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Abstract
We discuss the implications of studies of partition function zeros and equimodular 
curves for the analytic properties of the Ising model on a square lattice in a 
magnetic field. In particular we consider the dense set of singularities in the 
susceptibility of the Ising model at H = 0 found by Nickel and its relation to 
the analyticity of the field theory computations of Fonseca and Zamolodchikov.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

The magnetic susceptibility at H = 0 of the two dimensional Ising model on a square lattice 
was shown in 1999 by Nickel [1, 2] to have the remarkable (and unexpected) property that as 
a function of a complex temperature variable there is a dense set of singularities7 at the locus 
of the zeros of the H = 0 partition function of the finite size lattice.
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7 The emergence of an accumulation of singularities had already been seen on resummed series expansions of 
anisotropic Ising models [3]. Here we restrict our study to the isotropic Ising model in a magnetic field.
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On the other hand in 2003 Fonseca and Zamolodchikov [4] presented a compelling sce-
nario, since supported by extensive numerical studies [5, 6], for the behavior of the Ising 
model in a magnetic field in the scaling field theory limit which assumes analyticity at the 
locus of singularities.

The compatibility of these two approaches is an open question which needs to be understood.
In this paper we investigate this compatibility by means of studying the dependence on the 

magnetic field of the temperature zeros of the finite size partition function and of the equi-
modular curves of the corresponding transfer matrix. This will use and extend the work of [7]. 
It would be highly desirable to treat these questions of analyticity by rigorous mathematical 
methods but, somewhat surprisingly, we will see that the needed tools do not seem to exist.

In section 2 we give a precise formulation of the problem. The partition function zeros 
are studied in section 3 and the transfer matrix eigenvalues in section 4. In section 5 we use 
these studies to formulate an interpretation which reconciles the singularities of Nickel with 
the analyticity of Fonseca and Zamolodchikov. Our conclusions are summarized in section 6.

2.  Formulation

The isotropic two dimensional Ising model on a square lattice in the presence of a magnetic 
field is defined by the interaction energy

E = −
∑

j,k

(Eσj,kσj+1,k + Eσj,kσj,k+1 + Hσj,k)

�

(1)

where σj,k = ±1 is the spin at row j and column k and the sum is over all spins in a lattice of 
Lv rows and Lh columns with either cylindrical or toroidal boundary conditions or the bound-
ary conditions of Brascamp–Kunz [8] where on a finite cylinder (with periodic boundary 
conditions in the Lh direction) one end interacts with a fixed row of up spins and the other end 
interacts with an alternating row of up and down spins with Lh is even.

The partition function on the Lv × Lh lattice at temperature T is defined as

ZLv,Lh =
∑
σ=±1

e−βE
� (2)

where β = 1/kBT  (with kB being Boltzmann’s constant). ZLv,Lh is a polynomial in the vari-
ables u = e−2E/kBT and x = e−2H/kBT . However, we note that for appropriate boundary condi-
tions including Brascamp–Kunz [8] and toriodal (but not cylindrical) the dependence is only 
on u2. The thermodynamic limit is the limit where Lv, Lh → ∞ with Lv/Lh  fixed away from 
zero and infinity. The free energy is defined in the thermodynamic limit as

−F/kBT = lim
Lv,Lh→∞

1
LvLh

ln ZLv,Lh .� (3)

At H = 0 the free energy of the Ising model is [9]

−F/kBT =
1
2
ln(2s) +

1
8π2

∫ π

−π

dθ1

∫ π

−π

dθ2 ln(s + s−1 − cos θ1 − cos θ2)

� (4)
where

s = sinh(2E/kBT) =
u−1 − u

2
.� (5)
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This integral has a singularity at a temperature Tc such that sc = ±1, where negative s implies 
that E is negative and hence that the system is antiferromagnetic.

For H = 0 the zeros of the partition function accumulate in the thermodynamic limit on 
the circle

|s| = 1� (6)

which in terms of the variable u becomes the two circles

u = ±1 + 21/2eiθ with 0 � θ < 2π� (7)

and the ferromagnetic (antiferromagnetic) critical temperatures are given by

uc =
√

2 − 1 ferromagnetic, uc =
√

2 + 1 antiferromagnetic.� (8)

For Brascamp–Kunz boundary conditions all the zeros of the partition function for H = 0 are 
exactly on the unit circle at the positions

s + s−1 = cos
(2n − 1)π

Lh
+ cos

mπ

Lv + 1
� (9)

with 1 � n � Lh/2, 1 � m � Lv, and Lh even.
The magnetic susceptibility is given as the second derivative of the free energy with respect 

to H as

χ =
∂M(H)

∂H
= kBT

∂2 ln Z
∂H2 .� (10)

In 1999/2000 Nickel [1, 2] discovered that in the thermodynamic limit for both T < Tc and 
T > Tc the susceptibility has an infinite number of singularities on the circle |s| = 1 at

sj + s−1
j = cos(2πm/j) + cos(2πn/j)� (11)

where

0 � m, n � j − 1 with m = n = 0 excluded.� (12)

Here j is a positive integer which is odd for T > Tc and the singularity at sj is proportional to

ε2j( j−1)−1 ln ε� (13)

where ε = s − sj . For T < Tc the integer j is even and the singularity at sj is proportional to

ε2j2−3/2.� (14)

3.  Partition function zeros

The partition function depends on the two variables x and u and in principle should be con-
sidered as a polynomial in two variables. However, here we will consider the dependence on 
x and u separately and not jointly.

3.1.  Dependence on x

The earliest study of partition function zeros is for zeros in the plane of x = e−2H/kBT  for fixed 
values of u = e−2E/kBT  where for ferromagnetic interactions E > 0 and for free, toroidal or 
cylindrical boundary conditions Lee and Yang [10] proved that the zeros all lie on the unit 
circle |x| = 1

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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ZLv,Lh(x) = x−N/2
N∏

n=1

(x − eiθ(N)
n )� (15)

where N = LvLh and θ(N)
n  is real and satisfies

θ(N)
n = −θ

(N)
N−n� (16)

and we note that ZLv,Lh(x) = ZLv,Lh(x
−1). For T < Tc, where 0 � u <

√
2 − 1, the zeros lie on 

the entire circle |x| = 1 and for T > Tc, where 
√

2 − 1 < u � 1, the zeros lie on an arc x = eiθ 
where 0 < θLY � θ � 2π − θLY .

There have been several numerical studies [11–13] of these zeros and these studies are all 
consistent with the limiting statement that, numbering the zeros as an increasing sequence θ(N)

n  
for 1 � n � N  the limit

lim
N→∞

N(θ
(N)
n+1 − θ(N)

n )� (17)

exists and is non zero. This allows us to define a density for θ̄(N)
n = (θ

(N)
n + θ

(N)
n+1)/2 as

D(θ̄n) = lim
N→∞

1

N(θ
(N)
n+1 − θ

(N)
n )

� (18)

and for T > Tc this density diverges as θ → θLY  and θ → 2π − θLY .
Unfortunately, there are no mathematical proofs for these empirical statements. For exam-

ple there is no proof that the density defined by (18) exists and even if it does exist the only 
thing we know about its properties are the values at θ = 0 [14] and π [10, 15] where for all 
0 � T < ∞

D(π) =

[
(1 + u2)2

1 − u2 (1 + 6u2 + u4)−1/2
]1/4

� (19)

and

D(0) = 0 for T > Tc, D(0) =
[

1 + u2

(1 − u2)2 (1 − 6u2 + u4)1/2
]1/4

for T < Tc.

� (20)
It is very tempting to write the free energy as an integral over the density D(θ) using

ZLv,Lh(x) = x−N/2
N∏

n=1

(x − eiθ(N)
n ) = x−N/2 exp

N∑
n=1

ln(x − eiθ(N)
n )� (21)

so that

F/kBT = − lim
LvLh→∞

1
LvLh

ln ZLv,Lh(x)

=
1
2
ln x − 1

2π

∫ 2π−θLY

θLY

dθD(θ) ln(x − eiθ)

� (22)

where (2π)−1
∫ 2π−θLY

θLY
dθD(θ) = 1. This expression for the free energy is analytic for 

|x| �= 1. Furthermore it is universally assumed that on |x| = 1 the only singularities are at 
x = eiθLY , ei(2π−θLY) for T > Tc and at x = 1 for T < Tc [16] and the free energy can be ana-
lytically continued through the arc of zeros on |x| = 1. This is called the ‘standard analyticity 
assumptions’ in [4]. However, there is absolutely no proof of these assumptions of analyticity.

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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3.2.  Dependence on u at H = 0 (x = 1)

The dependence of the partition function on u for arbitrary fixed x is far more complicated 
than the dependence on x for fixed u. In particular the zeros in the u plane will not in general 
lie on curves but can fill up areas. The one exceptional case where the zeros for the finite lat-
tice do lie on curves is when for H = 0 the lattice has Brascamp–Kunz boundary conditions. 
We plot these zeros using (9) in figure 1 for the 20 × 20 lattice in both the s and the u variable.

Unlike the case of the Lee–Yang zeros in the variable x the zeros in neither the s nor the 
u plane have the regular 1/N  spacing such that a limiting density defined like (18) exists. 
Nevertheless Lu and Wu [17] write the free energy at H = 0 in the form

−F/kT =
1
2
ln(4s) +

∫ 2π

0
dαg(α) ln(s − eiα)� (23)

where they ‘define’ the density g(α) by saying that the number of zeros in the interval 

[α,α+ dα] is LvLhg(α)dα with 
∫ 2π

0 dαg(α) = 1.
This is, of course, a vague statement and is certainly not the same as (18). Then from the 

two dimensional integral (4) Lu and Wu (and not from the formula for zeros) find

g(α) =
| sinα|
π2 K(sinα)� (24)

where

K(k) =
∫ π/2

0
dt(1 − k2 sin2 t)−1/2� (25)

is the complete elliptic integral of the first kind. We plot this density in figure 2.

3.3.  Definitions of the density of zeros

In order to recover the result (24) of [17] for g(α) from the partition function zeros of (9) we 
need to be more precise in the definition of density of zeros. There are two slightly different 
ways to proceed. We can either divide the circle s = eiα into a set of intervals of equal size and 
count the number of zeros in each interval or we can compute the size of an interval needed to 
contain exactly a fixed number of zeros. We here adopt the second method which generalizes 
(18) by defining

g(α; a) = lim
N→∞

g(α(N)
j ; a)N� (26)

where

g(α(N); a)N =
a

N(α
(N)
j+a − α

(N)
j )

with a = [cN p].� (27)

where [x] denotes the integer part of x. If p = 0 and c = 1 we recover the density definition 
(18). If the limit exists for some p0 < 1 it will continue to exist for p > p0. The quantity p0 
can be called the scale for which the density exists.

We examine the existence of these limits for the Brascamp–Kunz zeros on the L × L lat-
tice where N is proportional to L2. In figure 3 we compare for the 20 × 20 and 100 × 100 
lattices the scale dependent densities for a = 1, a = [L1/2] and a = L = N1/2. We see for 
a = 1 and a = [L1/2] that the limit does not appear to exist but the limit does seem to exist for 

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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a = L = N1/2. Further studies reveal that the limit does not exist for 0 � p < 1/2 but does 
exist for 1/2 < p < 1. However, we have no analytic proof of these numerical observations.

3.4.  Dependence on u for H > 0

When H > 0 the free energy is no longer invariant under E → −E (ie. ferromagn
etic  →  antiferromagnetic). However, for Brascamp–Kunz boundary conditions the partition 

Figure 1.  Zeros of the isotropic Ising model partition function at H = 0 (x = 1) with 
Brascamp–Kunz boundary conditions for the 20 × 20 lattice. The full s plane is plotted 
on the left. On the right the zeros are plotted in the u plane; the zeros are on the two 
circles u = ±1 + 21/2eiθ and only the first quadrant is shown.

Figure 2.  The density g(α) of Lu and Wu [17].

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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Figure 3.  Plots of the scale dependent density g(α; a)N  for the Brascamp–Kunz zeros 
as a function of the angle α/π  for the 20 × 20 lattice on the left and the 100 × 100 
lattice on the right. In the first row a = 1, in the second row a = [L1/2] and in the third 
row a = L = N1/2. This limiting density (24) of [17] is shown in red.

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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function does remain symmetric under u → −u and hence is a polynomial in u2. In addition, as 
the magnetic field H increases the zeros in the u2 plane move to infinity as x = e−2H/kBT → 0 
so instead of u2 we consider the rescaled variable

y = u2x1/2.� (28)

We plot the zeros of the Ising partition function with Brascamp–Kunz boundary conditions 
on the 22 × 22 lattice for several values of x8 in figure 4. These extend the earlier work of 
Matveev and Shrock [20] on 7 × 8 lattices with helical boundary conditions and Kim [21] on 
14 × 14 lattices with cylindrical boundary conditions.

It is quite clear from these plots that as H → ∞ (x → 0) the zeros become symmetric 
under y → −y. This limiting case of the Ising model on the isotropic square lattice is the hard 
square system at fugacity

z = y2� (29)

which has been studied in [7] for cylindrical boundary conditions on the 40 × 40 lattice. We 
plot these zeros in figure 5 along with the similar plot for hard hexagons on the 39 × 39 lattice 
for comparison.

It is strikingly obvious that as H increases from zero that the inner and outer loops in 
figure 4 behave in drastically different ways. The inner loop in figure 4 which separates the 
disordered from the ferromagnetic ordered phase smoothly becomes the line −1 � z � zd of 
hard squares whereas the outer loop does not remain a curve and spreads out into a two dimen-
sional area. These two regions must be treated separately.

3.5. The inner loop zeros

To study the inner loop zeros in more detail we plot them on an expanded scale in figure 6 for 
a 22 × 22 lattice.

These plots make it abundantly clear that there is a sharp change in behavior which sets in 
as soon as H is increased from zero and that this transition has been completed for x < 0.95. 
In the region 0.95 � x < 1 the deviations from a smooth curve become sufficiently large that 
a one dimensional density formula becomes inappropriate. Furthermore it is likely that the 
structure in this region will change with increasing lattice size. However, for x < 0.95 the 
locus of zeros has become quite smooth and we can consider a density function

D(yj) =
1

N|yj+1 − yj|� (30)

where yj is the position of the jth  zero as measured from the endpoint on the right and N is the 
number of zeros on the inner loop. We plot this density in figure 7 versus the index j.

For x > 0.90 it is clear from figure 7 that the nearest neighbor density is not smooth for 
L = 22. This connects with the behavior already seen for H = 0. However, for x � 0.8 the 
nearest neighbor density is very smooth except at the rightmost end and the spacing of zeros 
behaves for large N as 1/N  which is what was observed for hard squares and hexagons in [7].

Universality suggests that for sufficiently large N the density at the right-hand endpoint 
should diverge for all x < 1. This is more or less seen qualitatively in figure 7 for x < 0.5 and 
in the hard square limit an exponent of 1/6 was estimated in [7] from the data of the 40 × 40 

8 The partition function for a given value of x is after multiplication by an appropriate constant a polynomial in u 
with integer coefficients. The zeros of the partition function can then be calculated numerically (to any desired  
accuracy) using root finders such as MPSolve [18] or Eigensolve [19].

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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Figure 4.  Brascamp–Kunz zeros in the plane y = u2x1/2  on the 22 × 22 lattice for 
values of x = 0.99, 0.90, 0.50, 0.10, 0.01, 0.0001.

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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lattice. However, it is not possible to extract an accurate exponent of divergence from the data 
shown in figure 7.

3.6.  Outer loop zeros

The zeros on the outer loop behave very differently from the inner loop zeros. Instead of the 
zeros of H = 0 changing their spacing to the density function (30) the zeros have spread out 
into an area which grows as H increases. It may be conjectured that this spreading into an area 
happens for the entire outer loop but for any finite size lattice there will always be a region 
near the real axis where this effect cannot be resolved.

3.7. Toroidal and cylindrical boundary conditions

In order to better understand the role on boundary conditions we plot the zeros as a function 
of H in the y = ux1/4  plane for toroidal boundary conditions on the 16 × 17 lattice in figure 8 
and for cylindrical boundary conditions of the 20 × 20 lattice in figure 9.

For cylindrical boundary conditions the exact partition function on the finite lattice was 
computed in 1967 [22]. In contrast with Brascamp–Kunz boundary conditions the zeros are 
not symmetric under u → −u and at u = −1 the L × L lattice has an L fold zero. The total 
number of zeros is 2L2 − L.

As H increases from H = 0 the L fold zero at u = −1 of the L × L lattice becomes L zeros 
on the negative axis which for L even are in closely spaced pairs. As H is increased the pairs 
coalesce and become complex conjugate pairs. For sufficiently large H they are all complex. 
However, the imaginary part is sufficiently small that in the plots they appear to be on the 
negative axis.

When x is sufficiently small the three groups of L zeros each tend to infinity at angles 
π, ± π/3. This has previously been seen in [21]. We have no explanation for this phenom
enon. The remaining 2L2 − L − 3L  zeros have a 4-fold symmetry (for L even) at x → 0.

Figure 5.  Comparison in the complex fugacity plane z of the zeros of the partition 
function with cylindrical boundary of hard squares on the 40 × 40 lattice to hard 
hexagons on the 39 × 39 lattice taken from figure 2 of [7].

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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Figure 6.  Partition function zeros for the 22 × 22 lattice with Brascamp–Kunz 
boundary conditions on the inner loop in the plane y = u2x1/2  for x = 1.0, 0.99, 
0.98, 0.95. 0.90, 0.80.

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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Figure 7.  The nearest neighbor density of zeros (30) of the 22 × 22 lattice with  
Brascamp–Kunz boundary conditions in the plane y = u2x1/2  for x = 0.94, 0.90,
0.80, 0.50, 0.10, 0.01 versus the the index j .

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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Figure 8.  The zeros in the plane of y = ux1/4  for the 16 × 17 lattice with toroidal 
boundary conditions for x = 1.0, 0.9, 0.5, 0.1, 0.01, 0.001.

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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Figure 9.  The zeros in the y = ux1/4  plane for the 20 × 20 lattice with cylindrical 
boundary conditions for x = 1.0, 0.5, 0.1, 0.01, 0.001, 0.0001, 0.000 01, 0.000 001.

M Assis et alJ. Phys. A: Math. Theor. 50 (2017) 365203
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4. Transfer matrix eigenvalues

An alternative method to compute partition functions is to define a (row to row) transfer 
matrix on the Lv × Lh lattice of size 2Lh × 2Lh. We denote by TC(Lh) the transfer matrix with 
periodic boundary conditions in the Lh direction and by TF(Lh) the transfer matrix with free 
boundary conditions in the Lh direction.

In 1949 Kaufman [23] computed all eigenvalues of TC(Lh) and found that there are two sets

λ+ =

Lh−1∏
n=0

e±γ2n+1 λ− =

Lh−1∏
n=0

e±γ2n� (31)

with

e±γm = s + s−1 − cosφm ±
(
(s + s−1 − cosφm)

2 − 1
)1/2

� (32)

where φm = πm/Lh and there must be an even number of minus signs. Each set of eigenvalues 
contains 2Lh−1 eigenvalues.

For all γm  for m �= 0 the square roots are defined as positive for 0 < T < Tc (1 < s < ∞).
For |s| = 1 and all φm such that (s + s−1 − cosφm)

2 < 1 the modulus of e±γm is unity and 
thus many eigenvalues on the circle |s| = 1 will have the same modulus.

For γ0 a factorization occurs under the square root and

eγ0 = s + s−1 − 1 + (s − 1)(s−2 + 1)1/2� (33)

So γ0 is positive for s > 1 and negative for s < 1. For T = Tc we have s = 1 and γ0 = 0.
There are four constructions of partition functions from these transfer matrices.

	 •	Lv periodic, Lh periodic

ZCC
Lv,Lh

= TrTC(Lh)
Lv =

∑
k

λLv
C;k(Lh),� (34)

	 •	Lv periodic, Lh free

ZCF
Lv,Lh

= TrTF(Lh)
Lv =

∑
k

λLv
F;k(Lh)� (35)

	 •	Lv free, Lh periodic

ZFC
Lv,Lh

= v · TLv−1
C (Lh)v

′ =
∑

k

v · vkλ
Lv−1
C;k vk · v′

� (36)

	 •	Lv free, Lh free

ZFF
Lv,Lh

= v · TLv−1
F (Lh)v

′ =
∑

k

v · vkλ
Lv−1
F;k vk · v′

� (37)

where λC;k and λF;k are eigenvalues, v and v′ are suitable boundary vectors and vk are the 
eigenvectors.

It is obvious by symmetry that ZCF
Lh,Lv

= ZFC
Lv,Lh

 and thus the explicit results of 1967 for ZFC
Lv,Lh

 
must be obtainable from the eigenvalues of TF(Lh) but the eigenvalues of TF(Lh) have never 
been computed. Clearly something is missing.
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4.1.  Equimodular curves

The Ising model at H = 0 and H/kbT = iπ/2 are the only models where the finite size 
partition function (at arbitrary size) has ever been computed from the transfer matrix eigen-
values. For all other models when there is one eigenvalue λmax that is dominant (i.e. of 
maximum modulus) on the finite lattice the free energy per site in the thermodynamic limit 
is computed as

−F/kT = lim
Lh→∞

lim
Lv→∞

1
LvLh

lnλLv
max(Lh).� (38)

However an eigenvalue which is dominant in one portion of the u = e−2E/kT  plane will not, 
in general, be dominant in all parts of the plane. The places where two or more eigenvalues 
have the same modulus form equimodular curves and can separate the complex u plane into 
many distinct regions.

When there are only two equimodular eigenvalues λ1(Lh) and λ2(Lh) on the equimodular 
curve and there are periodic boundary conditions in the Lv direction we can approximate the 
partition function near the curve as

ZLv,Lh ∼ λ1(Lh)
Lv + λ2(Lh)

Lv� (39)

and thus for fixed Lh as Lv → ∞ there will be a smooth distribution of zeros with a spacing 
of 1/Lv and a density determined by the phase difference between the two eigenvalues [7].

For free boundary conditions we have

ZLv,Lh ∼ c1λ1(Lh)
Lv + c2λ2(Lh)

Lv� (40)

where cj = (v · vj)(vj · v′)
When there are only two equimodular eigenvalues this relation for zeros is sufficient for 

partition functions computed by first taking Lv → ∞ and then taking Lh → ∞ so that the 
aspect ratio Lh/Lv  vanishes. For thermodynamics to be valid the free energy must be inde-
pendent of aspect ratio as long as 0 < Lh/Lv < ∞.

4.2.  Equimodular curves for TC(Lh) at H = 0

For the Ising model at H = 0 the equimodular curves of the transfer matrix TC(Lh) can be 
numerically computed from the eigenvalues (31) and (32) of Kaufman [23] where we note that 
the corresponding momentum is

P =
∑

m

φm (mod 2π).� (41)

We plot these curves in the complex u plane in figures 10 and 11 for Lh = 8, 10, 12.
These curves have the following striking properties:

	 (i)	All eigenvalues are equimodular at u = ±i.
	(ii)	The equimodular curves in the u plane of the eigenvalues λ+ and the eigenvalues λ− 

are segments of the two circles u = ±1 + 21/2eiθ which is the curve on which there are 
Brascamp–Kunz zeros.

	(iii)	On most of the segments of this curve there are more than two equimodular eigenvalues.
	(iv)	The equimodular curves formed by one eigenvalue λ+ and one λ− do not lie on the curve 

of Brascamp–Kunz zeros.
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The multiple degeneracies on the equimodular curves destroy the mechanism for a smooth 
density of zeros of the Lv = Lh = L lattice with a 1/L2 spacing. The mechanism which changes 
the scale of smooth zeros from 1/L2 to 1/L seen in section 3.3 is not understood.

Figure 10.  The equimodular curves in the u plane for TC(Lh) for Lh = 8. On the left 
all eigenvalues are considered and on the right the restriction to the momentum sector 
P = 0 is made. The sectors where λ+ is dominant is marked by + and the sector 
where λ− is dominant is marked by a circle. The multiplicity of the crossings on the 
curves are indicated by colors. On left panel:red  =  2, green  =  3, black  =  4, blue  =  8, 
yellow  =  16, purple  =  32, brown  =  64 On right panel: red  =  2, green  =  4, blue  =  8, 
brown  =  3, black  =  9.

Figure 11.  The equimodular curves in the u plane for TC(Lh) at P = 0 for Lh = 10 on 
the left and 12 on the right. Red indicates a multiplicity of 2, green of 4 and blue of 8. 
For L = 10 the sequence of multiplicities on the upper (antiferromagnetic) sequence 
(increasing towards u = i) is 2, 4, 8, 4, 18, 24 and the lower (ferromagnetic) sequence 
2, 2, 4,4, 8, 8, 18, 28. For L = 12 the upper sequence 2, 4, 8, 2, 18, 18, 52, 84 and the 
lower sequence is 2, 2, 4, 4, 8, 8, 18, 26, 52, 88.
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4.3.  u plane eigenvalues for x = 0.99

When H is increased from H = 0 the transfer matrix eigenvalues have been computed numer
ically. In figure  12 we plot the equimodular curves for all eigenvalues for x = 0.99. (We 
note that the curves extending from the upper branch to infinity are also present for H = 0 
but are not seen in figure 10 because in that figure  the imaginary part of u is restricted to 
0 � Im(u) � 1.)

By comparing figures 12 with 10 and 11 we see that several dramatic phenomena occur 
for H > 0.

	 (i)	For H > 0 the rays to the imaginary axis very rapidly retreat into the curve of the 
Brascamp–Kunz zeros. This is caused by the lifting of the near degeneracy of eigenvalues 
in the λ+ and λ− subspaces of H = 0. The larger Lh the more rapid the retreat.

	(ii)	The rays to infinity separate regions of P = 0 and P = π  and are virtually unchanged for 
H > 0.

	(iii)	The multiple degeneracies disappear. For momenta P = 0,π  the eigenvalues are singlets 
for P �= 0, π the momenta ±P are doubly degenerate. In figure 12 all singlet-doublet and 
doublet–doublet curves enclose regions where the dominant eigenvalue has P �= 0,π  but 
for x = 0.99 some of the regions are too small to be observed as areas.

In figure 13 we plot for Lh = 8 the region near u = i in more detail. Thus far eigenvalues 
for Lh � 10 have not been computed for the case H �= 0.

5.  An interpretation

It is very clear, both from the behavior of the partition function zeros and the degeneracy of the 
equimodular curves, that there is a drastic qualitative difference between H = 0 and H �= 0. 
We conjecture here an interpretation of the singularities (11) found by Nickel [1, 2] based on 
this behavior. The argument is substantially different for the inner (ferromagnetic) and outer 
(antiferromagnetic) loops in the u plane. Naturally conjectures concerning analyticity based 
solely on finite size computations can only be suggestive.

Figure 12.  Equimodular curves in the u plane for x = 0.99 of TC(Lh) for Lh = 6 on the 
left and Lh = 8 on the right. Red is for singlet–singlet crossings, green is for singlet-
doublet and blue is for doublet–doublet.
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5.1.  Scenario on the ferromagnetic loop

We conjecture that on the ferromagnetic loop for H > 0 the zeros approach a curve as 
LhLv = N → ∞ and that for sufficiently large N and fixed H �= 0 the limit

lim
N→∞

N(uj+1 − uj) < ∞� (42)

exists. However, this cannot be uniform in H and thus the limits H → 0 and N → ∞ will 
not commute. For both H = 0 and H �= 0 the free energy is analytic at the locus of zeros. 
However, for H �= 0 the analytic continuation beyond the zero locus encounters many singu-
larities which accumulate in the limit H → 0 to the singularities of Nickel (11). The location 
(and nature) of these singularities is different if the continuation is from the interior (low 
temperature) or exterior (high temperature) of the loop. The amplitude of the singularities 
vanishes as H  2 at H → 0 and hence the analyticity of the free energy at H = 0 is maintained.

In this scenario the singularities in the susceptibility at |s| = 1 occur because taking two 
derivatives with respect to H kills the H2 in the amplitude of the singularities but does not 
move the locations.

It can be argued that the non-integrability of the Ising model at H �= 0 is caused by these 
singularities in the analytic continuation beyond the locus of zeros. Nevertheless, there are no 
singularities on the locus of zeros except at the endpoints. The singularity at the endpoint is 
expected [7] to have the same behavior as the endpoint behavior of hard squares, hard hexa-
gons and the Lee–Yang edge.

Figure 13.  Equimodular curves in the u plane for x = 0.99 expanded near u = i for 
Tc(Lh) with Lh = 8. Red is for singlet–singlet crossings, green is for singlet-doublet 
and blue is for doublet–doublet.
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We may now make contact with the scenario of Fonseca and Zamolodchikov [4] who 
assume that in the field theory limit the free energy may be continued far beyond the locus of 
zeros. The field theory limit is defined by T → Tc and H → 0 such that

τ = (T − Tc)H−8/15� (43)

is fixed of order one. In terms of this scaled variable Fonseca and Zamolodchikov posit that 
there is analyticity across the locus of zeros and that there is an extensive region of analyticity 
in the analytically continued free energy which sees none of the singularities which, in this 
interpretation, produce the singularities of Nickel. The analyticity of [4] will be consistent 
with our scenario if the singularities which approach the point u =

√
2 − 1 as H → 0 is slower 

than the scaling H8/15. If this is indeed the case then there is no contradiction between the field 
theory computations of [4] and the singularities of [1, 2].

5.2.  Scenario on the antiferromagnetic loop

The behavior on the antiferromagnetic loop is quite different from the behavior on the ferro-
magnetic loop because now the zeros spread out into areas for H �= 0. Moreover the pinching 
of the zeros at the antiferromagnetic singularity at u =

√
2 + 1 remains a pinch for all values 

of x and furthermore the singularity in the free energy in the hard square limit is numerically 
estimated from high density series expansions [24, 25] to be the same as the logarithmic sin-
gularity at Tc of the antiferromagnetic Ising model at H = 0.

The zeros in figures 4 and 5 do appear to be smoothly spaced in a two dimensional region 
so from this point of view the distribution of zeros which for H = 0 was studied in section 3.3 
has moved smoothly from the circle to an area in the plane. There is, unfortunately, not suf-
ficient data to conjecture the behavior where the zeros in the N → ∞ limit pinch the positive 
u axis. Even in the hard square limit it cannot be concluded from figure 5 if the zeros pinch as 
a curve, as a cusp with an opening angle of zero or as a wedge with a nonzero opening angle. 
The field theory argument of [4] does not extend to the hard square limit and it is not obvious 
how to consider analytic continuation into an area of zeros.

The second feature which needs an explanation is the approach of the zeros to the hard 
square limit in both figure 4 for Brascamp–Kunz boundary condition in the y = u2x1/2  plane 
and in figures 9 and 8 for cylindrical and toroidal boundary conditions in the y = ux1/4  plane. 
Namely the emergence of the 2 fold symmetry for Brascamp–Kunz and the 4 fold symmetry 
for cylindrical and toroidal boundary conditions. For all boundary conditions new points of 
singularity are created in the complex y plane as H is increased, which in the hard square limit 
become identical with the singularity on the positive y axis. The mechanism for the creation 
of these new points of singularity is completely unknown.

5.3. The bifurcation points

However, perhaps the most striking feature of the zeros is the existence of the special points 
where the one dimensional locus bifurcates into the two dimensional area. It is the existence of 
these points which allows us to use the terms ferromagnetic and antiferromagnetic branch. At 
H = 0 these points are at u = ±i where all eigenvalues are equimodular and the free energy 
is singular [20]. In the hard square limit this point is at z = −1 where all eigenvalues are also 
equimodular [26]. It is natural to conjecture that for all values of H the free energy fails to be 
analytic at these points.
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6.  Conclusion

In this paper we have presented the results of extensive numerical computations of the zeros 
of the partition function of the Ising model in a magnetic field H and a companion study of 
the dominant eigenvalues of the transfer matrix as H goes from H = 0 to the hard square 
limit H → ∞. This reveals that in the ferromagnetic region the distribution of zeros changes 
radically when H is infinitesimally increased from H = 0 and this feature is used to give an 
interpretation of the natural boundary in the magnetic susceptibility conjectured by Nickel 
[1, 2] which is consistent with the analyticity of the scaling limit assumed by Fonseca and 
Zamolodchikov [4]. However, an analytic argument for this scenario remains to be found and 
further data is needed in order to reliably understand the approach to the hard square limit.
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