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§Centre de Recherche Nucléaire d’Alger, 2 Bd. Frantz Fanon, BP 399, 16000
Alger, Algeria

Abstract.
From some observations on the linear differential operators occurring in the

Lattice Green function of the d-dimensional face centred and simple cubic lattices,
and on the linear differential operators occurring in the n-particle contributions
χ(n) to the magnetic susceptibility of the square Ising model, we forward some
conjectures on the diagonals of rational functions. These conjectures are also in
agreement with exact results we obtain for many Calabi-Yau operators, and many
other examples related, or not related to physics.

Consider a globally bounded power series which is the diagonal of rational
functions of a certain number of variables, annihilated by an irreducible minimal
order linear differential operator homomorphic to its adjoint. Among the
logarithmic formal series solutions, at the origin, of this operator, call n the
highest power of the logarithm. We conjecture that this diagonal series can be
represented as a diagonal of a rational function with a minimal number of variables
Nv related to this highest power n by the relation Nv = n+ 2.

Since the operator is homomorphic to its adjoint, its differential Galois group
is symplectic or orthogonal. We also conjecture that the symplectic or orthogonal
character of the differential Galois group is related to the parity of the highest
power n, namely symplectic for n odd and orthogonal for n even.

We also sketch the case where the denominator of the rational function is not
irreducible and is the product of, for instance, two polynomials. We recall that
the linear differential operators occurring in the n-particle contributions χ(n) to
the magnetic susceptibility of the square Ising model factorize in a large number
of direct sums and products of factors. The analysis of the linear differential
operators annihilating the diagonal of rational function where the denominator
is the product of two polynomials, sheds some light on the emergence of such
mixture of direct sums and products of factors. The conjecture Nv = n+ 2 still
holds for such reducible linear differential operators.
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1. Introduction

Diagonals of rational functions have been seen to occur naturally [1] for n-fold integrals
in physics, field theory, enumerative combinatorics, etc. On many examples and cases,
striking properties emerged that are worthy to be understood.

When we seek for a characterization of the diagonal of rational functions
representation of a D-finite globally bounded power series†, one may think of the least
number of variables Nv occurring in the rational function‡.

Given a diagonal of a rational function R1 of N variables (which is necessarily [1]
a D-finite globally bounded power series) there is a rational function R with a minimal
number Nv of variables. One aim of this paper amounts to showing that this number of
variables Nv ≤ N is simply related to the logarithmic singular behavior, at the origin,
of the formal series of the (minimal order) linear differential operator§ annihilating
the diagonal.

We illustrate our conjecture with the analysis of the lattice Green function (LGF)
of the d-dimensional simple cubic (s.c) and face centred cubic (f.c.c) lattices [3, 4, 5,
6, 7, 8, 9], as well as results obtained for many Calabi-Yau operators [10], and an
accumulation of other examples related, or not related, to physics, displayed (or not
displayed) in this paper.

The differential operators for LGF of the simple cubic (s.c) and face centred cubic
(f.c.c) lattices are irreducible. These differential operators are homomorphic to their
adjoint and, consequently, their differential Galois groups are (included in) symplectic
or orthogonal groups. All these lattice Green functions can, obviously, be cast into
diagonal of rational functions.

This irreducibility is in sharp contrast with the differential operators of the
n-particle contributions χ(n)¶ to the magnetic susceptibility of the square Ising
model [11, 12, 13, 14, 15, 16, 17], which have a large set of factors. Here, the symplectic,
or orthogonal, character of the differential Galois group concerns the factors occurring
in the factorization of the differential operators annihiliting the χ(n)’s. Furthermore,
we observe, for the n-particle contributions χ(n) of the susceptibility of the square
Ising model, that, for each block of factors in the differential operator which has a
unique factorization, (e.g. for a block of three factors Ln · Lp · Lq ), we have alternately
orthogonal and symplectic groups.

We will show that these characteristics can be seen on the diagonals of rational
functions, with simple enough expressions, that may lead to a better understanding
of their occurrences.

With P and Q multivariate polynomials (with Q(0, ..., 0) ̸= 0), the formal series
of the (minimal order) differential operator annihilating the diagonal of the rational
functions P/Qr (with r an integer), correspond to a finite dimensional vectorial space
related††, as shown by Christol [18, 19, 20], to the de Rham cohomology. There is a

† A diagonal of a rational function is necessarily [1] a D-finite globally bounded power series.
Conversely, according to Christol’s conjecture [2], a D-finite globally bounded power series should
be the diagonal of a rational function.
‡ It is obvious, however, that the rational function, whose diagonal gives a given globally bounded
series, is far from unique. This series can be the diagonal of many rational functions, even with
different numbers of variables.
§ All the differential operators, in this paper, are linear. We will omit ”linear” in the sequel.

¶ The χ(n) have a very convoluted form of algebraic fractions as integrands. They are shown to be
diagonal of rational functions [1].
††We are thankful to P. Lairez for having clarified this point.
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homomorphism between the (minimal order) differential operators for the diagonal of
P/Qk and for the diagonal of 1/Q. Therefore, without too much loss of generality
(see section 3 of [21]), we will basically restrict ourselves, in this paper, to rational
functions in the form R = 1/Q, where Q is an irreducible multivariate polynomial,
with Q(0, ..., 0) ̸= 0. We will also consider, for pedagogical reason, the case where the
denominator Q factors in only two polynomials, Q = 1/Q1/Q2, where at least one of
the Qj ’s depends on all the variables¶.

In the sequel, we notice that, generically, for irreducible Q over the rationals,
the resulting (minimal order) differential operator, annihilating the diagonal of 1/Q,
seems to be systematically irreducible†. In contrast, a factorization of the differential
operator occurs for factorizable Q.

1.1. The formal solutions

The differential operators annihilating diagonals of rational functions are very selected
differential operators [21]. The formal solutions, at the origin, of such differential
operators (call it Lq) can be organized as the union of different sets (1), (2), ... of
formal series which makes the monodromy at t = 0 crystal clear:

S0, S0 · ln(t) + S1,0, S0 ·
ln(t)2

2!
+ S1,0 · ln(t) + S2,0,

· · · ,

S0 ·
ln(t)n

n!
+ S1,0 ·

ln(t)n−1

(n− 1)!
+ S2,0 ·

ln(t)n−2

(n− 2)!
+ · · · + Sn,0, (1)

T0, T0 · ln(t) + T1,0, T0 ·
ln(t)2

2!
+ T1,0·, ln(t) + T2,0,

· · · ,

T0 ·
ln(t)m

m!
+ T1,0 ·

ln(t)m−1

(m− 1)!
+ T2,0 ·

ln(t)m−2

(m− 2)!
+ · · · + Tm,0, (2)

etc.
In each of these “sets” of formal solutions, the series (up to a tα overall,

α = 0, 1/2, ...) are analytical at t = 0. One of the series S0, T0, ... is the diagonal
of the rational function annihilated by the (minimal order) differential operator Lq.
It is therefore a globally bounded series. The other analytic solution series have, at
first sight, no reason to be globally bounded series.

1.2. Conjecture on the number of variables

Our main conjecture corresponds to the exact value of the minimal number Nv of
variables of the rational functions required to represent a given diagonal of rational
function series. Consider a rational function R1 with N variables, and the (minimal
order) differential operator annihilating Diag(R1) (i.e. the diagonal of R1 ), assumed
to be homomorphic to its adjoint‡ (i.e. its differential Galois group is included either in

¶ The case where Q1 and Q2 depend on different sets of variables corresponds to a Hadamard
product and will not be considered in this paper.
† For examples of irreducible Q and non irreducible operators see Appendix D.
‡ It has been noticed in several of our papers [21, 22], that diagonal of rational (or algebraic) functions
almost systematically yield differential operators which are homomorphic to their adjoint. The rare
cases breaking this “self-adjoint duality” were seen to correspond to candidates to rule out Christol’s
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a symplectic, or in an orthogonal group). Among the formal solutions, at the origin, of
this differential operator, there is one formal solution which has the highest log-power,
n, i.e. behaves as ln(t)n. We conjecture that the diagonal of R1 identifies with the
diagonal of a rational function R which depends on a minimal number of variables Nv,
where Nv is simply related to the highest log exponent¶ n by the following relation♯
(with Nv ≤ N):

Nv = n + 2. (3)

Note that the existence of such rational functions with a minimal number of
variables Nv (regardless of the number of monomials and degrees), does not prevent the
existence of other rational functions with more variables, giving the same diagonal. For
instance, when the general term of the series writes as nested sums of binomials [1, 23],
it is straightforward to obtain a first rational function [1]. This first rational function
has often more variables than this minimal number Nv. Also note that a balanced
ratio of factorials coefficients can be written in various binomial forms, thus yielding
many rational functions.

1.3. Some remarks

Let us give some remarks on the definition of what we call the rational functions and
on the number of variables occurring there.

We have seen in previous papers (see for instance section 4.3 and appendix G in
[24]), that an exact result on the diagonal of a rational function of some variables x, y,
..., depending on parameters, can straightforwardly be generalised to the same rational
function, but where the parameters become arbitrary (rational or algebraic) functions
of the product t = x y z · · · of the variables of the rational function. Consequently we
extend the definition of rational functions to rational functions where the variables are
rescaled† by arbitrary (rational or algebraic) functions of the product t = x y z · · ·

In the sequel, some of the rational functions depend on N -th root of variables
(e.g. u1/4, v1/6, ...). The calculation of the diagonal of such a function, is equivalent
to the calculation of the diagonal of this function where all the variables are raised to
some power. In the following we will say, by abuse of language, in such cases, that we
have a rational function even if it contains N -th root of some variables.

Also, we have seen examples of rational functions where some monomials or
variables in the rational function do not contribute to the diagonal, meaning that the
rational function has in fact lesser number of variables. We used, for this situation,
the term “effective” number of variables in section 2.4 of [21]. Consider the rational
function 1/Q where Q = 1 − y− z − x z − xu− x z u− x y u, which depends on four
variables. The diagonal of 1/Q is ”blind”‡ on the monomial x z and the product xu
stands for one variable, reducing Q to Q̃ = 1 − y − z − v − y v − z v which depends
only on three variables. We should note that we have not seen this situation in our
examples coming from physics or geometry.

conjecture [2, 20]. The question of this self-adjoint symmetry breaking is adressed in section 5.2
of [21].
¶ The crucial role played by the highest log exponent corresponds to the concept of monodromy
filtration (see paragraph 4.2 page 40 of [20]).
♯ We do not have a conjecture for the minimum number of variables Nv , for diagonals of algebraic
functions. An open question is to see if we could actually have Nv = n + 1 in the diagonal of
algebraic functions case.
† See for instance equations (54) and (55) below.
‡ Changing the monomial x z into µx z, the resulting diagonal will not depend on the parameter µ.
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1.4. Complements and additional speculations on conjecture (3)

Among the different sets (1), (2), ... of formal series solutions of the (minimal order)
differential operator, one set, for instance (1), corresponds to the highest power of
the logarithms, namely n. We also conjecture that the series with no logarithm in
this set, here S0, will necessarily be a globally bounded series, and, thus, according
to Christol’s conjecture [2], will be a diagonal of a rational function, with, according
to the conjecture (3), the minimal number of variables Nv = n+ 2. The other sets,
for instance (2), will, in general, have a power of logarithms m which is less than the
highest power n: m < n. In this m < n case we also conjecture that the power
series (up to a tα overall, α = 0, 1/2, · · ·) with no logarithm in this set, here T0 for
(2), cannot be a globally bounded series. Consequently, it cannot be a diagonal of a
rational function.

In the cases where another set (2), is such that its power of logarithms, m, is
actually equal to the highest power of logarithm n, we conjecture that the power
series (up to a tα overall, α = 0, 1/2, · · ·) with no logarithm in this set, here T0,
will necessarily also be a globally bounded series, and, thus, according to Christol’s
conjecture [2], will be a diagonal of a rational function, with, according to the
conjecture (3), the minimal number of variables Nv = n+ 2.

Let us recall that the definition of diagonal of rational functions is based on
multi-Taylor expansions around the origin [1]. Therefore, the seeking of the maximum
exponent of the logarithm in the formal solutions is also made at the origin. The
maximum exponent of the logarithms in the formal solutions around the other
singularities can also be considered, and this is checked for many of our examples
below.

1.5. Conjecture on the parity of the number of variables and the differential Galois
groups

Another conjecture is related to the symplectic, or orthogonal, character of the
differential Galois group† of the irreducible differential operator annihilating the
diagonal of the rational function with Nv variables.

Since we assume that the (minimal order) irreducible differential operator
annihilating the diagonal of the rational function is homomorphic to its adjoint, its
differential Galois group is necessarily symplectic or orthogonal [22, 25].

We forward a conjecture stating that the parity of the ”minimal” number Nv of
variables in the irreducible denominator Q dictates the character either symplectic Sp
(Nv is an odd number) or orthogonal SO (Nv is an even number) of the differential
Galois group of the (minimal order) differential operator annihilating the diagonal of
the rational function. This conjecture is that the group is orthogonal for Nv even
and symplectic for Nv odd:

Nv even (resp. odd) −→ SO (resp. Sp) (4)

The illustrative examples displayed in this paper in favour of these two conjectures
(3), (4), are chosen for pedagogical reasons, but also for their interest per se. We have

† An irreducible differential operator Lq , of order q, has, generically, a symmetric square (sym2(Lq))
of order Ns = q (q+1)/2 and an exterior square (ext2(Lq)) of order Ne = q (q− 1)/2. If sym2(Lq)
(resp. ext2(Lq)) annihilates a rational solution, or is of order Ns −1 (resp. Ne −1), the differential
operator Lq is included in the orthogonal group SO(q, C) (resp. symplectic group Sp(q, C)) that
admits an invariant quadratic (resp. alternating) form.
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two different kinds of examples: the ones corresponding to (irreducible) differential
operators which have Maximum Unipotent Monodromy¶ (MUM), and the ones that
do not have MUM. In the MUM case, we have a simple relation n = q − 1 between
the power of logarithm n in (3), and the order q of the differential operator Lq. The
conjecture (3) thus becomes, in the MUM case, a simple relation Nv = q +1 between
the number of variables and the order of the operator. For the non-MUM examples,
the number of variables is not related to the order of the differential operators, but to
the highest power of the logarithms n, in other words, it is related to the monodromy
matrix at the origin.

The paper is organized as follows. We recall in section 2 the definition of the
diagonal of a rational function, and in section 3 we recall the results of the Lattice
Green Functions of the d-dimentional (face centred cubic, simple cubic and diamond)
lattices, to illustrate the two conjectures (3), (4). Section 4 presents some illustrative
examples for non factorizable multivariate polynomials Q. We give, in section 5, the
polynomials Q for some Calabi-Yau equations [10] of geometric origin, obtaining, for
each case, the polynomial Q with the minimum number of variables Nv = 3 +2 = 5.
Section 6 deals with the situation where the denominator polynomial Q factorizes as
Q = Q1Q2, giving either a direct sum, or a unique factorization, of the (minimal
order) differential operator annihilating the diagonal of 1/Q. In section 7, we give
examples of diagonal of algebraic functions which are N -th root of rational functions
and equivalent rational functions of the form 1/Q, giving the same diagonals. Finally,
in section 8, we discuss the homomorphisms-to-adjoint assumption on a counter-
example candidate to Christol’s conjecture [2].

2. Diagonals and multinomial expansion

The diagonal of a rational function R, dependent on (for example) three variables, is
obtained by (multi-Taylor) expanding R around the origin

R(x, y, z) =
∑
m

∑
n

∑
l

am,n,l · xm yn zl, (5)

keeping only the terms such that m = n = l. The diagonal reads, with t = xyz:

Diag
(
R(x, y, z)

)
=

∑
m

am,m,m · tm. (6)

In most of the examples of this paper the rational function will have the form
1/Q with

Q = 1 − (T1 + T2 + · · · + Tn) , (7)

where the Tj ’s are monomials. The expansion of the rational function 1/Q reads:

1

Q
=

∑ (k1 + k2 + · · · + kn)!

k1! k2! · · · kn!
· T k1

1 T k2
2 · · · T kn

n . (8)

Calculating the diagonal of 1/Q amounts to distributing the powers kj on the
variables occurring in the monomials, and putting equal the exponents of each variable.

¶ Maximum unipotent monodromy: the critical exponents at the origin are all equal.
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With the example¶ Q = 1 −x−y −z −u1/2 −v1/5, depending on five variables,
or n-th root of variables, the expansion of 1/Q, around the origin, reads:

1

Q
=

∞∑
ki=0, i=1,··· 5

(k1 + k2 + k3 + k4 + k5)!

k1! k2! k3! k4! k5!
· xk1 yk2 z2 k3 uk4/2 vk5/5. (9)

The diagonal will extract the terms with the same power. Introducing the integer p,
such that k1 = k2 = k3 = k4/2 = k5/5 = p, the only terms contributing to the
diagonal are

∞∑
p=0

(p + p + p + 2 p + 5 p)!

p! p! p! (2 p)! (5 p)!
· xp yp zp up vp =

∞∑
p=0

(10 p)!

p!3 (2 p)! (5 p)!
· tp. (10)

Let us mention how we obtain the (minimal order) differential operator
annihilating the diagonal. Once a long series is obtained, we use the guessing method
to obtain†† the differential equation (ODE). We make use of the ”ODE formula”
forwarded in section 3.1 of [14] (and with details in section 1.2 of [17]) to ensure that
we actually deal with the minimal order differential equation. For the differential
operators of high order, which are not irreducible, the factorization is obtained using
the method of factorization of differential operators modulo primes (see Section 4
in [15] and Remark 6 in [22]).

3. The lattice Green function of the simple cubic, diamond and face
centred cubic lattices

For the lattice Green functions (LGF) of the simple cubic lattice of dimension d, the
rational function have Nv = d +1 variables. The corresponding differential operators
Ln, (n = d, see Appendix A.1.1) annihilating the LGF have Maximum Unipotent
Monodromy (MUM), and thus, the formal solution with the highest log-power at the
origin corresponds to lnn−1(t). The relation of conjecture (3) is satisfied.

Similarly, one may consider the LGF of the diamond lattice (Appendix A.1.2) in
3, 4 and 5 dimensions, where the rational functions depend on respectively 4, 5 and
6 variables, and check that the formal solutions with the highest log-power, at the
origin, are respectively in ln(t)2, ln(t)3 and ln(t)4, in agreement with conjecture (3).
All these differential operators also have MUM.

The lattice Green functions (LGF) of the face-centred cubic lattice of dimension
d are diagonals of rational functions of the form 1/Q for the dimension d < 7,
see [3, 4, 5, 6, 7], and we have produced the corresponding (minimal order) differential
operators [8, 9] for d = 7, 8, · · · , 12. These differential operators no longer‡ have
MUM. According to the parity of the dimension d, which is related to the number of
variables by Nv = d + 1, the differential Galois group of these differential operators
are included in Sp (Nv odd) or SO (Nv even) in agreement with our conjecture
(4). We have checked (see Appendix A.2) that, among the formal solutions at the
origin of these differential operators, one solution is in front of ln(t)n, where n is the
highest log-power. This exponent is in agreement with the relation Nv = n +2 of the

¶ For ”polynomials” with N -th root of variables, see, for instance, (31) in section 5.
††Alternately, we can use the creative telescoping [21] to get this differential operator as a telescoper.
This method often requires more computing time.
‡ Except for d = 2, 3, 4 see Table A.1 in Appendix A.
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conjecture (3). For the exponent of the logarithmic formal solutions at all the other
singularities see Appendix A.2.

Beyond this ”LGF laboratory”, let us give some examples with irreducible (non
factorizable) denominator Q.

4. Examples with non factorizable denominator Q

4.1. A LGF-like non-MUM example

In the examples with the lattice Green functions, one may imagine that the occurrence
of the differential Galois groups Sp or SO is related to the dimension of the lattice.
Let us go beyond this relation by considering the structure function

λ = c1c2c3 + c1c2c4 + c1c3c4 + c2c3c4, cj = cosϕj , (11)

considered by Guttmann in [5], which does not correspond to any known obvious lattice.
The (minimal order) differential operator annihilating

G(t) =
1

(2π)4

∫
dϕ1 dϕ2 dϕ3 dϕ4

1 − t · λ
, (12)

is of order 8 and is irreducible. Its exterior square is of order 27, instead of the
generic order 28 = (8 × 7)/2. Its differential Galois group is thus included in the
simplectic group Sp(8, C). The lattice Green function G(t) is the diagonal of the
rational function 1/Q, depending on 5 variables (z0, z1, z2, z3, z4)

Q = 1 − t · λ, (13)

such that cj = zj + 1/zj j = 1, · · · 4 and t = z0z1z2z3z4.

The eight formal solutions, at the origin, of the order-eight differential operator
read

S(0), S(0) · ln(t) + S2,0, S(0) · ln(t)2

2!
+ S3,1 · ln(t) + S3,0,

S(0) · ln(t)3

3!
+ S4,2 ·

ln(t)2

2!
+ S4,1 · ln(t) + S4,0,

t1/2 · S(1/2) t1/2 · S(1/2) · ln(t) + t1/2 · S6,0,

t1/3 · S(1/3), t2/3 · S(2/3), (14)

where the Si,j ’s are analytical series at t = 0, and where the other series begin as
1 + · · · The series S(0) is globally bounded, and corresponds to the diagonal of the
rational function. All the other analytical series S(1/2), S(1/3), S(2/3), Si,j in (14)
are not globally bounded.

The diagonal S(0) = Diag(1/Q) is the diagonal of a rational function of
Nv = 3 + 2 = 5 variables, in agreement with conjecture (3).

Around all the other singularities, the highest log-power is in ln(t)1, and each
formal series, in front of ln(t)1, is not globally bounded.

The generalization of (11) to 6 variables amounts to considering:

λ = c1c2c3c4 + c1c2c3c5 + c1c2c4c5 + c1c3c4c5 + c2c3c4c5, cj = cosϕj . (15)

The corresponding differential operator is expected to have its differential Galois group
included in the orthogonal group. The differential operator is of order 9. Its differential
Galois group is indeed (included) in SO(9, C), (its symmetric square being of order
44, instead of the generic order 45 = (9× 10)/2).
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The formal solution of this order-nine differential operator with the highest log-
power at the origin, corresponds to ln(t)4, giving, according to the conjecture (3),
Nv = 4 +2 = 6 as the minimal number of variables occurring in the rational function.

4.2. 3-D fcc example: reduction to three variables

The diagonal of 1/Q where

Q = 1 − xyzu ·
(
(x+

1

x
) · (y + 1

y
) + (x+

1

x
) · (z + 1

z
) + (y +

1

y
) · (z + 1

z
)

)
, (16)

is a polynomial depending on four variables x, y, z, u, reproduces the 3-dimensional
face-centred cubic lattice Green function. The (minimal order) differential operator
annihilating this diagonal is of order three, and its differential Galois group is included
in SO(3, C). The most singular formal solution is in ln(t)2, in agreement with 2 +2
variables for the rational function, in agreement with conjecture (3).

Let us reduce the number of variables of the polynomial Q, given in (16), to three
variables, by fixing u = 1. The polynomial Q becomes:

Q1 = 1 − xyz ·
(
(x+

1

x
) · (y + 1

y
) + (x+

1

x
) · (z + 1

z
) + (y +

1

y
) · (z + 1

z
)

)
. (17)

The (minimal order) differential operator, annihilating this diagonal, is of order six,
and its differential Galois group is included in Sp(6, C). The formal solution with the
highest log-power at the origin is in ln(t)1, in agreement with 1 + 2 = 3 variables
for the rational function.

4.3. Another diagonal representation of the 3-D fcc LGF

The LGF of the three-dimensional fcc lattice can also be seen as the diagonal of 1/Q,
where the polynomial denominator Q depends on four variables:

Q = 1 − x2yzu · (1 + 4xyzu) − (1 + u) · (y + z). (18)

The diagonal of 1/Q, where Q depends on four variables, gives (with t = xyzu):

Diag(xyzu)

( 1

Q

)
= 3F2

(
[
1

2
,
1

3
,
2

3
], [1, 1], 108 · t2 · (1 + 4t)

)
. (19)

The formal solution of the corresponding differential operator, with the highest log-
power at the origin, is in ln(t)2, in agreement with the minimal number of variables
of 4 = 2 + 2, according to conjecture (3).

Taking the diagonal of 1/Q with Q given in (18) on only the 3 variables (x, y, z),
which means that the variable u is seen as a parameter, one obtains (with s = xyz):

Diag(xyz)

( 1

Q

)
= 2F1

(
[
1

3
,
2

3
], [1], 27 · u · (1 + u)2 · (1 + 4us) · s2)

)
. (20)

The formal solution of the corresponding differential operator with the highest log-
power at the s = 0 origin, is in ln(s)1, in agreement with 3 = 1 + 2 variables,
according to conjecture (3).

Here, for the same rational function 1/Q, we clearly see that the fact that the
diagonal is taken on 4 or 3 variables, produces a singular formal solution behaving in
ln(t)2 or ln(s) .
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4.4. A reflexive polytope example

From the 210 dIfferential operators arising from reflexive 4-polytopes [23, 26] (Laurent
polynomials of 4 variables) with symplectic differential Galois group Sp, let us consider
the example‡, depending on 5 variables, which corresponds to the rational function
1/Q with polynomial denominator

Q = 1 − x y z u v · S, (21)

where:

S = x+ y + z + u +
1

x
+

1

y
+

1

z
+

1

u

+ yz +
x

z
+

u

z
+

x

yz
+

z

xu
+

u

yz
+

xu

yz
+

yz

x
+

yz

u
+

xu

z2y
. (22)

The diagonal of 1/Q is annihilated by an irreducible order-six differential operator
whose differential Galois group is symplectic (included in Sp(6, C)). The formal
solution, at the origin, of this order-six differential operator, with the highest log-
power, behaves as ln(t)3. This is in agreement with the number of variables
Nv = 3 + 2 = 5 occurring in the polynomial Q, according to conjecture (3).

Around all the other singularities, the maximum power of the log in the formal
solutions is 1, and the series are non-globally bounded.

4.5. An Apery generalization example

Let us recall the series with Apery numbers†:
∞∑

n=0

n∑
k=0

(
n

k

)2(
n+ k

k

)2

· tn =

∞∑
n=0

n∑
k=0

(
(n+ k)!

k!2 (n− k)!

)2

· tn. (23)

This series is actually the diagonal of the rational function 1/Q with four variables [20]:

Q = (1 − x1 − x2) · (1 − x3 − x4) − x1 x2 x3 x4. (24)

More generally, let us consider the series given by (with m a positive integer):

∞∑
n=0

n∑
k=0

(
n

k

)m(
n+ k

k

)m

· tn =

∞∑
n=0

n∑
k=0

(
(n+ k)!

k!2 (n− k)!

)m

· tn. (25)

This series is the diagonal of the rational function 1/Qm, with¶

Qm = 1 −
m−1∏
j=0

(x2j+1 + x2j+2 + x2j+1 · x2j+2) , (26)

depending on 2m variables. For any value of m, the number of variables being even,
the differential operator, corresponding to the diagonal of 1/Qm, has a differential
Galois group which should be included in the orthogonal group SO, according to
conjecture (4).

For m = 3, we have 6 variables in (26),

Q3 = 1 − (x1 + x2 + x1x2) · (x3 + x4 + x3x4) · (x5 + x6 + x5x6) , (27)

‡ Polytope v18.10805, topology 28 in [23, 26].
† The sequence is related to Apery’s proof on the irrationality of ζ(3).
¶ Use the multinomial expansion, then equate the exponents of the variables.
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and the diagonal of the rational function 1/Q3 reads:

∞∑
n=0

n∑
k=0

(
n

k

)3(
n+ k

k

)3

· tn =

∞∑
n=0

n∑
k=0

(
(n+ k)!

k!2 (n− k)!

)3

· tn

= 1 + 9 t + 433 t2 + 36729 t3 + · · · (28)

This series (28) is annihilated by an order-nine differential operator L9. The
symmetric square of L9 is of order 44, instead of the generic order 45 = (9× 10)/2.
The differential Galois group of this order-nine differential operator L9 is (included)
in the orthogonal group SO(9, C). The formal solution of L9 with the highest
log-power, at the origin, behaves as ln(t)4, in agreement with the conjecture (3):
Nv = 4 + 2 = 6.

The maximum exponent of the log’s in the formal solutions around all the other
singularities t = tj (with the exception of t = ∞) is 2, and the series, in front of
ln(t− tj)

2, are not globally bounded.
For the singularity t = ∞ = 1/s, the highest log-power is also 4, i.e. the same

value as the maximum log-power around t = 0, so we expect the corresponding series
in front of ln(s)4 to be globally bounded. The first terms of the series read

s ·
(
1 + 9 s + 433 s2 + 36729 s3 + · · ·

)
. (29)

Similarly, for m = 4, we have 8 variables in (26). The differential operator,
annihilating the diagonal of the rational function 1/Q4, is of order 15. Its differential
Galois group is (included in) the orthogonal group SO(15, C). The formal series
solution, at the origin, of the order fifteen differential operator, with the highest log-
power, behaves as ln(t)6 in agreement with the conjecture (3): Nv = 6 + 2 = 8.

5. Some Calabi-Yau examples

We consider, in this section, some examples of Calabi-Yau equations from [10], where
the expressions of the general term of the series are known in closed form. These order-
four differential operators are irreducible, their differential Galois groups are (included
in) symplectic groups Sp(4, C). They all have the MUM property [10], and their
formal solutions with the highest log-power behave as ln(t)3. Therefore, according
to conjecture (3), these differential operators should annihilate rational functions of
Nv = 3 + 2 = 5 variables.

5.1. The first 19 Calabi-Yau operators in Almkvist et al. Table [10]

We have considered the first 19 Calabi-Yau differential operators of [10]. These Calabi-
Yau equations (except #9) have a geometric origin [27, 28, 29, 30, 31]. The general
term of the series are (or can be) written as nested sums of products of binomials [23],
known to correspond to diagonals of rational functions [1, 23]. The aim, here, is to
give the rational function with only 5 variables.

Assuming some 1/Q form for the rational function, the polynomials Q are
obtained from closed formulae (given in [10]) of the general term written as ratio
of factorials, using a “guessing” procedure sketched in Appendix B. The procedure
in Appendix B, amounts, from the general term given in [10], to going back up to
the expression coming out from a multinomial expansion. Eventually one finds that



12

all the polynomials Q can be written with five variables. We give the corresponding
multivariate polynomials Q obtained from this guessing procedure, in Table 1.

Note that, for some Q’s, we still say that Q is “polynomial” even if it contains
N -th root of some variables (u1/4, v1/6, ...). Section 2 shows that the diagonal of
the rational function with N -th root of variables is actually a power series (not a
Puiseux series). In the following, instead of some ”polynomials” containing N -th root
of variables, we give equivalent polynomials still with 5 variables.

Table 1. Rational functions 1/Q for some Calabi-Yau series
∑

An tn, where
An is the general term of the series given in [10]. We follow the numbering # of
[10].

# An 1−Q Nv

1 (5n)!
n!5 x+ y + z + u+ v 5

2 (10n)!
n!3(2n)!(5n)! x+ y + z + u1/2 + v1/5 5

3 (2n)!4

n!8 (x+ z)(1 + y)(1 + v)(1 + u) 5

4
(

(3n)!
n!3

)2
(x+ yu+ zv) (y + xz + uv) 5

5 (2n)!2(3n)!
n!7 x+ y + z + u+ v(x+ y)(z + u) 5

6 (2n)!(4n)!
n!6 x+ y + z + u+ v(z + u) 5

7 (8n)!
n!4(4n)! x+ y + z + u+ v1/4 5

8 (6n)!
n!4(2n)! x+ y + z + u+ v1/2 5

9 (2n)!(12n)!
n!4(4n)!(6n)! x+ y + z(x+ y) + u1/4 + v1/6 5

10
(

(4n)!
n!2(2n)!

)2 (
x+ yu+ (zv)1/2

) (
y + xz + (uv)1/2

)
5

11 (3n)!(4n)!
n!5(2n)! x+ y + z + u+ v(y + z + u) 5

12 (4n)!(6n)!
n!3(2n)!2(3n)! x+ y + (1 + z)(u1/2 + v1/2) 5

13
(

(6n)!
n!(2n)!(3n)!

)2 (
x+ (yu)1/2 + (zv)1/3

) (
y + (xz)1/2 + (uv)1/3

)
5

14 (2n)!(6n)!
n!5(3n)! x+ y + z + u(x+ y) + v1/3 5

15 (3n)!
n!3

(
n
k

)3
x+ y + z (x+ v) + u (y + v) 5

16
(
2n
n

)(
n
k

)2(2k
k

)(
2n−2k
n−k

)
x+ y + z + u+ v(xyz + xyu+ xzu+ yzu) 5

17
(

n!
j!k!(n−j−k)!

)3
(x+ y + z) (v + xu+ yz) (uv + zv + xyu) 5

18
(
2n
n

)(
n
k

)4
u+ (x+ y) (x+ v) (z + v) (y + z) 5

19
(
n
k

)3(n+k
n

)(
2n−k

n

)
(x+ y) (u+ x) (u+ v) (y + z) (v + z + y + u) 5

5.2. The Q’s are multivariate polynomials of variables and N -th root of variables

For some Q’s which are polynomials with N -roots of variables, a straighforward
change of variables, such (x, y, · · ·) → (xn, yn, · · ·), may be introduced.

For instance, for Calabi-Yau number 2 (that we denote CY2),

CY2 =

∞∑
n=0

(10n)!

n!3 (2n)! (5n)!
· tn = 4F3

(
[
1

10
,
3

10
,
7

10
,
9

10
], [1, 1, 1], 28 55 · t

)
= 1 + 15120 t + 3491888400 t2 + 1304290155168000 t3 + · · · (30)
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which is actually the diagonal of 1/Q, with

Q = 1 − (x+ y + z + u1/2 + v1/5), (31)

the series is in t = xyzuv. If one wants to get rid of the N -th roots u1/2 and v1/5,
one can rather consider the polynomial

Q = 1 − (x10 + y10 + z10 + u5 + v2), (32)

yielding for the diagonal of 1/Q where Q is given by (32), the series (30) where t
is changed into t10. Other polynomials with five variables can be found. With the
polynomial

Q = 1 − (x+ y + z + x4y4u4v5 + xzvu2), (33)

or the other polynomial

Q = 1 −
(
xyzu+ xzuv + yzuv + xyvu2 + xyzv3

)
, (34)

the series (30) is reproduced with t changed respectively into t6 and t9.

5.3. The rational function versus the pullbacked solution

From the Calabi-Yau equations in [10], two (or more) may have the same Yukawa
coupling †, which means [33] that one solution can be written in terms of the other
one. Let us see how this property appears in the multivariate rational functions 1/Q.

5.3.1. Calabi-Yau number 79
The series for Calabi-Yau number 79 reads

CY79 =

∞∑
n=0

n∑
k=0

(
n

k

)
· (5k)!

k!5
· tn

= 1 + 121 t + 113641 t2 + 168508561 t3 + · · · (35)

and has the same Yukawa coupling [10] as CY1. It reads

CY79 =
1

1 − t
· CY1

(
t

1− t

)
=

1

1 − t
· 4F3

(
[
1

5
,
2

5
,
3

5
,
4

5
], [1, 1, 1], 55 · t

1− t

)
, (36)

which is the diagonal of 1/Q79 where Q79 reads (with t = xyzuv):

Q79 = (1 − t) ·
(
1 −

(
x

1− t
+ y + z + u+ v)

))
. (37)

The diagonal of 1/Q, with Q given in (37), is the same series as in (35).

5.3.2. Calabi-Yau number 128
Another example is Calabi-Yau number 128 which series reads

CY128 =

∞∑
n=0

n∑
k=0

(
2n

n

)
·
(
n

k

)
· (5k)!

k!3 (2k)!
· tn (38)

= 1 + 122 t + 114126 t2 + 169305620 t3 + 307902541870 t4 + · · ·
† See, e.g. [32, 33, 34] for the definition of the Yukawa coupling, and Appendix G.
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and has the same Yukawa coupling [10] as CY1, in terms of which it writes:

CY128 =
1√

1 − 4t
· CY1

(
t

1 − 4t

)
=

1√
1 − 4t

· 4F3

(
[
1

5
,
2

5
,
3

5
,
4

5
], [1, 1, 1], 55 · t

1 − 4 t

)
. (39)

The Calabi-Yau series (38) or (39), is the diagonal of 1/Q128, where the denominator
Q128 has an “algebraic term” depending only on the variable t = xyzuv:

Q128 =
√
1 − 4t ·

(
1 − (z + u+ v)

)
− x− y. (40)

6. Factorizable denominator Q: examples with two factors

6.1. The differential operators occurring in the χ(n)’s of the Ising model

The rational functions, considered in the previous sections, are in the form 1/Q,
where the denominator Q is a non factorizable multivariate polynomial, the (minimal
order) differential operator annihilating these diagonals, being irreducible, contrary to
the differential operators annihilating integrals corresponding to the n-fold integrals
χ(n)’s of the susceptibility of the Ising model [12, 13, 14, 15, 16, 17]. These integrals
are very convoluted forms of algebraic fractions, which have been shown to be diagonal
of rational functions [1], but are far from being in the form 1/Q.

All the factors, occurring in the differential operators for the χ(n)’s, have been
shown to have differential Galois groups either symplectic or orthogonal (see [22] and
references therein). Furthermore, focusing on the blocks of factors (occurring in the
differential operators corresponding to the χ(n)’s) which have a unique factorization,
i.e. that write as, (e.g. for three factors) Ln Lp Lq, it appears that if Lq is in the
orthogonal group (resp. symplectic group), the left factor Lp is in the symplectic
group (resp. orthogonal group) and so on, in an alternating way. Appendix C gives
the situation for all the factors occurring in the differential operators corresponding
to χ(3), · · ·, χ(6).

This occurence of products, as well as direct sums of products, for factors of the
differential operators annihilating these diagonals, seems to be related to the fact that
the denominator Q is not irreducible. In the sequel, we address this case, restricting for
pedagogical reason, to only two factors. We will see, in these examples with two factors,
that conjecture (3) is still valid. The fact that the denominator Q is not irreducible
yields differential operators that are not irreducible: thus one cannot simply introduce
a differential Galois group for these differential operators. One has to consider the
differential Galois group of each factor of these reducible differential operators. We
will see that an alternating symplectic/orthogonal structure seems to systematically
occur (as Appendix C shows for the χ(n)’s).

6.2. Foreword: two factors

In all the examples of the form 1/Q = 1/Q1/Q2 displayed below, and many more
not given in this paper, we have systematically obtained the following results. If the
number of variables, and the variables for Q1 and Q2 are the same, the differential
operator, annihilating the diagonal of 1/Q = 1/Q1/Q2, is of the form(

L(1) ⊕ L(2)
)
· N, (41)
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where the differential operators L(1) and L(2) are homomorphic to the differential
operators annilating, respectively, the diagonal of 1/Q1 and 1/Q2, and where the
differential operator N , at the right, is some “dressing”¶. We have not found any
simple interpretation of this “dressing”.

In contrast, if the number of variables for Q1 and Q2 is different, the variables
for (for instance) Q2 being a subset of the set of variables for Q1, the differential
operator, annihilating the diagonal of 1/Q = 1/Q1/Q2, is of the form

L(1) · N, (42)

where the differential operator L(1) is homomorphic to the differential operator
annilating the diagonal of 1/Q1, and where, again, we have not found any simple
interpretation†† of this “dressing” differential operator N .

6.3. First example

As a first example, consider the diagonal of 1/Q

Q = 1 − x− y − z + y2 − z2 + xy + yz + yz2 + xz2 + z3, (43)

which is annihilated by an irreducible order-ten differential operator L10 which has
a differential Galois group (included) in Sp(10, C). The formal solution with the
highest log-power at the origin is in ln(t)1, in agreement with 3 = 1 + 2 variables.

Changing the monomial −y into −2 y in (43), one obtains a polynomial Q̃ that,
now, factorizes:

Q̃ =
(
1 − (x+ y + z)

)
· (1 − y − z2). (44)

The diagonal of 1/Q̃ is, now, annihilated by an order-six differential operator with
the unique‡ factorization L6 = M2 · M4, where the order-two differential operator
M2 has a differential Galois group (included) in Sp(2, C), and where the order-four
differential operator M4 has a differential Galois group (included) in† SO(4, C).
While the (left) differential differential operator M2 is homomorphic to the order-
two differential operator annihilating the diagonal of 1/ (1 − (x+ y + z)), we have no
interpretation for the ”dressing” right factor M4 with respect to the right factor of Q̃.

This example shows that changing the coefficients in front of the monomials to
a value that makes the polynomial Q factorizable leads to a reducible differential
operator. A more subtle situation is addressed in Appendix D.

Remark 6.1. The formal solution of L6 (and of M2) with the highest log-
power at the origin is in ln(t)1, in agreement with the fact that Q̃ depends on
3 = 1 + 2 variables. The “dressing” differential operator M4 has no logarithmic
formal solution around all the singularities, and all these formal solutions are globally

¶ For Q1 and Q2 polynomial of three variables, the “dressing” operator N seems to always have
algebraic solutions.
†† In particular, in the case where both operators have the same order and the same singularities,
the ”dressing” operator N in (42) is not homomorphic to the differential operator annihilating the
diagonal of 1/Q2.
‡ No direct sum factorization.
† Its symmetric square has the rational solution (175 t+48)/t/(3125 t2 +1644 t+128). Its symmetric
cube (of order 20) has a rational solution, (3125 t2 + 1644 t + 128)/t. Its symmmetric fourth power
(of order 35), has a rational solution, (3125 t2 +1644 t +128)/t2, and its symmmetric fifth power (of
order 56), again, has a rational solution, (3125 t2 +1644 t +128)/t2, suggesting a differential Galois
group smaller than SO(4, C).
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bounded. According to Christol’s conjecture [2] these formal solutions are diagonal of
rational functions and according to our conjecture (3), the rational functions depend
on only two variables and therefore, should be algebraic series.

In fact, the calculation of the p-curvature of the differential operator M4

gives zero†† for every prime p, in agreement with algebraic series (according to
Grothendieck-Katz conjecture [35]).

6.4. Second example

Consider, now, the denominator Q

Q =
(
1 − (x+ y + z + u)

)
· (1 − xy − zu) , (45)

and the diagonal of the rational function 1/Q:

Diag
( 1

Q

)
= 1 + 30 t + 2958 t2 + 428652 t3 + 72819090 t4 + · · · (46)

This diagonal is annihilated by an order-five differential operator that factorizes as
L5 = L3 · L2, where L3 has a differential Galois group (included) in SO(3, C), and
L2 has a differential Galois group (included) in Sp(2, C). The differential operator L3

is homomorphic with the order-three differential operator annihilating the diagonal of
1/ (1 − (x+ y + z + u)). Note that the formal solution of L5 with the highest log-
power at the origin, is in ln(t)2, indicating that we should deal with a minimum
number of 4 = 2 + 2 variables, in agreement with (3).

Here again, while the left factor of the differential operator L5, and the differential
operator annihilating the diagonal of the reciprocal of the first factor of Q, are actually
related by operator homomorphism, we have no interpretation on the right factor L2

with respect to the right factor of Q. The differential operator L2 has a differential
Galois group (included) in Sp(2, C), and carries ln(t)1 as the formal solution with
the highest log-power, meaning that it is, per se, given by the diagonal of a rational
function with 3 = 1 + 2 variables:

sol(L2) =
1√

1 − 4t
· 2F1

(
[
1

4
,
3

4
], [1],

64

9
t

)
(47)

=
1√

1− 4t
· Diag

(
1

1 − c1 x− c2 y − c3/3 · z1/2

)
where: c1c2c

2
3 = 1.

Remark 6.2. One should note that the second factor in the polynomial (46),
in itself, depends on only two variables x y and z u. However, in the product of
polynomials given in (46), all the four variables contribute to the diagonal. This is
not the kind of situation of section 6.2 where the two polynomials should depend
separetly on the same number of the same variables for which the diagonal is not blind
(see section 1.3). The resulting differential operator L5 = L3 · L2, annihilating the
diagonal of 1/Q, with the differential operator L2, shows that there is a product of
polynomials Q1 Q2 where Q1 and Q2 depend respectively on four and three variables
and such that the diagonals of 1/Q and of 1/Q1/Q2 identify.

In the previous examples, the denominator polynomial Q factorizes into two
polynomials Q = Q1 Q2, where the number of variables occurring in each polynomial

††We thank A. Bostan for calculating the first p-curvatures, thus showing that these p-curvatures
are zero for 7 ≤ p ≤ 73.
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is different. Appendix E addresses the case when the product Q1 Q2 switches from
the situation where both polynomials Qj carry the same number of variables, to the
situation where one of them has a smaller number of variables. Appendix F considers a
denominator Q = Q1 Q2, depending on one parameter b, and where the polynomials
Q1 and Q2 depend, respectively, on 4 and 3 variables. We address in Appendix F
the situation where, for one particular value of the parameter b, the polynomial Q
reduces to a polynomial depending on only three variables instead of the four variables
we started with.

7. Rational versus algebraic functions and powers of rational functions

In this section we consider some examples of diagonals of algebraic functions, square
root of rational functions, and powers of rational functions.

7.1. A modular form example

Let us consider the order-two differential operator L2 annihilating the hypergeometric
function 2F1 ([1/12, 5/12], [1], 1728 t):

L2 = (1− 1728 t) · t · D2
t + (1− 2592 t) · Dt − 60. (48)

This order-two differential operator L2 is homomorphic to its adjoint provided‡ one
considers a simple square-root algebraic extension:

(1− 1728 t)1/2 · adjoint(L2) = L2 · (1− 1728 t)1/2. (49)

This hypergeometric function corresponds to the diagonal

2F1

(
[
1

12
,
5

12
], [1], 1728 t

)
= Diag (R) , (50)

of the algebraic function R (depending on two variables with t = xy) given by:

R =
(√

1 − 1728xy −
√
432 · (x− y)

)−1/6

. (51)

According to conjecture (3), we would like to be able to write (50), not as a diagonal
of an algebraic function of two variables, but as a rational function of three variables.

The procedure in [36] by Denef and Lipschitz gives, on this example, a rational
function R̃ depending on four variables (x, y, u, v) such that (50), the diagonal of
R̃ on the four variables (x, y, u, v), identifies with the diagonal of the algebraic
function R on the variables (x, y). In this procedure, the denominator of R̃
comes in a factorized form by construction, and each factor does not contain all the
variables. For an algebraic function with n variables (x1, x2, · · · , xn), the Denef and
Lipschitz procedure [36] will give, as denominator, the product Q(x1, x2, · · · , xn, u1)·
Q(x1, x2, · · · , xn, u2) · · · Q(x1, x2, · · · , xn, un).

For the hypergeometric function 2F1 ([1/12, 5/12], [1], 1728 t), the procedure
sketched in Appendix B, is not applicable. However, one may imagine that,
introducing a pullback, the general term may be cast in the appropriate form of ratio

‡ Alternatively one can use the “Homomorphisms” command of DEtools in Maple on the symmetric
square of adjoint(L2) and L2.
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of factorials. One actually has (with a double expansion, index summation change,
and summation of the inner sum):

2F1

(
[
1

12
,
5

12
], [1], 1728 t · (1 − 432 t)

)
=

∞∑
n=0

n∑
k=0

(−4)k ·
(

k

n− k

)
·
(1/12)k (5/12)k

(1)k k!
· (−432 t)

n

=
∑
n

(6n)!

n! (2n)! (3n)!
· tn. (52)

The last multinomial form leads to (with t = xyz):

2F1

(
[
1

12
,
5

12
], [1], 1728 t · (1− 432 t)

)
= Diag

(
1

1 − x − y1/2 − z1/3

)
. (53)

The order-two differential operator, annihilating the diagonal (53), is not only
homomorphic with its adjoint, it is self-adjoint. Its differential Galois group is
(included) in Sp(2, C), and the formal solution of the differential operator with the
highest log-power carries a ln(t)1, in agreement with the 3 = 1 + 2 variables of the
diagonal in (53), and conjecture (3).

Remark 7.1. From (53) we easily get that

2F1

(
[
1

12
,
5

12
], [1], 1728 t

)
= Diag

(
1

1 − α · x − y1/2 − z1/3

)
, (54)

where α =
1 − (1 − 1728 t)1/2

864 t
, with t = x y z. (55)

Up to an algebraic function of the product t = x y z, we thus have a representation
of (50) as a diagonal of a rational function of three variables.

Remark 7.2. Note that the pullback in (53) is precisely the one that matches
(53) with one of a modular form of Appendix B in [37]:

2F1

(
[
1

12
,
5

12
], [1], 1728 · t · (1 − 432 t)

)
= 2F1

(
[
1

6
,
5

6
], [1], 432 t

)
. (56)

7.2. From the LGF of 3-D s.c to Calabi-Yau number 69

Recall the rational function 1/Q, depending on four variables, and corresponding¶ to
the lattice Green function of the 3-dimensional simple cubic (Appendix A.1.1),

Q = 1 −
(
x+ y + z + u · (xy + xz + yz)

)
, (57)

Diag
( 1

Q

)
= HeunG

(
1

9
,
1

12
,
1

4
,
3

4
, 1,

1

2
, 4 · t

)2

. (58)

Considering, now, the diagonal of the reciprocal of Q1/2,

Diag
( 1

Q1/2

)
= 1 +

9

4
t +

1575

64
t2 +

107415

256
t3 + · · · (59)

¶ This Heun function (58) can be written as pullbacked 2F1 hypergeometric function with algebraic
pullbacks (see equations (12), (13), (14) in [37]).
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one obtains an annihilating irreducible order-four differential operator, with a
differential Galois group included in the symplectic group Sp(4, C), and with ln(t)3

highest log-power formal solution. According to conjecture (3), a rational function
1/Qeq, depending on 5 = 3 + 2 variables should exist. It actually reads:

Qeq = 1 −
(
x+ y + z + u · (xy + xz + yz) +

v1/2

4

)
. (60)

The diagonal of 1/Qeq identifies with the diagonal of 1/Q1/2. With the rescale
v1/2/4 → v1/2 (i.e. t → 16 t) it corresponds to the Calabi-Yau series (number
69 in [10]):

CY69 =

∞∑
n=0

(4n)!

n!2 (2n)!
·

n∑
k

(
n

k

)2(
2k

k

)
· tn. (61)

7.3. From the LGF of 3-D f.c.c to Calabi-Yau number 14

The diagonal of the rational function 1/Q with denominator

Q = 1 − (x+ y + z + u · (y + z)) , (62)

reads:

Diag
( 1

Q

)
= 3F2

(
[
1

2
,
1

3
,
2

3
], [1, 1], 108 t

)
. (63)

This hypergeometric series (63) actually occurs‡ for the lattice Green function of the
3-dimensional face-centred cubic lattice. Let us, now, consider a rational number α,
and let us introduce the algebraic function 1/Q(α):

Q(α) =
(
1 − (x+ y + z + u · (y + z))

)α
. (64)

One actually obtains for the diagonal of 1/Q(α):

Diag
( 1

Q(α)

)
= 4F3

(
[
1

2
,
α

3
,
α

3
+

1

3
,
α

3
+

2

3
], [1, 1, 1], 108 t

)
. (65)

For α = 1/2, the diagonal given in (65)

Diag
( 1

Q(1/2)

)
= 1 +

15

4
t +

31185

256
t2 +

6381375

1024
t3 + · · · (66)

is annihilated by an irreducible order-four differential operator, homomorphic to its
adjoint, with ln(t)3 as the maximum power in its formal solutions around the origin.
This globally bounded power series (66) is actually the diagonal of a rational function
1/Q̃(1/2) with 5 = 3 + 2 variables where the polynomial denominator reads:

Q̃(1/2) = 1 −
(
x+ y + z + u · (y + z) +

v1/3

4

)
. (67)

The diagonal of 1/Q̃(1/2) identifies with the series given in (66). The polynomial
(67) (with the change v1/3/4 → v1/3) is the same polynomial as the one given in
Table 1, which corresponds to Calabi-Yau equation number 14.

Remark 7.3. The relations between the square root of the rational function
of the LGF of simple cubic (resp. face centred cubic) and the rational function
corresponding to Calabi-Yau number 69 (resp. Calabi-Yau number 14) are similar
to the known relation [5, 38, 39] between the LGF of the d−dim diamond and the
LGF of the (d+1)−dim simple cubic lattices. Other examples are given in Appendix
G.

‡ The solution of the LGF of 3-D f.c.c is given in (19), a pullbacked form of (63).



20

7.4. Power of rational functions and homomorphisms

Consider the polynomial Q dependent on the parameter µ:

Q = 1 −
(
x+ y + z2 + µ · xz

)
. (68)

The diagonal of 1/Q is annihilated by an irreducible order-four differential operator
L4, and the diagonal of the square 1/Q2 is annihilated by an irreducible order-
four differential operator N4. These two differential operators are actually
homomorphic [21], giving

Diag
( 1

Q2

)
= W3(µ) · Diag

( 1

Q

)
, (69)

where W3(µ) is an intertwiner of order three. For µ = 0, the order-three differential
operator W3 reduces to an order-one intertwiner:

W3(µ = 0) =
5

2
· t · Dt + 1. (70)

Let us take µ = 0, and generalize the polynomial Q to (with r a positive integer):

Q̃ = 1 − (x+ y + zr) . (71)

The diagonal of 1/Q̃ is annihilated by an order 2 r differential operator L
(1)
2r . The

differential operator, annihilating the diagonal of 1/Q̃n, is also of order 2 r. Let us call

it L
(n)
2r . The differential operator L

(n)
2r is homomorph with the differential operator

L
(n+1)
2r , giving:

Diag
( 1

Q̃n+1

)
=

(
2r + 1

r n
· tDt + 1

)
· Diag

( 1

Q̃n

)
, (72)

As far as conjecture (3) is concerned, the rational functions 1/Q̃ and 1/Q̃n,
have the same minimum number of variables, therefore the formal solutions of the
corresponding differential operators have the same maximum log-power.

7.5. From reciprocal of square root to rational functions

Let us recall§ the diagonals Diag(1/Q1/2) given in (59) and (66), where Q depends
on four variables, and which identify with the diagonals of Diag(1/Qeq) given in (60)
and (67)

Diag

(
1

Q1/2

)
= Diag

(
1

Qeq

)
, (73)

where Qeq = Q − 1

4
uα, (74)

with an additional fifth variable u, and where α is a rational (not integer) number.
Let us show how this occurs with the procedure of Appendix B, and show whether
the form (74) is general.

Consider the multivariate polynomial Q = 1 − (T1 + T2 + · · ·+ Tn), where the
Tj ’s are monomials. The expansion of 1/Q1/2 reads:

1

Q1/2
=
∑ 1

4k0

(2 k0)!

k0!2
· (T1 + T2 + · · · + Tn)

k0

=
∑ 1

4k0

(2 k0)!

k0!2
· (k1 + k2 + · · · + kn)!

k1! k2! · · · kn!
· T k1

1 T k2
2 · · · T kn

n . (75)

§ See also examples in Appendix G.
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With the constraint k0 = k1 + k2 + · · · + kn , there will be one more factorial (i.e.
k0!) in the denominator with respect to the expansion of 1/Q given in (8). One has
then one additional monomial in the polynomial Qeq if we consider the right hand
side of (75) as an expansion of 1/Qeq.

By performing the diagonal on (75), one factorial in the denominator kj ! takes
a value like kj ! = (r p + · · ·)!, where p is the running index of the diagonal and
r an integer. The additional monomial in Qeq will be v1/r. Now depending on the
monomials Tj , there is no reason why the additional variable will not occur elsewhere.

Hereafter, let us display some examples of polynomials Q and Qeq (with µ a
parameter) where the relation (73) holds but with an expression for Qeq, different
from the simple expression given in (74):

Q = 1 −
(
x+ y + z + µx5 y

)
, (76)

Qeq = 1 −
(
x+ y + z + µx5 y u5/3 +

1

4
u1/3

)
, (77)

Q = 1 −
(
x+ y + z + xy + yz + µx3 y z

)
, (78)

Qeq = 1 −
(
x+ y + z + (xy + yz) · u1/3 + µx3 y z u4/3 +

1

4
u1/3

)
. (79)

Such relations and relation (74) single out square roots, and cannot be simply
generalised to any N -th roots of polynomials. This special role played by reciprocal
of square roots comes, in fact, from the emergence of ratio of factorials of multiple
argument in the relation:

(1/2)n
n!

=
1

4n
(2n)

n!2
. (80)

In view of the expressions of the polynomials Qeq a natural question arises for the
case where the polynomial Q is factorizable (in two factors, for instance) Q = Q1 Q2.
Does the additional variable u occurs in one factor, or in both, or as an additive
monomial ? In the last situation, the equivalent polynomial Qeq may come out non
factorizable, and the equivalent differential operator will be irreducible.

Let us consider the polynomial Q̃ = (1 − x− y − z) · (1 − y− z2) given in (44).
Here the variables in the second factor of Q̃ are a subset of the variables in the first
factor. The diagonal of 1/Q̃ is annihilated by an order-six differential operator with
the unique factorization L6 = M2 · M4.

The first terms of the diagonal of 1/Q̃1/2 are (t = xyz):

Diag

(
1

Q̃1/2

)
= 1 +

9

4
t +

1695

64
t2 +

26215

64
t3 +

120986775

16384
t4 + · · · (81)

This globally bounded power series is annihilated by an order-eight differential
operator L8. The differential operator L8 is irreducible with a differential Galois group
included in SO(8, C). Among the formal solutions, at the origin, of the differential
operator L8, two series behave as ln(t)2, (i.e. the maximum log power). One of these
solutions is the series given in (81) which, according to our conjectures, should be
diagonal of a rational function with four variables (Nv = 2 + 2).

In order to find such a rational function 1/Qeq, we follow the procedure in

Appendix B with the general term of the diagonal of 1/Q̃1/2, to obtain:

Qeq = 1 − x− y − z +
1

4
·
(
2xy + y2 + 2 yz − 4 z2

)
· u1/3
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+
1

2
z2 · (2x + y + 2 z) · u2/3 − 1

4
u1/3. (82)

Consider, now, the polynomial Q = (1− x− y − z) ·
(
1− x− y − z2

)
where both

factors in Q carry the same number of variables. The diagonal of 1/Q is annihilated
by an order-seven differential operator with the direct sum factorization L7 =
(L2 ⊕ L4) · N1. The diagonal of 1/Q1/2

Diag

(
1

Q1/2

)
= 1 + 3 t +

195

4
t2 + 665 t3 +

820575

64
t4 + · · · (83)

is annihilated by an irreducible order-eight differential operator with differential Galois
group included in SO(8, C). One of the formal solutions, at the origin, of the
differential operator, behaves as ln(t)2, (i.e. the maximum log power). The power
series in front of ln(t)2 identifies with the series given in (83), and should be the
diagonal of a rational function Qeq with four variables. The polynomial Qeq reads:

Qeq = 1 − (x+ y) · (z − 1) · (z + 2) + (x+ y)
2 · u1/2

+ z ·
(
z2 − z − 1

)
· u−1/2 − 1

4
· u1/2. (84)

8. On the homomorphism to the adjoint assumption

All the examples, displayed in this paper (and many others not given here), confirm
the conjecture (3). One assumption for this conjecture to hold, is that the (minimal
order) differential operator is homomorphic to its adjoint, thus yielding symplectic,
or orthogonal, differential Galois groups [22, 25, 40]. This assumption may look
as an innocent caveat since, as we underlined in several papers [40], the (minimal
order) differential operators annihilating diagonals of rational functions are, almost
systematically, homomorphic to their adjoint†.

However, some examples of diagonals, whose corresponding (minimal order)
differential operators are not homomorphic to their adjoint, have been seen to
correspond to 3F2 candidates to be counterexamples to Christol’s conjecture [2, 20].
Such a candidate, for instance, reads:

3F2

(
[
2

9
,
5

9
,
8

9
], [1,

2

3
], 27 t

)
= Diag

( (1 − x − y)1/3

1 − x − y − z

)
. (85)

This hypergeometric function is the diagonal of a quite simple algebraic function
of three variables. The order-three differential operator annihilating (85) is not
homomorphic to its adjoint. Its differential Galois group is SL(3, C). One of the
formal solutions (at the origin) of the order-three differential operator has the highest
logarithmic power ln(t)1.

Note that a representation of this hypergeometric function (85) as diagonal of
rational function of more than three variables, is possible [2] using Denef-Lipschitz
formulation [36], but a representation as a diagonal of a rational function of 1 +2 = 3
variables does not seem possible.

Thus this example does not seem to satisfy relation (3). It is outside the
framework of this paper, for which the assumption to be homomorphic to its adjoint
is not superfluous, but necessary.

† For reducible differential operator, each factor is homomorphic to its adjoint.
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9. Conclusion

In this paper, we addressed some properties of the diagonal of rational functions. We
restricted the analysis to the rational functions of the form 1/Q.

It seems that the minimal number of variables Nv required to represent a globally
bounded D-finite series as a diagonal of rational function, is simply related to the
highest power n of the logarithmic formal solutions of the (minimal order) differential
operator annihilating the diagonals, by Nv = n + 2, provided one assumes that this
differential operator is homomorphic to its adjoint.

Furthermore it is observed that the symplectic, or orthogonal, character of the
differential Galois group seems to be related to the parity of this highest power n of
the logarithmic formal solution.

In the situation where the polynomial Q factorizes in two polynomial factors as
Q = Q1 · Q2, the differential operator annihilating the diagonal of 1/Q has either a
direct sum or a unique factorization, depending on whether both polynomials Qj carry
all (the same) variables, or not. Furthermore, in the case of a unique factorization,
the successive factors in the differential operator are included in the symplectic and
orthogonal differential Galois groups, in alternance. Even in these factorized cases
conjecture (3) remains valid.

All the results, and educated guess statements, of this paper are just conjectures.
One would like to have a demonstration of these various conjectures. At first sight,
one can imagine that the number of variables Nv is related to some “complexity
measurement” of the (minimal order) differential operator annihilating the diagonal.
A very naive measure of the complexity is the order of the operator, and the MUM
examples, for which we have a simple relation between the highest power n and the
order, seem to confirm such a naive view-point. We show, in this paper, that this is
not the case. The relation the number of variables Nv is not related with the order
but with highest log-power n. Along this line, and as far as a demonstration of the
main conjecture (3) is concerned, let us underline that the crucial role played by the
highest log exponent corresponds to the concept of monodromy filtration†, which can
be introduced even if one is not totally sure that the differential operator is minimal
order.

Acknowledgments We thank A. Bostan and J-A Weil, for discussions on ODE’s
with algebraic solutions. We thank A. Bostan for some p-curvature calculations. We
thank G. Christol, for monodromy filtration discussions. We thank C. Koutschan for
LGF discussions.

Appendix A. Linear differential operators corresponding to Lattice Green
functions

Appendix A.1. MUM cases

Appendix A.1.1. Simple cubic lattice Green functions in d dimensions
The lattice Green function of the d-dimensional simple cubic lattice is given by

the multiple integral of a rational function with numerator 1, and non factorizable
denominator depending on d variables, and on the parameter t.

† See paragraph 4.2 page 40 of [20].
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The diagonal 1/Q, with polynomial Q given by

Q = 1 −
d∑

j=1

xj − xd+1 ·
d∑

j=1

d∏
i ̸=j

xi, (A.1)

depending on Nv = d + 1 variables, reproduces the simple cubic lattice of dimension
d. The diagonal of 1/Q is annihilated by an irreducible differential operator of order
d, having MUM. The maximum power of the logarithmic formal solutions of the
differential operators up to d = 8, and the corresponding rational functions follow
the two conjectures (3), (4).

Appendix A.1.2. The diamond lattice Green function
The LGF of the 3-dimensional diamond lattice is given by the diagonal of 1/Q,

where

Q = 1 − xyzu · S(x, y, z) · S
( 1
x
,
1

y
,
1

z

)
, (A.2)

with : S(x, y, z) = x +
1

x
+ z ·

(
y +

1

y

)
, (A.3)

With the fourth variable u, the number of variables is Nv = 4. The corresponding
order-three differential operator is irreducible, its differential Galois group is included
in the orthogonal group SO(3, C), and its formal solutions with the highest log-power
behave as ln(t)2, in agreement with Nv = 2 + 2 = 4 variables.

The LGF of the 4-dimensional diamond lattice is given by the diagonal of
1/Q, depending on Nv = 5 variables. The corresponding order-four differential
operator is irreducible. Its differential Galois group is (included) in the symplectic
group Sp(4, C). Its formal solution with the highest log-power behaves as ln(t)3, in
agreement with Nv = 3 + 2 = 5 variables.

Likewise, the LGF of the 5-dimensional diamond lattice is given by the diagonal of
1/Q, which depends on Nv = 6 variables. The corresponding order-five differential
operator is irreducible. Its differential Galois group is (included) in the orthogonal
group SO(5, C), and with the formal solution with the highest log-power at the origin
behaving as ln(t)4, in agreement with Nv = 4 + 2 = 6 variables.

All these examples are in agreement with the two conjectures (3) and (4).

Appendix A.2. Non-MUM examples: Face centred cubic lattice Green functions in d
dimensions

The lattice Green function of the d-dimensional face-centred cubic lattice is given by
the multiple integral of a rational function with numerator 1, and non factorizable
denominator depending on d variables. For these lattice Green we have not MUM
(except for d = 2, 3, 4).

The diagonal 1/Q where Q is the polynomial

Q(x1, x2, · · · , xd, xd+1)

= 1 −

d+1∏
j=1

xj

 ·
d∑

j>i

(
xi +

1

xi

)
·
(
xj +

1

xj

)
, (A.4)

depending on Nv = d + 1 variables, reproduces the face centred cubic lattice Green
function of dimension d.
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From d = 2 to d = 12, we denote the corresponding differential operators (the

subscript being the order), G2Dfcc
2 , G3Dfcc

3 [3], G4Dfcc
4 [5], G5Dfcc

6 [6], G6Dfcc
8 [7],

G7Dfcc
11 [8], and (G8Dfcc

14 , G9Dfcc
18 , G10Dfcc

22 , G11Dfcc
27 , G12Dfcc

32 ) [9].

The differential operators, up to d = 9, are known to be irreducible [8, 9]. The
differential operators, up to d = 12, have formal solutions with the highest log-power
at the origin behaving as ln(t)n. All the differential operators (and their corresponding
rational functions) (see Table A1) are in agreement with the two conjectures (3) and
(4).

All the differential operators up to† d = 11 have non globally bounded formal
solutions around all the singularities t ̸= 0. There is an exception for G3Dfcc

3

which has, at the singularity t = −1/4, a globally bounded formal solution in front of
ln(t+ 1/4)2, i.e. the same maximum as around the singularity t = 0.

Table A1. Minimal number of variables, order, maximum exponent of ln(t)n of
the formal solutions and differential Galois group for the LGF of the fcc lattice of
dimension d = 2, 3, · · · , 12.

d 2 3 4 5 6 7 8 9 10 11 12
Nv 3 4 5 6 7 8 9 10 11 12 13

Order 2 3 4 6 8 11 14 18 22 27 32
n 1 2 3 4 5 6 7 8 9 10 11

Sp or SO Sp SO Sp SO Sp SO Sp SO Sp SO Sp

Appendix B. The minimum number of variables in the rational function

For general coefficient of the series written as nested sums of binomials, one may use
the integral representation of the binomial(

n

k

)
=

1

2πi

∫
C

(1 + z)n

zk
dz

z
, (B.1)

to write down the rational function [1]. The calculations are straithforward [1], and
one obtains, this way, the rational function with as many variables as binomials plus
one more variable. Furthermore, the denominator polynomial Q will be in a non
factorized form, for more than one summation in the general term of the series.

Let us consider, for instance, the general term of the Calabi-Yau series (number
16 in [10])

CY16 =

∞∑
n=0

n∑
k=0

(
2n

n

)
·
(
n

k

)2

·
(
2k

k

)
·
(
2n− 2k

n− k

)
· tn

= 1 + 8 t + 168 t2 + 5120 t3 + · · · (B.2)

Using the integral representation (B.1), each binomial, and the variable t, brings
one variable. One obtains

CY16 = Diag

(
1

Q1 · Q2

)
, (B.3)

† For d = 12, the differential operator G12Dfcc
32 is known only modulo some primes.
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where:

Q1 = 1 − z0z2z3z4 · (1 + z1)
2 · (1 + z2) · (1 + z3) · (1 + z5)

2,

Q2 = 1 − z0z5 · (1 + z1)
2 · (1 + z2) · (1 + z3) · (1 + z4)

2. (B.4)

This diagonal of rational function representation of the Calabi-Yau CY16 depends on
six variables with a factorizable denominator. This is a diagonal of rational function
representation of CY16, but this simple nested sum of binomials does not provide the
minimal number of variables representation for the diagonal.

Let us now show how the rational function 1/Q, in Table 1, is obtained for
Calabi-Yau CY16.

The procedure amounts to casting the general term into the original form of the
multinomial theorem, instead of the previous nested sum of binomials form. This
means making the numerator with one factorial by introducing more summations.
Converting to factorials, and using the formula

(2n)!

n!4
=

n∑
k=0

1

k!2 (n− k)!2
, (B.5)

in the general term of CY16, one obtains¶:

CY16 =
∑

n,k,k1,k2

(2n)!

k1!2 k2!2 (k − k1)!2 (n− k − k2)!2
· tn. (B.6)

The general term carries one factorial in the numerator, and eight factorials in the
denominator. There are, then, 8 monomials in the multinomial expansion of the
unknown polynomial denominator Q = 1 − (T1 + T2 + · · · + T8).

These monomials correspond to each factorial as

T1 → k1, T2 → k1, T3 → k2, T4 → k2,

T5 → k − k1, T6 → k − k1, (B.7)

T7 → n− k − k2, T8 → n− k − k2

and satisfy

T1T2

T5T6
= 1,

T3T4

T7T8
= 1,

T5T6

T7T8
= 1, T7T8 = t, (B.8)

which give:

T2 =
t

T1
, T4 =

t

T3
, T6 =

t

T5
, T8 =

t

T7
. (B.9)

The variable t is the product of all the variables. There are four unfixed Tj , the
number of variables should be greater, or equal, to 4. Guided by our conjectures, let
us, first, assume there are five variables, i.e. t = xyzuv. Choosing T1 = x, T3 = y,
T5 = z and T7 = u, we obtain the polynomial Q given in Table 1. On may also
choose T1 = x, T3 = y, T5 = xu and T7 = yv, to obtain

Q = 1 − x · (1 + u+ uz + uzv) − y · (1 + v + vz + vzu) , (B.10)

and the diagonal of 1/Q, then identifies with CY16.
Assume, now, that we start with 6 variables, i.e. t = xyzuvw, and fix T1 = x,

T3 = y, T5 = z and T7 = u. One obtains the polynomial

Q = 1 −
(
x+ y + z + u + vw · (xyz + yzu+ zux+ uxy)

)
, (B.11)

¶ This is the original form of the general term given in Section 8.1 of [31].
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where it is clear that the product vw stands for just one variable.

Remark B.1. One should note that the conditions (B.8) are satisfied with 4
variables giving Q = 1 − (x+ y + z + u + xyz + yzu+ zux+ uxy), the diagonal
of which does not identity with CY16. The corresponding differential operator is of
order four, is irreducible, has his differential Galois group included in Sp(4, C), and
the most logarithmic singular formal solution is in ln(t)2.

Remark B.2. Assume that, in the numerator of (B.6), one has ak1 (2n)! tn, the
first condition in (B.8) changes to

T1T2

T5T6
= 1 −→ T1T2

T5T6
= a (B.12)

and the denominator polynomial Q becomes:

1 −
(
x+ y + z + u + v · (xzu+ xyu+ xyz + a yzu)

)
, (B.13)

Appendix C. The factors occurring in the χ(n)’s of the Ising model

The differential operators corresponding to the n-particles contributions to the
magnetic susceptibility of the Ising model, namely the χ(n)’s, and especially their
decomposition in products and direct sums of many factors are recalled below (the
subscript denote the order of the differential operator):

χ(1), L1,

χ(2), L2,

χ(3), L7 = L1 ⊕ (Y3 · Z2 · N1),

χ(4), L10 = L2 ⊕ (L̃4 · L(4)
4 ), L

(4)
4 = L1,3 (L1,2 ⊕ L1,1 ⊕ Dt) ,

χ(5), L33 = L7 ⊕ (L5 L12 · L̃1) ·
(
V2 ⊕ (Z2 · N1)⊕ (F3 · F2 · Ls

1)
)
,

χ(6), L52 = L10 ⊕ (L6 · L̃2 · L21) ·
((

Dt − 1

t

)
⊕ L3 ⊕ L

(4)
4 ⊕ (L4 L̃3 · Le

2)
)
,

All the factors, occurring in the differential operators, have been shown to be such
that their differential Galois group is either symplectic or orthogonal (see [22] and
references therein).

The blocks of factors (of order greater than 1) with unique factorization (with
their corresponding differential Galois group), are:

Y3 Z2, Y3 → SO(3, C), Z2 → Sp(2, C)
L5 L12, L5 → SO(5, C), L12 → Sp(12, C),
F3 F2, F3 → SO(3, C), F2 → Sp(2, C),
L6 L̃2 L21, L6 → SO(6, C), L̃2 → Sp(2, C), L21 → SO(21, C),
L4 L̃3 L

e
2, L4 → Sp(4, C), L̃3 → SO(3, C), Le

2 → Sp(2, C).
Each time we deal with a block of factors with unique factorization, the differential

Galois groups of the differential operators inside the block, are, in alternance, (included
in) symplectic, or orthogonal, differential Galois groups.

Let us note that we have shown [1] that the χ(n)’s are actually diagonals of
rational functions. However, for each differential operator factor in the blocks, it is
quite hard to find the corresponding rational (or algebraic) function whose diagonal
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is annihilated by this differential operator factor. Conjecture (3), can just be used to
determine the minimum number of variables in the rational function. This should,
also, be consistent with the fact that only the series in front of ln(t)n, with n the
maximum exponent, are globally bounded.

Consider, for instance, the order-twelve differential operator L12 occurring in
the factorization of L33, the differential operator annihilating χ(5). Among the
formal solutions of L12 around the origin, there are two series in front of ln(t)3, (the
exponent n = 3 being the maximum), which are, both, globally bounded. According to
conjecture (3), these two globally bounded series solutions of the differential operator
L12, should be diagonal of rational functions of Nv = 3 + 2 = 5 variables. Around
the singularity t = ∞ = 1/s, there are also two series in front of ln(s)3, (the same
value of the exponent), and these series are also globally bounded. At the singularity
t = 1/4, there is one series in front of ln(t − 1/4)3 among the formal solutions, and
this series is actually globally bounded. Around each of the other singularities (with
rational values), i.e. t = −1/4, −1/2, −1, 1, the maximum of power log in the formal
solutions is, respectively, 2, 1, 1, 1, and all these series are not globally bounded. For
the singularities t = ts, roots of polynomials of degree 2, 3 and 4, we only checked
that, for each, the formal solutions behave at the most as ln(t− ts)

1.

Appendix D. Other examples

Here, we give some examples that contradict, at first sight, the affirmation that the
diagonal of 1/Q with non factorizable (resp. factorizable) Q over the rationals, is
annihilated by an irreducible (resp. factorizable) differential operator.

The three rational functions 1/Qj with Qj given by

Q1 = 1 + (x+ y + z + xy + yz − x3yz), (D.1)

Q2 = 1 − (x+ y + z + x4y), (D.2)

Q3 = 1 −
(
x+ y + z + x2 · (y + z)

)
, (D.3)

rule out the irreducibility statement. The diagonal of the rational function 1/Qj is

annihilated by an order-four differential operator L
(j)
4 which factorizes as a direct sum

of two order-two differential operators (L
(j)
2 and M

(j)
2 ):

L
(j)
4 = L

(j)
2 ⊕ M

(j)
2 . (D.4)

The three examples follow exactly the same features. For the three examples, one has

sol(L
(j)
2 ) = Diag

(
1 + x

Qj

)
, sol(M

(j)
2 ) = Diag

(
1− x

Qj

)
, (D.5)

and for the three examples, their solutions sol(L
(j)
2 ) and sol(M

(j)
2 ) can be written

as pullbacked hypergeometric function 2F1 ([1/12, 5/12], [1], •) with an algebraic
prefactor (see [41], for Q1).

Note however, that when the polynomials Qj are considered with generic values
of the coefficients in front of the monomials, the resulting differential operators,
annihilating the diagonal of 1/Qj , are of order four, and are irreducible.

Introducing a parameter µ in Q1

Q1(µ) = 1 + (x+ y + z + xy + yz − µ · x3yz), (D.6)
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and using the method of factorization of differential operators modulo primes (see
Section 4 in [15] and Remark 6 in [22]), one finds that the differential operator
annihilating the diagonal Diag(1/Q1(µ)) factorizes for only two values of µ. The
trivial µ = 0 where Q1(0) = (1 + x + z) (1 + y), and the particular value µ = 1.
The example with Q1(µ = 1) is presented in [41] and analyzed via the notion of split
Jacobian [42].

Note that either irreducible or factorizable in direct sum, the differential operators

L
(j)
2 , M

(j)
2 have their differential Galois groups included in symplectic groups, and

their formal solution with the highest log-power behaves as ln(t)1, indicating a minimal
number Nv = 3 = 1 + 2 of variables occurring in the rational function 1/Qj . This
is also the case for the order-four irreducible differential operator corresponding to the
diagonal of 1/Q1(µ), for generic values of the parameter µ.

Appendix E. Direct sum versus unique factorization for the diagonal of
1/Q, with Q = Q1 Q2

The examples of section 6 dealt with a polynomial Q that factorizes as Q
(c)
1 Q2, where

the polynomial Q
(c)
1 contains all the variables, and the polynomials Q2 has a smaller

number of variables. Call Lq, the differential operator annihilating the diagonal of

1/Q
(c)
1 . The differential operator, annihilating the diagonal of 1/Q

(c)
1 /Q2, appears

with a unique factorization as Nq · Mn, where Nq is homomorphic with Lq. There is
no known relation between the differential operator, corresponding to 1/Q2, and the
”dressing” differential operator Mn.

Appendix E.1. Direct sum

Let us consider the situation where Q factorizes as Q
(c)
1 Q

(c)
2 , and where both

polynomials Q
(c)
1 and Q

(c)
2 carry all the variables. Call Lq, Ln and Lm the

differential operators annihilating respectively, Diag(1/Q
(c)
1 ), Diag(1/Q

(c)
2 ) and

Diag(1/Q
(c)
1 /Q

(c)
2 ). Since the polynomials Q

(c)
1 and Q

(c)
2 are on an equal footing

in terms of number of variables, one may expect the differential operator Lm to have
a left factor homomorphic to Lq as well as another left factor homomorphic to Ln.
This means that Lm has a factorization in direct sum between the homomorphic
differential operators of Lq and Ln.

Appendix E.2. From direct sum to unique factorization

Let us see how the direct sum actually reduces to a simple product, when one of the
factors Qj has less variables. Take the rational functions 1/Q1 and 1/Q2 with the
polynomials:

Q1 = 1 − (x+ y + z), Q2(α) = 1 − (x+ y + α · z + xy). (E.1)

The diagonal Diag(1/Q1) (resp. Diag(1/Q2(α))) is annihilated by an order-two

differential operator L
(1)
2 (resp. L

(2)
2 ). The diagonal of 1/Q1/Q2(α)

Diag

(
1

Q1 Q2
(α)

)
(E.2)

= 1 + (13 + 14α) · t + (241 + 273α+ 306α2) · t2 + · · ·
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is annihilated by a (quite large†) order-six differential operator L6, depending on α,
and it factorizes in a direct sum as:

L6 =
(
N

(1)
2 ⊕ N

(2)
2

)
· H2 = (N

(1)
2 · H2)⊕ (N

(2)
2 · H2). (E.3)

The order-two differential “dressing” operator H2 has two algebraic solutions:

sol(H2) =
1√

t · √p2
·
(
const. A1/4 + const. (t − α + 1) · A−1/4

)
, where:

A = p1 + 4 · (2α− 3) ·
√
α− 1 ·

√
t · √p2, where:

p1 = t2 + 2 · (α− 1) · (4α− 5) · (4α− 7) · t + (α− 1)2,

p2 = t2 + 2 · (α− 1) · (8α2 − 24α+ 17) · t + (α− 1)2. (E.4)

The order-two differential operator N
(1)
2 (resp. N

(2)
2 ) is homomorphic with the

differential operator L
(1)
2 (resp. L

(2)
2 ). The differential operator L

(1)
2 does not depend

on α, but the intertwiner W
(1)
1 does:

N
(1)
2 (α) · W (1)

1 (α) = W̃
(1)
1 (α) · L(1)

2 . (E.5)

From the direct-sum decomposition (E.3), the diagonal of 1/Q1/Q2(α) which is
annihilated by the differential operator L6, reads:

Diag

(
1

Q1 Q2(α)
(α)

)
= sol

(
N

(1)
2 (α) · H2(α)

)
+ sol

(
N

(2)
2 (α) · H2(α)

)
. (E.6)

For α = 0 the analytical solution (at t = 0) of N
(2)
2 (α) · H2(α) is the analytical

solution (at t = 0) of H2(α) for α = 0, namely the algebraic series

A = 1 + 21 t + 561 t2 + 16213 t3 + 487521 t4 + 15015573 t5 + · · · (E.7)

together with the constant function. The other solution of H2(α), for α = 0, is not
analytic at t = 0:

S2 = t−1/2 ·
(
1 + 13 t + 321 t2 + 8989 t3 + · · ·

)
. (E.8)

The analytical solutions (at t = 0) of N
(1)
2 (α) · H2(α) for α = 0 are, the

analytical solution (at t = 0) of H2(α) for α = 0, namely (E.7), together with the
series:

S = t + 40 t2 + 1400x3 + 47110 t4 + 1560328 t5 + · · · (E.9)

The diagonal series (E.2) for α = 0 reads:

1 + 13 t + 241 t2 + 5013 t3 + 110641 t4 + 2532949 t5 + · · · (E.10)

which is nothing but the following combination of (E.7) and (E.9):

Diag

(
1

Q1 · Q2(α) = 0

)
= A − 8 · S. (E.11)

This series is, thus, annihilated by only the differential operator N
(1)
2 · H2, for α = 0,

with no need of the differential operator N
(2)
2 · H2 for α = 0.

Remark E.1. Note that the “spurious” differential operator N
(2)
2 · H2, actually

factorizes as a direct sum for α = 0

N
(2)
2 · H2(α = 0) = Dt ⊕

(
L1 · H2(α = 0)

)
, (E.12)

where the order-one differential operator L1 annihilates a rational solution.

† The polynomial coefficients of L6 are of degree 21 in t and degree 22 in α.
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Appendix F. Rational function from four variables to three variables as a
parameter varies

The example in section 4.3 shows that, depending on the number (four or three) of
variables on which the diagonal is performed, we obtain, in the formal solutions of
the correspondig differential operators, the power 2 (i.e. ln(t)2) or the power 1 (i.e.
ln(s)1) in agreement with conjecture (3).

Here, we consider an example (depending on one parameter) where the diagonal
is performed on all the four variables, and the result, for some value of the parameter
(b = 2 in Appendix F.2 below), will indicate that we deal, in fact, with only three
variables in agreement with the power ln(t)1 obtained in the formal solutions.

Let us consider the diagonal of the following rational function of four variables
x, y, z, u, and a parameter b

Diag

(
1

Q1 Q2

)
= 1 + 20 · (b + 2) · t + 756 ·

(
b2 + 3 b + 6

)
· t2

+ 34320 ·
(
b3 + 4 b2 + 10 b + 20

)
· t3 + · · · (F.1)

where:

Q1 = 1 − x − y − z − u, Q2 = 1 − x − y − b · z. (F.2)

The power series (F.1) is annihilated (for generic values of b) by an order-six
differential operator with the unique factorization

L6(b) = L3(b) · L2(b) · L1 (F.3)

where the order-one differential operator, L1, reads Dt + 1/2/t.
The order-three differential operator L3(b) has the following hypergeometric

solution:
1

t2 · (1− b + 64 b2 · t)
· 3F2

(
[
3

2
,
7

4
,
9

4
], [1, 2], 256 · t

)
. (F.4)

The formal series solutions of L3(b) have, at most, a ln(t)2.
The order-two differential operator L2(b) has the following 2F1 hypergeometric

solution:

1

t
· 2F1

(
[
3

4
,
5

4
], [1],

64 · b2

b− 1
· t
)
. (F.5)

The formal series solutions of L2(b) have, at most, a ln(t)1 logarithmic power.
The formal series solutions of L6(b) have, at most, a ln(t)2 logarithmic power.

This is in agreement with conjecture (3), and the fact that (F.1) corresponds to a
rational function of 2 + 2 = 4 variables.

Let us introduce the order-three differential operator U3, annihilating

Diag

(
1

Q1

)
= 3F2

(
[
1

4
,
2

4
,
3

4
], [1, 1], 256 t

)
. (F.6)

This order-three differential operator reads:

U3 = (1 − 256 t) · t2 · D3
t + 3 · (1 − 384 t) · t · D2

t

+ (1 − 816 t) · Dt − 24. (F.7)

The formal series solutions of U3 have, at most, a ln(t)2 logarithmic power, in
agreement with conjecture (3) and the fact that 1/Q1 is a rational function of four
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variables. The order-three differential operator L3(b), in the factorization given in
(F.3), is actually homomorphic to the order-three differential operator U3.

All the results above are for the generic values of the parameter b. In the sequel we
consider the situation with the values of b for which the series (F.1) will be annihilated
by a differential operator of order less than six. These values of b are† b = 0, b = 1
and b = 2.

Appendix F.1. The b = 0 and b = 1 cases

For the value of the parameter b = 0, the factorization of the order-six differential
operator L6(b) becomes

L6(b = 0) =
((

Dt +
1

t

)
· Dt

)
⊕
(
N3 · L1

)
. (F.8)

For b = 0 the series (F.1) is annihilated by the order-four differential operator N3 ·L1,
whose formal solutions, at the origin carry the maximum exponent ln(t)2, indicating,
according to conjecture (3), that we deal with a rational function with 4 = 2 + 2
variables.

For the value of the parameter b = 1, the factorization of the order-six differential
operator L6(b) reads:

L6(b = 1) =
(
Dt +

1

2t

)
⊕
(
Dt +

3

4t

)
⊕
(
Dt +

5

4t

)
⊕ M3. (F.9)

For b = 1 the series (F.1) is annihilated by the order-three differential operator M3,
whose formal solutions at the origin carry the maximum exponent ln(t)2 indicating,
according to conjecture (3), that we deal with a rational function with 2 + 2 = 4
variables.

Appendix F.2. The b = 2 case

For b = 2 the factorization of the order-six differential operator L6(b) becomes:

L6(b = 2) = V3 ⊕
(
L2(b = 2) · L1

)
. (F.10)

The series (F.1), for the parameter b = 2, is annihilated by the order-three differential
operator L2(b = 2) · L1 with the hypergeometric solution:

sol(L2(b = 2) · L1) = 3F2

(
[
1

2
,
3

4
,
5

4
], [1,

3

2
], 256 t

)
(F.11)

The formal solutions at the origin of L2(b = 2) · L1 carry the maximum exponent
ln(t)1 indicating, according to conjecture (3), that we deal with a rational function
with 3 = 1 +2 variables, while the rational function we started with, was dependent
on four variables. The power series (F.11) should, then, be the diagonal of a rational
function depending on only three variables.

Introducing the polynomial Q3 = 1 − x − y − b · u, the partial fraction form of
1/Q1/Q2 in the variable z, reads for b = 2:

1

Q1 Q2
= − 1

Q1 Q3
+

2

Q2 Q3
. (F.12)

† These values of b can be obtained using the method of factorization of differential operators modulo
primes (see Section 4 in [15] and Remark 6 in [22]). They can also be obtained by reducing the four
singularities t = ∞, 0, 1/256, (b− 1)/64/b2 of L6(b) to the three singularities t = ∞, 0, 1/256.
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The diagonal of 1/Q1/Q2, and the diagonal of 1/Q1/Q3, are identical, by the
symmetry (z, u) → (u, z). We end up with

Diag

(
1

Q1 Q2

)
= Diag

(
1

Q2 Q3

)
(F.13)

= Diag

(
1

(1 − x − y − 2 z) · (1 − x − y − 2u)

)
.

It remains to show that this diagonal depends, in fact, on only three variables instead
of four variables:

Diag

(
1

Q2 Q3

)
= Diag

 1

(1 − x− y)2
·
∑
i,j

(2z)i (2u)j

(1 − x− y)i+j


= Diag

(
1

(1 − x− y)2
·

∞∑
k=0

(4 z u)k

(1 − x− y)2k

)
. (F.14)

The sum on the index k gives:

Diag

(
1

Q2 Q3

)
= Diag

(
1

(1 − x− y)2 − 4 z u

)
. (F.15)

As far as the diagonal is concerned, the product z u stands for only one variable. The
diagonal given in (F.1) for b = 2, which is the series given in (F.11) is the diagonal
of a rational function depending on three variables, as the power of the logarithm in
the formal solutions of L2(b = 2) · L1 indicates.

Remark F.1. In the factorization of L6(b) for b = 2, given in (F.10), the
differential operator L2(b = 2) · L1 annihilates the series (F.1) for the value b = 2.
Therefore, the differential operator V3 becomes “spurious”. The analytical solution
(at the origin) of the differential operator V3 reads

sol(V3) = 3F2

(
[
2

4
,
3

4
,
5

4
], [1, 1], 256 t

)
, (F.16)

to be compared with the solution (F.6) of the differential operator U3. The differential
operators U3 and V3 are actually homomorphic

(1− 256 t) · t2 · V3 ·
(
t · Dt +

1

4

)
=
(
t ·Dt +

5

4

)
· (1− 256 t) · t2 · U3, (F.17)

which shows (see section 7.4 ) that (F.16) is in fact:

sol(V3) = Diag
( 1

Q2
1

)
. (F.18)

At the value of b = 2, even if the differential operator V3 is spurious with respect to
the series (F.1) for b = 2, the differential operator L6(b) has kept, for b = 2, some
”memory” of the rational function 1/Q1, through the spurious operator V3.

Appendix G. Square root of rational functions versus Calabi-Yau
equations

As in sections 7.2 and 7.3, we give, here, two more examples where the diagonal of
square root of a rational function produces a Calabi-Yau equation.
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Appendix G.1. The square root of the rational function of the LGF 4-D simple cubic

Recall the rational function 1/Q, depending on 5 variables, and corresponding to the
lattice Green function of the 4-dimensional simple cubic lattice:

Q = 1 −
(
x+ y + z + u + v · (xyz + xyu+ xzu+ yzu)

)
, (G.1)

Diag
( 1

Q

)
= 1 + 8 t + 168 t2 + 5120 t3 + 190120 t4 + · · ·

Considering, now, the diagonal of the square root of this rational function (G.1)

Diag
( 1

Q1/2

)
= 1 + 3 t +

735

16
t2 + 1155 t3 +

152927775

4096
t4 + · · ·

one obtains an annihilating irreducible order-five differential operator L5, with a
differential Galois group included in the orthogonal group SO(5, C), and with ln(t)4

highest log-power formal solution at the origin. According to conjecture (3), a rational
function 1/Qeq, depending on 6 = 4 +2 variables should exist. With the introduction
of an extra variable w, it actually reads:

Qeq = Q − w1/2

4
. (G.2)

The diagonal of the algebraic function 1/Q1/2 identifies with the diagonal of the
rational function 1/Qeq.

The differential operator L5 has MUM, and is actually the exterior square of an
order-four differential operator, L5 = ext2 (L4). The differential operator L4 also has
MUM, at t = 0, the indicial exponents being four times 1/2. Let us introduce the
differential operator N4:

N4 = L4 ·
√
t · (1 − 16 t)

1/4 · (1 − 64 t)
1/4

. (G.3)

With the scaling t → 16 t, the differential operator N4 reads (with θ = tDt):

N4 = θ4 − 4 · t ·
(
960 θ4 + 640 θ3 + 574 θ2 + 254 θ + 41

)
+ 16 · t2 ·

(
356352 θ4 + 451328 θ2 + 475136 θ3 + 199424 θ + 34257

)
− 212 · t3 ·

(
1003520 θ4 + 2007040 θ3 + 2098048 θ2 + 1043328 θ + 198453

)
+ 222 · t4 ·

(
356352 θ4 + 950272 θ3 + 1126912 θ2 + 618752 θ + 124913

)
− 237 · t5 · (2 θ + 1) ·

(
960 θ3 + 2720 θ2 + 2854 θ + 987

)
+ 248 · t6 · (2 θ + 1) · (2 θ + 3) · (4 θ + 3) · (4 θ + 5) . (G.4)

To be of Calabi-Yau type, the differential operator N4 must satisfy some
conditions [33, 43]. The differential Galois group of N4 is included in Sp(4, C),
the differential operator N4 has MUM, and at the infinity, the indicial exponents
1/2, 3/4, 5/4, 3/2 are such that 1/2 + 3/2 = 3/4 + 5/4 = 2 is a rational. Morever,
the coefficients of the power series given below in (G.5), and the instanton numbers
given below in (G.11), should be integers.

The formal solutions, at the origin, of the differential operator N4 are

S0 = 1 + 164 t + 66972 t2 + 38050160 t3 + · · · (G.5)

and three formal solutions Sj , ( j = 1, 2, 3) in the form of the set (1) and behaving as
Sj = S0 ln(t)j + · · ·
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Let z = S1/S0, the nome q, defined as q = exp(z), has the expansion

q = t + 360 t2 + 188244 t3 + 119619168 t4 + · · · (G.6)

and the mirror map reads:

t = q − 360 q2 + 70956 q3 − 14059968 q4 + · · · (G.7)

The Yukawa coupling defined by

K(q) =
d2

dz2

(
S2

S0

)
, (G.8)

reads:

K(q) = 1 − 128 q − 41984 q2 − 13919744 q3 − 4141162496 q4 + · · · (G.9)

The Yukawa coupling, expanded in a Lambert series, reads

K(q) = 1 +

∞∑
j=1

nj
j3 qj

1− qj
, (G.10)

and gives the ”instantons numbers” nj , j = 1, 2, · · ·

− 128, −5232, −1546624

3
, −64705008, −7960717440, −1089730087792, · · · (G.11)

where, with n0 = 3, the numbers n0 nj are actually integers.

The differential operator N4 satifies the Calabi-Yau type conditions, and
especially the series given in (G.5), (G.6), (G.7) and (G.9) have integer coefficients.

Appendix G.2. The square root of the rational function of the LGF 4-D body centred
cubic

Let us consider the rational function 1/Q, where the polynomial Q reads:

Q = 1 − (x+ z) · (1 + y) · (1 + u) · (1 + v) . (G.12)

This is the multivariate polynomial corresponding to the Calabi-Yau number 3 (see
Table 1). The diagonal of 1/Q also identifies with the LGF of the 4-D body centred
cubic lattice [4].

The diagonal of 1/
√
Q with Q given in (G.12), reads:

Diag

(
1√
Q

)
= 5F4

(
[
1

2
,
1

2
,
1

2
,
1

4
,
3

4
], [1, 1, 1, 1], 256 t

)
. (G.13)

This diagonal is annihilated by an irreducible order-five differential operator L5, which
has a differential Galois group included in the orthogonal group SO(5, C). The
operator L5 has a ln(t)4 highest log-power formal solution at the origin. According
to conjecture (3), a rational function 1/Qeq, depending on 6 = 4 + 2 variables,
should exist. It actually (with an extra variable w) reads Qeq = Q−w1/2/4. and the
diagonal of 1/

√
Q actually identifies with the diagonal of 1/Qeq.

The order-five differential operator L5 has MUM, and is actually the exterior
square of an order-four differential operator, L5 = ext2 (L4). The differential
operator L4 has MUM, at t = 0, the indicial exponents being four times 1/2.

Let us introduce the differential operator N4:

N4 = L4 ·
√
t · (1 − 256 t)

1/4
. (G.14)
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With the scaling t → 16 t, the differential operator N4 reads (with θ = tDt):

N4 = θ4 − 16 · t ·
(
758 θ4 + 512 θ3 + 440 θ2 + 184 θ + 25

)
+ 212 · t2 ·

(
12288 θ4 + 16384 θ2 + 13056 θ3 + 3840 θ + 401

)
− 224 · t3 · (8 θ + 3)

2 · (8 θ + 5)
2
. (G.15)

Similarly to the previous example, the differential operator N4 given in (G.15) satisfies
the Calabi-Yau type conditions.
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