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II. THE INVERSION RELATION : SOME SIMPLE EXAMPLES

Introduction.

This part headed II is the continuation of part I. It
concentrates on the analytical discussion of the inver-
sion relation.

1. Inverse functional relation for exactly solvable
models.

1.1 ANALYTICAL APPROACH TO THE POTTS AND BAXTER
MODEL. — Let us take a simple example, the Potts
model, to show how the exact expression of its parti-
tion function can be obtained by means of the inver-
sion relation. We consider the anisotropic two-
dimensional Potts model on a square lattice : the
exponential of the two coupling constants of this
model will be called b and c. As in part I we can claim
to have the following inverse functional equation for
the partition function and its analytical continuation
(Jaekel and Maillard [1]) :

Zb,c)Z(1/b2 —q—c)=(Cc—-1)1 —-qg—20).

We can of course add to this equation the obvious
symmetry equation Z(b, ¢) = Z(c, b).

In order to analyse these two simple functional
equations it is convenient to introduce new appro-
priate variables x and y :

x=(0b-q)/0b-q)
y=(€-q)fc-q.)
with

vaag—-4).

The partition function of the Potts model is known
exactly at the critical temperature T = T,

N —

q
qi=l“§i

ie.b—1D—-1) =¢q
ie. x.y=—gq,.

On this critical variety there is a only one variable,
say x, and the two preceding equations can be

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01985004603033501



http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01985004603033501

336

rewritten :

<1 +—"-)<1 + 2 )
q+ 9, x
Q1 —x)(l —-%)
— 44
)

An iteration between these two functional equations
gives an exact expression of the partition function in
terms of simple infinite products :
— 44
x

q. x) P(¢/x)

Z<x>2(§> — _

Z(x) = Z(

P(x) P(
Z(x) =</ — 94+ P

with

PG = ] (————1 UL, x)

n=0 1 - q?k"x

which can be verified to be the exact expression of the
critical Potts model (known by the Bethe ansatz
method) [2].

Let us give a more systematic exposure of this

. . . 1
exact calculation : the two involutions 7 : x — o and

S:x—- 4

generate an infinite discrete group G

which satisfies the exact sequence
0-Z-G-2Z,-0.

1+ =

i _q; and for every func-
tion ¢ the notation ¢, = ¢(g(x)), where g denotes
an element of the group G ; with these notations the
two functional equations can be written as :

Let us introduce L(x) =

Z.Z, = —qq, L.L
and
zZ=2Z.
Obviously
P.P
Z=\/-wu :
¥ PSI‘PSIS
with

P= .f[o L(SD*

is a solution to both equations. This systematic
procedure can be applied to more complicated
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models where we have an elliptic instead of a rational,
uniformization.

One can for instance consider the Baxter model
where the four canonical parameters, namely a, b, ¢, d
are uniformized as follows :

a=p.02 n.00v — n).Hwv + n)
b=p.02n.Hv — n).0(v + n)
¢ =p.H2 n).00v — n).00v + n)
d=p.H2 n).Hv — n).Hv + 1)

(0 and H are the usual elliptical functions : see Grad-

stein, Ridzyk [3]). If K and K’ denote the two periods
of the elliptical function, introducing

inn/K inv/K -nK'|K
b

x=c¢e z=c¢e , g=¢

we have
0w = [10 = ¢V - g 90 - g1f2)
H() = 2 g'2(z!% — z712) x

< T1 - - g2 (- g7

With these new notations the inversion relation intro-
2

duced in part I is z—>x7or v—>2n — v and the
symmetry K, & K, isz—> 1/zorv— — v

Following Baxter we introduce A(x) = ﬁo (1-q"2)
(Baxter [4])

© A(x4m+ 1 Z)

F@2) =[]

=0 A(x4m+3 Z) *

Baxter’s solution is

F(x*2) F <x_2>
qz q z
70 =A%) 4(3)

C
F(q2) F(q/D) (p-H(z n))
= Z(1/2)

which satisfies the inverse functional equation

Z(2) Z(x*/2) =

x3 qz q). i
A )

The term on the right-hand side of this equation can
be shown, using identities on the § and H function,

to be equal to cc,(l + —g) (1 —g : one recovers

the (2ish (2 K, + 2M)sh (2 K, — 2 M))"/? factor
of part I. Baxter’s exact expression can be obtained
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easily by this systematic procedure by writing L(z)
as proportional to

A(xz). A<%> .

Another simple example is a subcase of the Baxter
model : the symmetrical six-vertex model for which
we have a rational uniformization (d = 0) :

a=psin(2 n— 10)
b = psin A0
c=psin2y

Z0) Z(— 0) =

ce sin(2 n — A0)sin(2 n + A6)
! sin?2 g

(sin? 2 n — sin® A9)
= ¢q —
sin® 2

2
= cc,(l - %)

Z0) =2Z2 n — A09).

On this last example one sees that there are at least
two ways of cutting the right-hand side of the inverse
functional relation into two parts L and L; :

_sin(2 n — 19)
L®) = sin2 7
or
LO) = sin2 n — sin 10.

sin2

In fact both choices lead to the same expression for
Z(0). This means in abstract terms that if L is multiplied

by Jaodst g, any £, or more generally, by < with
Ss-Jst g

Gisip = 9> we ought to get the same results for Z.

In the first two models however — the Potts and
Baxter models — it was possible to make different
choices for L

respectively L = T+ and A(xz) A(g/xz) |,

leading to a non-defined expression for Z : the right
choice corresponds to a Wiener-Hopf factorization
where L and L, are analytical in two disconnected
domains in the complex plane. So far the procedure
described is well defined and uniquely determines the
solutions with the smallest number of singularities
(of course an infinite number of solutions can be found
for these two equations but the number of singula-
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rities is larger : CDD ambiguities (Castillejo, Dalitz,
Dyson [5])).

1.2 INVERSE FUNCTIONAL RELATION ON THE ANISO-
TROPIC TWO-DIMENSIONAL ISING MODEL ; DIAGRAMMA-
TIC APPROACH. — Let us consider a subcase of the
Baxter model and of the anisotropic Potts model,
the well known two dimensional Ising model.

Introducing the resummed high temperature expan-
sion shown in part I for the normalized partition func-
tion

AK,, K,) = Z(K,, K,) (ch K, ch K,)!

we can write In A as follows (Baxter [17])

In A(K,, K,) = i (th? K,)". Q,(th? K,)

n=1

where Q, is a rational function of th? K,. Using this
expansion Baxter has shown that, assuming only
th? K, = 1 singularities in Q, (this can be checked
directly on the Onsager solution), the inversion relation
and the symmetry relation determine the rational
function Q, order by order : the partition function is
therefore determined completely. This approach is not
exact as in the two preceding examples but perturba-
tive; however in all of these examples the partition
function is completely determined with the help of
certain analytical assumptions : on the spectral
variable x or 0 in the case of two-dimensional critical
Potts model or the Baxter model, or on one of the two
coupling constants in the case of the anisotropic two
dimensional Ising model.

2. Inverse functional relation : near the critical point.

2.1 DETERMINATION OF THE CRITICAL MANIFOLD. —
We will only mention that the inverse and symmetry
relations enable the critical manifold of many models
to be determined exactly. In the case of anisotropic
Potts model on a square lattice for instance, we get the
equations xy = — q, and xy = q, for the ferro-
magnetic and antiferromagnetic critical varieties res-
pectively (Maillard, Rammal [6]). For triangular and
honeycomb lattices, the ferromagnetic critical varieties
are xyz =q> and xyz = — q, respectively. We
should point out that the Kramers-Wannier duality
is not used to determine these critical manifolds. When
this manifold is determined exactly it is tempting to
try using inverse and symmetry relations to analyse
the neighbourhood of this manifold.

2.2 INVERSION RELATION IN THE SCALING LIMIT. —
We have seen that the inversion relation enables the
partition function of the Potts model to be calculated
exactly at criticality ; outside the critical temperature
it can no longer be calculated, but some exact informa-
tion can be obtained in the neighbourhood of this
critical temperature : latent heat (for g > 4) [2],
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critical exponents, and magnetization discontinuity
(Baxter [7]). One could ask whether the inversion
relation can supply information (on the partition
function, for instance) in the critical temperature
region (within the scaling limit); in other words the
problem is that of the connection between the IR
(or the infinite group G) and the renormalization
group.

Instead of taking the non-critical Potts model,
which is complicated, let us consider the problem on
simpler models. Those for which the renormalization
group is exact and an IR exists are not very instructive
since the two are seen to be compatible; we shall
therefore consider the Baxter model for which an IR
exists and the renormalization group is not trivial.
Within the scaling limit the preceding parameters
v, n, K, K’ are degenerate. Following Baxter we
introduce the Landen transformation

1
K, =51 +k.K’

K; =0+ k.K

(k is the module of elliptic functions) and introduce U
and p such that

U v/ K Ki
= — mv/ K—l
and
ik
u= —inn/ K,

(¢ and U have finite values within the scaling limit).
Obviously the inversion and symmetry relations

can be restricted to the singular part of the partition

function (which characterizes the critical behaviour) :

(— ﬁf)sing (U) = (_ ﬂf)sing (_ U)
(_ ﬂf)sing (U) + (_ ﬁf)sing (ZH_ U) =0.
The singular part of the partition function has been

calculated exactly (Baxter [4], Appendice E page 226)
and gives to the lowest order :

. nU T2
—_ . = —_— — n/u P
(= Bf )sing (U) 4c052” COt2[,t q™ +

which satisfies the two preceding equations. Assuming
some Kadanoff-type form such as

— Bfiing = a(U, p).q>~*® + -

(q is the « temperature » variable, which vanishes as
T tends to T, and does not depend on the spectral
parameter U as does the amplitude a) we get the two
equations

a(U’ “) = a(_ U’ I‘l)
alUyw) +au—Up) =0.
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Paradoxically the inverse and symmetry relations
constrain the sophisticated information in (= Bf ),
the amplitude a(U, p), but give no information on the
critical exponent 2 — a. Conversely we have seen that
the IR, associated with the symmetry relation and an
analyticity assumption, determines exactly the parti-
tion function and thus the critical exponent a. The
question thus remains open as to whether a more
sophisticated approach to the IR, not roughly confined
to the neighbourhood of criticality, can give infor-
mations on the critical exponents.

For instance, the critical exponents of the 2-d Potts
model are known exactly (conjecture of den Nijs [8],
Nienhuis et al. [9]) and their expressions are quite
simple when the variable q,, appropriate for the
infinite group G, is used. One should mention that
these exact expressions for the critical exponents can
be obtained assuming the conformal covariance of a
2-d field theory. These expressions are nothing more
than the Kac determinant formula (see for instance
Dotsenko [10]). It is amusing to notice that the theory
can be built only for special values of g, which already
attracted attention in graph theory and statistical

mechanics | the so-called Tutte-Beraha numbers :

q=2+ 2cos2n—n, n integer [11]) These special

values of g are exactly such that the infinite group G
degenerates into a finite group ! Moreover, for these
values, the critical exponents are rational numbers.
It seems imporfant to understand the relation between
these different mathematical structures (conformal
covariance, exact integrability, or say in Baxter’s
terminology Z-invariance, the infinite group G).

3. Characterization of the constraints associated with
the IR.

Since the inversion relation is constraining, a question
arises : how strong are these constraints and what is
their nature ?

From this last point of view it can be interesting to
compare the consequences on the expansions asso-
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ciated with the inverse relation and those with some
other linear functional relation associated with the
integrability structure of the model (generalization of
the Fisher relation). Let us consider the Ising model
associated with figure 1 (Utiyama model).

We know that the condition necessary for the two
diagonal transfer matrices T(K,, K,) and T(K,, K,)
to commute is

sh2K,sh2K, =sh2K,sh2K, =k (1)

(Stephen Mittag [12]).

It is possible to show, when relation (1) is satisfied,
that the following linear combination of two-point
correlation functions is a function only of k (Maillard
note CEA [13]) :

ch2K,ch2K, —sh2K,ch2K,{s,0,) —
—sh2K,ch2K, {00, =f(0). @

For K, = K,, K, = K, we recover equation (13b) of
Baxter and Enting [14]; this equation, which plays an
important part in their exact solution of the two-
dimensional Ising model, is related to the star triangle
relation. It is easily verified for the anisotropic two-
dimensional Ising model :

(o,0,) =;2r-coth2chh2chh2K2 x

1
,(sh*2 K, k) — —— K(k
X[ l(s 1> ) Ch22K1 ():I
(ajam>=%coth2chh2chh2Klx
1
II,(sh?2 K, k) — ———- K
12K — i K |

where I1, is an elliptic integral of the third kind and K
of the first kind.

With these expressions for the two-point correlation
function and the relation for IT, (*) :

k2
HI(V, k) + H1<7, k) =

= K(k) + g[(l +v) <1 + %ﬂ_m, 3

the right-hand of relation (3) is equal to — %(k2 —1) x

K(k), (i.e. an expression dependent only on k).

Clearly equation (2) is a quite non-trivial relation
(in the theory of elliptic functions).

Let us compare on a resummed expansion the
constraints from the inversion relation and rela-

() See for example A. Cayley, An Elementary Treatise on
Elliptic Functions (Dover Publication, New York) p. 120.
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tion (2). To the lowest order the correlation functions
give :

< > It +*_bt 217
g. 0 =  ——
i7m 2 2 1—[12
s @+ bt} 4ol +df
2 (1 — 123
and
2t
(o;0,) =1+ mb*‘
—2¢3
+L (-2 Y pprt ) ——L 2
*—e p=>1 (l—tl)
Ry @+ b+t +drd) o
2 (1 -

Let us denote the terms of z; and ¢; of these two corre-
lation functions

o + B ch2K, + ych?2K, + 6 ch®2 K,
and
sh2 K,(« + Bch2 K, + ych?2 K, + éch?®2K))
respectively ; equation (2) leads to the relations
B+ =0

B=2«a B+2yY=0 6=0.

These are similar to those implied by the inversion
relation (Jackel and Maillard [1]) :

(o;0,) (K, Ky =<0;0,) K, +in2, — K))
and
(0j0,) (K, Ky +<0j0,) K, +in/2, — K;)=
=2coth2 K,

which yield :
« =9 =0 and B=86=0

e. d+d =b+c =0and a=d b=c). To
these relations can be added the obvious relation

a=0sd+p+9y+6=0.

These relations can be compared to those associated
with the symmetry between K, and K, :

0 0
K<6i0m>=ﬁ<‘; <ajam>

which yield

f=2a—1
B=
2y =3¢’
6=0.
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On this particular completely integrable model we
can compare the relations obtained from (2) (which is
connected to the star-triangle relation, ie. to the
complete integrability of the model) and those from
the inversion relation and the (K, « K,) symmetry
(the inverse and symmetry relations completely deter-
mine the partition function for this model). Although
quite similar these constraints are not identical because
relation (2) while constraining, is not enough so to
determine the partition function completely, since it is
only a consequence of the star-triangle relation.

For more complicated models, a priori non inte-
grable for instance, the comparison between conse-
quences on the model of the inversion relation and
symmetry relation and other properties is not so clear
and simple. This is partially studied (Jaekel and
Maillard [15]) in the case of constraints associated
with the Lee-Yang theorem on a model. In general all
these conditions constitute an overlapping set of
constraints and it is quite difficult to combine them all
together to get some new non trivial property for the
model. Of course the main problem is to characterize
the « missing » information which should be added
to the inverse and symmetry relations in order to
determine the partition function completely. For
example in the case of the three-dimensional aniso-
tropic Ising model there is some evidence that, as in
the two-dimensional case, only th? K, = 1 singula-
rities might occur in the resummed high-temperature
expansion associated with the model. This analytical
property, if confirmed, would certainly be a very
important factor in the three-dimensional Ising model
and it would then be possible using the inversion
and symmetry relations to determine its partition
function completely with much less added informa-
tion. For instance to get the anisotropic high-tempe-
rature expansion of this model up to the eighth order
in th K; we have to specify only the coefficient of
th? K, th? K, th? K, (see Jackel and Maillard [1]).
If this analyticity assumption is true we can then reach
the tenth order with only the th? K, th* K, th* K,
coefficient, the twelfth order with the th* K,
th* K, th* K, coefficient, the fourteenth order with
the th? K, th® K, th® K, and th* K, th* K, th® K
coefficients, the sixteenth order with the th* K, th® K,
th® K, coefficient, the eighteenth order with the
th? K, th® K, th® K,, th* K, th® K, th® K,, and
th® K, th® K, th® K, coefficients, and so on : if this
analyticity assumption fails the missing information
would be much more important.

From a more general point of view it seems that the
main problem arising from the use of the inverse
relation with expansions is that the graphs to be
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introduced seem to be the most difficult to count,
regardless of the method.

4. Conclusion.

The Kramers-Wannier duality was demonstrated in
1941 [16] on the two-dimensional Ising model, and
work is still being devoted to searching for exact or
approximate self-dual models in two, three or four
dimensions.

In these two papers we have introduced another
exact relation for a large number of models : the
so-called inversion relation. The models for which an
inverse functional relation can be written for the parti-
tion function far outnumber those for which a self-
dual relation exists. Just one example is the 3-d aniso-
tropic Ising model. Moreover the inversion relation
is more powerful than the self-dual property : in
some cases (exactly solvable models) it enables the
partition function to be calculated exactly and
quickly, and in every case introduces some constraints
on the anisotropic high or low temperature expansions.
Furthermore with the inversion relation concept,
some very simple functional relations can be written
for various quantities such as correlation function,
magnetization, and susceptibility. For all of these
reasons the inversion relation appears as a very fruitful
concept destined for a career at least as brilliant as
the K-W duality. It is quite simple to find many
models for which an inversion relation exists, but the
problem then is to use such a relation to best advan-
tage; in this second paper we have tried to study
this question. Three broad cases are distinguished :
that of exactly solvable models, where we show how
to get the exact expression of the partition function ;
that of the critical temperature neighbourhood where
we examine the information we can get from the
inversion relation on, for instance, the critical expo-
nents and the amplitude of the singularity; lastly
that of a priori non-solvable models where we try to
characterize the nature and extent of the constraints
imposed by the IR on the high-temperature expansion.

Clearly the IR can be useful in calculating and
in checking control of expansions for non-solvable
models. An important question still open is to define
the missing information (analyticity hypothesis,
asymptotic behaviour, and so on), we must add to the
IR in order to describe the partition function more
precisely. This seems to be a difficult and rather
subtle problem.
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