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Abstract.

This paper is a plea for diagonals and telescopers of rational, or algebraic,
functions using creative telescoping, in a computer algebra experimental
mathematics learn-by-examples approach.

We show that diagonals of rational functions (and this is also the case with
diagonals of algebraic functions) are left invariant when one performs an infinite
set of birational transformations on the rational functions. These invariance
results generalize to telescopers. We cast light on the almost systematic property
of homomorphism to their adjoint of the telescopers of rational, or algebraic,
functions. We shed some light on the reason why the telescopers, annihilating the
diagonals of rational functions of the form P/Qk and 1/Q, are homomorphic.
For telescopers with solutions (periods) corresponding to integration over non-
vanishing cycles, we have a slight generalization of this result. We introduce
some challenging examples of generalization of diagonals of rational functions,
like diagonals of transcendental functions, yielding simple 2F1 hypergeometric
functions associated with elliptic curves, or (differentially algebraic) lambda-
extension of correlation of the Ising model.
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1. Introduction: plea for a computer algebra experimental mathematics

learn by example approach

A paper in the honor of Professor Richard Kerner must be a paper on theoretical
physics, mathematical physics, physical mathematics, applied mathematics, applicable
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mathematics or even experimental mathematics [1]. These different domains have
large overlaps and, quite often, their differences, or shades, are slightly irrelevant, only
corresponding to social membership to different “mathematical tribes”. This computer
algebra paper will actually be a plea for diagonals and telescopers of rational (or
algebraic) functions and for creative telescoping, with a computer algebra experimental
mathematics learn-by-examples approach.

1.1. Honor, pride and prejudice

The Journal of Mathematical Physics defines mathematical physics as ”the application
of mathematics to problems in physics and the development of mathematical methods
suitable for such applications and for the formulation of physical theories”. An
alternative definition would also include those mathematics that are inspired by
physics (also known as physical mathematics). Mathematical physics clearly raises the
question of the watershed between mathematics and physics (especially in France ...).
Does “Mirror Symmetry” [2, 3, 4, 5] which is a relationship between geometric objects
called Calabi–Yau manifolds, belong to algebraic geometry or theoretical physics?
Does “Special Relativity” belong to physics or mathematics, Einstein or Poincaré?
“Einstein was reluctant to acknowledge that the Michelson-Morley experiment had a
significant influence on his road to special relativity” [6]. In fact, “once Maxwell’s
equations are properly understood mathematically, special relativity is an inevitable
consequence” [6]. Physical mathematics is sometimes viewed with suspicion by both
physicists and mathematicians. On the one hand, mathematicians regard it as
deficient, for lack of proper mathematical rigor. In the years since this “mathematical
physics debate” erupted [7] there have been many spectacular successes scored by
physical mathematics, thanks to the “unreasonable effectiveness” of physics in the
mathematical sciences. Dyson famously proclaimed: “As a working physicist, I am
actualy aware of the fact that the marriage between mathematics and physics, which
was so enormously fruitful in past centuries, has recently ended in divorce”. This
“divorce” is particularly serious in France, because of the overwhelmingly leading
figure of Alexander Grothendieck and the huge influence of the Bourbaki group,
which raises the question of rigor † versus creativity. Recalling Pierre Cartier [8],
the Bourbaki group has been criticized by several mathematicians, including its own
former members, for a variety of reasons. “ Criticisms have included the choice of
presentation of certain topics within the Éléments [9] at the expense of others, dislike
of the method of presentation for given topics, dislike of the group’s working style, and
a perceived elitist mentality around Bourbaki’s project and its books, especially during
the collective’s most productive years in the 1950s and 1960s. There is essentially no
analysis beyond the foundations: nothing about partial differential equations, nothing
about probability. There is also nothing about combinatorics, nothing about algebraic
topology††, nothing about concrete geometry. Anything connected with mathematical
physics is totally absent from Bourbaki’s text.” Dieudonné (founding member), later,
regretted that Bourbaki’s success had contributed to a snobbery for pure mathematics
in France, at the expense of applied mathematics [11, 12]. In an interview¶, he said:
”It is possible to say that there was no serious applied mathematics in France for forty

† “We should not confuse rigor with rigor mortis”, Isadore Singer, see [6].
††This is not totally true, see [10].
¶ To Marian Schmidt in 1990, see Chapter “Bourbaki’s choice: Neither Logic nor Applied Math”
page 118 in [11].



3

years after Poincaré. There was even a snobbery for pure mathematics. When one
noticed a talented student, one would tell him “You should do pure math.” On the
other hand, one would advise a mediocre student to do applied mathematics while
thinking, “It’s all that he can do! ...”. Apart from french¶ mathematicians, this
snobbery for pure mathematics met with harsh criticism from Vladimir Arnold in his
deliciously polemical paper [13] “Sur l’éducation mathématique”.

Quantum groups emerged from one (Yang-Baxter integrable) explicit example,
namely Quantum Toda, and not from an ex-nihilo abstract, formal, construction of a
noncommutative algebra formalism, and other C⋆-algebras, dressed with coassociative
coproducts. In theoretical physics we get used to the emergence of modular forms
and sometimes Shimura forms [14]. If a physicist asks a mathematician for more
information on these structures he will probably only get the academical Poincaré
upper half-plane definition and formalism which is totally and utterly useless for him
and he will not recognize the representation of modular forms and Shimura forms
which naturally emerges in physics [14, 15] in terms of pullbacked 2F1 hypergeometric
functions‡. In theoretical physics we are flooded by elliptic curves, K3 surfaces,
Calabi-Yau manifolds [3, 18, 19, 20, 21, 22, 23]. If a physicist tries to discuss with
a mathematician of the elliptic curve he just discovered (he has even calculated the
j-invariant, or the Hauptmodul, of this elliptic curve ...), he might be severely rebuked
that he has absolutely no right to talk of an elliptic curve because an elliptic curve
must have a “specified point”, or will be seen with suspicion because his elliptic
curve does not correspond to the complete intersection of quadrics [24, 25] framework
mathematicians like to consider in their theorems. Along this (slightly polemical
...) line, pure mathematicians will, often‖, refuse to provide representation of their
formalism, in particular they will refuse to provide examples. If a physicist, eager
to understand a mathematical concept, asks for an example of an algebraic variety,
an example of holonomic function, or an example of functor, some mathematicians
will, maliciously, reply: a point, the constant function and the oblivion functor. In
such a frustrating “dialogue of the deaf” between physicists and mathematicians,
mathematical physics is probably the perfect place to be criticized by physicists to be
too abstract, or too mathematical, and also by mathematicians for a lack of rigor, a
lack of mathematical proofs.

At this step, one of us (JMM) would like to seize the opportunity of this
experimental mathematics paper in honor of Professor Richard Kerner, to express
his deep regrets for his numerous fruitful conversations with Jean-Louis Verdier††
and its very generous pedagogical explanations. A discussion with him was not
flooded with “Derived Categories” or “p-adic cohomology”, but with simple examples
and representations of the mathematical concepts. A really good mathematician
can provide examples, he is not afraid, or ashamed, to provide examples and
representations. For Jean-Louis Verdier mathematics was not an obfuscation contest.

This paper is an experimental mathematics [1] paper with a learn-by-example

¶ When in doubt, blame the french (citation).
‡ Even worth the fact that automorphic forms [16] are holonomic functions is seen as a surprising
fact by some mathematicians (see, for instance, paragraph “How to recognize modularity” page 7 of
Zagier’s paper [17]).
‖ Quite often in France.
††Jean-Louis Verdier performed his thesis under the direction of Alexandre Grothendieck. He was a
member of the Bourbaki group. He passed away in August 1989.
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approach: we get puzzling exact results from computer algebra♯, and we hope
mathematicians will be interested to provide proofs of these results, in a proper
framework. Furthermore, these exact results, useful for physics, raise a lot of
fascinating new questions at the crossroad of different domains of mathematics.

1.2. Diagonal of rational functions, creative telescoping, birational transformations
and effective algebtraic geometry

Diagonals of rational functions (or diagonals of algebraic functions) have been shown
to emerge naturally [26] for n-fold integrals in physics†, field theory, enumerative
combinatorics [29, 30], seen as “Periods” [31] of algebraic varieties (corresponding
to the denominators of these rational functions). The fact that diagonals of
rational, or algebraic, functions occur frequently in physics, explains many unexpected
mathematical properties encountered in physics, that are far more obvious from a
physics viewpoint. For instance, the linear differential operators, annihilating these
“Periods”, are globally nilpotent [32, 33], and, consequently, the critical exponents‡
of all the (regular) singular points of these operators are rational numbers‖. These
n-fold integrals are also globally bounded [26, 36] series, which means that they can be
recast into (finite radius of convergence) series with integer coefficients. Furthermore,
these series, with integer coefficients, reducemodulo every prime to algebraic functions.
The calculation of the linear differential operators annihilating these n-fold integrals
of algebraic functions can be systematically performed using the creative telescoping
method [37, 38, 39] which corresponds, essentially, to successive differential algebra
eliminations which are blind to the cycles over which one performs the n-fold integrals.
At first sight one expects the analysis of these n-fold integrals to require, as in
the S-matrix theory [40], a lot of complex analysis of several complex variables, but
one quickly discovers, with creative telescoping, that one needs differential algebra,
possibly algebraic geometry [41], because of the crucial role of an algebraic variety and,
surprisingly one finds out almost “arithmetical” properties¶. More experimentally,
this time, one finds out that almost all the diagonals of rational, or algebraic, functions,
corresponding, or not, to physics, are annihilated by linear differential operators which
are homomorphic to their adjoint, and consequently, their differential Galois groups
are (or are a subgroup of) selected Sp(n, C) symplectic or SO(n, C) orthogonal
groups [33, 42, 43]. More generally, one finds out that the telescopers of almost all
the rational, or algebraic, functions are also homomorphic to their adjoint [42]. A
physicist, already surprised to see the emergence of all these mathematical concepts
in his backyard, will have the prejudice that these selected differential Galois groups
are probably a consequence of some “sampling bias”, these diagonals and telescopers
being, in fact, related to (Yang-Baxter) integrable models, like the χ(n) components of
the susceptibility of the Ising model [27, 28], or beyond, Calabi-Yau manifolds, Mirror

♯ Maple, Mathematica.
† Corresponding to solutions of linear differential operators of quite high order [27, 28].
‡ Physicists are clearly very interested to see if the critical exponents of the three-dimensional Ising
model are, or are not, rational numbers. In contrast, since many lattice Green functions in any
dimension [34] are diagonals of rational functions, their critical exponents are necessarily rational
numbers in any dimension.
‖ Katz theorem states that globally nilpotent linear differential operators are fuchsian with rational
exponents (see for instance [35]).
¶ Like in the Grothendieck–Katz p-curvature conjecture which is a local-global principle for linear
ordinary differential equations, related to differential Galois theory.
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Symmetries, Picard-Fuchs systems, and other theory “integrable” in some way (Yang-
Mills ...). In contrast, a mathematician will have the prejudice that this is nothing
but the Poincaré duality [44] since we have a canonical algebraic variety for all these
diagonals or telescopers [41]. Experimentally it is quite hard to find telescopers, or
linear differential operators, that are not homomorphic to their adjoint, i.e. that do
not have selected symplectic, or orthogonal, differential Galois groups [33, 42, 43].
If one considers Christol’s conjecture¶ [45, 46, 47, 48, 49], one can seek for nFn−1

hypergeometric series with integer coefficients that are candidates to be counter-
examples to Christol’s conjecture [45, 46, 47, 48]. Among these candidates a sub-set
has actually been seen [49] to be diagonals of rational, or algebraic, functions†, like
for instance 3F2([2/9, 5/9, 8/9], [2/3, 1], x), or 3F2([1/9, 4/9, 7/9], [1/3, 1], x). It turns
out that the linear differential operators of these nFn−1 candidates precisely provide
such rare examples of linear differential operators (annihilating diagonals of rational,
or algebraic, functions), that are not homomorphic to their adjoint. The existence of
such examples (curiously related to Christol’s conjecture ...) shows that seeing the
emergence of such selected differential Galois groups [42] for diagonals of rational, or
algebraic, functions cannot simply be seen as some consequence of the Poincaré duality.
The Poincaré duality works for any algebraic variety: the diagonal of any rational, or
algebraic, function should always yield “self-dual” linear differential operators in the
sense that they are homomorphic to their adjoint. This is not the case. Could it be
that the physicist’s prejudice is right and that, trying to be generic in our computer
algebra experiments, we were, in fact, just exploring diagonals of selected subsets of
rational, or algebraic, functions related to some kind of “integrable” physics?

Like Monsieur Jourdain‡ speaking “prose” without noticing himself, physicists
often perform some fundamental mathematics when they work on their n-fold
integrals without noticing these n-fold integrals are, in fact, diagonals of rational,
or algebraic, functions. In fact diagonals of rational, or algebraic, functions, and
more generally telescopers, are a perfect subject of analysis in mathematical physics:
they are, essentially, not well-known by mathematicians and by physicists (even if
physicists speak “diagonal” without noticing ...), and even when these concepts are
superficially known, they are not taken seriously by mathematicians, probably because
the definition is so simple, and the calculations are just “computer algebra” which is
not highly regarded in the “mathematical food chain”. This is in contrast with the
fact that almost every calculation of a diagonal of rational, or algebraic, function, or
calculation of a telescoper, yields interesting, or remarkable, sometimes even puzzling
exact results, providing answers in physics and mathematics, but also raising new
interesting questions, that could be called “speculative mathematics”.

In a learn-by-example approach we are going to address the previous questions
of “duality-breaking” of some telescopers of rational, or algebraic, functions, and we
will also sketch some remarkable birational symmetries [24, 25, 53, 54] of the diagonals
and telescopers of rational, or algebraic, functions.

¶ Christol conjectured that every D-finite globally bounded series is the diagonal of a rational
function.
† The fact that the others, like the original example of G. Christol, 3F2([1/9, 4/9, 5/9], [1/3, 1], 36 x),
are, or are not, diagonals of rational or algebraic functions remains an open question. Even the fact
that the corresponding series with integer coefficients should reduce to algebraic functions modulo
primes, remains a humiliatingly difficult task even for small primes ! Christol’s conjecture [49] remains
an open question.
‡ Le Bourgeois Gentilhomme. Molière.
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2. Definition of the diagonals of rational, or algebraic, functions.

Definition of telescopers.

The purpose of this paper is not to provide an introduction to creative telescoping [37,
38, 39, 55, 56, 57, 58] but, rather, to provide many (non-trivial) pedagogical
examples of telescopers using extensively the “HolonomicFunctions” package [59].
One can obtain these telescopers using Chyzak’s algorithm [58] or Koutschan’s semi-
algorithm† [59]. For the examples displayed in this paper, Koutschan’s package [59]
is more users-friendly or efficient.

Creative telescoping [37, 38, 39, 55, 56, 57, 58] is a methodology to deal with
parametrized symbolic sums and integrals that yields differential/recurrence equations
for such expressions. This methodology became popular in computer algebra in the
past twenty five years. By “telescoper” of a rational function, say R(x, y, z), we
here refer to the output of the creative telescoping program [59]. The telescoper T
represents a linear differential operator that is satisfied by the diagonal Diag(R), and
also all the other “periods”.

The paper is essentially dedicated to solutions of telescopers of rational functions
which are not necessarily diagonals of rational functions. These solutions correspond
to “periods” [31] of algebraic varieties over some cycles which are not necessarily
vanishing cycles [60], like in the case of diagonals of rational functions.

The reader interested in the connection between the process of taking diagonals,
calculating telescopers, and the notion of “Periods”, de Rham cohomology (i.e.
differential forms) and other Picard-Fuchs equations can read the thesis of Pierre
Lairez [61] (see also [31]).

2.1. Definition

Let us recall that the diagonal of a rational function in (for example) three variables
is obtained through its multi-Taylor expansion [19,20]

R(x, y, z) =
∑

m

∑

n

∑

l

am,n,l · x
m yn zl, (1)

by extracting the “diagonal” terms, i.e. the powers of the product p = xyz:

Diag
(

R(x, y, z)
)

=
∑

m

am,m,m · pm. (2)

In order to avoid a proliferation of variables, the variable p, the diagonal (2) depends
on, is, in the following, simply denoted x (see below (3)). Extracting these diagonal
terms essentially amounts to finding constant terms [62] in several complex variables
expansions, i.e. amounts to performing a residue calculation in several complex
variables expansions

Diag
(

R(x, y, z)
)

=

∫

C

1

y z
· R

( x

y z
, y, z

)

· dy dz (3)

=
1

2 i π

∫

1

2 i π

∫

∑

m

∑

n

∑

l

am,n,l · x
m yn−m zl−m ·

dy

y

dz

z
=

∑

m

am,m,m · xm,

or equivalently

Diag
(

R(x, y, z)
)

=

∫

C

1

y z
· R

(x

y
,
y

z
, z

)

· dy dz, (4)

† The termination is not proven
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where C denotes a vanishing cycle [60], where
∫

C
is a symbolic notation for the n-

fold integral with the well-suited pre-factors, and where the diagonal (4) is seen as a
function of the remaining variable x. This is the very reason why diagonals of rational,
or algebraic, functions can be interpreted as n-fold integrals [26]. More generally,
with n variables, one can write the diagonal of a rational function of n-variables as
the residue in n− 1 variables x2, · · · , xn:

Diag
(

R(x1, x2, · · · , xn)
)

(5)

=
1

2 i π

∫

· · ·
1

2 i π

∫

1

x2 · · · xn
· R

( x1

x2 · · · xn
, x2, · · · , xn

))

· dx2 · · · dxn.

If the definition of the diagonal of a rational or algebraic function is very simple,
it does not mean that calculating such a diagonal is simple ! By “calculating” we mean
finding that the series, corresponding to the diagonal, is the series expansion of some
known special function [63, 64, 65, 66] (an algebraic function [67], a pullbacked 2F1

hypergeometric function which turns out to be a modular form [14, 68, 69], a nFn−1

hypergeometric function, a Heun function [70], etc¶). Most of the time, it means,
since diagonals of rational, or algebraic, functions are selected‡ D-finite functions,
finding the linear differential operator annihilating the diagonal series, even if we are
not able to “solve††” this linear differential equation. Finding this linear differential
operator can be performed by first getting large series expansion of the diagonal and
then finding, by a “guessing” approach, the linear differential operator, or getting the
linear differential operator from a more global differential algebra approach, called
creative telescoping.

2.2. Telescopers

For pedagogical reason let us sketch creative telescoping [37, 38, 39, 55, 56, 57, 58] in
the case of a rational function of three variables. By “telescoper” of a rational function,
say R(x, y, z), we here refer to the output of the creative telescoping program [59],
applied to the transformed rational function R̂ = R(x/y, y/z, z)/(yz). Such a
telescoper is a linear differential operator T in x and ∂x, such that

T ·
( 1

y z
· R

(x

y
,
y

z
, z

))

+
∂U

∂y
+

∂V

∂z
= 0, (6)

where the so-called “certificates” U , V are rational functions† in x, y, z. This
equation is called the telescoping equation. Extracting the diagonal of a rational
function amounts to calculating residues in several complex variables, namely

Diag
(

R(x, y, z)
)

=

∫

C

1

y z
· R

(x

y
,
y

z
, z

)

, (7)

where the cycle C is a vanishing cycle‖. Performing the previous integration over a
cycle C on the LHS of the telescoping equation (6) one will get (with the reasonable

¶ Since diagonals of rational, or algebraic, functions are holonomic functions solutions of Fuchsian
ODEs [71] (i.e. with regular singularities), one cannot have, among Special Functions, D-finite
functions with irregular singularities like, for instance, modified Bessel functions.
‡ Fuchsian equations [27, 28, 71], G-nilpotent operators, globally bounded series [36] reducing to
algebraic curves modulo every prime.
††For the time being ...
† These rational functions are often quite large rational functions.
‖ “Cycle évanescent” in french [60].
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assumption that the linear differential operator T commutes with the integration):

T · Diag
(

R(x, y, z)
)

+

∫

C

(∂U

∂y
+

∂V

∂z

)

= 0. (8)

Again (with reasonable assumptions) one can expect the second term in (8) to be
equal to zero, thus yielding the equation:

T · Diag
(

R(x, y, z)
)

= T ·

∫

C

1

y z
· R

(x

y
,
y

z
, z

)

= 0. (9)

In other words, the telescoper T represents a linear differential operator annihilating
the diagonal Diag(R). For the calculation of a diagonal, the cycle C has to
be a vanishing cycle (residue calculation). Note that the creative telescoping
calculations giving as an output the telescoper T and the two “certificates” U and
V , essentially amounts to performing differential algebra calculations‡. Since these
creative telescoping calculations are differential algebra eliminations, they are totally
and utterly blind to the cycle C. Consequently, even if one performs an integration
over a non-vanishing cycle, the telescoper T will also be such that

T · P = 0 where: P =

∫

C

1

y z
· R

(x

y
,
y

z
, z

)

, (10)

this integral being not necessarily equal to the diagonal Diag(R(x, y, z)) (which could
be, for instance, equal to zero). Equation (10) means that the telescoper annihilates
all the periods P .

The paper is essentially dedicated to solutions of telescopers of rational functions
which are not necessarily diagonals of rational functions. These solutions correspond to
periods [31] of algebraic varieties over some cycles which are not necessarily vanishing
cycles like in the case of diagonals of rational functions.

To sum-up: In order to calculate the diagonal of a rational function one can try,
in a very down-to-earth way, to get large enough series expansions of this diagonal
from multi-series expansion, and then try some guessing approach to obtain the
linear differential operator annihilating the diagonal of a rational function, or one
can perform the creative telescoping approach that will provide this telescoper even
if the diagonal is zero, or cannot be nicely defined because the rational function does
not have a multi-Taylor expansion: in that case the telescoper annihilates periods
corresponding to all the cycles, in particular non-vanishing cycles.

2.3. Diagonals versus telescopers: vanishing cycles versus non-vanishing cycles

2.3.1. Diagonals versus telescopers: a first example
Let us first consider the following rational function of three variables

R(x, y, z) =
1

−x − y − z2
. (11)

This rational function does not have a multi-Taylor expansion, and thus we cannot
define the diagonal of the rational function. This rational function has, however, a
telescoper which is a linear differential operator of order one, namely 5 θ + 2, where

‡ Similar to integration by part for several complex variables.
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θ = xDx = x d/dx is the homogeneous derivative. Let us now consider a slightly
more general rational function:

R(x, y, z) =
1

α − x − y − z2
. (12)

This rational function (12) has a multi-Taylor expansion, and one can, thus, get the
first terms of the diagonal of this rational function (12):

Diag
(

R(x, y, z)
)

=
1

α
+

30

α6
· x2 +

3150

α11
· x4 +

420420

α16
· x6 + · · · (13)

The α-dependent rational function (12) has an order-four α-dependent telescoper
L4(α)

x2 · L4(α) = −5 · x2 · (5 θ + 2) · (5 θ + 4) · (5 θ + 6) · (5 θ + 8)

+ 16 · α5 · θ2 · (θ − 1)2, (14)

which has the following 4F3 hypergeometric function solution:

1

α
· 4F3

(

[
1

5
,
2

5
,
3

5
,
4

5
], [

1

2
,
1

2
, 1],

3125

16 α5
· x2

)

. (15)

The series expansion of this 4F3 hypergeometric function (15) is in agreement with
the series expansion (13). In the α → 0 limit the order-four α-dependent telescoper
L4(α) becomes the direct-sum:

− 5 · x4 ·
(

(5 θ + 2)⊕ (5 θ + 4)⊕ (5 θ + 6)⊕ (5 θ + 8)
)

. (16)

We thus see, in this α → 0 limit, that one recovers, among the different factors in
(16), the order-one telescoper of the rational function (11), namely 5 θ +2. This first
example being a bit too simple, or degenerate, let us consider another example.

2.3.2. Diagonals versus telescopers: a second example
Let us now consider the rational function of three variables:

R(x, y, z) =
1

−x − y − z − x5 y
. (17)

This rational function has a telescoper L4, which is a linear differential operator of
order four, which reads:

L4 = −(800000 x5 − 27) · x4 D4
x − (11200000 x5 + 27) · x3 D3

x

− 15 · (2800000 x5 − 1) · x2 D2
x − 60 · (700000 x5 − 1) · xDx

− 12 · (437500 x5 + 9), (18)

or, introducing the homogeneous derivative θ = xDx,

L4 = −50000 · x5 · (2 θ + 7) (2 θ + 5) (2 θ + 3) (2 θ + 1)

+ 3 · (3 θ + 1) (3 θ − 4) (θ − 3)2. (19)

The rational function (17) does not have a multi-Taylor expansion. We have a problem
to define the diagonal of the rational function (17). The analytic solutions of (18),
or (19), are thus just “Periods” of the rational function (17), i.e. integrals over a
non-vanishing cycle of the rational function (17). A solution of (18), or (19), is, for
instance, the hypergeometric function:

x3 · 4F3

(

[
7

10
,
9

10
,
11

10
,
13

10
], [1,

4

3
,
5

3
],

800000

27
· x5

)

. (20)
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If one finds that the concept of diagonal is easier to understand, compared
to“Periods” over non-vanishing cycles that are not really defined (we just know they
exist), such a result may look a bit too abstract, and thus slightly frustrating. In fact
one can recover some contact with the easier concept of diagonals, performing some
kind of “desingularization”. Let us consider the more general α-dependent rational
function of three variables:

R(x, y, z) =
1

α − x − y − z − x5 y
. (21)

It has a telescoper which is a linear differential operator of order four M4(α). The
first terms of the diagonal of that rational function (21) can easily be calculated.
We have calculated this order four linear differential operator M4(α). It is a bit
too large to be given here. However one remarks that this α-dependent order four
linear differential operator M4(α), is actually related to the previous order-four linear
differential operator L4, in the α → 0 limit:

M4(0) = −675000000 x11 · L4. (22)

To sum-up: The telescoper corresponding to “Periods” over a non-vanishing
cycles can be obtained from a one-parameter telescoper having clear-cut diagonal
solutions (“Periods” over a vanishing cycle).

2.4. The Devil is in the detail: the number of variables

Let us consider the diagonal of the following rational function of four variables:

1

1 − αx− y − z − β · xu
. (23)

Its telescoper is, for any value of α, and for β 6= 0, the order-two linear differential
operator

L2 = (1 − 27 β · x) · xD2
x + (1 − 54 β · x) · Dx − 6 β, (24)

which has the following hypergeometric 2F1 solution:

2F1

(

[
1

3
,
2

3
], [1], 27 β · x

)

. (25)

Recalling the definition of the diagonal of a rational function based on multi-
Taylor expansion, it is easy to see, on this almost trivial example, that the various
powers of the product t = x y z u that the diagonal extracts, require the occurrence
of the variable u which only occurs, in the denominator of (23), through the product
xu yielding automatically the occurrence of the variable x. Consequently, any further
occurrence of the variable x, from the −αx monomial in the denominator of (23), is
excluded. This explains why the diagonal of (23) is actually blind to the −αx term.
In other words, the diagonal of the four variables rational function (23) is, in fact the
diagonal of a rational function of three variables y, z, and the product xu.

Remark 2.1: To take into account this problem, we will introduce the concept
of “effective number” of variables. In the previous example the number of variables is
four but the “effective number” of variables is three.
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2.5. Understanding the complexity of the diagonal of a rational function

2.5.1. Order of the linear differential operator and number of variables
The simplest example of diagonal of rational function of n variables, corresponds

to the diagonal of the rational function

1

1 − x1 − x2 − x3 · · · − xn
. (26)

The diagonal of (26) is annihilated by an order-(n−1) linear differential operator with
a n−1Fn−2 hypergeometric solution:

n−1Fn−2

(

[
1

n
,
2

n
,
3

n
, · · · ,

n− 1

n
], [1, 1, · · · , 1], nn · x

)

. (27)

This simple example may provide the prejudice that, for a given globally bounded
series (36), the number of variables of the rational function is related to the (minimal)
order of the linear differential operator annihilating the series. One should note,
however, for the class of the above example, that the corresponding linear differential
operator has the Maximally Unipotent Monodromy property (MUM)† .

This result is reminiscent of the well-known 4F3([1/5, 2/5, 3/5, 4/5], [1, 1, 1], x)
Candelas et al. hypergeometric series emerging in [3] for a particular Calabi-Yau
manifold. Let us recall that Calabi-operators [22], annihilating Calabi-Yau series [18],
are (self-adjoint) order-four linear differential operators which have the Maximally
Unipotent Monodromy property (MUM) at x = 0: if one considers their formal
series expansions at x = 0, among the four formal series expansions, one is analytic
(it actually corresponds to our diagonals of rational functions), another one is a formal
series with a ln(x)1, another one is a formal series with a ln(x)2, and the last one is
a formal series with a ln(x)3. Along this line ((26) yielding (27)), one would expect
that the diagonal of rational function representation of a Calabi-Yau series (solution¶
of an order-four linear differential operator) should require, at least five variables for
the rational function.

2.5.2. Order of the linear differential operator and degree in the variables
Let us now consider the diagonal of the following rational function of three variables

1

1 − x − α y − z2
, (28)

whose diagonal writes as a simple 4F3 hypergeometric solution:

4F3

(

[
1

5
,
2

5
,
3

5
,
4

5
], [1,

1

2
,
1

2
],

55

24
· α2 · x2

)

. (29)

In contrast with the example (26), here, we just need, for the rational function,
three variables, instead of the expected five variables. Note however, that the
order-four linear differential operator L4, annihilating this hypergeometric solution
(29), does not have MUM. As usual, this order-four linear differential operator is
homomorphic to it adjoint with a very simple order-two intertwiner:

L4 ·
(

xD2
x +Dx

)

=
(

xD2
x +Dx

)

· adjoint(L4). (30)

† A Maximally Unipotent Monodromy linear differential operator (MUM) is a linear differential
operator such that all its indicial exponents (at the origin) are equal (see for instance [22, 34]).
¶ The simplest Calabi-Yau series (see for instance [18]) are 4F3 hypergeometric series like

4F2([1/2, 1/2, 1/2, 1/2], [1, 1, 1], x), or 4F2([1/5, 2/5, 3/5, 4/5], [1, 1, 1], x) (see equation 3.11 in [3]).
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One thus expects [43] this order-four linear differential operator L4 to have a
symplectic differential Galois group included in Sp(4, C). Actually the exterior square
of this o.rder-four operator L4 has a simple rational function solution [43], namely
1/x/(55 · x2 − 24).

Let us now consider the diagonal of the following rational function of three
variables:

1

1 − x − α y − z3
. (31)

The linear differential operator annihilating this diagonal is an order-six linear
differential operator with a quite simple 6F5 hypergeometric solution:

6F5

(

[
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7
], [1,

1

3
,
1

3
,
2

3
,
2

3
],

77

36
· α3 · x3

)

. (32)

Let us restrict to α = 1. The order-six linear differential operator, annihilating the
diagonal of (31), does not haveMUM. One has three series analytic at x = 0, one of the
form x·(1 +2377375/6561x3 +· · ·), one of the form x2 ·(1 +16509584/32805x3 +· · ·),
and the third one being the diagonal of the rational function which is the expansion
of (32):

1 + 140 x3 + 84084 x6 + 64664600 x9 + 55367594100 x12 + 50356110752640 x15

+ 47606217704845800 x18 + 46236665756994672960x21 + · · · (33)

One also has three other formal series solutions with a ln(x)1, but no ln(x)2 or ln(x)3.

As usual, this order-six linear differential operator is homomorphic to its adjoint
with a very simple order-four intertwiner:

L6 ·
(

x2 D4
x + 4 xD3

x + 2D2
x

)

=
(

x2 D4
x + 4 xD3

x + 2D2
x

)

· adjoint(L6). (34)

One expects [43] this order-six linear differential operator L6 to have a symplectic
differential Galois group included in Sp(6, C). Actually the exterior square of this
order-six linear differential operator L6 has a simple rational function solution [43],
namely 1/x/(77 · x3 − 36).

Remark 2.2: This result can be generalised. Let us consider the rational
function:

1

1 − x − y − zn
. (35)

The linear differential operator L
(1)
2n , annihilating this diagonal, is an order-(2n) linear

differential operator with a quite simple 2nF2n−1 hypergeometric solution:

2nF2n−1

(

[
1

2n + 1
,

2

2n + 1
,

3

2n + 1
, · · · ,

2n

2n + 1
],

[1,
1

n
,
1

n
,
2

n
,
2

n
, · · · ,

n− 1

n
,
n− 1

n
],

(2n + 1)(2n+1)

n2n
· xn

)

. (36)

Let us also consider the linear differential operators L
(m)
2n annihilating the diagonal

of the rational function:
( 1

1 − x − y − zn

)m

. (37)
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One finds the following homomorphisms†† between successive linear differential

operators L
(m)
2n :

Homomorphisms
(

L
(m)
2n , L

(m+1)
2n

)

= (2n + 1) · x · Dx + m · n. (38)

In other words one has the relations:

L
(m+1)
2n ·

(

(2n + 1) · θ +m · n
)

= Z1(m) · L
(m)
2n , (39)

where Z1(m) is an order-one linear differential operator. The linear differential

operator L
(1)
2n is simply homomorphic to its adjoint:

Homomorphisms
(

adjoint(L
(1)
2n ), L

(1)
2n

)

=

1

xn−1
· θ2 · (θ − 1)2 · (θ − 2)2 · (θ − 3)2 · · ·

(

θ − (n − 2)
)2

. (40)

Remark 2.3: With the previous, rather simple, examples we see that the order
of the linear differential operator annihilating the diagonal of a rational function, is
not related to the number of variables of the rational function (or even to the number
of “effective” variables see section 2.4). Furthermore, a given globally bounded series
can be seen to be the diagonals of an infinite number of rational functions of a certain
number of variables, but also, in the same time, of other infinite number of rational
functions with a different number of variables. For a given globally bounded series
we can find the (minimal order) linear differential operator annihilating this series.
Having this (minimal order) linear differential operator, the question is: can we find
the minimal number of variables necessary to see this globally bounded series as the
diagonal of a rational function of that number of variables? We will address these
questions in a forthcoming paper [81].

3. Diagonals of rational functions: should we restrict to rational functions

of the form 1/Q?

With P and Q multivariate polynomials (with Q(0) 6= 0), the diagonals of the
rational functions P/Qk are, for fixed polynomial Q, and for arbitrary integer k,
a finite dimensinal vectorial space related†, as shown by Christol [45, 46], to the de
Rham cohomology. For physicists, not familiar with de Rham cohomology‡, let us
just say that this can be seen as a consequence of the fact that these P/Qk rational
functions are solutions of D-finite systems, which means that these systems of PDE’s
(partial differential equations) have a finite set of solutions of the form P/Qk. Being
in such a “finite box” will force¶ the telescopers of the diagonals of P/Qk and 1/Q,
to be related (by homomorphisms).

Experimentally, if one considers the (minimal order) linear differential operators
for the diagonal of P/Qk and for the diagonal of 1/Q, these two linear differential
operators are actually homomorphic. Note that this experimental result, valid for

††We use the Homomorphisms command in Maple (DEtools).
† We are thankful to P. Lairez for having clarified this point.
‡ They are so many cohomologies in mathematics. For non-mathematicians let us just say that the
introduction of a cohomology often amounts to seeing that “something” you expect, at first sight,
to be infinite, for instance the number of solutions of a system of PDE’s, is in fact a finite set (for
instance for D-finite systems of PDE’s).
¶ This requires to find a “cyclic vector” in mathematicians wording.
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diagonals (i.e. integrals over vanishing cycles), is no longer valid for telescopers of
rational functions with analytic solutions corresponding to “periods”, n-fold integrals,
over non-vanishing cycles. In this case we have a slight generalization of that
homomorphism between telescopers P/Qk and telescopers 1/Q, that will be described
in the sequel (see section 5.2 below).

It is true that the analysis of lattice Green functions (LGF) [72, 73, 74, 75, 76] in
physics naturally yields to diagonals of rational functions in the form R = 1/Q, where
Q is a polynomial. However, the other n-fold integrals, emerging in physics, are much
more complex (for instance the χ(n) terms of the susceptibility of the two-dimensional
Ising model [28]). The lattice Green functions [34, 72, 73, 74, 75, 76, 34, 77] and some
Occam’s razor simplicity argument‖ are not sufficient to justify a bias of studying,
quite systematically, rational functions of the form R = 1/Q (as we often do). In
fact these de Rham cohomology arguments are the reason why, for diagonals (and
diagonals only), one can restrict to rational functions in the form R = 1/Q, but since
these arguments may look too esoteric for physicists, let us, in a learn-by-example,
pedagogical approach, provide examples showing that telescopers of rational functions
in the form R = 1/Qk are homomorphic to telescopers of rational functions in the
form R = 1/Q, and then that telescopers of rational functions in the form R = P/Q
are homomorphic to telescopers of rational functions in the form R = 1/Q.

3.1. Diagonals of rational functions: R = 1/Qk reducing to 1/Q

Let us denote Q the polynomial:

Q = 1 + x y + y z + z x + 3 · (x2 + y2 + z2). (41)

Let us denote L
(n)
4 the telescopers of Diag(1/Qn):

L
(n)
4 · Diag

( 1

Qn

)

= 0. (42)

One remarks that these telescopers are all of order four. One actually finds the
following homomorphisms between successive telescopers (42):

Homomorphisms
(

L
(n)
4 , L

(n+1)
4

)

= 3 x · Dx + 2n. (43)

In other words one has the relations:

L
(n+1)
4 · (3 θ + 2n) = Z1(n) · L

(n)
4 , (44)

where Z1(n) is an order-one linear differential operator, the intertwining relation (44)
yielding:

L
(n+1)
4 · (3 θ + 2n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2)

= Z1(n) · · · Z1(3) · Z1(2) · Z1(1) · L
(1)
4 . (45)

One deduces:

2n · n! · Diag
( 1

Qn+1

)

= (3 θ + 2n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag
( 1

Q

)

. (46)

‖ Or should we say laziness argument? We might study something simple and possibly slighty
irrelevant, just because we do not want to work hard facing the true problem.
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In other words the diagonal of 1/Qn+1 can be simply deduced from the diagonal of
1/Q.

Remark 3.1: The product (3 θ +2n) · · · (3 θ +6) · (3 θ +4) · (3 θ +2), in the
intertwining relation (45), is in fact a direct sum:

(3 θ + 6) · (3 θ + 4) · (3 θ + 2)

= 27 x3 · LCLM
(

(3 θ + 6), (3 θ + 4), (3 θ + 2)
)

. (47)

One has, for instance, the relations:

2 · Diag
( 1

Q2

)

= (3 θ + 2) · Diag
( 1

Q

)

8 · Diag
( 1

Q3

)

= (3 θ + 4) · (3 θ + 2) · Diag
( 1

Q

)

(48)

48 · Diag
( 1

Q4

)

= (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag
( 1

Q

)

384 · Diag
( 1

Q5

)

= (3 θ + 8) · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag
( 1

Q

)

.

Of course, since the telescoper of Diag
(

1
Q

)

is an order four linear differential

operator, the order-(k − 1) product in front of Diag
(

1
Q

)

in (48) can be, for

Diag
(

1
Qk

)

, reduced to an order-three linear differential operator (the simple products

(3 θ +2 · (k− 1)) · · · (3 θ +4) · (3 θ +2) in (48) being taken “modulo” L4, for k ≥ 5).

3.2. Diagonals of rational functions: R = P/Q reducing to 1/Q

Experimentally one finds, quite often, that the telescoper of a rational function of
the form R = P/Q and the telescoper of the simple rational function 1/Q with its
numerator normalized to 1, are homomorphic. The intertwiner M occurring in the
homomorphisms of these two telescopers yields a relation of the form

Diag
(P

Q

)

= M · Diag
( 1

Q

)

, (49)

yielding the prejudice that the diagonals of the rational functions of the form P/Q
should reduce to the “simplest†” diagonal, namely Diag(1/Q). In fact things are
slightly more subtle, as will be seen below.

Sticking with the polynomial (41), one has

L
(1)
4 · Diag

( 1

Q

)

= 0, (50)

and considering the diagonal of x y/Q, one obtains an order-five differential operator
with unique factorization:

L
(xy)
4 · Dx · Diag

(x y

Q

)

= 0. (51)

† Simplest in some sense. In fact one is looking for a cyclic vector, and the cyclic vector is not
necessarily Diag(1/Q) (see relation (58) and (59) below).
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The homomorphisms between L
(1)
4 and L

(xy)
4 amounts to seeking for linear

differential operators that map the solutions of one differential operator into the other.
These relations are

L
(xy)
4 · Q3 = K3 · L

(1)
4 , (52)

and

L
(1)
4 · J3 = P3 · L

(xy)
4 , (53)

where the intertwiners Q3, K3, J3 and P3 are linear differential operators of order
three.

Note that the above two relations show [23] that the linear differential operator

J3 ·Q3 (resp. Q3 · J3) leaves the solutions of L
(1)
4 (resp. L

(xy)
4 ) unchanged‖,

J3 · Q3 · Diag
( 1

Q

)

= Diag
( 1

Q

)

(54)

= 1 − 195 x2 + 135225 x4 − 143647728 x6 + 182699446545 x8

−252437965534755 x10 + 364803972334074000 x12 + · · ·

and

Q3 · J3 · Dx · Diag
(x y

Q

)

= Dx · Diag
(x y

Q

)

(55)

= 16 x − 38400 x3 + 71593536 x5 − 126120445440 x7

+ 218901889206000x9 − 378463218115207680x11 + · · · (56)

Introducing the differential operator Dx on both sides of (53), and using (51),
one obtains:

L
(1)
4 · J3 · Dx · Diag

(x y

Q

)

= P3 · (L
(xy)
4 · Dx) ·Diag

(x y

Q

)

. (57)

The RHS of (57) cancels and therefore, the LHS of (57), according to (50), leads to

Diag
( 1

Q

)

= J3 · Dx · Diag
(x y

Q

)

. (58)

Also, acting by both sides of (52) on Diag(1/Q), using (50), and (51) in mind leads
to:

Dx · Diag
(x y

Q

)

= Q3 ·Diag
( 1

Q

)

. (59)

With these relations we see that the derivative of the diagonal of xy/Q simply
reduces to the diagonal of 1/Q, but the diagonal of xy/Q does not simply reduce¶ to
the diagonal of 1/Q.

4. Diagonals of algebraic functions

4.1. Diagonals of algebraic functions: a first example

Let us consider the algebraic functions:

A(x, y) =
1

(

1 − α · (x + y)
)1/n

n = 2, 3, · · · (60)

‖ Equivalently, the adjoint of P3 ·K3 (resp. the adjoint of K3 ·P3) leaves the solutions o f the adjoint

of L4 (resp. the adjoint of L
(xy)
4 ) unchanged.

¶ Here 1/Q is not the “cyclic vector”.
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The telescopers of these algebraic functions are order-two linear differential operators
with the simple 2F1 hypergeometric solution:

2F1

(

[
1

2n
,
n + 1

2n
], [1], 4 · α2 · x

)

= 1 +
n+ 1

n2
α2 x +

(1 + n) · (1 + 2n) · (1 + 3n)

4 · n4
α4 x2 + · · · (61)

Note that, among these 2F1 hypergeometric functions, the n = 2, n = 3, n = 4,
n = 6 cases correspond to modular forms (see Appendix B in [14]).

These hypergeometric series can be seen to be, as it should, the diagonals of the
algebraic functions (60). In particular, for n = 2, one gets:

2F1

(

[
1

4
,
3

4
], [1], 4 · α2 · x

)

=
( 1

1 − 3α2 x

)1/4

· 2F1

(

[
1

12
,
5

12
], [1],

27

4
·
α4 · x2 · (1 − 4α2 x)

(1 − 3α2 x)3

)

(62)

= 1 +
3

4
α2 x +

105

64
α4 x2 +

1155

256
α6 x3 +

225225

16384
α8 x4 + · · ·

For n = 2 it is natural to associate the denominator of (60), with the algebraic
surface

z2 = 1 − α · (x + y), (63)

and, following ideas developped in [41], since calculating the diagonal of the function
(60) for n = 2, amounts, in the multi-Taylor expansion, to extracting the terms
depending only on the product p = x y, take the intersection of the algebraic surface
(63) with the surface p = x y. This amounts, for instance, to eliminating y = p/x
in (63), thus getting the algebraic curve

− α · x2 − x z2 − α · p + x = 0, (64)

which turns out to be an elliptic curve (genus-one). Calculating the j-invariant of the
elliptic curve (64), one deduces the following Hauptmodul

H =
1728

j
=

27

4
·
α4 · p2 · (1 − 4α2 p)

(1 − 3α2 p)3
, (65)

which is actually the Hauptmodul pullback in (62). This example gives some hope that
the effective algebraic geometry approach of diagonals of rational functions, detailed
in [41], could also work with diagonals of algebraic functions.

For n 6= 2 it is tempting to associate the denominator of (60), with the algebraic
surface

zn = 1 − α · (x + y), (66)

and after the elimination y = p/x in (63), the algebraic curve

− α · x2 − x zn − α · p + x = 0, (67)

but such algebraic curves turn out to be of genus g = n − 1. Understanding the
emergence of modular forms for the n = 3, n = 4, n = 6 subcases of (61)
from (respectively) genus 2, 3, and 5 algebraic curves, is an open (and challenging)
problem.

Remark 4.1: From the definition of the diagonals of a rational, or algebraic,
functions it is straightforward to see that the diagonals of the algebraic functions (60)
are series of the variable α2 x. Consequently, the previous calculations for a particular
value of α, are sufficient to recover the previous results valid for arbitrary α. For that
reason we will, in the next example, take specific values of the parameters.
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4.2. Diagonals of algebraic functions: a second example

Let us consider the algebraic functions:

A(x, y) =
1

(

1 − 3 · (x + y) + 5 · (x2 + y2)
)1/n

, n = 2, 3, · · · (68)

For n = 2 the telescoper of the algebraic function (68) is an order-two linear
differential operator with the pullbacked 2F1 hypergeometric solution:

1

(1 − 30 x)1/2
· 2F1

(

[
1

4
,
3

4
], [1], −

4 · (11 − 200 x) · x

(1 − 30 x)2

)

=
1

(1 − 27 x + 300 x2)1/4
(69)

× 2F1

(

[
1

12
,
5

12
], [1],

27

4
·
x2 · (11 − 200 x)2 · (1 − 16 x + 100 x2)

(1 − 27 x + 300 x2)3

)

= 1 +
27

4
x +

4305

64
x2 +

199395

256
x3 +

167040825

16384
x4 + · · ·

From multi-Taylor series expansion, it is straightforward to see that the
hypergeometric series is actually the diagonal of the algebraic function (68) for n = 2.

As in the previous subsection we introduce the algebraic surface

z2 = 1 − 3 · (x + y) + 5 · (x2 + y2), (70)

and, again, eliminate y = p/x in (70), thus getting the algebraic curve

5 x4 − x2 z2 − 3 x3 + 5 p2 − 3 p x + x2 = 0, (71)

which turns out to be an elliptic curve (genus-one). Calculating the j-invariant of the
elliptic curve (71), one deduces the following Hauptmodul

H =
1728

j
=

27

4
·
p2 · (11 − 200 p)2 · (1 − 16 p + 100 p2)

(1 − 27 p + 300 p2)3
, (72)

which is actually the Hauptmodul pullback in (69). Again, this last example gives some
hope that the effective algebraic geometry approach of diagonals of rational functions,
detailed in [41], could also work with diagonals of algebraic functions. For n 6= 2, it
is tempting to introduce the algebraic surface

zn = 1 − 3 · (x + y) + 5 · (x2 + y2), (73)

and, again, eliminate y = p/x in (70), thus getting the algebraic curve

5 x4 − x2 zn − 3 x3 + 5 p2 − 3 p x + x2 = 0, (74)

which is an algebraic curve of genus g = 2n − 3 for n even, and g = 2n − 2
for n odd. For n = 3 (genus 4) the telescoper of the algebraic function (68) is
an (irreducible) order-three linear differential operator which is not homomorphic to
its adjoint. The interpretation of such non-self-dual order-three linear differential
operators from these higher genus algebraic curves is a totally open problem.
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5. Understanding the emergence of selected differential Galois groups for

diagonals of rational functions

Experimentally one finds that almost all the linear differential operators annihilating
the diagonal of a rational, or algebraic, function are homomorphic to their adjoint [42].
For instance, recalling an example in [42]

4F3

(

[
1

3
,
1

3
,
2

3
,
2

3
], [

1

2
, 1, 1],

729

4
· x

)

= Diag
( 1

1 − (1 + u) · (x + y + z)

)

= 1 + 18 x + 1350 x2 + · · · (75)

we find the corresponding order-four linear differential operator

x · L4 = 2 · x · (3 θ + 2)2 · (3 θ + 1)2 − 81 · θ3 · (2 θ − 1), (76)

which can be seen to be non-trivially homomorphic to its adjoint:

L4 ·
(

θ +
1

2

)

=
(

θ +
1

2

)

· adjoint(L4). (77)

Beyond diagonals of a rational, or algebraic, functions, one also finds experimentally,
that almost all the telescopers of rational or algebraic functions are homomorphic
to their adjoint. This homomorphism to the adjoint property is so systematic that,
following a mathematician’s prejudice one can imagine that this is nothing but the
Poincaré duality. The Poincaré duality [44] works for any algebraic variety: the
diagonal of any rational, or algebraic, function should yield self-dual linear differential
operators in the sense that they are homomorophic to their adjoint. This is not the
case. It turns out that the linear differential operators of some nFn−1, candidates
to rule-out Christol’s conjecture [45, 46, 49], precisely provide such rare examples of
linear differential operators annihilating diagonal of rational or algebraic functions
that are not homomorphic to their adjoint. Among these candidates a large set has
been seen to actually be diagonals of rational, or algebraic, functions [49, 78].

5.1. A recall on Christol’s conjecture

Let us recall one of the 3F2 hypergeometric candidates introduced to rule out
Christol’s conjecture:

3F2

(

[
2

9
,
5

9
,
8

9
], [

2

3
, 1], 27 · x

)

(78)

= 1 +
40

9
· x +

5236

81
· x2 +

7827820

6561
· x3 +

1444588600

59049
· x4 + · · ·

It is a globally bounded series (change x → 33 · x to get a series with integer
coefficients). In fact it actually corresponds [49] to the diagonal of the algebraic
function:

(1 − y − z)1/3

1 − x − y − z
. (79)

The telescoper of the algebraic function (79) is the order-three linear differential
operator which has (78) as a solution. This order-three linear differential operator
is not homomorphic to its adjoint. We have a SL(3, C) differential Galois group.

Other similar examples are, for instance:

3F2

(

[
1

9
,
4

9
,
7

9
], [

2

3
, 1], 27 · x

)

= Diag
((1 − y − 2 z)2/3

1 − x − y − z

)

, (80)
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or

3F2

(

[
2

9
,
5

9
,
8

9
], [

5

6
, 1], 27 · x

)

= Diag
((1 − y − 2 z)1/3

1 − x − y − z

)

, (81)

or even the 4F3 hypergeometric function:

4F3

(

[
2

9
,
5

9
,
8

9
,
1

2
], [

1

3
,
5

6
, 1], 27 · x

)

= Diag
( (1 − x)1/3

1 − x − y − z

)

. (82)

Again these three diagonals (80), (81) and (82) are solutions of telescopers that are
not homomorphic to their adjoint.

These examples are taken in a list of 116 potential counter-examples constructed
in 2011 by Bostan et al. [26]. Note that, more recently, 38 cases in that list of 116,
have actually been found to be diagonals of algebraic functions [78]. The two relations
(80) and (81) can be generalized [78, 79] as follows:

4F3

(

[
1 − (R + S)

3
,
2 − (R + S)

3
,
3 − (R + S)

3
,
1 − S

2
],

[
1 − (R+ S)

2
,
2 − (R+ S)

2
, 1], 27 · x

)

= Diag
((1 − x)R · (1 − x − 2 y)S

1 − x − y − z

)

, (83)

where R and S are rational numbers. These diagonals are annihilated by the order-
four linear differential operator:

2 · x · (S − 1 − 2 θ) · (S +R − 3 θ) · (S +R− 1 − 3 θ) · (S +R− 2 − 3 θ)

− θ2 · (S +R+ 1 − 2 θ) · (S +R − 2 θ). (84)

This order-four linear differential operator is not homomorphic to its adjoint. Other
more involved similar relations can be found in section 2.1 of chapter 2 of [78].

Experimentally we found, after quite systematic calculations of thousands of
telescopers of rational, or algebraic, functions, that the telescopers are (almost always)
homomorphic to their adjoint, or if they are not irreducible, that each of the factors
of these telescopers are homomorphic to their adjoint. Such previous examples like
(78), (79), or (80) and (81), curiously related to Christol’s conjecture, provide the rare
examples of diagonals of algebraic functions such that their corresponding telescopers
are not homomorphic to their adjoint. We have similar results with the algebraic
function:

x1/3

1 − x − y − z
. (85)

In order to understand this “duality-breaking” (the telescoper is not self-adjoint up
to homomorphisms), it is tempting to introduce the (algebraic) function:

1

1 − x − y − z − α · x1/3
. (86)

However, in order to avoid the introduction of rational functions of n-th roots of
variables, we will (changing x, y, z into x3, y3, z3) rather introduce the diagonal of
the following rational function:

1

1 − x3 − y3 − z3 − α · x
. (87)
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5.2. Understanding the emergence of selected differential Galois groups for almost all
the diagonal of rational functions

The linear differential operator annihilating the diagonal of the rational function (87)
is a (quite large) order-eight linear differential operator L8(α), depending on the
parameter α, which is homomorphic to its adjoint with an order-six intertwiner.
This order-eight linear differential operator L8(α) is irreducible except at α = 0.
For α = 1, α = 2, α = 3 the order-eight linear differential operator L8(α) is
homomorphic to its adjoint with an order-six intertwiner†. The differential Galois
group should, thus, be included in Sp(8, C). This is confirmed when calculating [43]
the exterior square of L8(α). This exterior square has a rational function solution
Pa/x/Qa, where the polynomials Pa and Qa read:

Pa = (4α3 − 27) · (20α3 − 81) + 18 · (−6561 − 891α3 + 500α6) · x3 + 1594323 x6,

Qa = 387420489 x9 − 531441 · (81 + 100α3) · x6 (88)

+ (1594323 − 2972133α3 + 729000α6 − 50000α9) · x3 − 27 · (4α3 − 27)2.

Let us now take the α → 0 limit of the order-eight linear differential operator
L8(α). In this limit the order-eight linear differential operator just becomes the direct-
sum

L2 ⊕ L3 ⊕ M3, (89)

where the order-two linear differential operator L2 has the 2F1 hypergeometric
solution

2F1

(

[
1

3
,
2

3
], [1], 27 x3

)

, (90)

where the order-three linear differential operator L3 has the 3F2 hypergeometric
function solution

3F2

(

[
5

9
,
8

9
,
11

9
], [

2

3
, 1], 27 x3

)

, (91)

and where the order-three linear differential operator M3 has the 3F2 hypergeometric
function solution:

3F2

(

[
7

9
,
10

9
,
13

9
], [

1

3
, 1], 27 x3

)

. (92)

These two order-three linear differential operators, similarly to the previous
example (78), are not homomorphic to their adjoint: they break the self-adjoint
duality‡, and thus have a SL(3, C) differential Galois group.

These two hypergeometric series are exactly on the same footing as (78): they
are globally bounded series (just change x3 → 33 x3 in order to get a series with
integer coefficients), and their respective order-three linear differential operators are
not homomorphic to their adjoint, their differential Galois group being SL(3, C).
Let us note, however, that the order-three linear differential operator L3 is actually
homomorphic to the adjoint of M3, and of course the order-three linear differential
operators M3 is homomorphic to the adjoint of L3.

If, in an algebraic geometry perspective [41], one sees the fact that all our linear
differential operators, annihilating diagonals of rational functions, are homomorphic

† For α = 0 the order-eight linear differential operator L8(α) is homomorphic to its adjoint with
several order-six intertwiners. Its exterior square has the rational solution 1/x/(1 − 27 x3), which is
solution of the exterior square L2.
‡ Up to homomorphisms of operators.
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to their adjoint as the differential algebra expression of the Poincaré duality on the
algebraic varieties corresponding to the denominators of our rational functions [41], the
fact that this Poincaré duality is broken for L3 or M3 is, in fact, restored in the bigger
picture (87) with the linear differential order-eight operator. In the α → 0 limit we
see that these two linear differential operators breaking the duality, actually emerge in
a dual pair, thus restoring the duality. For instance, if one focuses on L6 = L3 ⊕M3

in (90), one finds easily that this order-six linear differential operator is homomorphic
to its adjoint. Its exterior square has the following rational function solution:

4 + 621 x3

(1 − 27 x3)3 · x
. (93)

Since these calculations are in the α → 0 limit, let us expand, in α, the rational
function (87):

1

1 − x3 − y3 − z3 − α · x
=

1

1 − x3 − y3 − z3
+

x

(1 − x3 − y3 − z3)2
· α

+
x2

(1 − x3 − y3 − z3)3
· α2 +

x3

(1 − x3 − y3 − z3)4
· α3

+
x4

(1 − x3 − y3 − z3)5
· α4 + · · · (94)

The diagonal of a sum is clearly the sum of the diagonals. Thus the diagonal of the
LHS of (94) will be the sum of the various rational function terms in αn in the RHS
of (94). The diagonal of the α1 term in the α-expansion (94)

x

(1 − x3 − y3 − z3)2
, (95)

is clearly equal to zero, since the diagonal extracts, in the multi-Taylor series, the
terms in the product p = x y z, or, in this case, the terms in the product x3 y3 z3.
Similarly the diagonal of the α2 term in the α-expansion (94)

x2

(1 − x3 − y3 − z3)3
, (96)

is also zero, but the diagonal of the α3 term

x3

(1 − x3 − y3 − z3)4
, (97)

is not zero. Actually this last diagonal reads:

−
1

9
·

1 + 216 x3

(1 − 27 x3)3
· x ·

d

dx
2F1

(

[
1

3
,
2

3
], [1], 27 x3

)

− 18 ·
x3

(1 − 27 x3)2
· 2F1

(

[
1

3
,
2

3
], [1], 27 x3

)

. (98)

= −20 x3 − 1680 x6 − 92400 x9 − 4204200 x12 − 171531360 x15 + · · ·

It is annihilated by an order-two operator M2.
We have a different story with telescopers. Since the telescoper of a sum of rational

functions is the direct sum (LCLM) of the telescopers of these rational functions†, let

† In fact one expects the telecoper of a sum of rational functions to be equal, or to be a rightdivisor,
of the LCLM of the telescopers of these rational functions. In contrast the diagonal of a sum of
rational functions is equal to the sum of the diagonals of these rational functions, as long as each
rational function, in the sum, depends on all the variables.
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us consider the telescopers of the first five terms in the RHS of (94). The telescoper of
the first term is, of course, the order-two linear differential operator L2 annihilating
the diagonal of this rational function. The telescoper of the second term (in α1), is
the previous order-three linear differential operator L3. The telescoper of the third
term (in α2) is exactly the previous M3. The telescoper of the fourth term (in α3),
is the order-two linear differential operator M2. The telescoper of the sum of the first
orders in α in the expansion (94)

1

1 − x3 − y3 − z3
+

x

(1 − x3 − y3 − z3)2
· α +

x2

(1 − x3 − y3 − z3)3
· α2, (99)

is actually the LCLM of the three telescopers L2, L3 and M3 which is precisely the
α → 0 limit of the order-eight linear differential operator !

5.3. Revisiting 1/Q → P/Qk for telescopers

The next terms in the α-expansion (94), namely the terms in α4+3n with n = 0, 1, · · ·

x4+3n

(1 − x3 − y3 − z3)5+3n
, (100)

have telescopers actually homomorphic to the telescoper L3 for (95). Similarly,
considering in the α-expansion (94), namely the terms in α5+3n with n = 0, 1, · · ·

x5+3n

(1 − x3 − y3 − z3)6+3n
, (101)

have telescopers actually homomorphic to the telescoper M3 for (96). Finally, the
terms in α3+3n with n = 0, 1, · · ·

x3+3n

(1 − x3 − y3 − z3)4+3n
, (102)

have telescopers homomorphic to the telescoper L2, generalizing the result (98) for
n = 0. This last sequence of telescopers can be understood from the ideas sketched
in subsections (3.1) and (3.2) for diagonals (changing for instance (x, y, z) into
(x3, y3, z3)). However, we see that these ideas do not work anymore when we compare
the telescopers for (100) (resp. the telescopers for (101)) with the telescopers for (102).
These different telescopers are not homomorphic. They correspond to three different
sequences of telescopers of different nature, corresponding to three hypergeometric
function of quite different nature:

2F1

(

[
1

3
,
2

3
], [1], 27 x3

)

,3 F2

(

[
7

9
,
10

9
,
13

9
], [

1

3
, 1], 27 x3

)

,3 F2

(

[
5

9
,
8

9
,
11

9
], [

2

3
, 1], 27 x3

)

.

Along this line similar α-dependent examples are sketched in Appendix A.

To sum-up: The ideas sketched in subsections (3.1) and (3.2) for diagonals, can
be generalized to telescopers (which may correspond to vanishing cycles i.e. diagonals),
with the caveat that the unique “root” rational function 1/Q, has to be replaced by
a finite set of rational functions (1/Q1, 1/Q2, 1/Q3 in our previous example).



24

6. An infinite number of birational symmetries of the diagonals and

telescopers

Let us consider the simplest example of non-trivial diagonal of rational function,
namely the diagonal of the rational function of three variables:

R(x, y, z) =
1

1 − x − y − z
. (103)

Let us consider the birational transformation B:

B : (x, y, z) −→
(

x, y · (1 + 3 x + 7 x2),
z

1 + 3 x + 7 x2

)

. (104)

It is birational because its compositional inverse is also a rational function:

(x, y, z) −→
(

x,
y

1 + 3 x + 7 x2
, z · (1 + 3 x + 7 x2)

)

. (105)

Note that this birational transformation preserves the product p = x y z, as well as
the neighbourhood of the point (x, y, z) = (0, 0, 0). This birational transformation
is an infinite order transformation. The composition of this transformation n times
gives:

(x, y, z) −→
(

x, y · (1 + 3 x + 7 x2)n,
z

(1 + 3 x + 7 x2)n

)

. (106)

The rational function (103), transformed by the (infinite order) birational
transformation (104), reads:

RB(x, y, z) = R
(

x, y · (1 + 3 x + 7 x2),
z

1 + 3 x + 7 x2

)

=
1

1 − x − y · (1 + 3 x + 7 x2) − z/(1 + 3 x + 7 x2)
. (107)

On the multi-Taylor expansion of (107) one finds easily that the diagonal of (103) and
(107) are actually identical.

More generally, let us consider

Bx : (x, y, z) −→
(

x, y · Q1(x),
z

Q1(x)

)

, (108)

where Q1(x) is a rational function†† with a Taylor expansion such that Q1(0) 6= 0.
One also finds for any such rational function Q1(x), that the diagonal of (103) and
(107) are actually identical. This can be seen from the multi-Taylor expansion of
(107):

RB(x, y, z) =
∑

m

∑

n

∑

l

am,n,l · x
m · yn · Q1(x)

n · zl · Q1(x)
−l (109)

=
∑

m

am,m,m · (x y z)m +
∑

(m,n,l) 6=(m,m,m)

am,n,l · x
m · yn · zl ·Q1(x)

n−l.

The second triple sum can be decomposed into the terms such that n 6= l, which
cannot contribute to the diagonal (which extracts terms in p = x y z and thus terms
in the product y z), and the n = l terms (such that the Q1(x)

n−l factor in (109)
disappear):

∑

m 6=n

am,n,n · xm · yn · zn. (110)

††See however section (6.4).
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This last sum (110), which excludes the power of x to be equal to the power of the
product y z, cannot contribute to the diagonal. We have thus proved that the diagonal
of (103) and (107) are equal.

Of course there is nothing particular with the variable x. We can also introduce
other birational transformations which single out respectively y and z:

By : (x, y, z) −→
(

x · Q2(y), y,
z

Q2(y)

)

, (111)

and

Bz : (x, y, z) −→
(

x · Q3(z),
y

Q3(z)
, z

)

, (112)

for any rational functions Q2(x) and Q3(x) with a Taylor expansion and such that
Q2(0) 6= 0 and Q3(0) 6= 0. We can compose these birational transformations (108),
(111) and (112), in any order and changing the various Q1(x), Q2(x) and Q3(x) at
each step. We get that way a quite large infinite set of birational transformations
preserving the product p = x y z and the neighbourhood of the point (x, y, z) =
(0, 0, 0). Since the product p = x y z is preserved, let us eliminate (for instance) the
variable z = p/x/y. The three previous birational transformations (108), (111) and
(112), on the three variables x, y, z, become birational transformations depending on
a parameter p, of only two variables x, y:

B̃x : (x, y) −→
(

x, y · Q1(x)
)

, (113)

B̃y : (x, y) −→
(

x · Q2(y), y
)

, (114)

and

B̃z : (x, y) −→
(

x · Q3

( p

x y

)

, y/Q3

( p

x y

))

, (115)

Composing these birational transformations of two variables (113), (114) and (115),
in any order and changing the various Q1(x), Q2(x) and Q3(x) at each step, one gets
that way a quite large subset of the (huge set of) Cremona transformations [53, 80].

Remark 6.1: Of course there is nothing specific with the particularly simple
example (103) of rational function. The previous birational transformations (113),
(114) and (115), are symmetries of the diagonals of any rational function of three
variables. Furthermore, there is nothing specific with rational function of three
variables. We can generalize such birational transformations for diagonal of rational
function of n variables, for any integer n.

6.1. Non birational symmetries for diagonals

6.1.1. Monomial transformation
Let us consider the (non-birational) monomial transformation:

M : (x, y, z) −→
(

x, x2 y2, y z3
)

. (116)

Let us perform this monomial transformation (116) on the rational function (103),
one gets the new rational function:

RM (x, y, z) = R
(

x, x2 y2, y z3
)

=
1

1 − x − x2 y2 − y z3
. (117)
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The calculation of the telescoper of (117) gives an order-two linear differentizal
operator which has the 2F1 hypergeometric series solution:

2F1

(

[
1

3
,
2

3
], [1], 27 x3

)

= 1 + 6 x3 + 90 x6 + 1680 x9 + 34650 x12

+ 756756 x15 + 17153136 x18 + · · · (118)

One verifies easily, on the multi-Taylor expansion of (117), that its diagonal is actually
the 2F1 hypergeometric series (118). The fact that the diagonal is the diagonal of
(103), where x is changed into x3, is a consequence of the fact that the product
p = x y z is changed into p = x3 y3 z3 by the monomial transformation (116).

6.1.2. Non-birational transformation
Let us now consider the non-birational “monomial-like” transformation

B : (x, y, z) −→
(

x, x2 y2 · (1 + 3 x),
y z3

1 + 3 x

)

. (119)

Let us perform this non-birational monomial transformation (119) on the rational
function (103), one gets the new rational function

RB(x, y, z) = R
(

x, x2 y2 · (1 + 3 x),
y z3

1 + 3 x

)

=
1

1 − x − x2 y2 · (1 + 3 x) − y z3/(1 + 3 x)
. (120)

The calculation of the telescoper of (120) gives an order-two linear differential operator
which has, again, the 2F1 hypergeometric series solution:

2F1

(

[
1

3
,
2

3
], [1] 27 x3

)

= 1 + 6 x3 + 90 x6 + 1680 x9

+ 34650 x12 + 756756 x15 + 17153136 x18 + · · · (121)

One verifies easily on the multi-Taylor expansion of (120) that its diagonal is the 2F1

hypergeometric series (121). This result can be understood from the results on (117)
and the diagonal-preservation results on the birational transformations (108), (111)
and (112).

Consequently we have another infinite set of (non-birational) transformations such
that the diagonal of a rational function is changed into the diagonal of that rational
function where x is changed into xN .

6.2. Birational symmetries for telescopers

Recalling the creative telescoping equation (6) and (9), we have verified experimentally,
on thousands of examples, that the previous birational transformations generated by
(108), (111) and (112), are actually compatible with the creative telescoping equations
(6) and (9). Note however, in the birationally transformed creative telescoping
equations, that if the telescoper does remain invariant (even if we are not in a context
where the rational function has a multi-Taylor expansion), the two “certificates” U
and V are transformed in a very involved way (they become quite large rational
functions).
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6.2.1. Birational symmetries not preserving (x, y, z) = (0, 0, 0)
Let us consider the involutive birational transformation:

I : (x, y, z) −→
(1

x
,
1

y
, x2 y2 z

)

. (122)

This involutive birational transformation transforms the rational function (103) into:

RI(x, y, z) = −
x y

x2 y3 z − x y + x + y
. (123)

The calculation of the telescoper of (123) gives the same telescoper as the telescoper
of (103), whose diagonal is the hypergeometric series:

2F1

(

[
1

3
,
2

3
], [1], 27 x

)

= (1 − 24 x)−1/4 · 2F1

(

[
1

12
,
5

12
], [1],

1728 x3 · (1 − 327 x)

(1 − 24 x)3

)

(124)

= 1 + 6 x + 90 x2 + 1680 x3 + 34650 x4 + 756756 x5 + 17153136 x6 + · · ·

The hypergeometric series (124) (which is equal to the diagonal of (103)), is, here,
just an analytical solution of the telescoper of (123), that is, a “Period” of (123)
but corresponding to a non-vanishing cycle, since (123) does not have a multi-Taylor
expansion.

6.2.2. Birational symmetries from collineations
Let us recall Noether’s theorem [50, 51, 53] on the decomposition [52] of Cremona

transformations¶. Noether’s theorem shows that any Cremona transformation can be
seen as the composition [52, 53] of collineation transformations and of the Hadamard
inverse transformation†

(x, y) −→
(1

x
,
1

y

)

. (125)

Let us consider Cremona transformations preserving (x, y) = (0, 0):

(x, y) −→
( x

1 − x + 2 y
,

y

1 − x + 2 y

)

. (126)

With this theorem in mind, since we have already considered the involutive
transformation (122) corresponding to the Hadamard inverse (125), let us just
introduce the following birational transformation associated with the collineation
(126):

(x, y, z) −→
( x

1 − x + 2 y
,

y

1 − x + 2 y
, z · (1 − x + 2 y)2

)

. (127)

Such a birational transformation (associated with collineations) is an (infinite order)
transformation. It preserves (x, y, z) = (0, 0, 0) and the product p = x y z. Let us
perform this birational transformation (127) on the rational function (103). One gets
a new rational function whose telescoper is an order-four linear differential operator
L4 which is the product of two order-two linear differential operator M2 and N2:
L4 = M2 · N2. The order-two linear differential operator M2 is (non-trivially)

¶ Noether’s theorem [50] on the generation of the Cremona group by quadratic transformations, like
many theorems in mathematics, is not a constructive theorem.
† Called, in a projective CP2 approach, the quadratic transformation because it reads in the three
homogeneous variables (x, y, t) → (y t, x t, x y).
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homomorphic to the order-two telescoper of the rational function (103). The second
order-two linear differential operator N2 corresponds to algebraic functions. For
such transformations, associated with collineations, we see that the telescoper is not
preserved: we just have a (non-trivial) homomorphism property.

More examples of birational symmetries for telescopers, associated with
collineations, are given†† in Appendix B. These examples illustrate the complexity
of the homomorphism.

6.3. Algebraic geometry comments on these birational symmetries

The diagonal of the rational function (103) is the hypergeometric series:

2F1

(

[
1

3
,
2

3
], [1], 27 x

)

= (1 − 24 x)−1/4 · 2F1

(

[
1

12
,
5

12
], [1],

1728 x3 · (1 − 327 x)

(1 − 24 x)3

)

(128)

= 1 + 6 x + 90 x2 + 1680 x3 + 34650 x4 + 756756 x5 + 17153136 x6 + · · ·

The algebraic curve, associated with the denominator of the rational function
(103), is the genus-one algebraic curve (elliptic curve):

1 − x − y −
p

x y
= 0 or: − x2 y − x y2 + x y − p = 0. (129)

The calculation of its j-invariant gives the following Hauptmodul

H =
1728

j
=

1728 p3 · (1 − 27 p)

(1 − 24 p)3
, (130)

which is exactly the Hauptmodul pullback in (128).
Let us consider the rational function (107), the algebraic curve corresponding to

eliminate z = p/x/y in the denominator of (107) reads:

− 49 x5 y2 − 42 x4 y2 − 7 x4 y − 23 x3 y2 + 4 x3 y − 6 x2 y2

+ 2 x2 y − x y2 + x y − p = 0. (131)

This algebraic curve is a genus-one algebraic curve (elliptic curve) and the calculation
of its j-invariant gives the same Hauptmodul pullback in (128) as the Hauptmodul
(130) for (129). This is in agreement with the fact that the diagonal of (103) and
(107) are equal. At first sight, the fact that (131) is an elliptic curve is not totally
obvious, however it is a consequence of the fact that (129) and (131) are birationally
equivalent elliptic curves (since one gets one from the other one from a birational
transformation). Consequently they should have the same j-invariant.

This kind of remark will be seen as obvious, or slightly tautological, for an
algebraic geometer, however, as far as down-to-earth computer algebra calculations
of diagonals of rational functions or telescopers of rational functions are concerned, it
becomes more and more spectacular for more complicated birational transformations
generated by the composition of birational transformations like (108), (111) and (112).

More generally, the previous birational transformations preserving the product
p = x y z, p = x y z u, ... occurring in the diagonals, will preserve the algebraic
geometry description of the diagonal of rational functions [41]. For instance the genus-
two curves associated with split Jacobians† situation we have encountered in [41], will
be preserved by such birational transformations.

††The example (127) is revisited in detail in Appendix B.4.
† Which corresponds to products of elliptic curves [41].
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6.4. Diagonal of transcendental functions

Generalizing the rationals functions

RB(x, y, z) = R
(

x, y · Q1(x),
z

Q1(x)

)

=
1

1 − x − y · Q1(x) − z/Q1(x)
, (132)

deduced from (107), using birational transformations like (108), one can consider,
beyond, transcendental functions like

RT (x, y, z) = R
(

x, y · cos(x),
z

cos(x)

)

=
1

1 − x − y · cos(x) − z/ cos(x)
. (133)

One can easily verify, from the multi-Taylor expansion of the (simple) transcendental
function (133), that its diagonal is actually the same as the one of (103), namely
(128). This is not a surprise since the demonstration of the invariance of the diagonal
by birational transformation sketched in section 6 (see (109)), just requires that
Q1(0) 6= 0 with Q1(x) behaving at the origin as a polynomial.

7. Conclusion

Diagonals of rational functions have been shown to emerge naturally for n-fold
integrals in physics, field theory, enumerative combinatorics, seen as “Periods” of
algebraic varieties (corresponding to the denominators of these rational functions).
On the thousands of examples we have analyzed, corresponding to n-fold integrals of
theoretical physics (in particular the χ(n)’s of the susceptibility of the Ising model,
...), or corresponding to rather academical diagonal of rational functions, we have
seen the emergence of many striking properties, and we want to understand if these
remarkable properties are inherited from the “physics”, and, more precisely, the rather
“integrable” framework of these examples (Yang-Baxter integrability, 2D Ising models,
Calabi-Yau and other mirror symmetries, ...) or, on the contrary, are a consequence of
the remarkable nature of diagonals of rational functions in the most general framework.

This paper is a plea for diagonals of rational, or algebraic, functions and more
generally telescopers of rational or algebraic functions.

• We show that “periods” corresponding to non-vanishing cycles, obtained
as solutions of telescopers of rational functions can sometimes be recovered from
diagonals of rational functions corresponding to vanishing cycles, introducing an extra
parameter. These two concepts are not that compartmentalized.

• When considering diagonals of rational functions we have shown that the
number of variables of a rational function must, from time to time, be replaced by a
notion of “effective number” of variables.

•We have shown that the “complexity” of the diagonals of a rational function, and
for instance the order of the (minimal order) linear differential operator annihilating
this diagonal, is not related to the number of variables, or “effective number” of
variables of the rational function. In a forthcoming publication [81] we will try to
understand what is the minimal number of variables necessary to represent a given
D-finite globally bounded series as a diagonal of a rational function.

•We have shown that the algebraic geometry approach of the diagonals of rational
functions, or of the telescopers of these rational functions, described in [41], can,
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probably, be generalized to diagonals of algebraic functions, or telescoper of algebraic
functions. These are just preliminary studies and almost everything remains to be
done.

• When studying diagonals of rational functions, our explicit examples enable
to understand why one can actually restrict to rational functions of the form 1/Q
provided the polynomial at the denominator is irreducible. The situation where the
denominator Q factorizes clearly needs further analysis that will be displayed in a
forthcoming paper [81]. The case of the calculations of telescopers is slightly different:
one can (probably), again, reduce to rational functions of the form 1/Q but with a
finite set of polynomials Q.

• We have shown that diagonals of rational functions (and this is also the
case with diagonals of algebraic functions) are left invariant when one performs an
infinite set of birational transformations on the rational functions. This remarkable
result can, in fact, be generalized to infinite set of rational transformations, the
diagonals of the transformed rational functions becoming the diagonal of the original
rational function where the variable x is changed into xn. These invariance results
generalize to telescopers. More general (infinite) set of birational transformations are
shown to correspond to more convoluted “covariance” property of the telescopers (see
Appendix B).

• We provide some examples of diagonals of transcendental functions which can
also yield simple 2F1 hypergeometric functions associated with elliptic curves. The
analysis of diagonal of transcendental functions is clearly an interesting new domain
to study.

• Finally, when trying to understand the puzzling fact that telescopers of rational
functions are almost always homomorphic to their adjoint, and thus have selected
symplectic or orthogonal differential Galois groups, we understand a bit better the
emergence of curious examples of telescopers that are not homomorphic to their
adjoint, this (up to homomorphisms) self-duality-breaking ruling out a Poincaré
duality interpretation of this quite systematic emergence of operators homomorphic
to their adjoint. A “desingularization” of such puzzling cases, corresponding to the
introduction of an extra parameter, shows that such operators now occur in dual
(adjoint) pairs, thus restoring the duality (homomorphism to the adjoint). The limit
when the extra parameter goes to zero, is the direct sum of different telescopers
corresponding to the first rational function terms of the expansion of the extended
rational function in term of this extra parameter. With subsection 5.2 we see that
the puzzling (non self-adjoint up to homomorphism) order-three linear differential
operator L3 with SL(3, C) differential Galois group, is better understood as a member
of a triplet of three “quarks” (90), (91), and (92), which restores the duality. This
may suggest that the quite strange 3F2 hypergeometric functions (91) or (92), could
be related to (90) which has a clear elliptic curve origin. After all, these functions are
three periods of the same algebraic variety. The existence of such a relation between
hypergeometric functions of totally and utterly different nature, is a challenging open
question.

• In Appendix B the calculations of telescopers of rational functions, associated
with very simple collineations, yield quite massive linear differential operators which
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factor into an order-two operator associated with an elliptic curve, and a “dressing”
of products of factors which turn out to be direct sums of operators with algebraic
function solutions. This occurrence of this “mix” between products and direct sums
of a large number of operators‡ will be revisited in a forthcoming paper [81].

Instead of pursuing one specific mathematical problem this paper can be seen as a
journey into the amazing world of integer sequences, and differential equations. With
all the examples displayed in this paper we provide some answers, sometimes some
plausible scenarii, to many important questions naturally emerging when working on
diagonals of rational or algebraic functions, or on telescopers of rational, or algebraic,
functions, related, or not related, to problems of physics or enumerative combinatorics.
Like any fruitful concept, everything answered questions does not “close” the subject
but, on the contrary, often raises more new questions than the number of answered
questions.

Diagonals of rational, or algebraic, functions, correspond to (globally bounded)
series that can be recast into series with integer coefficients which are solutions of linear
differential operators. When studying the two dimensional Ising model and its related
Painlevé equations, one finds that the λ-extensions of the correlation functions [82, 83]
can also produce series with integer coefficients which are solutions of non-linear
differential equations¶ of the Painlevé type, these series being also such that their
reduction modulo primes give algebraic functions, just like diagonals of rational or
algebraic functions††.

This paper tries to show that the concept of diagonals of rational, or algebraic,
functions is a remarkably rich and fruitful concept providing tools for physics but also
bridging, in a quite fascinating way, different domains of mathematics. The case of
diagonal of transcendental functions, or of these λ-extensions seems to show that the
“unreasonable richness” of diagonals and telescopers, may just be the top of an even
more fascinating mathematical “iceberg” of mathematical physics.

First acknowledgment. One of us (JMM) would like to thank Prof. Richard
Kerner for decades of courteous and rich discussions in our laboratory giving the
comforting, and certainly illusory, feeling to belong to a privileged group of educated
people, blind to the planned disappearance of mathematical physics in France†.

More acknowledgments. One of us (JMM) would like to thank P. Lairez for
generous de Rham cohomology explanations. He also thanks C. Koutschan for help
in a telescoper calculation. He also thanks Prof. R.J. Baxter for a kind invitation at
the Royal Society in London, where part of this work has been completed. We also
thank A. Bostan, G. Christol, J-A. Weil and S. Yurkevich for so many discussions on
diagonals of rational functions.

‡ Occurring, for instance, for the linear differential operators annihilating the χ(n) components of
the susceptibility of the Ising model [1, 27, 28].
¶ Differentially algebraic functions [84].
††For other examples of differentially algebraic series with integer coefficients see for instance [85].
† “All those moments will be lost in time, like ... tears in rain”, Rutger Hauer in “Blade Runner”.
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Appendix A. Other α-dependent example

Appendix A.1. A first very simple example

Another example, similar to the rational function (87) studied in section 5.2, is

1

1 − x2 − y2 − z2 − α · x y2
. (A.1)

Its telescoper is an order-four linear differential operator which becomes in the α → 0
limit the LCLM of two order two linear differential operators, one, L2, corresponding
to the hypergeometric solution (which is actually the α = 0 diagonal)

2F1

(

[
1

3
,
2

3
], [1], 27 x2

)

, (A.2)

and an order-two linear differential operator M2 having the solution

d

dx
2F1

(

[
1

6
,
5

6
], [1], 27 x2

)

, (A.3)

This order-two operator M2 is not homomorphic to the order-two operator L2. Let
us consider the α expansion of (A.1)

1

1 − x2 − y2 − z2 − α · x y2
=

1

1 − x2 − y2 − z2
+

x y2

(1 − x2 − y2 − z2)2
· α

+
x2 y4

(1 − x2 − y2 − z2)3
· α2 + · · · (A.4)

The diagonal of the term in α1 in (A.4) is trivial: it is equal to zero. In contrast,
the telescoper of the term in α1 in (A.4) is actually nothing but the order-two linear
differential operator M2. The telescoper of the term in α2 in (A.4) is an order-two
linear differential operator homomorphic to the previous order-two linear differential
operator L2. Similarly to the calculations displayed in (87), the telescopers for the
terms in α2n in the expansion (A.4) yield order-two linear differential operators,
homomorphic to L2, when the telescopers for the terms in α2n+1 yield order-two
operators, homomorphic to M2.

Appendix A.2. Christol: breaking the duality symmetry

These results can be compared with ones for the diagonal of the rational function

1

1 − x4 − y4 − z4 − α · x
. (A.5)

The linear differential operator annihilating the diagonal of the rational function (A.5)
is an order-ten linear differential operator L10(α) depending on the parameter α,
which is homomorphic to its adjoint with an order-eight intertwiner. Consequently its
differential Galois group is included in Sp(10, C). This order-ten linear differential
operator L10(α) is irreducible except at α = 0.

At α = 0 it is the direct sum LCLM(L2, M2, L3, M3), of two order-three
linear differential operators and two order-two linear differential operators, namely
L2 corresponding to the solution

2F1

(

[
1

3
,
2

3
], [1], 27 x4

)

(A.6)

= 1 + 6 x4 + 90 x8 + 1680 x12 + 34650 x16 + 756756 x20 + · · ·
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as it should (this is the diagonal of (A.5) at α = 0), and the other one, M2,
corresponding to the globally bounded series solution expressed in terms of HeunG
functions†:

(1 − 24 x4)2

(1 − 27 x4)2
· HeunG

(9

8
,
97

32
,
7

6
,
5

6
, 1, −1; 27 · x4

)

. (A.7)

This linear differential operator M2 is homomorphic to the order-two linear differential
operator corresponding to the modular form (see Appendix B in [14]):

2F1

(

[
1

6
,
5

6
], [1], 27 x4

)

. (A.8)

Using the identity

HeunG
(9

8
,
97

32
,
7

6
,
5

6
, 1, −1; 27 · x

)

=

4 · (1 − 27 x) ·
(27 x + 2)

(1 − 24 x)2
· x ·

d

dx
2F1

(

[
1

6
,
5

6
], [1], 27 x

)

+
1 9 x − 486 x2

(1 − 24 x)2
· 2F1

(

[
1

6
,
5

6
], [1], 27 x

)

, (A.9)

we can rewrite (A.7) in terms of the modular form (A.8). One can thus write the
solution of M2 as:

2 + 27 x4

1 − 27 x4
· x ·

d

dx
2F1

(

[
1

6
,
5

6
], [1], 27 x4

)

+
1 + 18 x4

1 − 27 x4
· x4 · 2F1

(

[
1

6
,
5

6
], [1], 27 x4

)

= 1 +
315

4
x4 +

225225

64
x8 +

33948915

256
x12 +

75293843625

16384
x16

+
9927744261435

65536
x20 + · · · (A.10)

The order-three linear differential operator L3 has the hypergeometric solution

3F2

(

[
7

12
,
11

12
,
15

12
], [

3

4
, 1], 27 x4

)

, (A.11)

while the order-three linear differential operator M3 has the hypergeometric solution:

3F2

(

[
13

12
,
17

12
,
21

12
], [

1

4
, 1], 27 x4

)

. (A.12)

These two linear differential operators are such that L3 is actually homomorphic to
the adjoint of M3, and, of course, M3 is homomorphic to the adjoint of L3, but L3

is not homomorphic to the adjoint of L3 (and M3 is not homomorphic to the adjoint
of M3). We have again, a pair of dual linear differential operators.

Since these calculations are in the α → 0 limit, let us expand in α the rational
function (A.5):

1

1 − x4 − y4 − z4 − α · x
=

1

1 − x4 − y4 − z4
+

x

(1 − x4 − y4 − z4)2
· α

+
x2

(1 − x4 − y4 − z4)3
· α2 +

x3

(1 − x4 − y4 − z4)4
· α3

+
x4

(1 − x4 − y4 − z4)5
· α4 + · · · (A.13)

† Use Table page 24 of [70].
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Since the telescoper of a sum of rational functions is the direct sum (LCLM) of the
telescopers of these rational functions, let us consider the telescopers of the first five
terms in the RHS of (A.13). The telescoper of the first term is of course the order-two
linear differential operator L2 annihilating the diagonal of this rational function. The
telescoper of the second term (in α1), is the order-three linear differential operator
L3.The telescoper of the third term (in α2), is the order-two linear differential operator
M2. The telescoper of the fourth term (in α3), is exactly M3. The telescoper of the
sum of the first orders in α in the expansion (A.13)

1

1 − x4 − y4 − z4
+

x

(1 − x4 − y4 − z4)2
· α

+
x2

(1 − x4 − y4 − z4)3
· α2 +

x3

(1 − x4 − y4 − z4)4
· α3, (A.14)

is actually the LCLM of the four telescopers L2, M2, L3 and M3 which is precisely
the α → 0 limit of the order-ten linear differential operator !

Let us now consider the telescopers of the next α orders in the expansion (A.13).
The telescoper of the last rational function in (A.13), namely x4/(1 −x4 − y4 − z4)5,
is an order-two linear differential operator N2. One can thus write the solution of N2

as:

D1 =
3

48
·
1 + 540 x4 + 4374 x8

(1 − 27 x4)3
· x ·

d

dx
2F1

(

[
1

3
,
2

3
], [1], 27 x4

)

+
3

2
·
(19 + 216 x4)

(1 − 27 x4)3
· x4 · 2F1

(

[
1

3
,
2

3
], [1], 27 x4

)

(A.15)

= 30 x4 + 3780 x8 + 277200 x12 + 15765750 x16 + 771891120 x20 + · · ·

The telescoper of

x8

(1 − x4 − y4 − z4)9
, (A.16)

is an order-two linear differential operator whose analytic solution reads:

D2 = −
3

672
·

p1
(1 − 27 x4)7

· x ·
d

dx
2F1

(

[
1

3
,
2

3
], [1], 27 x4

)

+
3

28
·

p2
(1 − 27 x4)7

· x4 · 2F1

(

[
1

3
,
2

3
], [1], 27 x4

)

(A.17)

= 2970 x8 + 900900 x12 + 137837700 x16 + 14665931280 x20

+ 1236826871280x24 + 88597190167200x28 + · · ·

where:

p1 = 1 − 714 x4 − 924372 x8 − 54587520 x12 − 530141922 x16 − 554824404 x20,

p2 = 1 + 27030 x4 + 2062098 x8 + 23960772 x12 + 29170206 x16. (A.18)

If we consider, instead of the telescoper, the diagonal of the rational function
(A.13), only the terms in α4n n = 0, 1, 2, · · · will contribute, the other ones,
corresponding to non-vanishing cycles [60], give zero contributions. Consequently we
get for the diagonal of the rational function (A.13):

Diag
( 1

1 − x4 − y4 − z4 − α · x

)

= 2F1

(

[
1

3
,
2

3
], [1], 27 x4

)

+D1 · α
4 +D2 · α

8 + · · · (A.19)
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= 1 + (30α4 + 6) · x4 + (2970α8 + 3780α4 + 90) · x8

+ (371280α12 + 900900α8 + 277200α4 + 1680) · x12

+ (51482970α16 + 185175900α12 + 137837700α8 + 15765750α4 + 34650) · x16

+ (7571343780α20 + 36141044940α16 + 44975522592α12

+ 14665931280α8 + 771891120α4 + 756756) · x20 + · · ·

= 1 + 6 x4 + 90 x8 + 1680 x12 + 34650 x16 + 756756 x20 + · · ·

+
(

30 x4 + 3780 x8 + 277200 x12 + 15765750 x16 + 771891120 x20 + · · ·
)

· α4

+
(

2970 x8 + 900900 x12 + 137837700 x16 + 14665931280 x20 + · · ·
)

· α8 + · · ·

Appendix B. Birational symmetries from collineations

Appendix B.1. Birational symmetries from collineations: a first example

Let us consider a collineation transformation not preserving (x, y) = (0, 0):

(x, y) −→
( 2 + x + 3 y

1 − x + 2 y
,

1 + 5 x + 7 y

1 − x + 2 y

)

, (B.1)

and let us now introduce the following birational transformation associated with the
collineation (B.1):

(x, y, z) −→
( 2 + x + 3 y

1 − x + 2 y
,

1 + 5 x + 7 y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(2 + x + 3 y) · (1 + 5 x + 7 y)

)

, (B.2)

which preserves the product p = x y z.
Let us transform the simple rational function (103) with the birational

transformation (B.2). It becomes the rational function:

R =
(1 − x + 2 y) · (2 + x + 3 y) · (1 + 5 x + 7 y)

D
, (B.3)

where the denominator D reads:

D = x4 y z − 6 x3 y2 z + 12 x2 y3 z − 8 x y4 z − 3 x3 y z + 12 x2 y2 z − 12 x y3 z

+ 3 x2 y z − 6 x y2 z − 35 x3 − 194 x2 y − 323 x y2 − x y z − 168 y3 − 87 x2

− 251 x y − 178 y2 − 36 x − 50 y − 4. (B.4)

The intersection of the algebraic surface D = 0 with the algebraic surface p = x y z,
is an elliptic curve. One gets, almost instantaneously†, the Hauptmodul of this elliptic
curve:

H =
1728 p3 · (1 − 27 p)

(1 − 24 p)3
. (B.5)

This Hauptmodul must be the same‡ as the Hauptmodul (130) of the elliptic curve
(129), since the two algebraic curves are birationaly equivalent, being related by a
birational transformation namely (B.1). The calculation of the telescoper of (B.3)
is really massive: it gives, after one month of computation, an order-eleven linear

† Using the j invariant command in Maple with(algcurves).
‡ If one expects an algebraic geometry interpretation of the calculation of the diagonal of rational
functions or telescopers [41].
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differential operator¶. The result being too massive, let us consider other examples
of birational transformations associated with collineations simpler than (B.2).

Remark B 1.1: The diagonal of the rational function (B.3) is a very simple
series:

Diag
(

R
)

= −
1

2
·

1

1 + x/4

= −
1

2
+

1

8
· x −

1

32
· x2 +

1

128
· x3 −

1

512
· x4 + · · · (B.6)

Remark B 1.2: If one considers, instead of (B.3) the rational function with the
same denominator(B.4) but where the numerator is normalised to 1,

R =
1

D
. (B.7)

The diagonal of (B.7) is the same as (B.6) up to a factor two:

Diag
(

R
)

= −
1

4
·

1

1 + x/4
. (B.8)

The telescoper of (B.7) is an order-seven linear differential operator which factorises
as follows:

L7 = F2 · G2 · H2 · H1 with: H1 = Dx +
1

4 + x
, (B.9)

where the order-two linear differential operator F2 is quite large and is (non-trivially)
homomorphic to the order-two linear differential operator L2 which is the telescoper
of the rational function (103), and where the order-two linear differential operators
G2 and H2 have algebraic solutions. The diagonal (B.8) is solution of the order-one
operator H1. The homomorphism between F2 and L2 gives

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx +B(x), (B.10)

where A(x) and B(x) are rational functions. Consequently a solution S of the
telescoper L7 (but not of the product G2 H2 H1 in (B.9)) will be related to the
hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential
operator L2, as follows:

X1

(

2F1

(

[
1

3
,
2

3
], [1], 27 x

))

= G2 · H2 · H1 · S. (B.11)

Remark B 1.3: Note that the diagonal of the rational function (B.3) is a very
simple series (B.6). Therefore the solution S of the telescoper, associated with an
elliptic curve of Hauptmodul (B.5) (see equation (B.11)) corresponds to a “period”, an
integral over a non-vanishing cycle, and is different from the integral over a vanishing
cycle, namely the diagonal (B.6).

Remark B 1.4: The factorisation (B.9) is far from being unique. The product
of the last three factors can be seen to be a direct sum:

G2 · H2 · H1 = G̃2 ⊕ H̃2 ⊕ H1, (B.12)

where the two new order-two operators G̃2 and H̃2 are simpler, with, again, algebraic
function solutions.

¶ We thank C. Koutschan for performing these slightly “extreme” computations.
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Appendix B.2. Birational symmetries from collineations. A simpler example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→
( x + 3 y

1 − x + 2 y
,

1 + 5 x + y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(x + 3 y) · (1 + 5 x + 7 y)

)

, (B.13)

which preserves the product p = x y z. Again, if one transforms the simple rational
function (103) with the birational transformation (B.13), one gets the rational function
of the form

R =
(1 − x + 2 y) · (x + 3 y) · (1 + 5 x + y)

D
, (B.14)

and, again, the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0.
One gets immediatly the same Hauptmodul (B.5) for this new elliptic curve.

The telescoper of the rational function (B.14) is an order-ten linear differential
operator†. This telescoper is obtained using about nine days of computation time.
It uses 286 evaluation points (in contrast with the 462 evaluation points required for
(B.4)), and one uses in total 38 primes (of size 9 · 22 · 1018) to reconstruct the solution
with Chinese remaindering. The telescoper of the rational function (B.14) factors as
follows:

L10 = F2 · G2 · H1, · I1 · J2 · K2, (B.15)

The order-two linear differential operator F2 in (B.15) is homomorphic to the order-
two linear differential operator L2 which is the telescoper of the rational function
(103), and the order-two linear differential operators G2, J2 and K2 have algebraic
solutions.

Remark B 2.1: The factorisation of (B.15) is far from being unique. As usual
we have a mix between product and direct-sum of factors. The order-ten operator
being quite large it is difficult to get the direct-sum factorisation of L10 in (B.15).
One finds, however, quite easily that L10 has two simple rational function solutions

1

(x− 35) · (4 x + 3)
,

x

(x− 35) · (4 x + 3)
, (B.16)

corresponding to two order-one operators L1 = Dx + (8 x− 137)/(4 x+ 3)/(x− 35)
and M1 = Dx +(4 x+3)/(x+21)/(x− 35) − 1/x and, thus, can be rightdivided by
the LCLM of L1 and M1. In fact the product‡ of the last factors at the right of the
factorization of L10 can be seen to be a direct sum:

G2 · H1 · I1 · J2 · K2 = L1 ⊕ M1 ⊕ G̃2 ⊕ J̃2 ⊕ K2, (B.17)

where G̃2 and J̃2 are (much) simpler order-two operators than G2 and J2, again with
algebraic function solutions.

The result remaining still too large, let us consider another example of birational
transformation associated with collineations, simpler than (B.2) or (B.13).

Remark B 2.2: If one considers, instead of (B.14) the rational function with
the same denominator D but where the numerator is normalised to 1,

R =
1

D
. (B.18)

† We thank C. Koutschan for providing this order-ten linear differential operator.
‡ Note that the product G2 · H1, or the product G2 · H1 · I1, or the product H1 · I1 · J2 · K2, are
also direct sums. In contrast the product F2 · G2 is not a direct sum.
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The telescoper of the rational function (B.18) is an order-seven linear differential
operator

L7 = F2 · G1 · G2 · H2, (B.19)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to
the order-two linear differential operator L2 which is the telescoper of the rational
function (103), and where the order-two linear differential operators G2 and H2 have
simple algebraic solutions. This factorisation (B.19) is not unique. Introducing the
order-one operator G̃1 = Dx +1/x, one can see that G̃1 rightdivides L7 and that the
product of the three factors, at the right of the decomposition (B.19), can be written
as a direct sum

G1 · G2 · H2 = G̃1 ⊕ G̃2 ⊕ H2, (B.20)

where the solutions of G̃2 are algebraic.

Remark B 2.3: In Appendix B we encounter many order-two linear differential
operators with algebraic solutions††. Even for large order-two linear differential
operators one can see quite easily† that the log-derivative of these solutions are
algebraic functions, but finding that the algebraic expression (minimal polynomial) of
the solutions is much harder¶. In principle these algebraic functions solutions of order-
two linear differential operators can be written as pullbacked 2F1 hypergeometriic
functions, but again it is a difficult task [86].

Appendix B.3. Birational symmetries from collineations. An even simpler example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→
( x + 3 y

1 − x + 2 y
,

5 x + 7 y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(x + 3 y) · (5 x + 7 y)

)

, (B.21)

which preserves the product p = x y z, and also preserves the origin (x, y, z) =
(0, 0, 0). Again, if one transform the simple rational function (103) with the birational
transformation (B.21), one gets the rational function of the form:

R =
(1 − x + 2 y) · (x + 3 y) · (5 x + 7 y)

D
, (B.22)

and, again, the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0.
One gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. The
telescoper of the rational function (B.22) is an order-ten linear differential operator

L10 = F2 · G2 · H1 · I1 · J2 · K2, (B.23)

††We thank A.Bostan and S. Yurkevich for revisiting most of our order-two linear differential
operators with algebraic solutions. We thank J-A. Weil for showing us that all these order-two
linear differential operators have a twelve elements dihedral differential Galois group: they all have
algebraic solutions of degree 12.
† Using hypergeometricsols in DEtools of Maple.
¶ Showing that the solutions are algebraic without having their exact expressions, can be achieved
by showing that their p-curvatures are zero, recalling the André-Christol conjecture that one must
have a basis of globally bounded solutions, or looking for rational solutions of symmetric powers of
the operators.
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where the order-two linear differential operator F2 is‖ (non-trivially) homomorphic
to the order-two linear differential operator L2 which is the telescoper of the rational
function (103) and where the solutions of G2, J2 and K2 are two algebraic functions.
The order-two linear differential operator F2 is of the form

F2 = D2
x +

A1(x)

D1(x)
· Dx +

A0(x)

D0(x)
, (B.24)

where A1(x) and A0(x) are polynomials of degree 41 and 55 respectively, where D1(x)
and D0(x) read

D1(x) = λ(x) · P14(x) · P20(x), D0(x) = x · λ(x) · P14(x) · P20(x)
2, (B.25)

with:

λ(x) = (219024− 6916931 x− 23604075 x2) · (7 − 225 x) · (5 − 243 x)

× (1 − 27 x) · (35 − x) · (21 + x) · x, (B.26)

where P14(x) and P20(x) are polynomials of degree 14 and 20 respectively. The
order-two operator linear differential G2 yielding algebraic solutions is also a quite
“large” linear differential operator.

Remark B 3.1: The factorisation of (B.23) is far from being unique. As usual we
have a mix between product and direct-sum of factors. The order-ten linear differential
operator being quite large it is difficult to get the direct-sum factorisation of L10 in
(B.23). One finds, however, quite easily that L10 has two simple rational function
solutions

1

(x− 35) · (x + 21)
,

x

(x− 35) · (x + 21)
, (B.27)

corresponding to two order-one operators L1 = Dx + 2 (x − 7)/(x + 21)/(x − 35)
and M1 = Dx +2 (x− 7)/(x+21)/(x− 35) − 1/x and, thus, can be rightdivided by
the LCLM of L1 and M1. More interestingly, the product† H1 · I1 · J2 · K2 in the
decomposition (B.23) of L10, can be seen as the direct sum of L1, M1, K2 and two
new (and simpler !) order-two linear differential operators G̃2 and J̃2:

G2 · H1 · I1 · J2 · K2 = L1 ⊕ M1 ⊕ G̃2 ⊕ J̃2 ⊕ K2. (B.28)

It was easy to see that the log-derivative of the solutions of the order-two operator J2
were algebraic functions, but harder to see that these solutions were actually algebraic.
One now finds immediately that the solutions of J̃2 are algebraic functions.

Remark B 3.2: If one considers, instead of (B.22) the rational function with
the same denominator D but where the numerator is normalised to 1,

R =
1

D
. (B.29)

Its telescoper is an order-seven linear differential operator

L7 = F2 · G1 · G2 · H2, (B.30)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to
the order-two linear differential operator L2 which is the telescoper of the rational
function (103), and where the order-two linear differential operators G2 and H2 have
simple algebraic solutions.

‖ The order-two linear differential operator F2 is a quite “massive” operator: 30391 characters.
† In contrast note that the product F2 · G2 in the decomposition (B.23) is not a direct-sum.
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Appendix B.4. Birational symmetries from collineations. Another example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→
( x

1 − x + 2 y
,

y

1 − x + 2 y
, z · (1 − x + 2 y)2

)

, (B.31)

which preserves the product p = x y z, and also preserves the origin (x, y, z) =
(0, 0, 0). Again, if one transforms the simple rational function (103) with the
birational transformation (B.31), one gets the rational function of the form:

R =
1 − x + 2 y

D
, (B.32)

and again the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0.
One gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. The
telescoper of the rational function (B.32) is an order-four linear differential operator

L4 = F2 · G2, (B.33)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to
the order-two linear differential operator L2 which is the telescoper of the rational
function (103) and where the solutions of G2 are two algebraic functions of series
expansion:

s0 = 1 +
105

4
· x +

12753

16
· x2 +

876225

32
· x3 +

251403765

256
· x4 + · · ·

s1 = x +
105

4
· x2 +

7385

8
· x3 +

2111725

64
· x4 +

155849463

128
· x5 + · · · (B.34)

The series s = s1 is, for instance, solution of the polynomial equation P (s, x) = 0,
where P (s, x) reads:

P (s, x) = 2847312 · p(x)3 · s6 + 158184 · p(x)2 · s4 + 5040 · p(x)2 · s3

+ 2197 · p(x) · s2 + 140 · p(x) · s + 4 x · (243 x+ 35), (B.35)

with p(x) = 243 x2 + 35 x − 1. The series expansions of the algebraic solutions of
P (s, x) = 0 read:

S(u) = u +
448451640 u4 − 38438712 u3 − 20761650 u2 + 1377667 u+ 221830

17710
· x

+ 3 ·
448451640 u4 − 38438712 u3 − 20761650 u2 + 1450531 u+ 221830

2024
· x2 + · · ·

where u = 0, −1/6, 1/6, 5/26, −4/39, −7/78. One finds that

15 · S
(1

6

)

+ 8 · S
(

−
1

6

)

+ 13 · S
(

−
7

78

)

= 0,

13 · S
(1

6

)

+ 8 · S
(

−
4

39

)

+ 15 · S
(

−
7

78

)

= 0,

15825411 · S
(1

6

)

− 1771 · S
(5

6

)

+ 29373604 · S
(

−
7

78

)

= 0, (B.36)

and that the two solutions (B.34) of G2 read:

s0 = S(0), s1 =
521

32
· S

(1

6

)

+
611

32
· S

(

−
7

78

)

. (B.37)
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The homomorphism between F2 and L2 gives

F2 · X1 = Y1 · L2, where:

X1 = α(x) ·
(

(3240 x2 + 6 x + 1) · Dx + 1080 x − 6
)

, with:

α(x) =
81

10 · (1 − 35 x − 243 x2) · (1 − 27 x)
. (B.38)

Consequently a solution S of the telescoper L4 (but not of G2 in (B.33)) will be
related to the hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear
differential operator L2, as follows:

X1

(

2F1

(

[
1

3
,
2

3
], [1], 27 x

))

= G2 · S. (B.39)

The formal series solutions of the order-four linear differential operator (B.33) are (of
course ...) the two (algebraic) solutions (B.34) of G2, together with a solution with a
ln(x)1, and a series s2, analytic at x = 0:

s2 = x2 +
93

2
· x3 +

31185

16
· x4 +

2488035

32
· x5 +

1953542437

640
· x6 + · · · (B.40)

Relation (B.39) is actually satisfied with S = 5103 · s2. Note that the series for
(B.39) is a series with integer coefficients:

1

2
·

1

5103
· X1

(

2F1

(

[
1

3
,
2

3
], [1], 27 x

))

= 1 + 87 x + 5358 x2 + 282459 x3

+ 13662531 x4 + 626640714 x5 + 27758265651 x6 + 1200939383487x7 + · · ·

Remark B 4.1: Note that the diagonal δ of the rational function (B.32) reads:

δ = 1 + 4 x + 108 x2 + 1960 x3 + 43240 x4 + 965664 x5 + 22377600 x6

+ 528712272 x7 + 12698698320 x8 + 308814134200 x9 + · · · (B.41)

We expect this diagonal to be a solution of the order-four telescoper (B.33). This
series is actually a linear combination of the three series s0, s1 and s2, analytic at
x = 0:

δ = s0 −
89

4
· s1 − 105 · s2. (B.42)

It is interesting to see how the three globally bounded series s0, s1 and s2, conspire
to give a series with integer coefficients, the diagonal (B.42).

Remark B 4.2: These results must be compared with the calculations for the
rational function

R =
1

D
, (B.43)

where the denominator D is the same as the one in (B.32). In this case where the
numerator has been normalised to 1, the diagonal is the same as the diagonal of
1/(1 − x − y − z), namely 2F1([1/3, 2/3], [1], 27 x), and the telescoper is the same
telescoper as the one for 1/(1 − x− y − z).
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Appendix B.5. Birational symmetries from collineations. Another example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→
( x + 3 y

1 − x + 2 y
,

y

1 − x + 2 y
,

x z · (1 − x + 2 y)2

x + 3 y

)

, (B.44)

which preserves the product p = x y z, and also preserves the origin (x, y, z) =
(0, 0, 0). Again, if one transform the simple rational function (103) with the birational
transformation (B.44), one gets the rational function of the form:

R =
(1 − x + 2 y) · (x + 3 y)

D
, (B.45)

and again the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0.
One gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. The
telescoper of the rational function (B.45) is an order-seven linear differential operator

L7 = F2 · G2 · H1 · H2, (B.46)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to
the order-two linear differential operator L2 which is the telescoper of the rational
function (103), and where the order-two linear differential operators G2 and H2 have
algebraic solutions¶ and where H1 is an order-one linear differential operator. This
homomorphism between F2 and L2 gives

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx +B(x), (B.47)

where A(x) and B(x) are rational functions. Consequently a solution S of the
telescoper L7 (but not of the product G2 · H1 · H2 in (B.46)) will be related to the
hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential
operator L2, as follows:

X1

(

2F1

(

[
1

3
,
2

3
], [1], 27 x

))

= G2 · H1 · H2 · S. (B.48)

In that case the solution of S of the telescoper L7 reads

S = x4 +
13316825310791

231428221515
· x5 +

30360140830595651

11108554632720
· x6 + · · · (B.49)

and the expansion of (B.48) reads:

X1

(

2F1

(

[
1

3
,
2

3
], [1], 27 x

))

=
1

x
+

85390121841387522079

629841285410317908

+
906492811433323772155053002605

77136236451492696817854192
· x + · · · (B.50)

Remark B 5.1: The factorisation (B.46) is far from being unique. Introducing
the order-one linear differential operator L1 = Dx +4/(3+4 x), one has the following
direct-sum decomposition:

L7 = L1 ⊕ L6, (B.51)

G2 · H1 · H2 = L1 ⊕ G̃2 ⊕ H2, (B.52)

¶ In fact one finds easily that the solutions of G2 are Liouvillian: the log-derivative of these solutions
are algebraic functions. Finding that these Liouvillian solutions are algebraic functions is much
harder. In contrast one finds easily that the order-two linear differential operator H2 has algebraic
solutions.



43

where L6 is an order-six linear differential operator, and where the order-two linear
differential operator operator G̃2 is slightly simpler than G2.

Remark B 5.2: If one considers, instead of (B.45), the rational function with
the same denominator D but where the numerator is normalised to 1,

R =
1

D
. (B.53)

its telescoper is an order-four linear differential operator

L4 = F2 · G2. (B.54)

The order-two linear differential operator F2 is (non-trivially) homomorphic to the
order-two linear differential operator L2 which is the telescoper of the rational function
(103), and the order-two linear differential operator G2 has simple algebraic solutions.

Appendix B.6. Birational symmetries from collineations. Another simpler example

Let us consider the following birational transformation associated with a collineation:

(x, y, z) −→
( x + 3 y

1 − x + 2 y
,

1 + y

1 − x + 2 y
,
x y z · (1 − x + 2 y)2

(x + 3 y) · (1 + y)

)

, (B.55)

which preserves the product p = x y z. Again, if one transform the simple rational
function (103) with the birational transformation (B.55), one gets the rational function
of the form:

R =
(1 − x + 2 y) · (x + 3 y) · (1 + y)

D
, (B.56)

and again the intersection of the algebraic surface D = 0 with the algebraic surface
p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0.
One gets immediatly the same Hauptmodul (B.5) for this new elliptic curve.

The telescoper of the rational function (B.56) can now be calculated in only a
few hours, and one gets an order-nine linear differential operator of the form

L9 = F2 · G2 · H1 · H2 · I2, (B.57)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to
the order-two linear differential operator L2 which is the telescoper of the rational
function (103), and where the order-two linear differential operators G2, H2 and I2
have algebraic solutions‡ and where H1 is an order-one linear differential operator.
This homomorphism between F2 and L2 gives

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx +B(x), (B.58)

where A(x) and B(x) are quite large rational functions. Consequently a solution S
of the telescoper L9 (but not of the product G2 · H1 · H2 · I2 in (B.57)) will be
related to the hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear
differential operator L2, as follows:

X1

(

2F1

(

[
1

3
,
2

3
], [1], 27 x

))

= G2 · H1 · H2 · I2 · S. (B.59)

‡ In fact one finds easily that the solutions of G2, H2 are Liouvillian: their log-derivative are
algebraic functions. Finding that these Liouvillian solutions are algebraic functions is much harder.
In contrast one finds easily that the order-two linear differential operator I2 has algebraic solutions.
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If finding the emergence of the hypergeometric function 2F1([1/3, 2/3], [1], 27 x) is
easy to obtain from the (algebraic geometry) calculation of the Hauptmodul (B.5),
(see (129)), the telescoper of (B.56), or equivalently, the solution S of that telescoper,
requires to find many linear differential operators, namely the intertwinner X1 and also
the right factors G2, H1, H2 and I2. In contrast with the birational transformations
described in section 6 (see (108), (111), (112)), which simply preserve the diagonals of
the rational functions, we have here, with the birational transformation (B.55), again
two birationally equivalent underlying elliptic curves, but a much more convoluted
“covariance” requiring to find many linear differential operators. The “elliptic curve
skeleton” (the j-invariant or the Hauptmodul) is preserved, but the right factors
dressing G2, H1, H2 and I2 and the intertwiner X1 are quite involved.

Remark B 6.1: In fact the order-nine operator (B.57) is a direct sum. It can
be written in the form

L9 = L8 ⊕ L1, (B.60)

G2 · H1 · H2 · I2 = L1 ⊕ G̃2 ⊕ H̃2 ⊕ I2, (B.61)

where the order-one operator reads:

L1 = Dx +
4

3 + 4 x
, (B.62)

where L8 is an order-eight operator, and where the operators with a tilde are much
simpler than the operators without a tilde.

Remark B 6.2: Again if one considers, instead of (B.56), the rational function
with the same denominator D, but where the numerator has been normalised to 1,

R =
1

D
, (B.63)

one finds an order-seven telescoper which factorises as follows:

L7 = F2 · G1 · H2 · I2, (B.64)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to
the order-two linear differential operator L2 which is the telescoper of the rational
function (103), and where the order-two linear differential operators H2 and I2 have
algebraic solutions.

Remark B 6.3: Again the factorisation (B.64) is far from being unique.
Introducing the order-one linear differential operator L1 = Dx + 1/x, one has the
two following direct-sum decompositions

L7 = L6 ⊕ L1, (B.65)

G1 · H2 · I2 = L1 ⊕ H̃2 ⊕ I2, (B.66)

where the order-two linear differential operator H̃2 is slightly simpler than H2.

Remark B 6.4: As far as an algebraic geometry approach of diagonals and
telescopers is concerned (see [41]), we see that the concept of telescopers, which
describes all the periods, can be more interesting than the concept of diagonals which
often yields to diagonals that can be almost trivial functions (being simple rational
functions, or being simply equal to zero). The examples of Appendix B show that
the differential algebra approach of creative telescoping cannot be totally replaced
by an algebraic geometry approach [41]. The algebraic geometry approach provides
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very quickly some precious information on the telescoper (the Hauptmodul), but not
the telescoper itself. In fact one might consider the opposite point of view: creative
telescoping could be seen as a tool to get effective algebraic geometry results.

Remark B 6.5: The examples displayed in this appendix can be seen as an
illustration of the “dialogue of the deaf” between mathematicians and physicists.
Some mathematicians will point out the fact that the calculation of the Hauptmodul
(B.5) underlines the essence of the problem, namely the existence of an underlying
elliptic curve, and will see the explicit calculation of the telescoper, and all its periods,
as a laborious and slightly useless piece of work. In particular they will consider
the “dressing” right-factors occurring in the decompositions (B.15), (B.23), ... as a
totally and utterly spurious information, and they will also probably see the explicit
expression of the large order-two operators F2 as superfluous, retaining only the order-
two linear differential operator L2, prefering to ignore, or forget, the intertwiner X1

in (B.47) or (B.58). Along this line they may consider the other solutions of the
telescoper, namely the “periods” (associated with non-vanishing cycles) that are not
diagonals, as irrelevant. In contrast for a physicist, getting all the periods, and the
explicit expression of the telescoper will be seen as essential†. Recalling the χ(n)

components of the susceptibility of the Ising model, it is essential to get the explicit
expression of the linear differential operators (telescopers) annihilating these χ(n)’s
even if these (large) linear differential operators [27, 28] are products (and direct sums)
of a large set of factors. In the framework of integrable models, beyond diagonals, a
physicist will always seek for a linear differential operator corresponding to an elliptic
curve (resp. K3 surface, Calabi-Yau manifold, ...) even if it is “buried” as a left factor
of a large telescoper, like the F2’s in (B.15) or (B.23).
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