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Abstract. We exhibit a new solution of the anisotropic triangular Ising model. It is based 
on diagrammatics well suited to the study of the vicinity of the so-called disorder varieties. 
A systematic expansion in this vicinity reveals an unexpected a = f singularity. This hidden 
singularity is, in turn, interpreted as the genuine critical behaviour of a related random 
walk process. 

The aim of this letter is to describe a new solution of the triangular anisotropic Ising 
model, based on a new diagrammatic expansion (Georges et a1 1986) suggested by 
the study of the vicinity of the so-called ‘disorder varieties’ (Stephenson 1970). Some 
simple classes of these diagrams have a good physical interpretation in terms of random 
walk type problems, which sheds some light on an ‘exotic’ a = 5 singularity hidden in 
the well known solution of the triangular Ising model, as a special limiting case (Blote 
and Hilhorst 1982). 

Let us write the Boltzmann weight associated with each elementary cell of the 
triangular lattice (figure 1) as 

W = exp( K1 u2u3 + K2ul u3 + K 3 u I  u2) = ( A  / 2) ( 1 + TI ( ~ 2 ~ 3  + T2u1 u3 + T3 u1 u2) (1) 

where A = 2 cosh K1 cosh K 2  cosh K3( 1 + f l t 2 f 3 ) .  The variables ti = tanh Ki are well 
suited to a high temperature expansion, while T, = (ti + t j r k ) / ( l  + t i f j fk)  ( i , j ,  k = 1,2,3) 
are three new variables well suited to an expansion in the vicinity of the disorder 
varieties. Indeed, the equations of the three disorder varieties are given by Ti = 0 ( i  = 1, 
2, 3 respectively). The partition function reads 

The new diagrammatic expansion (Georges et a1 1986) originates from the expansion 
of the product over all elementary cells. 2 is thus given as the sum of all closed 
diagrams, connected or not, which pass at most once on each hatched triangle. 

Because of this constraint, this new diagrammatics differs in nature from the usual 
high temperature one. In particular, no self-intersection is allowed. At first sight this 
forbids a complete resummation making use of the well known Vdovichenko counting 
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Figure 1. The three coupling constants of the anisotropic triangular Ising model. 

rule (Vdovichenko 1965) which applies only to Markovian processes. Indeed this 
counting rule associates with each vertex an additional factor eie'* where 6 is the angle 
of rotation of the path as it passes through the vertex. This trick enables us to avoid 
double counting of self-intersecting diagrams and allows a simple application of the 
exponentiation theorem. One is then left, after Fourier transform, with an expression 
of I n 2  in terms of the determinant of the 6 x 6  transition matrix describing the 
Markovian process at each vertex. The difficulty encountered for the new expansion 
is that the absence of any self-intersection is a priori a non-Markovian feature. This 
can be overcome by a careful inspection of the three possible self-intersecting situations 
which could violate our diagrammatic rules. They are depicted in figure 2. Situation 
( a )  can be forbidden in a Markovian way in the recursion process defining the transition 
matrix. The non-Markovian situations ( b )  and ( c )  correspond to diagrams whose 
self-intersection numbers are of opposite parities, and thus cancel in the sum when 
one makes use of the phase factor trick. This leads to 

N 
In 2 = N In A +: In det(U - Ap,q)  

p . q = O  
(3 )  

l o )  (6) ( C  1 

Figure 2. The three forbidden oriented paths at a vertex (up to rotations). 



letter to the Editor L331 

- 
TI E -’ O T ~ E - ~  0 2 T 3 ~ p - 4  0 0 w - l  T3.5‘-‘ 

W - I T ~ E - ’  T 2 ~ - q  WT,E’ -~  0 0 w-~T,E‘- ‘  
0 W - ~ T ~ E - ~  T3&’-‘ O T ~ E ’  w2T2&’ 0 
0 o-’T,E-‘ w- ‘T3~’ - ‘  T1&’ O T , E ~  0 

w Tl E-’ 0 0 w - ‘ T l ~ ’  T2cP w T3 E ‘ -’ 
W T ~ E - ~  0 0 o - ~ T , E ’  w - ’ T 2 ~ ’  T3eq-’ - 

where A’,‘ is the 6 x 6 Fourier transformed transition matrix 

(4) AP.4  = 

where E = ei(2“/N) and w = ein’6. Note that the occurrence of two zeros for each line 
is a consequence of the exclusion rule of the new diagrammatics. In the thermodynamic 
limit, this gives the following expression for the partition function per site: 

In A + ( 1 / 8 n 2, Io2 ,, d q d q2 ln[ 1 + T: + T: + T:  + 2( T2 T3 - Tl ) cos q 

+ 2( TI T3 - 7-21 cos 92 + 2( TI T2 - T3) COS(% + 4211. ( 5 )  

It is a straightforward but tedious matter to check that expression ( 5 )  identifies with 
the expression given by Houtappel (1950). One can also verify that, on the disorder 
variety (e.g. T3 = 0), this expression simply reduces to In A. 

The critical variety is given by the vanishing condition of the argument of the 
logarithm for the zero mode q1 = q2 = 0. This leads to the following very simple equation 
in terms of the T,: 

(6) 

I t  i s  a welcome remark that, in the isotropic case, the new variable T lies in the interval 
[ -f, 13, the critical value T, = f being the centre of the interval. This new diagrammatics 
is the natural one for the study of the vicinity of the disorder varieties (e.g. T3 = 0). 
Indeed, remarkably, the expansion of ( 5 )  in powers of T3 leads to algebraic expressions 
at all orders in T3. This is in contrast with the expansion of In Z in the high temperature 
variable t ,  which leads, even at zero and first order, to complicated elliptic functions. 
This is to be traced to the extreme simplification of the model on the disorder varieties 
(partition function, correlation functions, susceptibility, etc). From a diagrammatic 
point of view such an expansion amounts to considering the class of diagrams corre- 
sponding to a fixed order in T3. Remarkably enough it is possible to exhibit closed- 
recursion relations in each of these classes. At first order, this has been described in 
Georges er a1 (1986). 

This leads one to suspect that these classes of diagrams have a physical interpretation 
by themselves, which we now illustrate in the example of the first order in T3. This 
corresponds to the class of closed diagrams (denoted W1 in the following) with one 
horizontal bond only (and necessarily connected at this order). Consider now two 
random walkers on a one-dimensional lattice, initially separated by two lattice spacings. 
The discretised time evolution of the walk can be represented as a second spatial 
dimension. At each step, each of the two walkers must either jump to a neighbouring 
site (with probability Tl for a left jump, T2 for a right jump) or die with probability 
1 - ( Tl + T2).  The time evolution of the system naturally generates the triangular lattice, 
and a particular ‘history’ for the two walkers corresponds to a two-dimensional diagram 
of class Wl, which closes if the two walkers meet. Figure 3 summarises this construction. 
Let us introduce the probability P( n,, n 2 )  that this meeting takes place after exactly 

Ti + T2+ T3 = 1. 
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Figure 3. A particular discrete time history for two walkers on the one-dimensional lattice, 
represented as a diagram of the triangular lattice. 

n, left jumps and n2 right jumps of the two walkers. One has 

P(n , ,  n2) = NI(%, n2) T;I (7)  

where N,(nl, n2)  is precisely the number of diagrams in the class VI with n, bonds of 
type 1 and n, of type 2. The total probability of meeting 9( TI, T2) given by 

is nothing but the generating function of the diagrams of class %,. It satisfies a simple 
algebraic equation 

TI T2P2 + ( T: + T: - 1) 9 + TI TI = 0. (9) 

(The only acceptable solution is the one with the minus sign in front of the square 
root.) From this exact result one easily obtains the asymptotic behaviour for NI( n, n )  

N,(n ,  n )  - (10) 

with ~ = 2  and e = ; .  
This kind of behaviour is frequently encountered for enumeration problems on 

lattices (for a review see Viennot (1984) or Fisher (1985)). One of many examples is 
directed site animals for which one also has 8 = 4 (Dhar er a1 1982, Hakim and Nadal 
1983). From equation (9) we see that 9' has a non-analytic behaviour when TI + T2+ 1. 
In this limit the probability of death goes to zero, and the probability of meeting goes 
to one as 1 - 9 - [ 1 -(TI + T2)]1-a with (Y = i. The averaged time of meeting, ?, when 
this meeting occurs, can be calculated exactly: 

(11) 
9 7 =  

[ 1 - ( T: + T:) - 2 TI T2P7 

and diverges in this limit like [ 1 + ( TI + T2) ] - '  which is the inverse of the death 
probability. For a non-zero death probability, 9 < 1 and 7 remains finite. 

In fact, the occurrence and the location of this transition are nothing but a 
consequence of the original transition of the Ising model itself; when T3 + 0 the critical 
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variety (6) reduces to T, + T2 = 1. These results seem in contradiction with common 
knowledge on the king model: first it is known that no intersection occurs, for finite 
values of the Ising coupling constants, between the critical and disorder varieties; 
secondly an algebraic singularity arises, instead of the usual logarithmic one. 

The first point is a consequince of the use of the variables Ti, which map the 
intersection of the critical and disorder varieties (lying at infinite coupling constants) 
on to finite T, values. These finite values correspond to the true physical transition 
for our random walk problem (where TI, T2 have a natural interpretation as prob- 
abilities). 

Secondly, the a = f  algebraic singularity was already known to occur for the 
triangular Ising model (Blote and Hilhorst 1982) but only in the very special limit 
where all the K ,  become infinite. This is nothing other than a special region in the 
neighbourhood of the disorder varieties. In this region the CY = f  singularity can be 
interpreted as a roughening transition. In fact, the vicinity of the disorder varieties is 
the only region of the parameter space where the usual logarithmic singularity is 
replaced by another singular behaviour (namely a = f). This can be seen by performing 
a first integration in equation ( 5 ) ,  which leads to a square root in the argument of the 
logarithm. The argument of the square root becomes a perfect square only on the 
disorder varieties T, = 0. This explains why the successive coefficients of the expansion 
in T3 are algebraic. 

To conclude, we have shown that the vicinity of the disorder varieties naturally 
supports a specific diagrammatic expansion which leads to a new solution of the 
triangular Ising model. This also sheds some light on the kind of singularities encoun- 
tered in the vicinity of these disorder varieties; while it is true that no singularity occurs 
when one is strictly restricted to the disorder varieties, our expansion does reveal a 
critical behaviour which corresponds to the region where the disorder variety is 
asymptotic to the critical one. This new critical behaviour ( a  = f )  hidden in the Ising 
model can indeed be seen as a genuine one for a new physical problem. 

We thank J P Bouchaud and J P Nadal for valuable discussions. 
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