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Introduction
The goal of this talk is to bring to attention several of the

outstanding unsolved problems of the correlation functions of the

anisotropic Ising model on the square lattice. Some of these

problems go back for decades. More recent work is

BMM and J.M. Maillard,The anisotropic Ising correlations as ellipic integrals: duality and

differential equations,J. Phys. A 40 (2016) 434004 (arXiv:1606.08796v4)

S. Boukraa, J.M. Maillard and BMM,The Ising correlationC(M, N) for ν = −k, J. Phys. A 53

(2020), 465202 (arXiv:2204.10096v1)

S Boukraa, C. Cosgrove, J.M. Maillard and BMM,Factorization of Ising correlationsC(M, N)

for ν = −k andM + N odd, M ≤ N, T < TC and their lambda extensions,

arXiv:2204.10096v1
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2. Nonlinear equations forC(N,N) on the lattice

Open questions

3. Determinants versus difference equations
4. The determinant forC(N − 1, N)
5. The caseν = −k for T < Tc

6. Painlevé VI forC(M,N) for ν = −k
7. PVI for 2 factorsM + N odd
8. PVI for 4 factors ofC(0, N) N odd
9. More determinants

Very open questions
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1. Scaling limit
The Ising model has the interaction energy

‘E = −
∑

j,k{Evσj,kσj+1,k + Ehσj,kσj,k+1}
whereσj,k = ±1 is the spin at rowj and columnk and the sum

is over all lattice sites and we set

k∓ = (sinh 2Ev/kBT sinh 2Eh/kBT )∓1, ν = sinh 2Eh/kBT
sinh 2Ev/kBT

.

At Tc (the critical temperature)k± = 1 and the correlation

functionC(M,N) = 〈σ0,0σM,N〉 is constant on the ellipses

ν1/2M 2 + ν−1/2N 2 = R2(sinh 2Eh/kBTc + sinh 2Ev/kBTc)

for largeR which forM = N reduces toR = N .

Thescaling limit is R → ∞, k± → ∞ with

r = R(1 − k±) fixed

Thescaling functionis defined as

G±(r) = lim(1 − k2
±)−1/4C(M,N)

We use the convention0 ≤ M ≤ N Ising correlations; open questions – p.5/40



Scaling function as Painlevé
In 1976 it was found by Wu, McCoy, Tracy and Barouch

G±(r) =
1
2
[1 ± η(r/2)]η(r/2)−1/2 exp

∫ ∞
r/2

dθ 1
4
θη−2 [(1 − η2)2 − (η′)2]

whereη(θ) satisfies thePainlevé IIIequation

d2η
dθ2 = 1

η

(

dη
dθ

)2 − 1
θ

dη
dθ

+ η3 − η−1

with the boundary conditions

η(θ) ∼ 1 − 2λK0(2θ) as θ → ∞ where λ = 1/π

andK0(2θ) is the modied Bessel function.

Equivalently forζ = r d ln G±
dr

(rζ ′′)2 = 4(rζ ′ − ζ)2 − 4(ζ ′)2(rζ ′ − ζ − 1/4)

which is a form ofPainlevé V.
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Comments
1.The only place where the anisotropy enters in the scaling limit

is the determination of the elliptical symmetry. The anisotropy

does not enter in the PIII or the PV equation,

2. By definition thePainleve equations have the property that the

locations of branch points is independent of the boundary

conditions;however the behaviour at these branch points will

depend on boundary conditions. The location of poles, however,

will depend on boundary conditions. It is important to note that

the Painlevé property is a property of the equation and is nota

property of the solution so the term Painlevé function is

misleading. It is not known if the Painlevé property has any

intrinsic relation to integrability.
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2. Painlevé VI for C(N,N)
In 1980 Jimbo and Miwa found forT < Tc

σN(t) = t(t − 1)d ln C−(N,N)
dt

− t
4

with t = k2
−

and forT > Tc

σN(t) = t(t − 1)d ln C−(N,N)
dt

− 1
4

with t = k2
+

that for bothT < Tc andT > Tc

(

t(t − 1)d2σ
dt2

)2

=

N 2
(

(t − 1)dσ
dt

− σ
)2 − 4dσ

dt

(

(t − 1)dσ
dt

− σ − 1
4

) (

tdσ
dt

− σ
)

which is a form of Painlevé VI
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Boundary conditions
For T < Tc the boundary condition att = 0 is

C(N,N ; t) = (1 − t)1/4
[

1 + λ2 (1/2)N (3/2)N

4[(N+1)!]2
tN+1(1 + O(t))

]

,

with λ = 1, (a)n = a(a + 1) · · · (a + n − 1) and (a)0 = 1.

For T > Tc the boundary condition att = 0 is

C(N,N ; t) = (1− t)1/4tN/2
[

(1/2)N

N ! 2F1

(

[1
2
, N + 1

2
], [N + 1], t

)

+λ2 (1/2)N ((3/2)N )2

16 (N+1)! (N+2)!
tN+2(1 + O(t))

]

,

with λ = 1.

These expressions satisfy the PVI equation for allλ. The reason

why λ = 1 gives the Ising correlation is an open question.
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Comments
This PVI forC(N,N) does not depend on the anisotropyν. The

reason is that on the diagonal transfer matrices for different

values ofν commute soν is a spectral variable for the diagonal

transfer matrix. All otherC(M,N) will depend onν. As an

example forT < Tc

C(1, 1) = Ẽ(k) = 2
π

∫ π/2

0
dφ(1 − k2 sin2 φ)1/2

and

C(0, 1) =
√

1 + νk
[(

1 + k
ν

)

Π̃(−νk, k) − k
ν
K̃(k)

]

=
√

1 + νk 2
π

∫ π/2

0
dθ (1−k2 sin2 θ)1/2

1+kν sin2 θ
.

where the three elliptic integrals

K̃(k) = 2
π

∫ π/2

0
dθ

(1−k2 sin2 θ)1/2

Π̃(−kν, k) = 2
π

∫ π/2

0
dθ

(1+k ν sin2 θ) (1−k2 sin2 θ)1/2

are normalized to 1 atk = n = 0
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3. Determinants
All correlation functionsC(M,N) can be represented as

determinants by drawing paths on the lattice (or on the diagonal)

which connect(0, 0) with (M,N). Any path connecting these

points can be used. ForC(0, N) the straight line path ofN links

gives theN × N Toeplitz determinant

C(0, N) =

a0 a−1 · · · a−N+1

a1 a0 · · · a−N+2

...
...

...

aN−1 aN−2 · · · a0

an = 1
2π

∫ 2π

0

[

(1−α1 eiθ) (1−α2 e−iθ)
(1−α1 e−iθ) (1−α2 eiθ)

]1/2

einθ dθ

α1 = e−2Ev/kBT tanh Eh/kBT, α2 = e−2Ev/kBT cothEh/kBT

ForC(N,N) a diagonal path ofN steps gives the sameN × N

determinant but withα1 = 0 andα2 = k
Ising correlations; open questions – p.11/40



Relations of variables
ForT < Tc

k = α2−α1

1−α1α2
, ν = 4α1α2

(α2−α1)(1−α1α2)

Thus

kν = 4α1α2

(1−α1α2)2
, (α1α2)

±1 = 1 + 2
kν

∓ 2
kν

√
1 + kν

and

α2,1 = 1
ν
[
√

1 + kν − 1]

(+,−) 1
ν

√

[ν/k + 1 −
√

1 + kν]2 + ν2(1 − k−2)

Note that ifν = 0 thenα2 = k, α1 = 0

if k = 1 thenα2 = 1

if k = 0 thenα2 = α1 = 0

If N → ∞ thenC(N,N) decays to(1 − k2)1/4 ask2N/N2

andC(0, N) decays to(1 − k2)1/4 asα2N
2 /N2.
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Difference equations
We thus havetwo very different representations ofC(0, 1) in

terms of eitherα1, α2 or k ν and the relation of the two is NOT

seen by a simple change of variables. Instead a nontrivial

identity must be used. It is an open question how to generalize

this identity toC(0, N). In 2016 Witte proposed the existence of

partial differential equations forC(0, N) in terms of theα1, α2

variables. However,no expression for the general case of

C(M,N) in terms ofα1 andα2 is known.

To overcome this limitation we have computedC(M,N) using

thequadratic difference equationsobtained by Wu, Perk and

BMM in 1980-1981 which allows the recursive computation of

all C(M,N) starting with the known expressions ofC(0, 1) and

C(N,N) in terms of the three complete elliptic integrals using

the variablesk andν (and notα1, α2). Ising correlations; open questions – p.13/40



Examples
C(0, 2) = 1

kν
{(1 + k

ν
)(1 + kν)(2k2 + kν + k

ν
)Π̃2

−2k
ν
(k

ν
+ 1)(kν + 1)2K̃Π̃

+(k2 k
ν

+ 2k2 + k2

ν2 + k
ν
− 1)K̃2 + 2(1 − k2)ẼK̃ − Ẽ2}

C(1, 2) = (1+kν)1/2

kν
{k

ν
(k2 − 1)K̃2 + (k

ν
− 1)ẼK̃ + Ẽ2

+(kν − 1)(k
ν

+ 1)ẼΠ̃ − (k2 − 1)(k
ν

+ 1)K̃Π̃}

C(M,N) is a homogeneous polynomial of degree N

in Ẽ, K̃, Π̃

The highest power of̃Π is N − M

For oddN − M there is a factor of(1 + kν)1/2

If ν = −k thenC(M,N) is a function ofK̃, Ẽ only

because the coefficient of all terms withΠ̃ vanishes.
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4. C(N − 1, N)
In 1987 AuYang and Perk derived

C(N − 1, N) =

a0 a1 · · · aN−2 bN−1

a−1 a0 · · · aN−3 bN−2

...
...

...
...

...

a−N+2 a−N+3 · · · a0 b1

a−N+1 a−N+2 · · · a−1 b0

where

an = 1
2π

R π
−π dθeinθ

q

1−keiθ

1−ke−iθ

bn = 1
2πi

H

|z|=1
dz
z

zn{
√

1 + kν
q

1−kz
1−kz−1

1
1+zν

+

√
1+k/ν

1+1/zν
}

=
√

1 + kν 1
π

R k
0

dz
z

zn
q

1−kz
k/z−1

1
1+νz

We note thatb0 = C(0, 1)

and atν = 0 we haveC(N − 1, N) = C(N, N)

Can the AuYang-Perk result be generalized toC(N − n,N)?
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5. The caseν = −k for T < Tc

In the special caseν = −k the elliptic integralΠ̃ does not
appear. For example witht = k2

C(0, 2) = 1
t
·

»

Ẽ2 − 2 (1 − t) · ẼK̃ + (1 − t) · K̃2

–

C(0, 3) = − 4
√

1−t
t2

· Ẽ · (Ẽ − K̃) · (Ẽ + (t − 1) · K̃)

C(1, 3) = 4
3 t2

·
»

(2 − t) · Ẽ3 − 5 · (1 − t) · Ẽ2 K̃

+(1 − t) · (2 − t) · ẼK̃2 − (1 − t)2 · K̃3

–

C(0, 5) = 256
√

1−t
81 t6

·
»

(1 + t) · Ẽ + (t − 1) · K̃

–

·
»

(t − 2) · Ẽ + 2 (1 − t) · K̃

–

×
»

(2t − 1) · Ẽ + (1 − t) · K̃

–

·
»

3 Ẽ2 + (2t − 4) · Ẽ K̃ + (1 − t) · K̃2

–

.

C(1, 2) = −
√

1−k2

k2
{Ẽ2 − 2ẼK̃ + (1 − k2)K̃2

= −
√

1−k2

k2
{Ẽ − K̃ − kK̃}{Ẽ − K̃ + kK̃}

C(2, 3) = 4
9

√
1−t
t2

“

3Ẽ2 + (t − 5)ẼK̃ − 2(t − 1)K̃2
” “

(t + 1)Ẽ + (t − 1)K̃
”
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Factorization for M + N odd
1. ForM + N odd the correlationsC(M,N) with M 6= 0

factorize into two homogeneous polynomials inK̃, Ẽ.

ForN odd the polynomials are in the variablet = k2 which are

analytic att = 0. One factor is of degree(N − 1)/2 and the

other is of degree(N + 1)/2,

ForN even the polynomials are in the variablek which are

analytic atk = 0 and both factors are of degreeN/2.

2. C(0, N) for N odd has three factors forN = 3 and four

factors forN ≥ 5 which are homogeneous polynomials int. For

N = 4n + 1 there are three factors of degreen and one of degree

n + 1. ForN = 4n − 1 there are three factors of degreen and

one factor of degreen− 1. The explanation for the existence of 4

factors is not known.
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6. Painlevé VI
The Gambier form is
d2y
dt2

= 1
2

(

1
y

+ 1
y−1

+ 1
y−t

)

(

dy
dt

)2 −
(

1
t
+ 1

t−1
+ 1

y−t

)

dy
dt

+y(y−1)(y−t)
t2(t−1)2

(

α + β t
y2 + γ t−1

(y−1)2
+ δ t(t−1)

(y−t)2

)

.

The Okamoto form is

y′{t(t − 1)y′′}2 + {y′(2y − (2t − 1)y′) + n1n2n3n4}2

−(y′ + n2
1)(y

′ + n2
2)(y

′ + n2
3)(y

′ + n2
4) = 0

The Cosgrove-Scoufis form is

x2(x − 1)2y′′2 + 4y′(xy′ − y)((x − 1)y′ − y)

+c5(xy′ − y)2 + c6y
′(xy′ − y) + c7(y

′)2

+c8(xy′ − y) + c9y
′ + c10 = 0.

The Cosgrove-Scoufis equation preserves its form under the

linear shift

y −→ y + A + Bx.
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Relations
The three forms are related to each other.

The 4 parameter Gambier form is birationally equivalent to the 4

parameter Okamoto form.

The linear change of variable of the Cosgrove-Scoufis equation

may be used to setc5 = c6 = 0 and then the Cosgrove-Scoufis

equation reduces to the Okamoto equation once it is expanded

and a factor ofy′ is cancelled where then

c7 = −(n2
1 + n2

2 + n2
3 + n2

4), c8 = −4n1n2n3n4,

c9 = −(n2
1n

2
2+n2

1n
2
3+n2

1n
2
4+n2

2n
2
3+n2

2n
2
4 +n2

3n
2
4−2n1n2n3n4),

c10 = −(n2
1n

2
2n

2
3 + n2

1n
2
2n

2
4 + n2

1n
3
3n

2
4 + n2

2n
2
3n

2
4)
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lambda extensions
The correlationsC(M,N) are all analytic atk2 = t = 0 . The

solutions of Okamoto’s equation which are analytic att = 0 are

in general unique. However this uniqueness fails for the

following 4 cases

1. n1 + n2 − n3 − n4 ± n = 0

2. n1 − n2 − n3 + n4 ± n = 0

3. n1 − n2 + n3 − n4 ± n = 0

4. n1 + n2 + n3 + n4 ± n = 0

whereni are the four Okamoto parameters andn is an integer. In

this case the coefficient oftn+1 is arbitrary. All ourC(M,N) are

of this form with a specific value of the arbitrary constant which

serves as a boundary condition on the PVI equation. The general

solution with the constant arbitrary we call lambda extensions.
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PVI for C(M, N) at ν = −k
To obtain a nonlinear equation characterizingC(M,N) with

ν = −k we set

σ(M,N) = t(t − 1)d ln C(M,N)
dt

− t
4

and using the homogeneous polynomials forC(M,N) in terms

of K̃(k) andẼ(k) we expandσ(M,N) in a power series int and

then usethe program of Jay Pantone calledguessfunc to produce

a nonlinear equation forσ(M,N). We have done this for many

values ofM,N . The output is an equation of third order. There

exists an integrating factor for this third order equation and we

find an equation of the Cosgrove-Scoufis form with

c5 = −M 2, c6 = M 2 + N 2 − 1
2
(1 + (−1)M+N), c7 = −N 2,

c8 = c9 = c10 = 0

Ising correlations; open questions – p.21/40



Okamoto for C(M, N)
To convert the Cosgrove-Scoufis form to an Okamoto equation

for Painlevé VI we set

σ = σ̃ + At + B

with

A = M2

4
, B = 1

8
(N 2 − M 2 − 1+(−1)M+N

2
)

and find Okamoto parameters (unique up to permutations and the

change of an even number of signs)

n1 = 1
2
(N + 1+(−1)M+N

2
) n2 = 1

2
(N − 1+(−1)M+N

2
)

n3 = M
2
, n4 = −M

2

Note thatn1 + n2 + n3 + n4 = N so the coefficient (calledλ2) of

tN+1 in the expansion aboutt = 0 is arbitrary and must be

chosen such thatC(M,N) is a homogeneous polynomial in

K̃(k) andẼ(k).
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7. PVI for factors M + N odd
ForM + N we write the factorization as

(1 − t)−1/4C(M,N) = g+(M,N ; t)g−(M,N ; t)

Then defining

σ±(M,N ; t) = t(t − 1) ln g±(M,N ;t)
dt

there is an additive decomposition of the sigma functions

σ(M,N ; t) = σ+(M,N ; t) + σ−(M,N ; t)

whereσ(M,N ; t) is the sigma function forC(M,N ; t)

previously found.
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Nonlinear equations
We apply Pantones programguessfunc to σ± and use an

integrating factor to find that bothσ+ andσ− satisfythesame

nonlinear equation but withdifferent boundary conditions at

t = 0.

32t3(t − 1)2σ′′2 + 4t2(t − 1)
(

8σ − 8(t + 1)σ′ + M 2 − N 2
)

σ′′

−
(

σ − 16tσ′ + M 2t − N 2 + 1 − t
)

×
(

8t(t − 1)σ′2 − 16tσσ′ + 8σ2 + (M 2 − N 2)σ
)

= 0

In contrast with theσ(M,N) for C(M,N) this equation is NOT

of the Cosgrove-Scoufis form.
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Landen transformation
We are able to reduce the nonlinear equation forσ± to an

Okamoto form of PVI by making a Landen change of the

independent variable

k2 = t =
(

1−√
1−x

1 +
√

1−x

)2

,

and redefining the dependent variable fromσ(t) to h(x) where

σ(t) = σ̃(x) = 2
π

1−√
1−x

1+
√

1−x
(h(x) − h0(x))

h0(x) = M2−3N2+1
16

− M2−N2+1
16

x + M2−N2

16
x

(

1−√
1−x

1+
√

1−x

)

h(x) satisfies the Okamoto equation with parameters

n1 = M+N+1
4

, n2 = M+N−1
4

, n3 = N−M+1
4

, n4 = N−M−1
4

.
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Boundary conditions
To specify the boundary conditions on the Okamoto equation for

h(x) we note for class 4 boundary conditions

n1 + n2 + n3 + n4 = N

and thus the coefficient ofxN+1 in the expansion ofh(x) at

x = 0 is arbitrary.

To proceed further we extend the recursive analysis beyond the

termxN+1. We find that the coefficients ofxn for

(N + 1) ≤ n ≤ (2N + 1) depend only oncN+1, the coefficient

of xN+1 but that starting withc2(N+1) the coefficients depend on

c2
N+1 as well ascN+1.
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λ+ = −λ− for C(M, N)
Thus we obtain

σ±(M,N ; t;λ±) =
∑∞

n=1(λ±t(N+1)/2)nBn(M,N ; t),

where theBn(M,N ; t)’s are power series int, analytic att = 0.

In order for the additive decomposition to hold we need

λ+ = −λ−
which gives a one parameter family of factorizable lambda

extensions ofC(M,N). The specific values ofλ+ needed to

reduce to the homogeneous polynomials inK̃(k), Ẽ(k) have

been computed recursively as

λ+ = (N+M)!(N−M)!
22N+1N !((N+M−1)/2)!((N−M−1)/2)!

.
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8. C(0, N) with N odd
C(0, N) with N odd factors into 4 terms

C(0, N) = (1 − t)1/4g1(0, N)g2(0, N)g3(0, N)g3(0, N)

Setting

gi(0, N) = (1 − t)N/16t−N/8g̃i(0, N) i = 1, 2

gi(0, N) = (1 − t)−N/16tN/8g̃i(0, N) i = 3, 4

we have for example withN = 5

g̃1(0, 5) = 2
3
(1 − t)−3/8t−1

(

(2t − 1)Ẽ − (t − 1)K̃
)

,

g̃2(0, 5) = 2
3
(1 − t)−1/8t−1

(

(t + 1)Ẽ + (t − 1)K̃
)

,

g̃3(0, 5) = −8
3
(1 − t)1/4t−2

(

(t − 2)Ẽ − 2 · (t − 1)K̃
)

g̃4(0, 5) = −8
3
(1 − t)1/2t−2

(

3Ẽ2 + 2(t − 2)ẼK̃ − (t − 1)K̃2
)

.
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σ(0, N) for N odd
We define

σj = t(t − 1)
d ln gj(t)

dt

so the factorization ofC(0, N) becomes the additive

decomposition

σ(0, N) = σ1(0, N) + σ2(0, N) + σ3(0, N) + σ4(0, N)

σ1(0, 5) = 5
8
− 5

16
t − 5

26 t
2 − 5·11

210 t3 − 5
27 t

4 − 32·5·43
216 t5 − 5·4817

220 t6

−5·241·509
225 t7 − 5·397811

227 t8 − 3·5·13·134401
231 t9 + · · ·

σ2(0, 5) = 5
8
− 5

16
t − 5

26 t
2 − 52

210 t
3 − 5

29 t
4 − 5·61

216 t5 − 5·232

220 t6

−5·10099
225 t7 − 52·71·73

227 t8 − 5·281321
231 t9 + · · ·

σ3(0, 5) = −5
8

+ 5
16

t + 5
26 t

2 + 5
27 t

3 + 3·5·13
213 t4 + 5·53

214 t5 + 5·11·449
221 t6

+5·19·397
222 t7 + 3·5·15907

225 t8 + 5·77527
226 t9 + · · ·

σ4(0, 5) = −5
8

+ 5
16

t + 5
26 t

2 + 5
27 t

3 + 5·41
213 t4 + 5·59

214 t5 + 5·5813
221 t6

+5·47·199
222 t7 + 5·13·97·197

227 t8 + 5·13·97·197
228 t9 + · · ·
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Nonlinear equation
For an appropriate choice of normalizations we used the program

guessfunc and have found that all fourσj satisfy the same

equation of Cosgrove-Scoufis form

t2(t − 1)2σ′′2 + 4σ′(tσ′ − σ)
(

(t − 1)σ′ − σ
)

+1
4

(

(N 2 + 1)(t− 1)− t2
)

σ′2 − 1
26

(

16(N 2 + 1− 2t)σ + N 2t
)

σ′

−1
4
σ2 + N2

26 σ − N2(N2−3)
210 = 0.

Settingσi(0, N ; t) = hi(t) + t
16

+ N2−1
32

the functionhi satisfies an Okamoto equation with parameters

n1 = N+1
4

, n2 = N−1
4

, n3 = −1
2
, n4 = 0

and

σ(0, N) =
∑4

i=1 σi(0, N) =
∑4

i=1 hi + 4
(

t
16

+ N2−1
32

)
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Boundary conditions
For class 4 boundary conditions

n1 + n2 + n3 + n4 = N−1
2

which makes the coefficient oft(N+1)/2 arbitrary and for class 1

n1 + n2 − n3 − n4 = N+1
2

which makes the coefficient oft(N+3)/2 arbitrary.

Thus we find forj = 1, 2 (case 4)

σj(0, N ; t;λj) = N
8

√
1 − t +

∑∞
n=1

(

λjt
(N+1)/2

)n

B
(4)
n (0, N ; t),

and for j = 3, 4 (case 1)

σj(0, N ; t;λj) = −N
8

√
1 − t+

∑∞
n=1

(

λjt
(N+3)/2

)n

B
(1)
n (0, N ; t),

whereB
(4)
n (0, N ; t) andB

(1)
n (0, N ; t) are power series int,

normalized for bothi = 1 and4 and allN :

B
(i)
1 (0, N ; 0) = 1 i = 1, 4.
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Choice ofλi

In order for factorization to hold we find that we need

λ1 = −λ2, λ3 = −λ4

with

λ3 = λ1

4(N+1)

For this to reduce to a factorization ofC(M,N) we need in

addition

λ1 = − N !
22N+1(( N−1

2
)!)2
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9. Toeplitz determinants
In 2004 Forrester and Witte arxiv:math-ph/0204008 gave a set of

Ñ × Ñ Toeplitz determinants

D
(p,p′,η,ξ)

Ñ
(t) =, det

[

A
(p,p′,η,ξ)
j−k (t)

]Ñ−1

j,k=0
,

whereA
(p,p′,η,ξ)
m (t) = A(1)(t) + ξA(2)(t),

A
(1)
m (t) =

Γ(1+p′)· t(η−m)/2

Γ(1+η−m) Γ(1−η+m+p′) · 2F1[−p, −p′ + η − m], [1 + η − m], t)

A
(2)
m (t) =

Γ(1+p)· t(m−η)/2

Γ(1−η+m) Γ(1+η−m+p)
· 2F1([−p′, −p − η + m], [1 − η + m], t),

where eachA(1)
m andA

(2)
m separately gives a Toeplitz matrix.
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Okamoto parameters
It is sufficient to considerξ = 0 and find that

A
(p,p′,η)
m (t) =







A
(1)
m (t) for m ≤ η

A
(2)
m (t) for m ≥ η

The sigma functions of these determinants satisfy Okamoto’s

equation with

n1 = (Ñ + η + p − p′)/2, n2 = (Ñ − η − p + p′)/2,

n3 = (η − Ñ − p − p′)/2, n4 = (η + Ñ + p + p′)/2.

and thus

Ñ = n1 + n2, η = n3 + n4, p = −n2 − n3, p′ = −n1 + n4.
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Conclusion

We thus conclude that forC(M,N) with ν = −k that
C(M,N) and forM + N odd the factors ofC(M,N)
all have a representation as Toeplitz determinants.

This very indirect method of finding a Toeplitz
determinant representation is completely
unsatisfactory.
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Very open questions
1. Row versus diagonal

The row correlationsC(0, N) are described as anN × N

determinant in the variablesα1, α2.

The diagonal correlationsC(N,N) andC(N − 1, N) are

described as anN × N determinant in the variablesk, ν.

In generalC(M,N) can be obtained as the Pfaffian obtained

from a horizontal path ofN − M links with variablesα1, α2 and

diagonal path ofM links with k, ν as variables.

The only correlation which is known in terms of both sets of

variables isC(0, 1).

To find a generalization of the AuYang-Perk result to

C(N − n,N) we need to expressC(0, N) in terms ofk, ν.

This has not been done. Ising correlations; open questions – p.36/40



Nonlinear equations
2. Is there a non linear equation int = k2 (or k) with ν fixed as a

parameter of fixed order and degree for

σ = t(t − 1) ln C(M,N)
dt

?

At present there is no evidence that such an equation needs to

exist at all and there is no argument that if it does exist thatit will

have the Painlevé property.

A more complicated alternative is thatC(M,N) could satisfy a

partial differential equation with bothk andν as variables.
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ODE’s for other systems?
In the 45 years since the Painlevé III representation was found

for the scaling function of the Ising model no other model has

been found for which the correlation functions satisfy nonlinear

equations.Are there any other models?

The most promising candidate is theN state superintegrable

chiral Potts spin chain

H = A0 + λA1

A0 = −
∑N

j=1

∑N−1
n=1

eiπ(2n−N)/2N

sin πn/N
(ZjZ

†
j+1)

n

A1 = −
∑N

j=1

∑N−1
n=1

eiπ(2n−N)/2N

sin πn/N
(Xj)

n

Xj andZj areN × N matrices at sitej with matrix elements

Zm,n = δm,ne
2πim/N Xm,n = δm+1,n

WhenN = 2 this reduces to the transverse Ising chain.
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Onsagers algebra
The matricesA0, A1 satisfy

[A0, [A0, [A0, A1]]] = const[A0, A1]

[A1, [A1, [A1, A0]]] = const[A1, A0]

and from this it follows that

[Aj, Ak] = 4Gj−k,

[Gm, Al] = 2Al+m − 2Al−m

[Gj, Gk] = 0

This is the algebra used by Onsager in his original computation

of the free energy of the Ising model!

The significance of this algebra for correlation functions is

unknown.
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Conclusion

It is my hope that some of you will provide answers
to these open questions.
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