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Résumé. 2014 Nous introduisons la notion de relation d’inverse de manière très heuristique (partie I) sur différents
exemples simples. Le caractère très général de la relation d’inverse est ainsi souligné. Son importance est ensuite
illustrée dans le cadre de calculs analytiques précis (partie II) sur trois classes de problèmes différents : les modèles
exactement solubles, le voisinage de la criticité et enfin les modèles (a priori) non solubles pour lesquels un effort
est tenté pour caractériser les contraintes découlant de la relation d’inverse.

Abstract 2014 The inversion relation concept is introduced in a very heuristic way (part I) with some simple and
different examples. The general character of the inversion relation is emphasized. The importance of the inversion
relation is illustrated in the framework of some precise analytical discussions (part II) for three different cases :
exactly soluble models, the case of near criticality and a priori non exactly soluble models where an attempt is
made to characterize the constraints imposed by the inversion relation.
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I. THE INVERSION RELATION : SOME SIMPLE EXAMPLES

Introduction.

The inversion relation (IR) has been used in the past
few years as a short cut in order to calculate very sim-

ply and quickly the partition function of exactly solu-
ble models in statistical mechanics : from this point
of view the IR corresponds formally to the unitarity
relation on the two-body S-matrix in the 1 + 1 dimen-
sional S matrix theory; this calculation corresponds
to the exact calculation of the S-matrix of a 1 + 1

dimensional field theory using Watson’s equations
(unitarity + crossing).
The IR was first introduced in statistical mechanics

by Y. G. Stroganov [1] and used very successfully by
many authors (Baxter [2], Schultz [3], Pokrovsky and
Bashilov [4]...)

It is true that the same results can usually be obtained
for the partition function by the use of « classical
methods », the Bethe ansatz (Bethe [5]) but, in the
case of the hard-hexagon model for instance, the

partition function has been calculated by R. J. Baxter
and P. A. Pearce [6] using only the IR and the 7r/2
symmetry rotation of the lattice : no Bethe ansatz
for this model is available at the present moment,
although there is some evidence that such an ansatz
could exist (see Eq. (4.8) of Baxter and Pearce [6]).

The inversion relation is thus a powerful concept
within the framework of complete integrability, but
it has been shown to exist also outside this framework
and to give strong constraints on the partition func-
tion : examples are the two-dimensional Ising model
in a magnetic field (Baxter [2]), the two-dimensional
non-critical Potts model (M. T. Jaekel, J. M. Mail-
lard [7]) for which an inverse functional equation
exists for the partition function.
Despite these results on completely integrable or

even non-integrable models the IR is not very well
known : exact relations are usually referred to in
terms of the Kramers-Wannier duality [8] which
enables the critical temperature of the two-dimen-
sional Ising model to be determined exactly on a
square lattice, and people very often relate this to the
fact that the partition function may be calculated
exactly (perhaps because of the well known Onsager-
solution [9]). In fact we propose to show that the IR
is a more powerful and constraining relation than the
K-W duality, and moreover far more universal than
the K-W self duality.
The aim of this paper is therefore to popularize the

important concept of the IR.
For convenience the paper is divided into two parts

headed I and II. Part I gives different simple examples
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of the IR and presents in a very heuristic way that
relation. Part II concentrate on exact analytical calcu-
lations and analytical discussions of the consequences
of the IR.

1. Inversion relation on quasi dimensional models.

The inversion relation was introduced mainly to

calculate exactly the partition function of two-dimen-
sional models, but is more simply introduced in
one-dimensional and quasi one-dimensional models.

1.1 ONE-DIMENSIONAL ISING MODEL IN A MAGNETIC
FIELD. - Let us consider one of the simplest lattice
models in existence : the one-dimensional Ising model
in a magnetic field We associate with this problem
a 2 x 2 transfer matrix T = T 1 T 2

where

and

(K is a coupling constant, Hthe magnetic field). Replac-
ing T by f = T21/2 T 1 T21/2, which does not change
the partition function of the model with periodic
boundary conditions, we find immediately that :

Tl (K + i7r/2) Tl(K) = 2 i sh 2 K. I and T2 (H). T2(- H)
= I where 1] is the 2 x 2 identity matrix, hence

T(K + in/2, H). T(K, H) = 2 i sh 2 K. 1. If we denote
by (p(K, H) the sum of the logarithms of the two eigen-
values of the transfer matrix T, we get the equation :

We have already discussed elsewhere [7] the extent
to which relation (1) can be said to imply a similar
inverse functional equation on the largest eigenvalue
of the transfer matrix T (i.e. on the partition function
per site denoted by Z)

-By taking such a simple example it is possible to check
equation (2) directly because the exact expression of
Z is known;

We see that equation (2) is actually satisfied if

Z(K + i7r/2, - H) is chosen as :

In this precise example we find that Z (K + in/2, - H)
is an analytical continuation of Z(K, H). It is interest-
ing to compare this global analytical approach with a
direct verification based on a low-temperature expan-
sion :

Such an expansion can be obtained from the resumma-
tion of low temperature expansions :

The term e-4K e-2H corresponds to the reversal of one
spin, the term e - 4K e - 4H to the reversal of two next
nearest neighbour spins... Obviously the sequence of
these terms constitutes a geometric series of which

-2H
the associated contribution is e - 4K e - 2H; this

1 - e ""

is also the expansion of (3) for small e-K. It is easy to
check (3) at the lowest order :

The second term in the product of equation (5) is

actually the expansion of (4) for small e-K.
The one-dimensional Ising model in a magnetic

field is a simple model satisfying other exact properties
such as the existence of a Kramers-Wannier self

duality and that of a star-triangle relation, which
generates an exact renormalization group for this
model. It can be verified that both these exact pro-
perties are compatible with the inversion relation (2).

1. 2 RUBBER BANDS : THE ANISOTROPIC POTTS MODEL.
- Let us consider the Potts model on a simple rubber
band.
In the case of a Potts model, 6i spins on the vertex

of the lattice belong to Zq ; therefore if N denotes the
size of the strip, the transfer matrices T l’ T2 and f
corresponding to this model are q" x qN matrices :
these matrices are in general too large to allow any
practical analytical calculation, but fortunately they
split into matrices of smaller size (Temperley and
Lieb [10], Blote et al. [11]) (their size grows as a
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polynomial in N, independently of q). For instance,
in the N = 3 case, the largest eigenvalue (partition
function) is that of a 3 x 3 matrix denoted by t,
which is the product of two 3 x 3 matrices 11 and t2
dependent respectively on K, and K2, the vertical
and horizontal coupling constants of anisotropic
Potts model. The exact expressions of ti(K1) and
t2 (K2) are given in the appendix in the case of trans-
versal periodic boundary conditions. It is quite easy to
verify that

where e refers to the 3 x 3 identity matrix and the
star to the duality transformation for the Potts model.
This result may also be derived from the observation
that matrices t1 and t2 are simple exponentials of a
constant matrix (see Appendix). This exponentiation
property is reminiscent of the situation in the two-
dimensional Ising (Kasteleyn [12]) and even Potts
model (Stephen and Mittag [13]). Given equations (6)
and (7), and introducing the symmetrized matrix

I 1

Arguing from equation (8) we have (introducing a
correct multiplicative factor and the notations
b = eKl, c = eK2) :

Z(b, c) corresponds to the largest eigenvalue of

t(K1, K2) and is an analytical conti-
, /

nuation of Z(b, c) (one of the three eigenvalues of
t((- Ki )*, - K2)). Of course it is possible to check
equation (9) ’ by introducing a resummed high
(or low) temperature expansion

This resummed expansion up to the fifth order in
1 j c* has been given elsewhere [7] and enables us to
check to the same order that equation (9) is indeed
verified. Let us take only the third order : introducing
the normalized partition function A(b, c), which tends

to 1 in the high temperature limit, equation (9) can be
rewritten

Equation (10) is actually verified. It should be noted
that, as in the Ising case, up to the fifth order in 1 /c*
the resummed high temperature expansion is the
same for the strip of size N = 3 and for the two-dimen-
sional Potts model.

2. Inversion relation on two-dimensional models.

The importance of the IR has appeared mainly in the
case of two-dimensional models as illustrated by
examples of the two-dimensional anisotropic Ising
model (Baxter [2]), some vertex models (Schultz [3]),
the hard-hexagon model (Baxter, Pearce [6]) and of
course the symmetrical eight-vertex model, also called
the Baxter model (Baxter [15] and [16]). It is possible
of course to check the associated inverse functional

equation directly on the exactly known analytical
expressions of the partition function for these models.
On the other hand we shall see in paper II that from
the IR and some obvious symmetry considerations
we get very easily the exact expression of the partition
function. Therefore, instead of recalling a direct veri-
fication of the IR, we shall check it on the Baxter model
via the resummed high-temperature expansion to the
lowest orders.

Z .1 INVERSION RELATION IN THE CASE OF THE IRF
MODEL. - Let us consider the very general case of
the interaction round-a-face model (IRF model)
(Baxter [2]). In this model, to each plaquette of a
square lattice is assigned the most general Boltzmann
weight W, dependent on the 24 configurations of the
four Ising spins at the four comers of each plaquette

This model therefore has sixteen parameters. Let us
give a definition and a graphical representation of the
IR for this model : the IR implies that the partition
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functions of the two graphs below are equal

Fig. 1.

which in analytical terms means that for all (J 2 and (J 3 :

(A is some known expression, 6 the usual Kronecker
delta symbol).

Let us now consider figure 2, which represents the
product of the two horizontal transfer matrices (with
periodic boundary conditions) T( W) and T ( W I)
associated with the Boltzmann weight W and its
« inverse » Boltzmann weight WI respectively :

Fig. 2.

Let us assume that one on at least is in the same
state as a" : because of this identification we locally
recover figure 1; using the very definition of the
inversion relation we find that a’+, and (Ji+ 1 must
be in the same state and therefore, iterating this pro-
cedure, that every ak has to identify with its corres-
ponding a"k. In other words the product of the two
2N+ 1 X 2N+ 1 transfer matrices T(W) and T(WI)
is equal to AN. 1] + M, where I is the ZN+ 1 x 2N+ 1
identity matrix and M a matrix of which the coeffi-
cients are non zero only when a. = - Qk for every k.
We shall not try to argue here that within the thermo-
dynamic limit this additional matrix M is negligible.
Such a demonstration must only be considered as a
heuristic argument enabling the following inverse
functional equation to be written for the partition
function : Z(W).Z(WI) = A(W), this equation being
checked by diagrammatic expansions or any other
method. We should merely note that, in the case of
vertex models, introducing the diagonal transfer
matrix with periodic boundary conditions, we get,
for the product T(W) T(WI), a result rigorously

proportional to the identity matrix without the
involvement of any correction M to neglect.

2.2 INVERSION RELATION ON THE BAXTER MODEL. -

The Baxter model [15, 16] is a particular case of the
IRF model :

It is easily verified that the inverse Boltzmann weight
WI corresponds to the new parameters Ki, K’, M’
defined by K 1 = K 1 + in/2, M’ = M and

1

£( lEJ is equal to 2 i(sh (2 K1- 2 M)) (sh (2 K1 + 2 M))2.
For M=0 we recover the IR for the two-dimensional

anisotropic Ising model. Let us verify, to the lowest
order the inverse functional relation

or if we introduce the high temperature normalized
partition function *

As in the case of the Ising model we introduce the
high-temperature variables :

The expansion of the right hand side of equation (15)
gives at the lowest order in t and t2 :

If we denote by a bubble the th M term in the high tem-
perature diagrams we get the following diagrams (and
associated contributions) at the lowest order in t
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Fig. 3.

The verification of equation (15) is a straightforward
exercise : we obviously recover the t2 term (this is the
Ising M = 0 verification) and also the terms

using the

expansion of t2.

3. Inversion relation on models not known to be exactly
solvable : universal nature of the IR.

An inverse functional equation has been obtained for
almost all exactly solvable models but it must be
recalled that such an equation also exists for some
important two-dimensional models such as the ani-
sotropic Ising model in a magnetic field (Baxter [2])
and the non-critical Potts model (Jaekel and Mail-
lard [7]) which seem not to be solvable. An inverse
functional equation also exists for higher-dimensional
models such as for example the anisotropic three-
dimensional Ising model (Jaekel and Maillard [17]).
These three a priori non exactly solvable examples
refer to important and natural models in statistical
mechanics; they also show that the IR can exist
outside the framework of complete integrability or,
more specifically that it is possible to find an IR sym-
metry on a model where no star-triangle relation has
been found at the present time. This opens up a new
and, as we shall see, large class of models which

satisfy simple and constraining equations on the

partition function but are not at first sight completely
integrable. The connection between the IR and the
star triangle relation has been studied elsewhere

(Garel and Maillard [18]).
The anisotropic two-dimensional Ising model in

a magnetic field and the anisotropic three-dimensional
Ising model are not self-dual models. Thus taking
the K-W dual of these two models we get two Gauge

models on a lattice and two inverse functional equa-
tions for these two Gauge models which are the images
by the dual transformation bf the preceding inverse
functional equations. Let Àij denote Ising variables

/ B.

associated with the link the

product over all horizontal (resp. vertical) bonds on
the lattice, and also Il the product over all pla-

CP)

quettes on the lattice.
The partition function of the dual model of the

two-dimensional Ising model with a magnetic field is

The inverse functional relation for that Gauge model is

Similarly the dual of the three-dimensional Ising
model is a pure Gauge model where, instead of one,
we have three plaquette coupling constants K1, KZ, K3
(corresponding to the three axes of the cubic lattice)
and the inverse functional relation for this pure gauge
model is

It is possible to find many other models for which
an inverse functional relation exists (many body
interactions, interaction between next nearest neigh-
bours, Potts models), but it is clear that the IR beco-
mes less relevant if the models depend on too many
parameters. One should observe that a self-duality
symmetry exists for fewer models than does an IR.
Moreover the self-duality symmetry is less constrain-
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ing than the inversion relation, which, combined
with the symmetry relation, leads to an infinite dis-
crete group. The study of that infinite group G is
made in paper (II) in the case of the 2-d Potts model.
Therefore the partition function has an infinite

symmetry group which, as will be recalled in paper
(II), enables us, among many other consequences,
to recover the critical manifold obtained from the

duality relation but also to determine critical mani-
folds that cannot be obtained from the duality relation.
Thus, the IR imposes stronger restraints on the model
than the duality transformation; the reason for this
is that the duality transformation commutes with all
the elements of that infinite group G (because it
commutes with the inversion and symmetry relations).
This compatibility can be understood from a general
point of view (Maillard [14]). Hence, combining the
duality transformation with the IR or the symmetry
relation, we get a finite number of elements. This is
definitively not enough in the case of anisotropic
models.

Let us add a final word on the general character
of the inversion relation : the IR implies a functional
equation not only for the largest eigenvalue (the
partition function) but also for other eigenvalues of
the transfer matrix. This can be checked on different
models : the symmetrical six-vertex model, the Baxter
model, or the two-dimensional Ising model (Jaekel
and Maillard [7], Maillard [19]). The inversion relation
also leads to a functional equation in the case of the
n-point correlation function (Jaekel and Maillard [20]),
as well as for different quantities such as magnetiza-
tion or susceptibility. For instance, by writing the IR
on the anisotropic two-dimensional Ising model in a
magnetic field, and taking the second partial derivative

with respect to the magnetic field, we get the equation
for the susceptibility X :

4. Conclusion.

The star-triangle has been recognized by many
authors as a key point in the understanding of exact
models. We recall in this paper that the inversion
relation exists even in the absence of a star-triangle
relation.
The inversion relation, although somewhat similar

superficially to the Kramers-Wannier duality, is
more constraining. Moreover such a relation exists
for a large number of models with no K-W self-

duality (the three-dimensional Ising model for ins-
tance).
The large set of models for which the inversion

relation exists can be shown to include : quasi one-
dimensional models (rubber bands), two-dimensional
models with or without magnetic field on different
lattices (even non-planar) or with four-spin interac-
tions, and three-dimensional models like the Ising or
Potts cubic model (possibly with magnetic field).

In fact this list is far from exhaustive and many
other examples can be found. The IR enables simple
functional equations to be written for the partition
function, but also for other quantities such as the
correlation function, interface energy, magnetization,
and so on.
The field of application of the IR therefore seems

quite broad, a fact which is not in contradiction with
the relevant character of these equations as will be
emphasized in a second paper.

Appendix 

z

RUBBER BANDS : I THE ANISOTROPIC POTTS MODEL.

Analytic expression for t1 and t2 ; let u denote eK2 -1 and u’, eKt -1 and eKl -1= q/u’* ; with these nota-
tions :
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Denoting by R the matrix 1 one has the following relation between t1 and t2 :
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II. THE INVERSION RELATION : SOME SIMPLE EXAMPLES

Introduction

This part headed II is the continuation of part I. It
concentrates on the analytical discussion of the inver-
sion relation.

1. Inverse functional relation for exactly solvable
models.

1. 1 ANALYTICAL APPROACH TO THE POTTS AND BAXTER
MODEL. - Let us take a simple example, the Potts
model, to show how the exact expression of its parti-
tion function can be obtained by means of the inver-
sion relation. We consider the anisotropic two-

dimensional Potts model on a square lattice : the

exponential of the two coupling constants of this
model will be called b and c. As in part I we can claim
to have the following inverse functional equation for
the partition function and its analytical continuation
(Jaekel and Maillard [1]) :

We can of course add to this equation the obvious
symmetry equation Z(b, c) = Z(c, b).

In order to analyse these two simple functional
equations it is convenient to introduce new appro-
priate variables x and y :

with

The partition function of the Potts model is known
exactly at the critical temperature T = Tc

On this critical variety there is a only one variable,
say x, and the two preceding equations can be


