Potts model. 

2.2. Inversion Trick without the Yang-Baxter Integrability: The Sixteen Vertex Model 

Let us recall that the sixteen vertex model [61] presents a canonical foliation of its 
parameter space CP15 in terms of elliptic curves. These elliptic curves are obtained 
from the two inversion relations of the model. Their equations have been written down 
in terms of intersections of quadrics [23]. 

For this very model, one does not have, generically, a Yang-Baxter integrability 
(except when the sixteen vertex model reduces to the Baxter or a free-fermion model). 
However, one can certainly use the fact of having such a "canonical foliation" of the 
parameter space CP15 in terms of elliptic curves (which actually corresponds to true 
symmetries of the model) to introduce a canonical "spectral parameter". On each el- 
liptic curve of CP15, generated from the two inversion relations [23], one can actually 
write down two functional equations corresponding to these two involutions and "play" 
with the "inversion trick": 

ZE(O) ZE(--O) (1) • = K nown(0 ) = F ( 1 ) ( 0 ) . p ( 1 ) ( - 0 ) ,  

ZE(O) " Z E ( ~ -  0) = K~ (2) (A~ = F (2) known ~v,, (0)'  F (2) (9~ - 0), (2.23) 

(1) (2) 
where K~nown(0) and K~nown(0 ) are some known expressions (corresponding to deter- 
minants of the R-matrix). 

It may well be that the "minimal" solution of the two functional equations (2.23) 
gives the correct partition function per site for the sixteen vertex model! It is clearly 
the case when one restricts to the (Yang-Baxter integrable) Baxter model [62]. More 
generally, the analyticity assumptions, required to show that the "minimal" solution of 
the two functional equations is the "correct one", are a consequence of the Yang-Baxter 
structure 13. It would be tempting to compare the minimal solution, obtained for the 
sixteen vertex model (from the inversion trick without the Yang-Baxter integrability), 
with some expansion (weak-graph expansions [49]) for the exact partition function per 
site of the sixteen-vertex model, and see if they coincide 14. If they do not, one could 

13 More precisely, the entries of the (row-to-row) transfer matrix are, for an), size of the lattice, polynomial 
expressions of the entries of the R-matrix. If one has an elliptic foliation of the parameter space of the 
model (namely, the entries of the R-matrix), one can write the entries of the R-matrix as analytical (elliptic) 
functions of some "spectral" parameter 0. Therefore, the entries of the transfer matrix are analytical 
functions of 0, even when the Yang-Baxter equations are not satisfied. The analyticity of the eigenvalues 
of the transfer matrix are, however, a consequence of the Yang-Baxter equations (see, for instance, [17]). 

~4 One may argue that if we were able to do that, we would recover the partition function of the 
two-dimensional Ising model in a magnetic fieM, which is known to be a subcase of the sixteen vertex 
models [61]. This is not true as the two-dimensional Ising model in a magnetic field is a highly singular 
limit of the sixteen-vertex model (rank two R matrices). 
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then try to characterize the analyticity properties in one complex variable 0 of the "true" 
partition function per site. Unfortunately, weak-graph expansions of vertex models with 
16 homogeneous parameters are far from being available in the literature. 

2.3. Inversion Relations on the Generating Functions Corresponding to Various Graph 
Enumerations 

Guttmann et al. [53,75] have applied this functional equation approach to study various 
combinatorial problems. They were able to write some functional equations on the 
generating functions corresponds to various problems of enumerative combinatorics. 
One set of functional equations just corresponds to the simple geometrical symmetries 
of the lattice and yields simple equations like G(x, y) = G(y, x). The other corresponds 
to a non-trivial functional equation exactly similar to the inversion relations previously 
described. One problem here is that one finds out the existence of such inversion-like 
relations without being able to explain them from simple properties of local objects 15. 
However, this functional equations approach, together with analytical properties like the 
previous ones, provides an alternative method of solution in some cases. One example 
is the enumeration of staircase polygons on a square lattice, for which Guttmann et al. 
were able to write the perimeter generating function: 

P(x, y) = ~ Pn,m" x2ny 2m : ~_,Hm (x2) ' y2m, 
n ~ m t t l  

(2.24) 

where Hm (X 2) is the generating function for staircase polygons with 2m vertical bonds. 
The generating function P(x, y) verifies the "inverse" functional relation: 

P(x, y) + x 2. P(1 Ix, y/x) = _y2 (2.25) 

together with the (obvious) symmetry relation P(x, y) = P(y, x). One can obtain the 
generating function P(x, y) by calculating the Hm(x 2) functions, order by order, in poly- 
nomial time. 

As previously mentioned, the occurrence of the "inverse" functional relation (2.25) 
is rather obscure. Where does this "hidden inverse" functional relation come from? This 
problem is, in fact, very similar to the occurrence of the t --+ 1/t functional relations on 
zeta functions (see below). 

3. Discrete Dynamical Systems: A Two-Dimensional Birational Mapping 

Birational transformations [24-28] naturally "pop out" as non-trivial, non-linear sym- 
metries of lattice models of statistical mechanics [23, 32-35]. They are built from the 
so-called inversion relations [56, 59, 87], and from geometrical lattice symmetries. 

For simplicity, we will consider a particular birational transformation which can be 
reduced [1] (in a quite involved way) to a two-dimensional mapping (see Appendix A 

15 Like the inversion relations of the R-matrices, or on the IRF Boltzmann weights [32,62]. These local rela- 
tions yield the inversion relation of some row-to-row, or diagonal-to-diagonal, transfer matrices and, in a 
fast step, the inversion retation on the partition function per site [15, 62]. 
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of [1]). More precisely, let us consider the following family of birational mappings [1,2] 
ka, e depending on two parameters ((x and e): 

kaE: (u,+I v n + t ) = ( 1 - u n + U n 8 + v n - v n / u n + C ~ ' ( 1 - u n + u n / v n ) ) .  (3.1) 
~ Vn 

As far as complexity calculations are concerned, the (~ = 0 case is singled out [30] as 
will be seen later. In that case, a convenient change of variables [1] leads to a mapping 
k~ having a very simple form: 

z - 8  
ke: (y,z) ~ ( z + l - e , y - z - - ~ ) .  (3.2) 

The two transformations ka,~ and ke derive [33] from a transformation Kq acting on 
a q x q matrices M, (q >_ 3) such that Kq = t oI, where t permutes the two entries M1,2 
with M3,2, and I is the homogeneous matrix inversion I(M) = det(M). M -1 . Transfor- 
mations of this type, generated by the composition of permutations of the entries and 
matrix inversions, are actually symmetries of the parameter space of lattice statistical 
models [32]. 

3.1. Complexity Growth 

The correspondence between transformations Kq and ks, e, more specifically between 
transformations Kq 2 and ka, a, is given in [1]. It will be shown below that, beyond this 

correspondence, transformations Kq 2 and ka, e share properties concerning their "com- 

plexities". Transformation Kq is homogeneous of degree (q - 1) in the q2 homogeneous 
entries. When performing the nth iteration, one expects, at first sight, a growth of the 
degree of each entries as ( q -  1) n. It turns out that, at each step of the iteration, some 
factorization of all the entries occurs. The common factor can then be factorized out in 
each entry leading to a "reduced" matrix Mn, which is taken as the representative of the 
nth iterate in the projective space. 

To keep track of this growth of  the calculations (see also [65, 89, 90]), it is useful to 
define some "degree generating functions" G(x): 

G(x) = F.dn" x (3.3) 
tl 

where dn is the degree of some quantity, at each iteration step (entries of the "reduced" 
matrices Mn's, extracted polynomials fn'S, etc.; see [32, 34, 35]). 

Due to these factorizations, the growth of the calculations is not ( q -  1) n but rather 
)~n where X will be called the "complexity growth", or simply, the "complexity". Ac- 
tually, one discovers, for such birational transformations (Kq = t o I), the occurrence of 
a stable factorization scheme (see [1,31 ]) yielding a rationality of these degree gener- 
ating functions with integer coefficients [33]. This growth complexity )~ is the inverse 
of the pole of smallest modulus of any of these degree generating functions G(x): 

l og~=  lim logdm (3.4) 
m - - - ~  m 
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This rationality yields algebraic values for the complexity L [33]. For Kq = t o I, where 
t permutes the two entries M1,2 with M3,2, the results show that )~ is the largest root of 
1 + )3 - )~3 = 0 (i.e., 1.4655... < q - 1) [33, 35]. 

The same calculations have also been performed on transformations ka, e (see (3.1)). 
In that case, factorizations also occur at each step, and generating functions can be cal- 
culated. These generating functions are, of course, different from the generating func- 
tions for Kq z (see [33]) but they have the same poles, and consequently, the same growth 
complexity )~. Thus, the complexity L does not depend on the birational representation 
considered: K~ for any value of q, or its reduction to two variables kc~,e. 

Coming back to mapping (3.1), we have first obtained some "generic" degree gen- 
erating function [1116 for a ¢ O: 

1 + x  2 
C (x) - 1 - x -  ( 3 . 5 )  

The pole of smallest modulus of Equation (3.5) gives 1.46557... for the value of the 
complexity for the matrix transformation Kq. Secondly, we have obtained [1], for the 
c~ = 0 case (see (3.2)), some other generating function G~(x) (for generic values of a): 

1 + x + x  3 
Ge(x) - 1 - x 2 - x 4 (3.6) 

with complexity L ~_ 1.272019 .... Furthermore, for some singled out values of e (when 
a = 0), namely, e = 1/m (m is an integer _> 4), the generating function Ge(x) also has 
been obtained and seen to be a slightly modified expression [ 1 ]: 

1 + x + x  3 - - X  2m+l - - X  2m+3 

G1/m(X) -~ 1 - x  2 - x  4 + x  2m+4 , with m > 4. (3.7) 

3.2. Rational Dynamical Zeta Functions 

It is well known that the fixed points of the successive powers of  a mapping are ex- 
tremely important in order to understand the complexity of the phase space. A tot of  
work has been devoted to study these fixed points (elliptic or saddle fixed points, at- 
tractors, basin of attraction, etc.), and to analyze related concepts (stable and unstable 
manifolds, homoclinic points, etc.) [7]. We follow another point of view and study the 
generating function of the number of fixed points of a mapping k. 

By analogy with the Riemann zeta function, Artin and Mazur [13] introduced a 
powerful object, the so-called dynamical zeta function: 

~(t) = exp #fix(kin) • , (3.8) 

where #fix(/d ~) denotes the number of fixed points ofk  m. The generating function: 

H( t )  = E # f i x ( k m )  • t m (3.9) 

t6 Corresponding to the degree of the extracted homogeneous polynomials fn's in the factorization schemes 
of Kq [1,31]. 
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can be deduced from the dynamical zeta function: 

The (exponential of the) topological entropy h is related to the singularity of the dy- 
namical zeta function: 

logh = tim l°g(#fix(km)) (3.11) 
m-+= m 

In the case of mapping (3.2), corresponding to ot = 0, this expansion coincides with 
the rational function: 

t .  (1 + t  2) (3.12) 
He(t) = (1 - t  2) (1 - t - t 2 )  ' 

which corresponds to a very simple rational expression for the dynamical zeta function, 
namely, 

1 - t 2 
Ce(t) - i - t -  (3.13) 

This yields for the (exponential of the) topological entropy: 

h ~_ 1.61803 . . . .  (1.272019...) 2. 

The expansions of the dynamical zeta function remains unchanged [ 1 ] for all the "generic 
values" of e. 

When mentioning zeta functions, it is tempting to seek for simple functional rela- 
tions relating ¢(t) and 4(1 It). One immediately verifies that Ce(t), corresponding to 
(3.13), satisfies two extremely simple and remarkable functional relations: 

Ce(t) and Cd-1/t)=¢e(t).  (3.14) Ce(1/t) - 2. Ce(t) - 1' 

The generating function (3,12) verifies He ( -  1/t) = -He (t). 
An alternative way of writing the dynamical zeta functions relies on the decompo- 

sition of  the fixed points into irreducible cycles which corresponds to the Weil conjec- 
tures [55]. Let us introduce Nr, the number of  irreducible cycles of /~ .  One can then 
write the dynamical zeta function as the infinite product: 

1 1 1 1 

Ce( t ) - - ( l_ t )N,  ( l_t2)N2 (1--t3)N3 (1--tr)Nr (3.15) 

The results of [10] yield Nt = 1,N2 = 0, N3 = 1,N4 = 1,N5 = 2, N6 = 2, N7 
= 4, N8 = 5, N9 = 8, N10 = 11, Nll = 18. One actually easily verifies that (3.13) and 
(3.15) have the same expansion up to order twelve with these values of the Nr's. The 
next Nr's should be N12 = 25, N13 = 40, N14 -- 58, N15 = 90, . . .  : 

1 - t  2 1 1 1 1 1 1 
C d t )  - - -  

1 - - t - t  2 ( l - - t )  ( 1 - t  3) ( 1 - t  4) ( 1 - t S )  2 ( l - - t 6 )  2 ( l - t 7 )  4 

1 1 1 1 

× (1_ t8 )5  ( l - t 9 )  8 ( l - r i O )  11 ( 1 - t n ) 1 8  
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For some singled out (non-generic) values of E, namely, e = l / m ,  where m is an 
integer and > 4, the number of irreducible cycles is modified yielding other expansions 
for the dynamical zeta function or for the associated Weil product (3.15). All these 
expressions are compatible with this single expression of the zeta function: 

I - t  2 
¢l/m (t) = t - t - t 2 + t re+z" (3.16) 

Comparing the poles of (3.16) with those of the degree generating functions (3.7) (with 
t = x z, because we are comparing Kq and ke associated with K2), one sees that the 
singularities are actually the same. The growth complexity 9~ and the (exponential of 
the) topological entropy identify. We conjecture that this expression is exact, at every 
order of iteration and for every integer value m > 4. Again all the singularities of 
this expression coincide with those of the degree generating function corresponding to 
the Arnold complexity (see Equation (3,7)), From these results, one can conjecture an 
identification between the growth complexity L ("asymptotic" of the Arnold complexity 
for two-dimensional mappings) and the (exponential of the) topological entropy. 

As far as functional relations relating ~(t) and ~(1/t) are concerned, one immedi- 
ately verifies the simple functional relation: 

t ¢1/,.(t) 
~l / , , (1 / t )  = tm+l " ~l/m(t) - ~l/m(t ) + 1" (3.17) 

Returning to dynamical zeta functions of mapping (3.1) corresponding to cz ~ 0, we 
have obtained the expansion of the zeta function, up to order seven, as follows: 

~ ( t )  = l + 2t + 3t2 + 7t3 +15t4  + 32ts +69t6  +148t7  + .  .. , (3.18) 

thus yielding (for generic values of ~) the following possible rational expression for the 
dynamical zeta function: 

t ( t - t2 ) ' (1+0  (l-x2).(l+x2) 2 
~e( ) =  ~ S t - S 2 ~ - - t  ~- = ( l _ x _ x 3 ) . ( l + x + x 3 ) ,  with t = x  2. (3.19) 

This new rational conjecture (3.19) corresponds to the following expression for H(t): 

= t .  (t 3 + 3t 2 + 2) 

(1 -- t2) - (I - t - 2t 2 - t3)" (3.20) 

Again one has to compare the poles of ~ ( t )  (see (3.19)) and those of G~(t)  (see (3.5)). 
These poles again coincide, which means, at least in this example, that one has again an 
identification between the (asymptotic of the) Arnold complexity and the (exponential 
of the) topological entropy. 

Introducing an "alternative" zeta function ~ ( t ) :  

~ ( t ) -  ¢(t) ( 1 - t ) ' ( l + t )  ¢~(t) ( 1 - t  2) 
¢(~)--1 -- t . ( l + t + t 2 )  ~ with ¢ ( t ) -  l + t  - 1 - t - 2 t 2 - t  3' 

one easily verifies the simple functional relation: 

t 2 . ~ ( t )  = - ~ ( 1 / t ) .  (3.21) 
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3.3. Linear Operator Interpretation and Occurrence of Determinants 

From a general point of view, rational dynamical zeta functions (see, for instance, [14, 
52, 80]) are known in the literature through theorems where the dynamical systems 
are asked to be hyperbolic, or through combinatorial proofs using symbolic dynamics 
arising from Markovian partitions 17 [63] and even, far beyond these frameworks [48], 
for the so-called "isolated expansive sets"(see [43, 46, 48] for a definition). There also 
exists an explicit example of  a rational dynamical zeta function in the case of  explicit 
linear dynamics on the torus R2/Z 2, deduced from an SL(2,Z) matrix, namely, the cat 
map [7, 12] (diffeomorphisms of the toms): 

A = B = ~(z) = = (3.22) 
' 0 ' det(1 z.A) 1 - 3 - z + z  2" 

For (3.22), one verifies immediately the functional equation ~(z) = ~(1/z). Recall- 
ing the identity between the characteristic polynomial of  a q x q matrix A and the char- 
acteristic polynomial of  its inverse, yielding P(z, A) = det(1 - z-A) = det(A) • (-z) q. 
P( I/z, A- 1), one can see the simple functional relation ~(z) = 4( 1/z), as a consequence 
of relation: 

P(z, A) = P(z, A-I ) ,  (3.23) 

which is specific of  matrix A given by (3.22). However, in general, one should not 
expect the "Markovian" transition matrix A to verify relation (3.23), but slightly more 
complicated relations (see (3.14)). 

I f  the dynamical zeta function can be interpreted as the ratio of  two characteristic 
polynomials of two linear operatorsa8 A and B, namely, ~(z) = det(1 - z.  B)/det(1 - 
z. A), then the number of fixed points #fix(k m) can be expressed from Tr(A n) - Tr(Bn). 
In this linear operators framework, the rationality of the dynamical zeta function and, 
therefore, the algebraicity of  the topological entropy amounts to having afinite dimen- 
sional representation of the linear operators A and B. In the case of  a rational zeta func- 
tion, h, the exponential of the topological entropy is the inverse of the pole of  smallest 
modulus. Since the number of  invariant points remains unchanged under topological 
conjugacy (see [86] for this notion), the dynamical zeta function is also a topologically 
invariant function, invariant under a large set of  transformations, and does not depend 
on a specific choice of  variables. Such invariances were also noticed [I,  2] for the com- 
plexity growth %. 

At this step, one can recall various topological invariant "zeta functions" which 
correspond to various counting of templates, links, knots, etc. (which are thus very close 
to partition functions per site like the ones given in the Subsection 2.1). For instance, 
the twist-zeta functions (counting twist ribbons; see [50, p. 157]) can also be simply 
expressed in terms of the determinant det(1 - A(t)) of a matrix A(t) which depends on 
some variable t (see, for instance, the twisted matrices [50, p. 157]). The Alexander 

17 In the framework of hyperbolic systems [45]. 
18 For more details on these Perron-Frobenius or Ruelle-Araki transfer operators, and other shifts on Marko- 

vian partitions in a symbolic dynamics framework, see, for instance, [36, 37,45, 80, 81]. 
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polynomials can also be simply written as products of  determinants det(1 - Ki), where 
K / s  are "linking matrices" (see [50, p. 184]). 

Back to lattice statistical mechanics, and as far as the occurrence of  determinants is 
concerned, one can also recall the most recent results of  Baxter and Bazhanov, where 
they show that the partition function of the Zamolodchikov 3 - D model [ 18,21,22] can 
actually be expressed as a determinant of "some" matrix. It is also worth noting that 
many generating functions can be expressed as determinants. 

4. Divergent  Series Solution of  an Exact  Funct ional  Equat ion for ~ = 3 

Let us keep working with Cremona transformations [77, 78], and, in particular, with the 
previous birational transformation (3.2), but for ~ = 3. This value of e is singled out as 
far as the phase portrait of transformation (3.2) is concerned; instead of a fairly chaotic 
phase portrait (see Figure 3 in [1]), the iteration of k~, for e = 3, gives a very regu- 
larphase portrait in the (y, z) plane, especially around the fixed point of  k~ for ~ = 3: 
(y = - 1, z = + 1). These orbits seem to be curves, exactly similar to the foliation of  
the plane in elliptic curves (linear pencil of elliptic curves) one obtains for integrable 
mappings [30], although the ~ = 3 value can actually be seen to correspond [4] to the 
"chaotic" complexity )~ = 1.618033... (generic complexity value for ¢x = 0). The ques- 
tion we address in this section is how to reconcile these apparently opposite facts. For 
this, let us first introduce a parametrization of these "curves", (y, z) = (y(t), z(t)),  and 
let us consider the representation, restricted to these curves, of  ke in terms of this pa- 
rameter t. 

In fact, a visualization of the curves obtained by the iteration of ke for ~ = 3 singles 
out three curves, F1, F2 and F3, intersecting at the fixed point of ke for ~ = 3, namely, 
(y, z) = ( -  1, 1). Note that each curve is globally stable by k 3, and that ka and k 2 map 
one of the three curves Fi onto the two others. 

The appearance of these three curves Fi is reminiscent of  the coalescence, in the ~ --+ 
3 limit, of  the three fixed points of  k 3, namely, (y,z) = ( 2 -  ~, ( ~ -  1)/2) ,  
((1 - ~)/2,  e -  2), or ( -  1, 1), with the fixed point ofk~, namely, ((1 - a ) /2 ,  ( e -  1)/2).  
In this limit, the triangle, made from these three confluent fixed points, actually corre- 
sponds to the three slopes, at (y, z) = ( - 1 ,  1), of the three singled out curves Fi (see 
below). 

Let us concentrate on one of these three curves, F1. Since F1 is globally stable by 
k 3 but not by ke, one can only expect a representation of  k 3 (and not of  k~), in terms 
of a well-suited variable t, around the fixed point of  ke: (y = - I ,  z = + 1). Recalling 
transformation (3.2) yields, for a = 3, the following expressions for the two y and z 
components of  k 3: 

k~ = 4 +  1 2 y + z -  7 y z -  3z2+yz 2 
1 - 3 y + z + y z  

k3 z = (yz - 2 - 3y - 2z). (3 + t5y - 8yz - 3z2+yz  2) 
(7 + 3y + 4z - 4yz - 3z 2 + yz2) - ( 1 + z) (4.1) 

Let us now try to find the parametrization (y(t), z(t)) of curves Fi (as an expansion 
near the fixed point of kE for ~ = 3, namely, (y, z) = ( -  1, 1), which belong to the 
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curves). A simple linearization of k 3 around this fixed point (y, z) = ( -  1, 1) yields the 
identity matrix. Therefore, one cannot have (near this fixed point) a representation of 
the iteration of k 3 as t --+ p- t; it must be a shift representation t ~ p + t. However, 
such a shift representation is not well-suited to deal with an expansion around the fixed 
point (y, z) = ( -  1, 1) (the fixed point would correspond to t = ~). We mus t represent 
the shift, associated with the action ofk~, as t -+ t / (1 +t) ,  that is, 1/t  -+ 1 / t +  1. Let 
us then write, using this last shift representation, that one of the (three) curves, Fi, is 
actually invariant under k 3: 

k~(t) t t = y (~--~),  k 3 z ( t ) = z ( - ~ ) .  (4.2) 

These two equations when solved give, order by order, three solutions. One solution 
corresponds to the following expansion, depending on an only one parameter o, for y(t) 
andz(t): 

y ( O , t ) = - - l + 5 . t - O . t 2 - -  02 .t3+ 03 .t 4 

(55@1 10 5 2 ~ ) ( ~  2725 25 2 25 3 
+ 2 4 ~ 0 - ~ 0  + 04 "t 5 -  + 4 - ~ 0 - ~ - 6 ~ 0  - T O  

+~o815x~) .t 6 -  ( 1 ~ 2 1 0 8 5 2 7 2 5 0 2 2 5 0 3 ~ - ~ 0  - 972 + ~ + 7760 4 --  -~0243 6"~) . t7 

( 73175 825545 7 5 9 5 2  1907503 
+ \2125764 + ~ 0 -  1 - - ~ 0  1944 

17504 31505 72907~ .t8 
+ 16 - - -~-  J + ' " '  

(4.3) 

2 ( ; ) . t 2 ( 1 4 4  3 )  z(O,I)= l+g't-- + 0  --  8 i ' - - ~ 0 - - ~ 0  2 ' t  3 

409 
2~-44 + 

128683 
+ 1062882 

35363 900781 286302 + 2208503 108504 
+ \6377292 ~ o -  3 - ~  ~ + - i ~  

44105 567 06 _ Z6_49o7) . t8 + . . .  
- 16 

- -  --  9(~ --  302 --  ~ O3 "t4 - + 2-43 ° - 3 

3155 15502 + 

409 
--+2--9-~o- 

8t s~ 
+ "i--~0 )" t6  

105 4 81 5 24306"~.t7 
+-ff-o+q-o+32 j 

(4.4) 
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One thus obtains (at first sight) a family of curves depending on one parameter, 
namely o. In fact, this is not a family of curves; parameter ~ corresponds to a sim- 
ple re-parametrization of a single curve. Considering expansions (4.3) and (4.4), one 
immediately verifies that 

y(C~+2/3 .'c,t) =y (o ,  t / (1  +'C. t ) ) ,  z ( o + 2 / 3  .'c, t) = z(O, t / (1  + z - t ) ) .  (4.5) 

This parameter cs corresponds to transformation t --+ t~ (1 + "c. t), which just amounts to 
changing the shift corresponding to k 3, from (a normalized value) 1 to another value "c: 

1 1 
- - - ~  - + z .  ( 4 . 6 )  
t t 

This means that one does not have a family of curves indexed by ¢J, but rather a single 
curve with a reparametrization parameter cy. Therefore, without any loss of generality, 
one can restrict to a specific value of or, for instance, cy = -2 /9 .  One then obtains 

2 2 2 4 3 67t4 119t5 7031 6 
y = - l + s t + -~ t - - ~  t - ~ -~  + "6--~ + ~ t 

9004 t7 498563 t8 
5 ~  3 1 8 ~  + " "  (4.7) 

and 

2 2 2 4 3 7@9 119 t5 7031 ~6 z = l + ~ t -  + t4+ t 
~t - ~l-t 6561 78732 

9004 ~7 , 498563 t8 
~ t  ± 3 ~  + ' " "  ( 4 . 8 )  

One remarks, for this particular value o = -2 /9 ,  the following relation: 

y(t)  = - z ( - t ) .  (4.9) 

This is a remarkable result. It means that, in order to obtain, order by order, the 
parametrization of the curve, one just needs to find the expansion of an only one func- 
tion y(t)  instead of two (y(t) and z(t)).  The expansion ofy(t) at higher orders can be 
found in the Appendix. This series, which is clearly a divergent series, seems to be 
Borel summable [83]. 

This solution corresponds to one of the three previously mentioned curves, say F1. 
The two other solutions of (4.2) correspond to the following expansions for y(t)  and 
z(t) ,  depending on an only one parameter cY2 or ~3: 

y(O2, t ) = - i + 2 / 3 - t - o 2 ' t  2 (10-3/2~522) . t  3 

( 2 - 2 /3G2-  3c~22 ) 8 1 .  "t3 Z(0"2, t ) = 1 - 4 / 3 t +  ( 2 / 9 +  202)"t 2 + 

_(2\0, + 1/9G2- 3/21J22- 9/2~J23) "t4+ ' " ,  (4.10) 
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and 

-}- ( Z -  1/9133 -- 3/21332-t-9/2(Y33) .t  4 ..1- . . .  
81 

Z(O3,t)--= l-1-213"t--(J3"t2--(~l --3/2(ya2)'t3 
+ ( 7 - ~  + 5/9•3-  9/4Cr33) 't4 + " "  (4.11) 

It is a straightforward calculation to see that these two expansions are nothing but the 
expansion of curve F1 transformed by ke and k~ z. The parameters ~i in (4.10) and 
(4.11) are also just re-parametrization parameters, like G in (4.3) and (4.4). The slopes 
at (y, z) = ( -1 ,  1), corresponding to the three curves Fi, are just the first order term 
in (4.7), (4.10) and (4.11), namely (2/3, 2/3), ( 2 / 3 , - 4 / 3 ) ,  and ( - 4 / 3 ,  2/3). They 
correspond exactly to the three edges of the triangle built from the three confluent fixed 
points of k 3 when e -+ 3. Since the three Fi are on the same footing, let us restrict to F1. 

The expansion corresponding to F1 (see (4.7), (4.8)), actually verifies the exact 
functional equation: 

(y(l--~t)+Y(-t)+4).(y(-t)+ 3) .y(t) 

+(y( - t ) - l ) . (y ( l  t+t)-3.y(-t)-4)=O. (4.I2) 

This equation is obtained from the equality of the y-components of k 3, coming respec- 
tively from (4.1) and from (4.2). Of course one can obtain another similar functional 
equation, deduced from the equality of the z-component of k 3 in (4.1) and (4.2): 

--t 
( ( 1 - y ( - t ) ) . y ( T - - ~ t  ) -y(t)y(-t)-3y(t)+ 2 y ( - t ) -  2) 

x (y(t)y(-t) 2 + 4y(t)y(-t)- 3y(-t)2-4y(-t) + 3y(t) + 7) 

+ (4y(t)y(-t) + 12y(t) - 4 + 4y ( - t ) )  

x ( 2 y ( - t ) -  2 -  3 y ( t ) -  y(t)y(-t)) = O. (4.13) 

One easily verifies that the expansion ofy(t) at higher orders (see Appendix) is actually 
a solution of the two functional equations (4. t2) and (4.13). 

The plots of the orbits of k 3 in the real (y, z)-plane give a very regular "phase por- 
trait" which looks very much like a foliation of the plane in curves [30]. The previous 
expansions (4.3) and (4.4) give some "hint" on only three of these "curves". It would be 
interesting to perform similar calculations for the curves not including the fixed point 
( -  1, 1). This remains to be done. The parametrization of at least three curves Fi, corre- 
sponding to divergent series (4.7), seems to exclude a parametrization in elliptic curves. 
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Actually, using the method well-suited for two-dimensional rational transformations in- 
troduced in [30], we have not been able to find any algebraic invariant corresponding to 
a possible linear pencil of this very regular foliation. This seems to correspond exactly 
to the notion of non-algebraic integrabili@ 9 developexl by Rerikh [76]. 

In fact, complexity growth calculations, performed for this e = 3 case, do show [4] 
the same value for the complexity growth ~, namely, 1.61803 .... than for the other 
generic values of e. The system is actually chaotic for e = 3 even if its restriction 
to the real (y, z)-plane is extremely regular (and then the "real" topological entropy is 
zero [4]). The corresponding "function", which gives "nice real curves", corresponds to 
a divergent series which is quite "monstrous" in the non-real (complex) plane. This kind 
of "function" is compatible with the picture of the Vague Attractor of Kolmogorov (see 
the VAK in [5] or the Nested KAM tori [44, p. 441]) together with the occurrence of a 
nice curve in real space. The occurrence of such divergent series solves the "paradox" 
of the compatibility between a regularity of the (real) phase portrait with a chaotic 
(complex) dynamics (complexity growth % ~ 1.61803... ). 

This example shows that simple functional equations yielding curves may be even 
foliation in curves, for real values of the variables, are actually compatible with a 
chaotic dynamical system. 

5. Conclusion 

We have seen that many functional equations, despite their occurrence in very different 
domains of mathematical physics, often share some common features. One feature is 
the key role played by some involutions 2° (namely, matrix inversion M --+ M -1 , some 
"hidden inversion" for staircase polygons generating functions (2.25), t -+ l i t  for zeta 
functions, etc.). Another feature of these functional equations is often the possible 
representation of the generating functions as determinants (partition function of the 
3 - D Zamolodchikov model [ 18, 21,22], dynamical zeta function expressed as ratio of 
det(1 - t .A), etc.). 

Naively, obtaining a functional equation is so constraining that one just needs a 
"small piece" of additional information (analyticity properties, etc.) to obtain the func- 
tion that one seeks. Enumerative combinatorics, or lattice statistical mechanics, are 
typical domains where the "missing information" is "small" (see (2.5), (2.8), or (2.20)). 
In fact, in contrast with differential equations or PDE's, functional equations allow a 
much larger set of solutions, these solutions being characterized by extremely compli- 
cated analytical behaviors (see [91 ], or the resurgent functions 21 of Ecalle [47]). 

In fact, this question of the "amount of constraint", corresponding to functional 
equations, will receive completely different answers, according to the various frame- 
works one considers. It is clear that, in the most general framework, the answer to such 
a question is hopeless. This is the reason why, at the beginning of this paper, we re- 
stricted our preliminary review on functional equations to those associated with (gener- 

19 Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type has been 
addressed by Rerikh [76]. 

2o Or even finite order transformations. 

21 After all, resurgent functions are not, in general, a very constrained set of functions. On the contrary, 
they form a rather "soft" framework. 
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ically infinite discrete) groups 22. Even in a restricted framework of  Abelian groups (up 
to semi-direct products by finite groups, etc.), one does need to discriminate between 
functional equations bearing on functions of  several complex variables on one side, and 
on functions of  one complex variable on the other. Heuristically, the solutions of  func- 
tional equations bearing on functions of  several complex variables can be understood as 
generalizations, to several complex variables, of automorphic functions. Unfortunately, 
almost nothing is known of the analyticity properties of  such functions (multivalued 
functions with an infinite valuation; see [58]). The analyticity properties of  the solu- 
tions can only be taken into account, in a proper way, when restricting to functional 
equations bearing on functions of  one complex variable associated with an infinite dis- 
crete Abelian 23 group. In this last case, considering simple discrete dynamical systems, 
we have seen that it is also necessary, among the functional equation solutions, to make 
a clear distinction between the analyticity properties of  functions of  one complex vari- 
able and the analyticity properties of  functions of one real variable. 

Actually, discrete dynamical systems, in particular the iteration of simple birational 
transformations (originating from lattice statistical mechanics), are a well-suited frame- 
work to address all these questions. Roughly speaking, one naturally segregates the 
occurrence of functional equations in the following two situations: Either one has a 
polynomial growth of the iteration calculations (~ = 1) and the transformations consid- 
ered are basically a shift on an Abelian variety (see [31, Figure 2]), often an elliptic 
curve (but one may even have Painlev6-1ike objects, with probably more involved "tra- 
jectories" on the Abelian varieties than a shift), or the complexity )~ is greater than 1 
and one has a chaotic situation. In the first polynomial growth domain, the analyticity 
properties are clear and the occurrence of  functional equations are often closely related 
to relations on Abelian varieties [66]. 

Conversely, chaotic systems can certainly correspond to functional equations 24 but 
one does not expect, at first sight, any "nice functional equations" yielding curves for 
instance. In fact, as it has been seen, with the example (4.1) associated with e = 3, a 
chaotic system does not rule out the existence of curves (at least in the real domain) 
associated with an exact functional equation (see (4.12)). For instance, the "price to 
pay" is just that the curves will only be defined for real values of the variables, the 
series associated with these curves, being divergent series. 

22 Or semigroups, e.g., x ~ x 2, or x ~ x 3, . . . .  Most of our examples are associated with infinite discrete 
groups generated by two involutions (infinite dihedral group) with an obvious shift symmetry: u ~ u + ~ or 
0 --4 0 + 7~, Examples with more than two involutions are also considered. 

23 Up to semidirect products by finite groups. 
24 For instance, if the functional equation identifies with the chaotic iteration one considers, but this yields 

fractal-like objects. 
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A. The Expansion ofy(t)  for the e = 3 Case 

At higher orders: 

2 2 2 _ ~ t t 3  _ 67 t4 119 t5 7031 9004 .7 498563 .8 y(t)=-l+~t+~t ~ +6---~ + ~  t6 ~ '  3188646 t 

4012423 t9 9273016087 tl 0 _  65639286071 11 _ 3919438859951 12 
+ 133923132 ÷ 21695547384 781039705824 t 2343119117472 t 

58702493381929 tl 3 36954492298242887.14 29678390079829930915 
+ 173976594472296 + ~ t  - 162842092426069056 L 

106891623613765749629916, 352141168413421096564917 
~ . t  ± 276994399216743464256.t 

873169015196420150636423tls 63608026457130368941111487t19 

1661966395300460785536 572131931582183625420768 

153262556077398234892492926167 2o 
t 

27462332715944814020196864 

248638175527746765408018424108121 
q t 

2087137286411805865534961664 

132736579097260552611348063340597t22 

1857781540652266759432218624 

4809337322739099418205059004605277 23 
t 

313254752134101333288967922688 

34666340109953257893099809606832084623 24 
t 

31951984717678335995474728114176 

51145774987456210637000437263820857362299t25 

218264007606460713185087867747936256 

50495777020773376116907497144298407135656551t26 + . . . .  (A.1) 
2619168091277528558221054412975235072 

One remarks that the numerators of the coefficients in this expansion often factorize 
in fairly large prime numbers (in contrast with the denominators). For instance, the nu- 
merator of the coefficient of t 2° factorizes into the product of 103116049, 33170617930 
7969 and 4480807. The coefficient of t 26 factorizes into the product of 5417, 183088852 
209431303, and 50913660439290187318201. This function can thus be seen to pro- 
duce large prime numbers. 

One verifies easily that this expansion satisfies, order by order, the functional equa- 
tions (4.12) and (4.13). 
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