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Algebraic invariants in soluble models 
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Abstract. This paper exhibits, on the known solutions of the triangle relation for the 
exactly solved models, some simplifying methods of recovering their parametrisation in  
terms of algebraic varieties. The relation to the automorphy group, generated by the 
inverse and spatial symmetries of the model, is also analysed. 

1. Introduction 

The triangle relation has appeared to be a central element in  the resolution of exactly 
solved two-dimensional models of statistical physics and field theory (Baxter 1982a, 
Zamolodchikov and Zamolodchikov 1979, Faddeev 1982). By iterated use of the 
triangle relation, it can be shown that this property between local transfer matrices 
leads to the commutation of global transfer matrices, which is an essential step in the 
resolution of the model. However, although the latter derivation can be extended to 
show the commutativity of transfer matrices of general spin models and of three- 
dimensional models (Zamolodchikov 198 1, Bazhanov and Stroganov 198 1, Jaekel 
and Maillard 1982a), there still remains the problem of solving the general triangle 
and tetrahedron relations. The great number of unknowns and equations makes it 
practically impossible to solve them in the general case. Only reduced solutions 
corresponding to particular symmetries or restrictions, like symmetric vertex models 
or the hard-hexagon model, are known (Baxter 1982a). However, the parametrisations 
of these solutions show the same particular structure; the parameter space is foliated 
into algebraic curves (which can be indexed by the values of some algebraic invariants), 
each curve being then described in  the same fashion by a spectral parameter; within 
each curve, three local matrices satisfy the triangle relation when their three 
spectral parameters are in a particular configuration. I t  thus appears natural to look 
for solutions of the general triangle or tetrahedron equations in two steps; firstly to 
exhibit the algebraic varieties and then to parametrise these varieties. This is the 
approach we apply here to the known soluble models, with the aim of putting into 
evidence simplifying methods which can be used for more general and three- 
dimensional models. For the first step we exploit directly the essential consequence 
of the triangle relation, which is the passage from a local to a global commutativity. 

$ Laboratoire propre du Centre National de la Recherche Scientifique associe a I’Ecole Normale Superieure 
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w1 0 0 w8 

0 w3 w6 0 
0 w5 w4 0 
w7 0 0 w2 

Studying the commutativity of transfer matrices of increasing size, one is led to derive 
a whole set of algebraic conditions which can be computed in an easy way. This set 
of necessary conditions for the transfer matrices to commute moreover expresses itself 
in the form of a foliation of the parameter space into algebraic varieties. For the 
second step, we introduce an auxiliary problem which states the stability of pure tensor 
products under the action of the local transfer matrix. It is thus possible firstly to 
recover the previous foliation into varieties and secondly to give a parametrisation of 
the varieties which leads to the simple expression of the triangle relation in terms of 
spectral parameters. This last approach can also be seen to provide an explicit 
realisation of the Zamolodchikov algebra (Zamolodchikov and Zamolodchikov 19791, 
in the form of coherent states. 

Another simplifying way, which circumvents the triangle relation, has also been 
used in the resolution of soluble models. It consists in taking advantage of another 
local relation which also leads to global properties: the inverse relation (Baxter 1982b), 
which can be coupled to the spatial symmetries of the model. However, although 
these symmetries generate an infinite discrete group (the automorphy group), and 
thus an infinite number of constraints, these are not sufficient by themselves to provide 
the resolution of the model, which necessitates the introduction of supplementary 
analytic properties (Baxter 1980, Jaekel and Maillard 1983). It then appears interest- 
ing to compare this more general approach with the preceding one. As will be seen 
in this paper, the automorphy group is compatible with the triangle relation and in 
particular with the associated foliation into algebraic varieties. It also agrees with the 
stability of the pure tensor products under the action of the local transfer matrix and, 
moreover, gives a representation of this action in terms of a translation by an element 
of the group. This last property will also be used to give a simple representation of 
the pseudo-vacuum associated with the transfer matrices, a first step towards the 
Bethe ansatz (1931).  

’ 

2. Commuting transfer matrices and triangle relation 
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Figure 1. Definition of the weights of the asymmetric eight-vertex model ( a )  as a vertex 
model and ( b )  as a spin model. 

and such that (figure l ( b ) ) :  

w (a, 6, c,  d )  = w (-a, -6, -c, 4). (R) 
When one writes the commutation of two transfer matrices consisting of N identical 
local matrices L,  in the case of a vertex model, or of N identical local weights, in the 
case of a spin model (see figure 2), one obtains the following results (the parameters 
of the second transfer matrix will be denoted by primes). 

i; j; - - - -  

- - -- 
d* di d3 d ,  d .  

( b l  

Figure 2. Transfer matrices of size N with periodic boundary conditions: Caj for a vertex 
model and ( b )  for a spin model. 

(i) For N = 1 the matrices always commute. 
(ii) For N = 2 they commute only if the following identities are satisfied 

( w :  + w : - w ~ - w W q ) / w 6 w 7 = ( w ~ 2  2 + w ! 3 2 - w ~ 2 - w ~ 2 ) / w k w ~  

w' jwg/w6w7 = w ; w k / w k w ; .  



3108 M T Jaekel and JMMaillard 

a b b b  
c d e f  
c f d e '  

1 0 0  0 
0 1 1  1 
O l w w  2 3  

0 1 w 2 w  
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equation (2), but also its image under 

w3 + -w3 w4+ -w4 w5 + -w5 w6 * -w6. (TI 
One should notice that the transformation under crossing of equation (2), which has 
not been obtained in the case of the spin model, corresponds to antiperiodic boundary 
conditions (aN+l  = -al). Yet the symmetry (R) of this model allows one to derive, 
from the triangle relation, not only the commutation of transfer matrices with periodic 
boundary conditions, but also that with antiperiodic conditions (figure 3).  At the order 
N = 3, the latter property provides the crossed image of equation (2), and its transform 
under (T), which gives a total of four invariants. 

- - I - ,TjI 
di - d *  

Figure 3. Transfer matrix for a spin model with antiperiodic boundary conditions. 

Though described on symmetric models, the method extends without difficulty to 
general sixteen-vertex or IRF (interaction round a face) spin models (Baxter 1980) 
(in particular the reduction to 2 x 2  matrices through diagonalisation by P ) .  In all 
cases the method provides a set of algebraic invariants which constitute necessary 
conditions for satisfying the triangle relation. Let us note in the case of the asymmetric 
eight-vertex model that, already at the N = 3 order, the number of invariants is equal 
to the number of parameters which the transfer matrix depends on (one can set w7 = w 8  
according to the weak graph duality) and that it increases at higher order. Hence, in 
order to satisfy the triangle relation, it is necessary to make these invariants dependant 
through degeneracies linked to symmetries or other constraints. The choice of the 
latter can thus be guided by a systematic determination of these invariants. One can 
see that, for the symmetric eight-vertex model (letting w l  = w 2  = a ,  w3 = w4 = 6 ,  w 5  = 
w6 = c, w 7  = w8 = d ) ,  one is left with the two known invariants 

( a 2  + b 2  - c 2  - d 2 ) / a b  ab lcd ;  
for the asymmetric six-vertex model (w = a, w 2  = a ' ,  w 3  = b, w4 = b ' ,  w 5  = w6 = c ,  
w 7  = w8 = 0), the invariants reduce to 

(aa ' -  bb' - c 2 ) / a b  a ' b ' l ab  

(which are obtained at the N = 4 order). 

1982), one obtains 
Similarly for the hard-hexagon model (with the notations of Baxter and Pearce 

(1 -zeL,+M) 
- 1 / 2 - Z 1 / 2 ( e L + e ' + f )  

at the N = 2 order 

at the N = 3 order 

at the N = 4 order. 

y 1 / 2  

~ e ' . ' ~ )  -1/2( - L + e - M  - e - ( L + M ) -  z e  

For the Potts model also, the study of the N = 3 and N = 4 orders exhibits the two 
varieties (eK - l ) (eK ' -  1) = q  and (eK + l ) ( eK '+  1) = 4 - q  which are known to corres- 
pond to the critical ferromagnetic and antiferromagnetic curves (with the notations 
of Baxter (1982~) ) .  
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1 a 0 0 0  
r‘ - O b c O  
P ‘  O c b O  

p’r’ 0 0 0 a 

- A 

Since the tetrahedron relation is known to imply the commutation of transfer 
matrices of arbitrary size, in the same way as the triangle relation does, the same 
approach applies without any major modification in three dimensions. It then leads 
to a set of necessary conditions which are expressed in the form of algebraic invariants 
for vertex or spin models. (For instance, the symmetric 20-vertex three-dimensional 
model possesses invariants similar to those of the symmetric six-vertex model, which 
it generalises.) 

1 
r 
p 
pr 

(3) 

2.2 Pure tensor products stability 

The foliation of the parameter space into algebraic varieties constitutes only a part 
of the complete parametrisation of the transfer matrices, which one will need in order 
to find the common eigenvectors and the corresponding eigenvalues. In order to 
complete this description, one may remember that, in the Bethe ansatz, the triangle 
relation between local transfer matrices can be interpreted as the compatibility condi- 
tions between the generators of the group of permutations (Yang 1967). This property 
invites us to look for a ‘good’ representation of each of the generators, i.e. of each 
local transfer matrix (which corresponds to a transposition between neighbours). For 
that purpose, let us introduce the following auxiliary problem, denoted by (A), which 
we shall for simplicity illustrate on the symmetric six-vertex model. Its local transfer 
matrix L can be written as a 4 x 4 matrix (figure l (a ) ) .  We require the matrix L and 
four vectors e,  f, e’, f’ to satisfy the following relation: 

(A) 
i.e. a pure tensor product is transformed by the action of L into another pure tensor 
product. This condition can also be written 

Le 0 f = Ae’ 0 f ’  

where 

e’ is easily eliminated and hence a non-trivial solution e exists if, and only if, the 
following equation is satisfied: 

det[p’A +pp’B -C - p D ]  = 0 

e ( p 2 + p t 2 ) a b  - p p ’ ( a 2 + b 2 - c 2 ) = 0 .  (4) 
One remarks that the correspondence between p and p’  is fixed by the ratio 

( a 2  + b 2  - c 2 ) / a b .  

This expression coincides with the algebraic invariant associated to the symmetric 
six-vertex model. This expresses the compatibility of problem (A) with the commuta- 
tion of transfer matrices (as in § 2.1). Requiring this expression to be equal to the 
constant t + l / t ,  one sees that two different p’  are in correspondence with each p, 
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p ' + = p t  and p ' - = p / t .  The equation of the variety can also be written in the form 
(a  - b t ) (a  - b / t )  = c 2 ,  giving 

a - b t = c x  

a t l x  - x l t  e-=- 

a - b / t  = c / x  

b l l x - x  -=- 
c t - l / t  c t - l / t '  

Referring to equation ( 3 ) ,  one obtains the following expressions for e,  f, e ' ,  f': 

( 5 )  

Conversely, solving equation (3) for a ,  6 ,  c in  terms of the coordinates ( 6 )  of vectors 
e, f, e',f' just provides the required rational parametrisation ( 5 ) ,  which, as one can 
see is precisely the one deduced from the resolution of the Yang-Baxter equations. 

With the help of this parametrisation, one can now come back to the problem of 
solving the triangle relation. Because of the symmetries of the local transfer matrices 
(conservation of the total spin and spin reversal symmetry) and of the symmetries of 
the triangle relation itself (under transposition), the original equations which corres- 
pond to the equality of two 8 x 8 matrices reduce in fact to the equality of two identical 
antisymmetric 3 x 3 matrices (the three transfer matrices are respectively denoted by 
w, w', w"): 

(7) ab'c" f cc'b" = ba'c" 

ac I C "  f cb 'b  I' = ca ' a  ' I ,  

ac '6'' + cb I C  " = bc ' a  " 

On the other hand, one can see that, once the condition xx '=x ' '  is satisfied, the 
property (A) implies the triangle relation for a set of two configurations, which are 
represented by figure 4 (the notations correspond to those of ( 3 , 6 ) ) .  These equalities 
stand for every value of p and hence for an infinite number of configurations. Still, 

p x ' i t  p i t x  px i t  P l t X  

P 

p x / t  p / t x  

Figure 4. The two configurations with pure tensor products which satisfy the triangle 
relation. 
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one has to determine the corresponding independent configurations in the whole 
vector space. It is easily seen that a decomposition onto the homogeneous parts with 
respect to p ( 1 ,  p ,  p 2 ,  p 3 )  identifies with the decomposition with respect to the total 
spin. Thus the two configurations of figure4 force the triangle relation on a two- 
dimensional subspace of the three-dimensional vector space where the 3 x 3 antisym- 
metric matrix of (7) acts. Although these two configurations do not seem to be 
sufficient to imply the triangle relation generally, in fact one can check directly on 
the three equations (7)  that they hold if and only if the condition x x ‘ = x ”  is satisfied. 

The same method can be used to recover the two algebraic invariants of the 
symmetric eight-vertex model and to introduce a parametrisation, but this time, in 
terms of elliptic functions (of modulus k ) :  

+ 1 ) c d  - ( p 2  + p ’ 2 ) a b  + p p 1 ( a 2  + b 2  - c 2  - d 2 )  = 0. (8) 
Redefining the invariants by 

ab 1 -=- a 2 + b 2 - c 2 - d 2  
= 2cn2qdn2q 

ab c d  ksn22q 

one is led to the following solutions: 

p = k 1/2sn2u 

r * = k ’ / 2 s n 2 ( u i 8 )  r ’*=k’ /2sn2(u*88q77 i .  

p ’*  = k ‘I2sn2(u k 77) 

(9) 

Let us remark that the action on the vectors depends only on the invariant family 
(the parameter q). On the other hand, the relation between the two vectors e and f 
( e ’  and f ’ )  depends explicitly on the particular matrix inside the family and thus allows 
a parametrisation of the latter (the spectral parameter 0) .  In the case of the asymmetric 
six-vertex model two invariants are put into evidence 

p 2 a ’ b ’ + p f 2 a b  - p p ’ ( a a ’ + b b ’ - c 2 )  = 0 ( 1 1 )  

which can be redefined as follows: 

a’b ’  
ab ab  

aa’ + bb’ - c 2  
= s ( t  + l / t )  -- -s 

which implies 

leading to the following parametrisation: 

b S I  l l x - x  a 1 t l x  - x / t  
c SI t - l l t  c s t - l l t  

-=-- -=-- 

a’  t l x - x l t  b’ s l l x - x  
-=$‘- -=-- 
C t - l / t  c SI t - l l t ’  

It is verified in this case that the triangle relation reduces to the three equations (7) 
of the symmetric model and is solved by the condition x x ’  = x ” .  
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As a final remark let us relate the problem introduced here to the Zamolodchikov 
algebra. In order to explain the S-matrix factorisation, Zamolodchikov and Zamolod- 
chikov (1979) introduced particular symbols Ai ( 8 )  representing particles and satisfying 
the following algebra 

Ah31)A,(e2) =I $’(& -@2)Al(@z)Ak(8i )  (15) 

where S y  describes the two-body S matrix. One can give an explicit functional 
representation for the A symbols with the following action on functions defined on 
an algebraic variety (Takhtadjan and Faddeev 1979): 

kl 

where O1 and O4 are the usual Jacobi 0 functions. With this representation, where 
the A symbols act on some coherent states (and using the relation snu = 
k - ” 2 0 1 ( ~ ) / 0 4 ( ~ ) ) ,  the equations defining the Zamolodchikov algebra (15) can easily 
be identified with those expressing the stability of the pure tensor product ( A ) :  

Note that the same restriction as the one previously encountered also exists concerning 
the independence of the symbols A and is also known to prevent the general derivation 
of the Yang-Baxter equations for the S- matrix, from the Zamolodchikov algebra. 

3. Automorphy group 

Another way of solving the soluble models has also been developed, which does not 
make use of the triangle relation and the commuting transfer matrices (Zamolodchikov 
1979, Stroganov 1979, Baxter 1980). Instead, it exploits another relation which occurs 
simultaneously with the triangle relation in all the known soluble models, the inverse 
relation (which can also be interpreted as the unitarity relation in the case of S-matrix 
models). For instance, on the symmetric eight-vertex model, the inverse relation 
corresponds to the following transformation on the transfer matrix: 

a / A  0 0 - d / A  
0 b/A’ -CIA’  0 
0 -CIA’  b/A’ 0 

- d / A  0 0 a / A  

LI = 

The partition function of the model (or the S matrix) can be seen to transform 
multiplicatively (by an automorphic factor) under the action of the inverse transforma- 
tion. Similarly, the obvious spatial symmetry of the model (crossing symmetry of the 
S matrix) leaves the partition function (S matrix) invariant. For the symmetric 
eight-vertex model this corresponds to the following transformation on the transfer 
matrix: 

a-b.  6) 
Iterating these two transformations generates an infinite discrete group, under which 
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the partition function transforms multiplicatively (the automorphy group). With some 
knowledge on the analytic behaviour of the partition function, this can lead to its 
determination. 

3.1. Algebraic invariants 

In view of the simplifying features introduced by this group in the resolution of the 
model, it appears interesting to confront it with the parametrisation of the triangle 
relation. Indeed, one can easily show that the triangle relation is preserved by the 
transformations corresponding to the inverse and spatial symmetries, and hence that 
the commutation of two transfer matrices associated with the triangle relation still 
holds if one transforms both matrices by inverse or spatial symmetry. Therefore, the 
corresponding images of the algebraic invariants which were deduced from the 
commutation of transfer matrices (for instance, those of 9: 2.1)) must also be algebraic 
invariants. The automorphy group thus infinitely multiplies the number of algebraic 
invariants, Of course, in the soluble cases these invariants are not independent, but 
can be expressed in terms of a finite number of basic invariants. It even occurs, in 
the simplest cases, that these basic invariants are themselves stable under the action 
of the group. This property then allows one to recover, in a simple way, the foliation 
of the parameter space, using the automorphy group. 

Let us consider again the symmetric eight-vertex model. It is easily seen that the 
only invariants under the action of the spatial symmetry, S, which can be built out of 
the statistical weights are 

a + b  ab C d 

and functions thereof. Looking for algebraic invariants only, one observes that the 
following polynomials transform multiplicatively under the action of the inverse 
symmetry: 

c + -CIA' 

ab + ab/AA' 

d + - d / A  

A + A' + ( A  + A')AA', 

It is then easy to construct algebraic invariants under the actions of both symmetries: 

ablcd ( A  + A')/ab.  

These two invariants precisely realise the particular foliation into elliptic curves that 
can be deduced by solving the triangle equations. This result can be better understood 
if one remembers that the two transformations, inverse I and spatial symmetry S ,  do 
not commute but generate an infinite discrete group. The latter contains a normal 
subgroup, which is isomorphic to Z and which corresponds to translations by the 
remarkable element SI. The algebraic invariants must then determine varieties, which, 
besides each point, must also contain all the images of this point under the action of 
the group. On the other hand, the analytic properties which are linked with the actions 
of the inverse and spatial symmetries, that is the equivalence of such transformations 
with the change of a certain analytic parameter 8, lead to the inclusion of all the 
images of a same point inside a same curve which is described by the spectral parameter 
8. To sum up, the orbits under the action of the automorphy group can be considered 
as the backbones around which the algebraic curves, which will correspond to commut- 
ing transfer matrices, are built by a kind of algebraic continuation. 
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The same approach can also be used to recover the varieties which correspond to 
families of commuting transfer matrices, in the case of the exactly solved asymmetric 
six-vertex model. 

3.2. Pure tensor product stability 

Besides preserving the triangle relation and the associated algebraic invariants, the 
automorphy group can also be seen to act in a simple way on the pure tensor products, 
which we have introduced to represent the local transfer matrices. Let us recall their 
property in the case of the symmetric eight-vertex model. One looks for local transfer 
matrices which satisfy the property ( A )  

(A) 

The existence of vectors e and e' satisfying this property is equivalent to the equation 
(8). First, a certain family can be chosen by fixing the values of the invariants which 
appear as the coefficients of the polynomial in (8). The equation then associates with 
this family two transformations which make each vector f correspond with two others 
f " .  These transformations can also be represented by a unique chain linked to each 
vector: 

Le $3 f = Ae' 0 f ' .  

- + f i - l  + f l  + f 1 + 1 +  

f l - l  and f I t l  being the two images of f ,  by (8). Consider now the family and its 
associated chain as being fixed. The property then uniquely associates a couple of 
vectors e: to each local matrix of the family 

Le: 0 f ,  =Ale:* 0 f l + l  

where 

A simple computation shows that the vectors e:, e:' build another chain: 

r:' = (upl - b p I T l ) l ( c  - d p , p I F d =  ( c p l p l T l - d ) l ( a p , T l - b p l )  (19) 

(20) 
This last correspondence then allows one to follow the action of the inverse and spatial 
symmetries on the vectors e 7 ,  obtaining the following relations 

(21) 
(which one can alternatively deduce from the invariances of the problem), and thus 

or else 
I* * e ,  = e r T 1 .  

[e:ls= -e7*1 

[e:lSI = [e:l[S= --e7*1. (22) 

[e ?+ 1 11 = e TT 1 

Translation along the chain can thus be interpreted as the action of the translation 
(SI) of the automorphy group: 

SI 
f l f , f l * l  L e : O f , = A , e ~ = l  O f r f l  i - i - 1 .  (A 1 
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Such a representation allows one to give a purely algebraic description of the action 
of the local transfer matrix on pure tensor products, without recalling the elliptic 
functions (in such a parametrisation, the action of SI would be represented by the 
translation of the spectral parameter by the constant 77). 

An interesting feature of this formulation of the stability of pure tensor products 
is that it leads easily to a similar property for the global transfer matrix (see figure 5). 

e'.2 e - . +  e' 

- -  

e;., e *  e *_ 1 e . . ,  

Figure 5. Action of the transfer matrix on the pseudo-vacuum, 

Indeed, the set of vectors of the form &e: is stable under the action of the whole 
transfer matrix: 

As translation along the lattice is equivalent to translation by the element SI,of the 
automorphy group, the action of the transfer matrix reduces to a translation by one 
lattice spacing. Similarly, the set of vectors constructed with the same ansatz, but 
where this time the translation along the lattice can correspond either to a forward 
translation (SI) or to a backward translation (IS) in  the group, is also globally stable 
under the action of the transfer matrix. The complete Bethe ansatz then reduces to 
finding the linear combinations of the preceding vectors which diagonalise the transfer 
matrix (Kasteleyn 1975). Let us remark that the present use of pure tensor products 
is equivalent to the triangulation of the local transfer matrix and, in consequence, of 
the global transfer matrix. In the formalism of quantum field theory (Faddeev 1982), 
this approach corresponds to the construction of the pseudo-vacuum, by triangulating 
the monodromy matrix, and then to the construction of the real vacuum and of the 
excited states by the Bethe ansatz. 

Finally, by relating the action of the automorphy group to the diagonalisation of 
the transfer matrix with the Bethe ansatz, this approach should also shed some light 
on another remarkable feature of the partition fuctions of soluble models; their final 
expression under the form of infinite products, each factor representing the action of 
an element of the automorphy group on some initial factor (Jaekel and Maillard 1982b). 

4. Conclusion 

This paper has tried to recover, in a pedestrian way, some properties on the local 
transfer matrix and the triangle relation, which belong to the field of algebraic 
geometry. A more precise representation of the solutions making use of pure tensor 
products can also be given by the methods of algebraic geometry, as Krichever (1981) 
has shown with the introduction of the so-called 'vacuous vectors'. In  view of these 
results the triangle or tetrahedron relations seem to be more than mere systems of 
equations and appear to be linked to a richer structure defined on algebraic varieties. 
Corresponding methods should lead to an exhaustive classification of the solutions. 
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Though studied only on models with spins or arrows of the Ising type, the approach 
developed here also applies to N-state models like the one studied by Stroganov 
(1979). The algebraic invariants can also be quickly recovered for N-state spin models 
(like Potts models) but one must Femark that the equivalent of the property of pure 
tensor product stability is not yet available for general spin models. 

Since it only deals with small transfer matrices, the method is easily generalised 
to three dimensions, to derive algebraic invariants which represent as many necessary 
conditions for the commutation of the transfer matrices and for the tetrahedron relation. 
Looking for the compatibility of these equations thus provides a guide for determining 
under which symmetries the model might become a good candidate for solving the 
tetrahedron relation. In the same way, the stability of pure tensor products and its 
representation by a translation of the automorphy group could give hints for the 
construction of a Bethe ansatz in three dimensions. 

Acknowledgment 

We are particularly indebted go J L Verdier for stimulating and enlightening dis- 
cussions. 

References 

Baxter R J 1980 Fundamental Problems in Statistical Mechanics V Proc. Enschede Summer School 

- 1982a Exactly solued models in statistical mechanics (New York: Academic) 
- 1982b J.  Stat. Phys. 28 1 
- 1982c Proc. R.  Soc. Lond. A 383 43 
Baxter R J and Pearce P A 1982 J.  Phys. A: Math. Gen. 15 897 
Bazhanov V V and Stroganov Y G 1981 Serpukhov preprint 
Bethe H A 1931 Z .  Phys. 71 205 
Faddeev L D 1982 Integrable models in 1 + 1 dimensional quantum field theory, Proc. Ecole d ' t t i  de Physique 

Thiorique, Les Houches (Amsterdam: North-Holand) to appear 
Jaekel M T and Maillard J M 1982a I .  Phys. A :  Math. Gen. 15 1309 
- 1982b J .  Phvs. A :  Math. Gen. 15 2241 
- 1983 J. Phys. A :  Math. Gen. 16 1975 
Kasteleyn P W 1975 Fundamental problems in statistical Mechanics III: Proc. Wageningen Summer School 

Krichever I M 1981 Func. Anal. Appl. Math. 15 92 
Stroganov Y G 1979 Phys. Lett. 74A 116 
Takhtadjan L A and Faddeev L D 1979 Russ. Math. Surv. 34 n5 11 
Yang C N 1967 Phys. Rev. Lett. 23 19 
Zamolodchikov A B 1979 Commun. Math. Phys. 69 165 
- 1981 Commun. Math. Phys. 79 489 
Zamolodchikov A B and Zamolodchikov A B 1979 Ann.  Fhys., NY 120 253 

ed E G D Cohen (Amsterdam: North-Holland) 

EGD Cohen ed (Amsterdam: North-Holland) 


