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Résumé. 2014 L’annulation de l’énergie d’interface à T = 0 est compatible avec l’existence d’une
transition de phase à température finie, dans des systèmes de spins d’Ising. Dans des systèmes frustrés,
la création d’une interface peut coûter de l’entropie. Cet effet peut suffire à entrainer une température
de transition non nulle. Nous donnons un exemple explicite sur un modèle périodique et discutons
quelques conséquences possibles pour les verres de spins d’Ising en deux dimensions.

Abstract. 2014 It is pointed out that the vanishing of the interface energy at T = 0 is compatible
with the existence of a phase transition at finite temperature in Ising systems. In frustrated systems
an interface may cost entropy. This effect may be sufficient to produce a non-zero transition tem-
perature. We give an explicit example of this behaviour on a periodic model. Some possible conse-
quences for 2-D Ising spin-glasses are discussed.
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Recent theories of the transition from ferromagnet
to spin-glass [ 1 ], and of the lower critical dimen-

sionality of the spin-glass phase [2], have drawn
attention to the properties of interfaces - domain
walls - in these systems.

In pure and in weakly disordered Ising systems [3],
the transition temperature is also the temperature at
which the interface free energy vanishes. Vannimenus
and Toulouse [1] have associated the vanishing of the
interface energy, at T = 0, with the disappearance of
ferromagnetic order for a critical concentration Xc
(the frustration threshold) of antiferromagnetic inter-
actions in an otherwise ferromagnetic two-dimen-
sional Ising model.

Reed, Moore and Bray [2] have taken this suggestion
further, arguing that a zero defect energy would

prevent the occurrence of any long-range order, even
of the Edwards-Anderson type. From their numerical
studies of the interface energies in spin-glass models,
they have argued that in 2 and 3 dimensions the para-
magnetic phase would persist down to zero tem-
perature at these concentrations where the ferro-

magnetic phase is unstable [4].
Their argument in its simplest form may be phrase

as follows. If one considers two spins in a system at
T = 0, and there is a possibility of creating an interface
with zero energy cost between the two spins, then for
each configuration of the system in which the two spins
are parallel there will be a configuration of equal
energy in which the two spins are antiparallel. Thus
there cannot be any correlation between the two spins
and by extension, no long-range order.

There is a flaw in this argument. It is not necessarily
true that the number of configurations with the spin
parallel is equal to the number of configurations with
the spins antiparallel. Consider the correlations
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between spins 1 and 2 in figure 1. If these spins are
antiparallel, the bond at the bottom of the figure is not
satisfied and can be viewed as a defect. If spins 1 and 2
are parallel, either one of the upper bonds is not
satisfied. Thus the defect can occur in two positions,

FIG. 1. - Ising spins on a frustrated triangle.

and SlS2 = + 1 is twice as likely as 81 S2 = - 1.
The expectation value  S1 S~ ~ therefore is + 1/3,
not 0, even though there is no energy difference
between the three possible positions of the defect. The
difference in degeneracy between Sl S2 = + 1 and
Sl S2 = - 1 can be viewed as the entropy cost of
placing a defect between 81 and S2-
The same kind of reasoning applies to the corre-

lations between any pair of spins in a system where the
defect energy vanishes. It extends to the case where
the defect energy is bounded for large defect linear
dimensions, and Reed et al.’s argument for this case
suffers from the same flaw of neglecting degeneracy
differences.
We give in this letter a general formulation for the

free energy of a defect in a frustrated system, stressing
the importance of entropy effects. As an illustration,
we study a periodic model for which the interface
energy vanishes at T = 0 but the interface entropy is
non-zero. For this model there is a phase transition at
finite T. Finally we discuss some implications of these
arguments for Ising spin-glasses.

1. General formulation. - In a system where~ all
interactions are ferromagnetic, the definition of a
defect and its free energy is no problem. At low
temperatures, the system is ordered and the boundary
conditions that minimize the total energy are those

-compatible with this order, i.e. all spins on the boun-
dary pointing in the same direction. Let us denote this
choice condition A. A defect (a domain wall), is

created by reversing the direction of the boundary
spins in one half of the system (condition B). The
defect free energy is then just the difference between the
free energies :

a(T) is proportional to the length of the interface so
created at low temperatures and vanishes at Tc.
- For a system with interactions of both signs,
condition A will not necessarily remain the most

favourable one (just consider a chain with one negative
bond). If the bond distribution has no frustration,
it is still possible to find the best boundary conditions,
just by redefining every spin variable locally step by
step. But in a model with frustration there may be no
unique way to perform such a redefinition. We then
have to consider all possible boundary conditions and
select one of the configurations that minimize the
energy as the reference condition A’. If there remain
several possibilities corresponding to different ordered
states, we have to select the most probable one that
maximizes the entropy. To define a defect we play the
same game as before and reverse the boundary spins
in one half of the system, starting from A’, to obtain
condition B’.
The defect free energy is now defined as :

at low T, where EA, and S A’ are the T = 0 values of
energy and entropy. If EB, is superior to EA-, the defect
free energy behaves qualitatively like the interface free
energy in the ferromagnetic case. However, if the
defect energy per unit length vanishes at T = 0, the
entropy term may become dominant and give a

positive contribution at low T. The interface may be
considered to have negative entropy in that case,

though naturally the complete system has positive
entropy. At higher temperatures, 7 decreases and it
vanishes at a certain Tc where a phase transition occurs.
Such behaviour is reminiscent of rubber, for which

strong entropy effects oppose the energy terms and
lead to unconventional thermodynamic properties [5].
Usually a defect is defined relatively to a state favou-
rable in energy but of low statistical weight; here, as
many states may be favourable in energy, the reference
state becomes the most probable one and this leads to a
defect free energy increasing with temperature.

.2. An explicit periodic example. - Let us now
work out an explicit example of order due to entropy.
The model we consider has been recently introduced
by Andre, Bidaux, Carton, Conte and De Seze [6] in
the study of frustrated systems; it is a very interesting
generalization of a model introduced by Villain [7],
the odd model.

In the odd model, all bonds have the same magnitude
and the bonds in every second column are antiferro-

magnetic, so that all elementary squares (plaquettes)
are frustrated. Here these bonds have a strength
( - J’) larger in absolute value than the strength J of
the positive bonds (Fig. 2). All plaquettes are still
frustrated but the number of ground states is much
reduced (the entropy at T = 0 is non-zero but lower
than for the odd model). It is energetically favourable
to frustrate the weakest bonds and keep antiferro-
magnetic order on the negative columns.

Andre et al. have made a detailed study of the ther-
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FIG. 2. - Two completely frustrated models with very different
behaviour. In model I (the suspender model), the wiggled lines
represent antiferromagnetic bonds of strength - J’, the other
bonds are ferromagnetic with strength J ; if J’ &#x3E; J, this model
has a transition at finite temperature and it costs entropy to create
an interface. In model II, all bonds are antiferromagnetic ; if the
bonds on the wiggled lines are the strongest (J’ &#x3E; J), no transition
exists, and an interface costs no entropy. In both cases, the crosses
represent the centres of the frustrated plaquettes, and the heavy

lines intersect the frustrated bonds in a ground-state.

modynamic properties of this model, which they call
the suspender model. Using both the Pfaffian method
and the transfer matrix approach, they have shown
that for J’ &#x3E; J the system has a transition at a finite T,
with 7~ vanishing for J’ = J.
From the transfer matrix eigenvalues we can obtain

the interface energy, following Watson [8], and it is all
we need for the present purpose. The result depends
on the direction considered and reads, after some

algebra :

In these expressions, 6t is the interface tree energy per
unit length in a direction perpendicular to the anti-
ferromagnetic chains and 0’1 the free energy for an
interface parallel to the chains. K stands for JIT, K’
for J’IT and the starred quantities are the usual dual
couplings : __

The expression for at is remarkably simple and similar
to the form of the interface energy for the pure system.
It can in fact be obtained directly by considering a
restricted set of interface configurations, using the
method of Muller-Hartmann and Zittartz [9], but
like these authors we cannot prove why this procedure
gives the correct result.
A graph of the interface energies is shown in figure 3

for the choice J’ = 3 J. It is easy to check directly that
both vanish at the same Tc as expected, and that a,
vanishes at T = 0 with a finite slope. Explicitly one
obtains in this limit :

FIG. 3. - Plot of interface free energies versus temperature for the
suspender model, with J’ = 3 J. 6t corresponds to an interface
perpendicular to the antiferromagnetic chains (the wiggled lines
of Fig. 21), and behaves as in the pure Ising model. a, corresponds to
an interface parallel to the chains and vanishes at T = 0, as shown

by eq. (5).

This result is independent of J’IJ and may be inter-
preted very simply. One can see on figure 2 that if
arrangement B exists somewhere in the suspender, it
persists everywhere (for a ground-state) and the
frustrated bonds are known for all the suspender. This
arrangement corresponds to out-of-phase antiferro-
magnetic chains and has a twofold degeneracy.
In case A, at every level of the suspender a choice
exists : if at one level no bond is frustrated, at the next
level either no bond or two bonds are frustrated. But
if two bonds are frustrated, at the next level no bond
may be frustrated. Arrangement A corresponds to
antiferromagnetic chains in phase, and is much more
probable. One can calculate its entropy for one

suspender :

where n is the number of horizontal rows.
From the considerations given above, one sees that

the state without interface is the state where all the

suspenders are in arrangement A. To create an

interface, one has to replace arrangement A by
arrangement B in one of the suspenders. This does not
change the energy of the system but it costs entropy,
and one can say that the interface entropy is negative
and reads :

In this way one recovers result (5) for the interface free
energy at low temperatures.
The interface energy in the perpendicular direction

does not vanish at zero T but this in itself is not suffi-
cient to produce a finite 7~, as may be seen from other
simple examples. Consider for instance model II

. of figure 2 [10]. In this triangular completely frustrated
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model, a phase transition exists only when the two
equal negative couplings ( - J) are stronger than the
third one ( - J’), and the transition temperature can
be deduced from an expression given by Syozi [11] :

The drawing in figure 2 corresponds to the opposite
situation (J’ &#x3E; J). In that case no transition subsists,
though the entropy per spin vanishes at T = 0, and
though the interface energy in a direction transverse
to the antiferromagnetic J’ chains does not vanish
at T = 0. Such behaviour is in direct contrast to what

happens in the suspender model, and we ascribe it to
the absence of an interface entropy. It is easy to see
that the two possible ground-states for every frus-
trated strip have the same probability, so reversing
the spins in one half of the system costs neither energy
nor entropy.

In conclusion, for this class of frustrated systems,
the existence of a phase transition is not related to the
value of the bulk entropy at T = 0 (i.e. the total
number of different ground-states), but to the existence
of a negative interface entropy (i.e. a difference in the
degeneracy of the possible ordered states).

3. Disordered systems. - The general discussion

given above is valid for disordered materials. Once
the frustration network is sufficiently developed, the
defect energy (per unit length) for a system of N x N
spins vanishes [1, 2], and the boundary conditions
should be chosen to maximize the entropy (we
consider models with a residual entropy, like the + J
model). If the entropy difference when a defect is
created is proportional to N, a transition may occur at
finite T.
We cannot prove directly that this kind of effect

exists in spin-glasses, even for the simple two-dimen-
sional model with + J bonds. The Monte-Carlo
methods are a priori better suited to the problem. In
practice, however, the bulk entropy is more difficult
to obtain than the bulk energy, and the determination
of a defect entropy is not a simple numerical task.

Moreover, free boundary conditions introduce extra
size effects.

Therefore, we have studied a few random (18 x 18)
samples directly, by hand, comparing the ground-
states for different boundary conditions (periodic,
antiperiodic on two sides and on all four sides).
As expected, the ground-state energies are equal
(within 4 J) when enough frustration is present.
What is less expected is that for given boundary
conditions a majority of spins belongs to one ordered
cluster and they always have the same relative orien-
tation, so the correlations between the ground-states
are quite strong. Suppose now that the periodic
boundary conditions correspond to the most probable
of these local orders. If the sample were infinite, with
the same bond pattern periodically repeated, its most
probable ground-states would consist of a patchwork
.of local ground-states respecting the periodicity. Thus
an infinite ordered cluster would exist at low tem-

peratures, and a transition could occur at finite T
because of the entropy effect, just as in the suspender
model.
The samples studied are too small to draw a final

conclusion. Simulations on large samples will be

necessary to obtain reliable results on the N-depen-
dence of the interface entropy, and to see if this

quantity plays an important part in Ising spin-glasses.
In this letter we have shown that the vanishing of

the defect energy at T = 0 does not imply the absence
of a phase transition at finite temperatures. This point
may be important for Ising spin-glasses above the
frustration threshold. The example of a periodic
system that we have studied is not general enough to
be considered as an argument in favour of the existence
of a phase transition in these spin-glasses, but it
constitutes a useful counter example to keep in mind.
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