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Abstract

We show that the unresolved examples of Christol’s conjecture

3F2

(

[2/9, 5/9, 8/9], [2/3, 1], x
)

and 3F2

(

[1/9, 4/9, 7/9], [1/3, 1], x
)

, are

indeed diagonals of rational functions. We also show that other 3F2 and

4F3 unresolved examples of Christol’s conjecture are diagonals of rational

functions. Finally we give two arguments that show that it is likely that

the 3F2([1/9, 4/9, 5/9], [1/3, 1], 27 · x) function is a diagonal of a rational

function.

Keywords: Christol’s conjecture, diagonals of rational functions, Shimura

curves, creative telescoping, D-�nite series, globally bounded series, inverse

creative telescoping

1. Introduction

There is a plethora of multiple integrals in physics: Feynman integrals, lattice Green functions,

the summands of the magnetic susceptibility of the 2D Ising model [1, 2], that have very spe-

ci�c mathematical properties. These functions are D-�nite, i.e., solutions of linear differential

operators with polynomial coef�cients, and have series expansions with integer coef�cients. It

was also shown that the linear differential operators annihilating the summands of the magnetic

susceptibility of the Ising model χ̃(n), verify the speci�c property of being Fuchsian4 opera-

tors: the critical exponents of all their singularities are given by rational numbers, and their

Wronskians are Nth roots of rational functions [1, 2]. It was also shown that the χ̃(n) functions

are solutions of globally nilpotent operators [3], and that they ‘come from geometry’ being

G-operators [5].

The unifying scheme behind these seemingly sparse properties is that these functions are

diagonals of rational functions [6, 7]. It was shown for example in [7], that if summands of the

3Author to whom any correspondence should be addressed.

4Denoting by θ the homogeneous derivative x · d
d x
, the degrees of all the polynomial terms of the Fuchsian linear

differential operator
∑

nPn(x) · θ
n are equal.
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magnetic susceptibility χ̃(n) for any n have an integer coef�cient series expansion reducing

to algebraic series modulo any prime, it is because they are diagonals of rational functions for

any integer n. In fact many problems in mathematical physics involving n-fold integrals, could

be interpreted in terms of diagonals of algebraic or rational5 functions6.

In the case of the magnetic susceptibility of the square Ising model, it was possible to

show that the χ̃(n)’s are diagonals of rational functions because one had access to the alge-

braic integrands7. The only hurdle to overcome was to show the integrand to be analytic

at the origin. Now, it is straightforward to show that 3F2

(

[2/9, 5/9, 8/9], [2/3, 1], 36 · x
)

and 3F2

(

[1/9, 4/9, 7/9], [1/3, 1], 36 · x
)

verify the criteria that every diagonal of a rational

function needs to satisfy [9]:

• It is globally bounded: there exist integers c and d in N∗, such that d f (c x) ∈ Z[[x]] and

f(x) has a radius of convergence that is non-zero in C.

• It is D-�nite: there exists a linear differential operator L ∈ Z[x]
[

d
dx

]

, with L 6= 0, such

that L( f ) = 0.

It is howevermuch harder to prove these two functions to be diagonals of rational functions,

as it is an example of an inverse problem of creative telescoping8.

Now, solving inverse problems is hard, and it is relevant to physics. Inverse problems are

hard because the objects they study are not attainable through direct study. This is the case with

the problemwe tackle in this paper: it is very hard to guess the rational functionwhose diagonal

is given by 3F2

(

[2/9, 5/9, 8/9], [2/3, 1], 36 · x
)

or 3F2

(

[1/9, 4/9, 7/9], [1/3, 1], 36 · x
)

, and

that is why the problem of showing any member of this ‘class’ of hypergeometric functions to

be a diagonal of a rational function, has been open since Christol came upwith a �rst unresolved

example in 1986 [22].

Computational software tools such as Maple and Mathematica, as well as the software

package [12], were heavily used to guess the rational functions whose diagonals give these

3F2 functions. While physicists know that these tools can be used for direct computation in

physics9, it is less known that they can be used to study inverse problems like the one we

discuss in this paper, which makes this paper all the more relevant to physicists.

Furthermore, these 3F2 hypergeometric functions are shown in appendix A to be related

to Shimura curves, a type of curves that appears in the context of Calabi–Yau varieties [14]

(which can be seen as generalizations of K3 surfaces [15]), and in the context of mathemati-

cal physics [16], for instance mirror symmetry in physics [4]. For example in [16], Shimura

curves are discussed in the context of superelliptic curves which have different applications in

mathematical physics [18]. Furthermore, in the context of Calabi–Yau operators [19, 20], it is

worth recalling that the (non-holonomic but differentially algebraic) series of the nome, or the

Yukawa coupling series [21], are actually series with integer coef�cients, this property having

a deep physical meaning like counting the number of instantons.

Christol’s conjecture is an important problem for D-�nite series. As explained in [22], the

conjecture states that every series verifying the two properties appearing in the bullet points

above, is the diagonal of a rational function. In the same paper [22], Christol came up with

an unresolved example to his conjecture, and a longer list was generated by Christol and

5Any diagonal of an algebraic function in n variables can be rewritten as the diagonal of a rational function in 2n

variables: see [8].
6 See [6, 7] p 26 and p 58.
7 See the integrand of equation (26) in [7].
8 See section 8 of [11].
9The software package [12] can be used to compute differential equations veri�ed by various sunset and sunrise

Feynman diagrams [13].
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his co-authors in 2012 in [7]. In this paper we show that two of the unresolved examples of

the conjecture given in [7] on page 58, namely the 3F2

(

[2/9, 5/9, 8/9], [2/3, 1], 36 · x
)

and

3F2

(

[1/9, 4/9, 7/9], [1/3, 1], 36 · x
)

are indeed diagonals of rational functions and provide a

generalization of this result.

2. Recalls on diagonals of rational functions and on Christol’s conjecture

2.1. Definition of the diagonal of a rational function

The diagonal of a rational function in n variables R(x1, . . . , xn) = P(x1, . . . , xn)/
Q(x1, . . . , xn), where P ,Q ∈ Q[x1, . . . , xn] such that Q(0, . . . , 0) 6= 0, is de�ned through its

multi-Taylor expansion around (0, . . . , 0):

R (x1, . . . , xn) =

∞
∑

m1 = 0

· · ·

∞
∑

mn = 0

Rm1, ..., mn · x
m1
1 · · · xmnn , (1)

as the series in one variable x:

Diag (R (x1, . . . , xn)) =

∞
∑

m= 0

Rm, m, ..., m · xm. (2)

2.2. Hadamard product of algebraic functions and Christol’s conjecture

Recall that the Hadamard product of two series f (x) =
∑∞

n=0 αn · x
n and g(x) =

∑∞
n=0 βn ·

xn is given by:

f (x) ⋆ g(x) =

∞
∑

n=0

αn · βn · x
n. (3)

Hypergeometric series of the form pFp−1([a1, . . . , ap], [b1 . . . , bp−1], x) of height

h = h(a1, . . . , ap, b1 . . . , bp−1), where the height h is given by:

h = #{1 6 j 6 p | b j ∈ Z} −#{1 6 j 6 p | a j ∈ Z} (4)

with bp = 1, that can be written10 as the Hadamard product of h globally bounded11 series

of height 1, were shown to verify Christol’s conjecture. For example, the globally bounded

hypergeometric series 3F2([1/3, 1/3, 1/3], [1, 1], x) has height 3, and it can be written as the

Hadamard product of three algebraic functions12:

3F2([
1

3
,
1

3
,
1

3
], [1, 1], x) = (1− x)−1/3 ⋆ (1− x)−1/3 ⋆ (1− x)−1/3, (5)

and can thus be written as the diagonal of the algebraic function in three variables:

(1− x)−1/3 · (1− y)−1/3 · (1− z)−1/3. (6)

10 See [22] p 15.
11Globally bounded series can be recast into series with integer coef�cients [6, 7].
12Diagonals are closed under the Hadamard product: if two series are diagonals of rational functions, their Hadamard

product is also a diagonal of a rational function.
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Unlike the case of 3F2([1/3, 1/3, 1/3], [1, 1], x), the hypergeometric functions

3F2([2/9, 5/9, 8/9], [2/3, 1], x) and 3F2([1/9, 4/9, 7/9], [1/3, 1], x), while being glob-

ally bounded functions [23], were constructed in a way that prevents them from being written

as ‘simple’ Hadamard products of algebraic functions [10].

Note that a pFp−1 hypergeometric function can be shown to be globally bounded in general,

by looking at Landau functions as explained in the work of Christol [22]. Furthermore,Beukers

and Heckman have shown in [24], that pFp−1 globally bounded hypergeometric functions of

height one according to the de�nition above, are algebraic functions.

2.3. Unresolved examples to the conjecture

Generalized hypergeometric functions with regular singularities pFp−1 are a simple and natural

testing ground for Christol’s conjecture.

All 2F1([a, b], [c], x) hypergeometric series with a, b ∈ Q\Z and c ∈ Z that are globally

bounded are diagonals of rational functions. There are three cases that fall into this category:

• If the parameter c = 1, then the 2F1 function can be written as the Hadamard product

of two 1F0 functions, which are algebraic functions, and thus are diagonals of rational

functions by Furstenberg’s [25] theorem13.

• If the parameter is such that c > 1 with c ∈ Z, then the 2F1 function can be written as the

Hadamard product of a 1F0 and an algebraic function, and is thus the diagonal of a rational

function by Furstenberg’s theorem.

• If parameter c is not an integer, in this case the 2F1 function is a diagonal of a rational

function if and only if it is an algebraic function14.

Moving on to 3F2 hypergeometric functions, one can ask the question: when is a globally

bounded 3F2([a, b, c], [d, e], x) hypergeometric function, with a, b, c ∈ Q\Z, the diagonal of
a rational function?

• If d, e are integers greater than 0, then the 3F2([a, b, c], [d, e], x) can be written as the

Hadamard product of three algebraic functions, analogously to the situation in the 2F1

above, and is thus the diagonal of a rational function, by the closure of diagonals under

the Hadamard product and by Furstenberg’s theorem.

• If the parameters d and e in 3F2([a, b, c], [d, e], x) are rational numbers but not integers,

then the 3F2 is algebraic
15, and is thus a diagonal by Furstenberg’s theorem.

Excluding the case where any of the parameters of the hypergeometric function pFq is a

non-positive integer, because in this case the pFq is either a polynomial or not de�ned, the

interesting case occurs when only one of the two parameters d or e is rational but not integer,

and the other is an integer. But even in this case, a lot of the 3F2 functions are easily seen to be

diagonals of a rational function. Suppose that a 3F2([a, b, c], [1, e], x) is globally bounded, with

the parameters a, b, c, e ∈ Q\Z, then there are six ways to write the 3F2([a, b, c], [1, e], x)

function as the diagonal of a rational function. This corresponds to the six ways to write the

3F2([a, b, c], [1, e], x) as a Hadamard product of hypergeometric functions:

• 2F1([a, b], [e], x) ⋆ 1F0([c], x)

• 2F1([a, c], [e], x) ⋆ 1F0([b], x)

13 Furstenberg’s theorem states that any algebraic function is the diagonal of a rational function in two variables.
14The only 2F1 hypergeometric functions that are globally bounded with c ∈ Q are the algebraic ones: they are the

ones appearing in the list of Schwarz [26].
15This follows from the result of Beukers and Heckmann in [24].
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• 2F1([b, c], [e], x) ⋆ 1F0([a], x)

• 2F1([a, b], [1], x) ⋆ 2F1([c, 1], [e], x)

• 2F1([a, c], [1], x) ⋆ 2F1([b, 1], [e], x)

• 2F1([b, c], [1], x) ⋆ 2F1([a, 1], [e], x)

Now 1F0([c], x) and 2F1([a, b], [1], x) are diagonals of rational functions by what we have

said above. Then 3F2([a, b, c], [1, e], x) is a diagonal of rational functions if 2F1([c, 1], [e], x)

or 2F1([a, b], [e], x)
16, are diagonals of rational functions, i.e. if and only if they are alge-

braic functions, since e ∈ Q\Z. Now 2F1([c, 1], [e], x) cannot be an algebraic function for

e ∈ Q by Goursat [27]. Hence if one of 2F1([a, b], [e], x), 2F1([b, c], [e], x), or 2F1([a, c], [e], x)

is an algebraic function, then 3F2([a, b, c], [1, e], x) is the diagonal of a rational function. Now

taking the two examples given in [7] [?]17 that we are looking at here, we see that neither

3F2

(

[2/9, 5/9, 8/9], [2/3, 1], x
)

, nor 3F2

(

[1/9, 4/9, 7/9], [2/3, 1], x
)

, can be obtained as

diagonals of rational functions through Hadamard products18 since the three 2F1 hypergeo-

metric series are not globally bounded19:

2F1

(

[
2

9
,
5

9
], [

2

3
], x

)

, 2F1

(

[
2

9
,
8

9
], [

2

3
], x

)

, 2F1

(

[
5

9
,
8

9
], [

2

3
], x

)

, (7)

and nor are the 2F1 hypergeometric series:

2F1

(

[
1

9
,
4

9
], [

1

3
], x

)

, 2F1

(

[
4

9
,
7

9
], [

1

3
], x

)

, 2F1

(

[
1

9
,
7

9
], [

1

3
], x

)

. (8)

3. The main results

The globally bounded 3F2 hypergeometric series

3F2

(

[
2

9
,
5

9
,
8

9
], [

2

3
, 1], 27 · x

)

, 3F2

(

[
1

9
,
4

9
,
7

9
], [

1

3
, 1], 27 · x

)

(9)

Are20 respectively the diagonals of the two algebraic functions

3F2

(

[
2

9
,
5

9
,
8

9
], [

2

3
, 1], 27 · x

)

= Diag

(

(1− x− y)1/3

1− x− y− z

)

, (10)

and

3F2

([

1

9
,
4

9
,
7

9

]

, [
1

3
, 1], 27 · x

)

= Diag

(

(1− x− y)2/3

1− x− y− z

)

. (11)

These two hypergeometric series21 (9) can be recast into series with integer coef�cients

16 Instead of 2F1([c, 1], [e], x), or one could take any one of the three permuted versions: 2F1([b, 1], [e], x) , etc.
17Appendix F p 58 of [7].
18 See [28] for a proof that 3F2

(

[1/9, 4/9, 7/9], [2/3, 1], x
)

cannot be written as a Hadamard product.
19One can see this experimentally by taking the series expansion of any of the Gauss hypergeometric functions: the

prime numbers in the denominators of the coef�cients grow continuously.
20The operators annihilating the two hypergeometric functions (9) are adjoint of each other.
21The hypergeometric function 3F2([2/9, 5/9, 8/9], [2/3, 1], 27x) can be rewritten as the Hadamard product

2F1

(

[ 2
9
, 5

9
], [ 2

3
], 27 x

)

⋆ (1 − x)−8/9 with 2F1

(

[ 2
9
, 5

9
], [ 2

3
], 27 x

)

being associated with a Shimura curve [31]. For

more details please refer to appendix A.

5



J. Phys. A: Math. Theor. 53 (2020) 205201 Y Abdelaziz et al

3F2

(

[
2

9
,
5

9
,
8

9
], [

2

3
, 1], 36 · x

)

= 1 + 120x + 47124x2 + 23483460x3 + · · · ,

(12)

and

3F2

([

1

9
,
4

9
,
7

9

]

, [
1

3
, 1], 36 · x

)

= 1+ 84x+ 32760x2 + 16302000x3 + · · ·

(13)

Now Denef and Lipshitz in [8] show that any power series in Q [[x1, . . . , xn]], algebraic
over Q(x1, . . . , xn), is the diagonal of a rational function in 2n variables, and they give

an algorithm to build this rational function. This means that we can construct the rational

functions, whose corresponding diagonals are the 3F2([2/9, 5/9, 8/9], [2/3, 1], 27 · x) and the

3F2([1/9, 4/9, 7/9], [1/3, 1], 27 · x) functions. We recall the algorithm of Denef and Lipshitz

and apply it to the algebraic function (1− x− y)1/3/(1− x− y− z) in the �rst subsection

below, and then we give the rational function and a generalization of the result in the second

subsection. Finally, we give a second proof of the general result using binomial sums.

3.1. From diagonals of algebraic functions to diagonals of rational functions: Denef and

Lipshitz

We explain a methodwhich, for a given algebraic power series in n variables, constructs a ratio-

nal function in 2n variables whose diagonal equals the diagonal of the given algebraic series.

Moreover, the partial diagonal of that 2n-variable rational function, with respect to the pairs of

variables (x1, xn+1), . . . , (xn−1, x2n), yields the original n-variable algebraic power series. The

method is described in the paper by Denef and Lipshitz [8] in the proof of their theorem 6.2.

As a running example we use the three-variable algebraic function

f (x, y, z) =
(1− x− y)1/3

1− x− y− z
, (14)

whose multi-Taylor series expansion at 0 is actually a power series in the three variables

x, y, z:

f (x, y, z) = 1 +
2

3
x +

2

3
y + z +

10

9
xy +

5

3
xz +

5

3
yz +

40

9
xyz + . . . (15)

Note that the minimal polynomial of f is given by

p(x, y, z, f ) = ((x+ y+ z− 1) · f )3 + 1 − x− y. (16)

Denef andLipshitz’s theorem is formulated for étale extensions, which basicallymeans that the

partial derivative (w.r.t. f ) of the minimal polynomial has a nonzero constant coef�cient at 0.

Clearly, the above polynomial p(x, y, z, f ) does not meet this criterion. However, by considering

f̃ = f − 1, i.e. by removing the constant term of f, we can achieve an étale extension. The

minimal polynomial then reads

p̃(x, y, z, f ) = ((x+ y+ z− 1) · ( f + 1))3 + 1 − x− y. (17)

Indeed, ∂ p̃
∂ f
(0, 0, 0, 0) = −3 6= 0. According to the proof of theorem 6.2 (i) in [8], the rational

function

6
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r̃(x, y, z, f ) = f 2 ·

∂ p̃
∂ f
(x f , y f , z f , f )

p̃(x f , y f , z f , f )
(18)

has the property that D (r̃(x, y, z, f )) = f̃ (x, y, z), and hence D (r(x, y, z, f )) = f (x, y, z)

for r(x, y, z, f ) = r̃(x, y, z, f ) + 1. Here the operator D denotes a special kind of

‘diagonalization’ with respect to the last variable: for

f (x1, . . . , xn, y) =
∑

ai1,...,in, j · x
i1
1 · · · xinn y

j, (19)

one de�nes

D ( f (x1, . . . , xn, y)) =
∑

j=i1+···+in

ai1,...,in, j · x
i1
1 · · · xinn . (20)

In our running example we obtain:

r(x, y, z, f ) =
3 f 2 · ( f + 1)2 · (x f + y f + z f − 1)3

( f + 1)3 · (x f + y f + z f − 1)3 − x f − y f + 1
+ 1. (21)

In the second step, which is explained in the proof of theorem 6.2(ii) of [8], one has to trans-

form the rational function r (that has n+ 1 variables) into another rational function (having 2n

variables) such that its ‘true’ (partial) diagonal gives the n-variable algebraic series f. It con-

sists of a sequence of n− 1 elementary steps, each of which is adding one more variable. In

our example, we have to do the following

r1(x, y, z, u1, v1) =
u1 · r(x, y, z, u1) − v1 · r(x, y, z, v1)

u1 − v1
, (22)

r2(x, y, z, u1, u2, v2) =
u2 · r1(x, y, z, u1, u2) − v2 · r1(x, y, z, u1, v2)

u2 − v2
,

and obtain with r2 the desired rational function in six variables.

3.2. Generalization of the previous result

By the algorithm of Denef and Lipshitz given in the previous section, it is possible to show

that the algebraic function

(1 − x − y)b/a

1 − x − y− z
, (23)

corresponds to the following rational function in six variables, by taking the diagonal with

respect to (x, u), (y, v) and (z,w):

a · u3v · (1 − ux− uy− uz) · (1+ u)a−1 · (1 − ux− uy− uz)a−1

(1 + u)a · (1 − ux− uy− uz)a − (1 − ux− uy)b · (u − v) · (v − w)

−
a · v4 · (1 − vx− vy− vz) · ((1+ v) · (1 − vx− vy− vz))a−1

(1 + v)a · (1 − vx− vy− vz)a − (1 − vx− vy)b · (u − v)(v − w)
(24)

−
a · u3w · (1 − ux− uy− uz)((1+ u) · (1 − ux− uy− uz))a−1

(1+ u)a · (1 − ux− uy− uz)a − (1 − ux− uy)b · (u − w) · (v − w)

−
aw4 · (1 − wx− wy− wz) · (1+ w)a−1 · (1 − wx− wy− wz)a−1

(1+ w)a · (1 − wx− wy− wz)a − (1 − wx− wy)b · (u− w) · (v − w)
+ 1.
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The diagonal of the rational function (24) is annihilated by the linear differential operator of

order three:

a3 x2 (27 x− 1) · D3
x + a2 x (135 a · x − 27 b · x− 3 a+ b) · D2

x (25)

+ a · ((9 b2 − 63 b a + 114 a2) · x + b a− a2) · Dx + (3 a− b) · (2 a− b) · (a− b),

and can be expressed as the 3F2 hypergeometric function

3F2

([

3 a − b

3 a
,
2 a − b

3 a
,
a − b

3 a

]

,

[

a − b

a
, 1

]

, 27 · x

)

. (26)

In particular, the two hypergeometric functions 3F2([2/9, 5/9, 8/9], [2/3, 1], 27 · x) and

3F2([1/9, 4/9, 7/9], [1/3, 1], 27 · x) appearing in (9), correspond respectively to the parameters

(b, a) = (1, 3), and (b, a) = (2, 3) in the algebraic function (23). Other values of the parameters

(b, a) are not necessarily unresolved examples of Christol’s conjecture.

For example if we consider the parameter values b = 1 and a = 7, we see that the diagonal

of (24) is given by the globally bounded22 series (27)

3F2

(

[
2

7
,
13

21
,
20

21
], [

6

7
, 1], 27 x

)

= 1 +
260

49
x +

188190

2401
x2 + · · · (27)

with the 2F1 series

2F1

(

[
13

21
,
20

21
], [

6

7
], 27 x

)

, 2F1

(

[
2

7
,
20

21
], [

6

7
], 27 x

)

, 2F1

(

[
2

7
,
13

21
], [

6

7
], 27 x

)

,

being series that are not globally bounded. Hence the hypergeometric series (27) cannot be

easily written as a Hadamard product, as explained in section 2.3.

In contrast, for b = 3 and a = 4 the diagonal of (24) which is given by the globally

bounded23 series (28)

3F2

(

[
3

4
,
5

12
,
1

12
], [

1

4
, 1], 27 x

)

= 1 +
45

16
x +

41769

1024
x2 + · · · (28)

with the 2F1 series

2F1

(

[
5

12
,
1

12
], [

1

4
], 27 x

)

, (29)

being a globally bounded series, which means that it can be written as a diagonal using one

of the procedures given in section 2.3. We note that algebraic functions close to the algebraic

functions appearing in (10) and (11), also give 3F2 or 4F3 hypergeometric functions as their

diagonals that are unresolved examples to Christol’s conjecture:

22
3F2

(

[ 2
7
, 13

21
, 20

21
], [ 6

7
, 1], 27 · 73 · x

)

is a series with integer coef�cients.

23
3F2

(

[ 3
4
, 5

12
, 1

12
], [ 1

4
, 1], 1728 · x

)

is a series with integer coef�cients.

8
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Diag

(

(1− x− 2 y)2/3

1− x− y− z

)

= 3F2

(

[
1

9
,
4

9
,
7

9
], [

2

3
, 1], 27 · x

)

, (30)

Diag

(

(1 − x− 2 y)1/3

1 − x− y− z

)

= 3F2

(

[
2

9
,
5

9
,
8

9
], [

5

6
, 1], 27 · x

)

, (31)

Diag

(

(1 − x)1/3

1 − x− y− z

)

= 4F3

(

[
2

9
,
5

9
,
8

9
,
1

2
], [

1

3
,
5

6
, 1], 27 · x

)

, (32)

Diag

(

(1 − x− y)1/3

1 − x− z

)

= 4F3

(

[
2

9
,
5

9
,
8

9
,
−1

3
], [

1

3
,
5

6
, 1], 27 · x

)

. (33)

3.3. Proof

A computer algebra proof of this result can easily be obtained using the creative telescoping

program [12]: one computes the operator (25) using the program [12], and veri�es that this

operator does annihilate the diagonal of (23) 24. Another longer way to do it which we provide

below, is through binomial sums.

The denominator of the algebraic function (1− x− y)b/a/(1− x− y− z) can be expanded

as a geometric series:

(1 − x− y− z)−1 =

∞
∑

n=0

∞
∑

m=0

( n

m

)

· (x+ y)m zn−m

=

∞
∑

n=0

∞
∑

m=0

∞
∑

l=0

( n

m

)(m

l

)

· xl ym−l zn−m, (34)

while the numerator can be written as the sum:

(1 − (x+ y))b/a =

∞
∑

k=0

(−b/a)k
k!

· (x+ y)k =

∞
∑

k=0

k
∑

j=0

(−b/a)k
k!

·

(

k

j

)

x jyk− j. (35)

Multiplying these two sums (34) and (35) and re-indexing, we obtain:

∞
∑

s=0

∞
∑

t=0

∞
∑

u=0

xs yt zu ·

s
∑

j=0

∞
∑

k=0

(−b/a)k
k!

·

(

k

j

) (

s+ t + u− k

s+ t − k

) (

s+ t − k

s− j

)

.

(36)

Now taking the coef�cients corresponding to the diagonal in (36), i.e. such that s = t = u = n,

we get:

n
∑

j=0

∞
∑

k=0

(−b/a)k
k!

·

(

k

j

) (

3n− k

2n− k

) (

2n− k

n− j

)

=

2n
∑

k=0

(−b/a)k
k!

·

(

3n− k

2n− k

)

·

n
∑

j=0

(

k

j

)(

2n− k

n− j

)

. (37)

24One also needs to note that initial conditions have to be compared.
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Now recalling the Chu–Vandermonde identity which says that
(

2n

n

)

=
∑n

j=0

(

k

j

) (

2n−k
n− j

)

,

we �nd that (37) can be written as

S(n) =

(

2n

n

)

·

2n
∑

k=0

(−b/a)k
k!

·

(

3n− k

2n− k

)

, (38)

and by using a computer algebra tool like Mathematica or Maple to simplify this sum into a

closed form, from which we can read off the hypergeometric function representation of the

diagonal. More precisely, we used creative telescoping (Zeilberger’s algorithm) to prove that

(38) satis�es the �rst-order recurrence:

(b − 3 a − 3 a n) · (b − 2 a− 3 a n) · (b − a − 3 a n) · S(n)

= a2 · (n+ 1)2 · (b− a− a n) · S(n+ 1). (39)

Together with the initial condition S(0) = 1, we obtain the closed form

S(n) =
33n ·

(

(a− b)/(3a)
)

n
·
(

(2a− b)/(3a)
)

n
·
(

(3a− b)/(3a)
)

n
(

(a− b)/a
)

n
· (n!)2

. (40)

4. Telescopers of algebraic functions versus diagonals of algebraic functions

The diagonal of an algebraic function and a solution of a telescoper25 of an algebraic

function are close, yet distinct notions. A telescoper annihilates an n-fold integral of an

algebraic function over all integration cycles26. For example the hypergeometric function

3F2([a, b, c], [d, 1], x) is the solution of the telescoper of the following algebraic function

obtained through creative telescoping:

(1− y)−1−b+d · yb · (1− x · y2)−a · (1− z)−c (41)

with a, b, c, d ∈ Q. Hence if one takes the parameters a, b, c, d to have the values a = 1/9,
b = 4/9, c = 7/9, d = 1/3, one immediately obtains that the telescoper of the algebraic

function

y4/9

(1− y)10/9 · (1− x y2)1/9 · (1− z)7/9
, (42)

admits as a solution the hypergeometric function 3F2([
1
9
, 4

9
, 7

9
], [ 1

3
, 1], x). Yet the diagonal

of the algebraic function (42) is equal to zero. This is not incompatible with the fact that the

hypergeometric function 3F2([
1
9
, 4

9
, 7

9
], [ 1

3
, 1], x) can be written as as the diagonal of another

algebraic function, namely (11). Other 3F2 unresolved examples to Christol’s conjecture

like [22]

3F2

(

[
1

9
,
4

9
,
5

9
], [

1

3
, 1], 27 · x

)

, (43)

25By ‘telescoper’ of a rational function R(x, y, z) we denote the output of the creative telescoping program [12], applied

to the transformed rational function R(x/y, y/z, z)/(yz), which is a differential operator that annihilates the diagonal

of R.
26Diagonals correspond only to evanescent integration cycles over algebraic functions.
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were not obtained here as diagonals of an algebraic function, yet they are solutions of the

telescoper of an algebraic function and can thus be seen as a period of an algebraic variety

over a non-evanescent cycle27, but not necessarily as a diagonal of an algebraic function (i.e.

a period over an evanescent cycle). We give two arguments in favor of the fact that the 3F2

hypergeometric function (43) is most probably a diagonal of an algebraic function.

4.1. Diagonal: algebraic mod p

If one expects 3F2 hypergeometric functions like (43) to be diagonals of an algebraic function,

one should �nd [6, 7] that the corresponding series expansion reduces to an algebraic series

modulo any prime number p, or power of a prime number pr. In order to verify this fact on (43)

we look at the series expansion of

3F2

(

[
1

9
,
4

9
,
5

9
], [

1

3
, 1], 272 · x

)

= 1+ 60x + 20475 x2 + 9373650x3 (44)

+ 4881796920x4 + 2734407111744x5

+ 1605040007778900x6 + · · ·

which becomes modulo 2:

3F2

(

[
1

9
,
4

9
,
5

9
], [

1

3
, 1], 272 · x

)

= 1 + x2 + x128 + x130 + x8192 + x8194 + x8320 + x8322

+ x524288 + x524290 + x524416 + x524418 + x532480

+ x532482 + x532608 + x532610 + O(x600000)

= (1 + x2) · (1 + x128) · (1 + x8192) · (1 + x524288)

+ O
(

x600000
)

. (45)

Straightforward guessing gives the in�nite product formula

F(x) = (1 + x2) · (1 + x2
7

) · (1 + x2
13

) · (1 + x2
19

) · · · (1 + x2
6 n +1

) · · · (46)

which is solution of

F(x) = (1 + x2) · F(x64) mod. 2, (47)

i.e. 3F2

(

[ 1
9
, 4

9
, 5

9
], [ 1

3
, 1], 272 · x

)

is an algebraic function modulo 2 satisfying:

F(x) = (1 + x2) · F(x)64 mod. 2 (48)

or:

(1 + x2) · F(x)63 = 1 mod. 2. (49)

Modulo 3 we have the following expansion

27To be totally rigorous, one has to consider the two certi�cates of the telescoping equation see if that the integral of

the derivatives of these two certi�cates over that cycle are actually zero.
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3F2

(

[ 1
9
, 4
9
, 5
9
], [ 1

3
, 1], 272 · x

)

− 1

3
= 2 · F(x) mod. 3, (50)

where:

F(x) = x+ x3 + x9 + x27 + x81 + x243 + x729 + x2187 + x6561

+ x19683 + x59049 + O
(

x60000
)

(51)

which is solution of

x + F(x3) = F(x) mod. 3, (52)

i.e. F(x) is an algebraic function modulo 3:

x + F(x)3 = F(x) mod. 3. (53)

Unlike for the hypergeometric series 3F2

(

[ 1
9
, 4

9
, 7

9
], [ 1

3
, 1], 272 · x

)

, it is less obvious how to

obtain the 3F2

(

[ 1
9
, 4

9
, 5

9
], [ 1

3
, 1], 272 · x

)

as the diagonal of a rational function. It is however

possible to obtain the solution of 3F2

(

[ 1
9
, 4

9
, 5

9
], [ 1

3
, 1], 272 · x

)

, as the solution of a telescoper

of an algebraic function, and this solution is an algebraic function modulo p.

4.2. A relation between 3F2([1/9, 4/9, 5/9], [1/3, 1], 27 · x) and a 4F3 diagonal of an

algebraic function

The diagonal of the product of algebraic functions

(1− x− y)2/3

(1− x− y− z)
· (1− w)−5/9, (54)

is given by the 4F3 hypergeometric function H which is the Hadamard product of

3F2([1/9, 4/9, 7/9], [1/3, 1], 27 · x) and (1− x)−5/9:

H= 4F3

(

[
1

9
,
4

9
,
5

9
,
7

9
], [

1

3
, 1, 1], 27 · x

)

= (1 − x)−5/9 ⋆ 3F2

(

[
1

9
,
4

9
,
7

9
], [

1

3
, 1], 27 · x

)

= Diag

(

(1− x− y)2/3

(1− x− y− z)
· (1− w)−5/9

)

. (55)

This 4F3 hypergeometric series (55) can also be written as the Hadamard product:

H = (1 − x)−7/9 ⋆ 3F2([
1

9
,
4

9
,
5

9
], [

1

3
, 1], 27 · x). (56)

So even though we did not �nd a rational (or algebraic) function whose diagonal is given

by (43), knowing that 3F2

(

[ 1
9
, 4

9
, 7

9
], [ 1

3
, 1], 27 · x

)

is the diagonal of a rational function,

12
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we see that the Hadamard product of (43) with a simple algebraic function (1− x)−7/9 is actu-

ally a diagonal of an algebraic (or rational) function. This suggests but does not prove, that

3F2

(

[ 1
9
, 4

9
, 5

9
], [ 1

3
, 1], 27 · x

)

could also be a diagonal of a rational function.

5. Conclusion

The emergence of series with integer coef�cients in physics is often an indicator, of existence

of mathematical structure behind the function one is considering. For instance [36] the low

or high-temperature expansions of χ̃(2), and of the full magnetic susceptibility of the square-

lattice Ising model, reduce to algebraic functions modulo 2r. For χ̃(2), it was understood that

the reason behind the reduction modulo 2r was the fact that χ̃(2) was a diagonal of a ratio-

nal function28. This property is not yet fully understood for the full magnetic susceptibility,

which is a non-holonomic function, and is probably not differentially algebraic [37]. In [17] it

was shown that Fuchsian linear differential operators having coef�cients in Q(z), with a rigid

monodromygroup, andwith the critical exponentsbeing rational numbers, have a strongFrobe-

nius structure for almost all prime numbers p. In fact theorem 1 in [17], allows one to know

right away that the 3F2

(

[1/9, 4/9, 5/9], [1/3, 1], x
)

is an algebraic series modulo almost any

prime p, without doing any of the calculations of section 4.1 that we give for illustration

purposes.

Yet neither the property of algebraicity of diagonals modulo p, nor the result of

[17], are helpful in proving the hypergeometric functions 3F2

(

[2/9, 5/9, 8/9], [2/3, 1], x
)

and 3F2

(

[1/9, 4/9, 7/9], [1/3, 1], x
)

to be the diagonals of rational functions. We have

shown in this paper that the hypergeometric series 3F2

(

[2/9, 5/9, 8/9], [2/3, 1], x
)

and

3F2

(

[1/9, 4/9, 7/9], [1/3, 1], x
)

appearing in [7] are diagonals of rational functions. We did

so by �rst �nding two algebraic functions whose diagonals were given by these two hyper-

geometric functions, and through an algorithm outlined in the paper [8], we were able to

recover the rational functions whose diagonals are given by these two 3F2 hypergeometric

functions.

We were also able to give a generalization of this result, and obtain other unresolved exam-

ples of Christol’s conjecture as diagonals of rational functions. Furthermore, even though we

were not able to write the 3F2([1/9, 4/9, 5/9], [1/3, 1], 27 · x) given by Christol in [22], as

a diagonal of a rational function, we gave two arguments that suggested that it was likely

to be so, one of them using the result of [17]. More generally, we believe after writing the

3F2

(

[2/9, 5/9, 8/9], [2/3, 1], x
)

and 3F2

(

[1/9, 4/9, 7/9], [1/3, 1], x
)

as diagonal of ratio-

nal functions, that it is likely that the other 3F2 unresolved examples of Christol’s conjecture

are diagonals of rational functions.
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Appendix A. Counterexamples and links with Shimura curves

The Gauss hypergeometric function appearing on the left in (9)

3F2

(

[
2

9
,
5

9
,
8

9
], [

2

3
, 1], 27 x

)

(A.1)

can be seen as the Hadamard product of a Gauss hypergeometric function and an algebraic

function given by:

2F1

(

[
2

9
,
5

9
], [

2

3
], 27 x

)

⋆ (1 − x)−8/9. (A.2)

Now the Gauss hypergeometric function 2F1

(

[ 2
9
, 5

9
], [ 2

3
], 27 x

)

happens to be a hypergeomet-

ric function corresponding to an automorphic form associated with a Shimura curve [31–33].

One has the identity:

2F1

(

[
2

9
,
5

9
], [

2

3
], 27 x

)

= (1 − 27 x)−1/9 · (1 − 36 x + 216 x2)−1/18

× 2F1

(

[
1

36
,
19

36
], [

8

9
], − 1728 ·

x3 · (1 − 27 x)

(1 − 36 x + 216 x2)2

)

.

(A.3)

The Gauss hypergeometric function 2F1

(

[ 1
36
, 19

36
], [ 8

9
], x

)

can be also expressed as:

2F1

(

[
1

36
,
19

36
], [

8

9
], x

)

= (1 − x)−1/36· 2F1

(

[
1

36
,
13

36
], [

8

9
], −

x

1 − x

)

.

(A.4)

Now the Gauss hypergeometric function 2F1([
1
36
, 13

36
], [ 8

9
], x) which occurs in p 14 of [34],

corresponds to a hypergeometric function related to a Shimura curve since it has exponent

differences29 (1/9, 1/2, 1/3), and these exponent differences are listed in the exhaustive list of
hypergeometric functions that are associated with Shimura curves appearing in table 1 of [30].

Other 3F2 functions that are unresolved examples to Christol’s conjecture that we found to be

29 See [35] p 10 for a de�nition of exponent difference.
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related to 2F1 hypergeometric functions related to Shimura curves are given by:

3F2

(

[
1

9
,
4

9
,
7

9
], [

4

3
, 1], 36 x

)

= (1 − x)−1/9 ⋆ 2F1

(

[
4

9
,
7

9
], [

4

3
], 36 x

)

, (A.5)

3F2

(

[
2

9
,
5

9
,
7

9
], [

2

3
, 1], 36 x

)

= (1 − x)−7/9 ⋆ 2F1

(

[
2

9
,
5

9
], [

2

3
], 36 x

)

, (A.6)

3F2

(

[
4

9
,
5

9
,
8

9
], [

2

3
, 1], 33 x

)

= (1 − x)−8/9 ⋆ 2F1

(

[
4

9
,
5

9
], [

2

3
], 33 x

)

, (A.7)

3F2

(

[
1

7
,
2

7
,
4

7
], [

1

2
, 1], 74 x

)

= (1 − x)−4/7 ⋆ 2F1

(

[
1

7
,
2

7
], [

1

2
], 74 x

)

, (A.8)

Besides two hypergeometric functions, the 3F2([
2
9
, 5

9
, 8

9
], [ 2

3
, 1], 27 x) and the 3F2 hypergeo-

metric 3F2([
1
9
, 4

9
, 7

9
], [ 4

3
, 1], 27 x), and the three globally bounded 3F2 hypergeometric series

(A.6)–(A.8), we were not able to write the other examples given in this section as a Hadamard

product involving a 2F1 hypergeometric function associated to a Shimura curve. In any case,

since the class of potential counterexamples formulated by Christol is in�nite, while the list of

Shimura in table 1 of [30] is �nite, a list of 3F2 functions both related to Shimura curves and

to Christol’s conjecture is bound to be �nite.
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