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Abstract. Thermal transmissivity, a notion which arises empirically and leads to consid-
erable simplification of analyses of discrete spin systems, is of fundamental interest in
graphical and real-space renormalization group approaches. In this paper we present
a formulation of the theory of thermal transmissivity. We show that the situation is
different depending on whether the interaction matrices commute. In the commuting
case the thermal transmissivity is given by the eigenvalues of the interaction matrix,
while in the non-commuting case it is given by the eigenvalues as well as matrices which
block-diagonalize the interaction matrix, The meaning of the thermal transmissivity in
diagrammatic analyses of spin models is also elucidated, and our results are iltustrated
by examples. Finaily, we present a general formulation of disorder solutions for spin
models in terms of thermal transmissivities.

1. Introduction

In the analyses of discrete spin systems certain variables arise empirically which lead to
considerable simplification. A well-known example is the hyperbolic tangent function
occurring in high-temperature ¢xpansions of the Ising model [1]. Let K denote the
Ising interaction, then a sequence of Ising interactions ,, K,,... can be replaced
by a single K given by the product relation tanh K = [[; tanh K. Furthermore,
in the diagrammatic expansion of the partition function using tanh K as a bond
variable, one finds terms containing vertices with an odd number of incident bonds
vanish identically. Because of its usefulness in decimations of spins as well as in
real-space renormalization group treatments, this variable has been coined the term
thermal transmissivity, or simply gransmissivity [2). Explicit forms of transmissivity
have also been obtained for other spin systems, including the Potts model [3, 4], the
Z(q) model [5] and, very recently, the discrete cubic models [6, 7]. In view of its
fundamental importance, we present a general formulation of thermal transmissivity
for any spin system. Our results are illustrated with various examples.

Consider a general g-state spin system for which two spins interact via a set
of interaction parameters K B {K,, I{,,...}. Generally, any two-spin interaction
can be characterized by an interaction matrix W(K) whose element W, ;5(K) is the
Boltzmann factor between two spin states o« and 8 =0,1,...,¢ ~ 1. In this paper
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we confine ourselves to (stochastic) interaction matrices with each row and column
containing the same set of Boltzmann factors. Thus we have

g—1 g—1
D Woa(K)y= D" W, 4(K) =, 1)
B=0 a=0

where A, is independent of o, and the matrix W is not necessarily symmetric. Prac-
tically all spin models of physical interests are of this kind including, among others,
the Ising, Potts [8], chiral Potts [9, 10], Ashkin-Teller {11], {N,, N5} [12], Z(q) and
cubic [13] models. We then look for entities, which can be either scalar functions
t;(K) and/or matrices T;(K), such that the decimation of the intervening spin in a
sequence of two interactions K, K’ yields a set of effective interactions K” given by
the product relation

t;(K") = t,(K)t;(K") T:(K") = T(K)T,(K'). 2)

The role of these entities in diagrammatic analyses will also be examined.

2. Commuting interaction matrices

We consider first the case of commuting and diagonalizable interaction matrices, i.e.
interaction matrices with different parameters commute and can be simultaneously
diagonalized. Physically, the commutation of interaction matrices means that the
physics is unchanged if two interactions connected in series are interchanged; this
is often the case in models of physical interest. Then, except in the exotic cases of
nilpotent matrices, the interaction matrices with different parameters can be simulta-
neously diagonalized. That is, there exists a non-singular g x g matrix P, independent
of K, such that

Ay O - O
pwkypi= | . )
0 0 - A

where A; = )\;(K) are the eigenvalues of W(K) and A, is the largest one which is
given by (1) by Frobenius’ theorem.

Now the interaction matrix for a series of two interactions K and K’ is, by
definition, W(K)W(K'). Clearly, this matrix is also diagonalized by the similarity
transformation (4) with diagonal elements A, (K)X;(K’). This points to the entities

t;(K) = A (K} Ag(K) )

with i # O ranging over ali distinct eigenvalues, possessing the product property
(2), and therefore can be taken to be the thermal transmissivitics. Indeed, for the
zero-field Ising model we have A\, = 2Zcosh K, A, = 2sinh K, t(K) = A /A, =
tanh K. Other examples are given in section 5. It should be pointed out that if the
interaction matrices are not diagonalizable, but can be simultaneously transformed
into a triangular form with the eigenvalues appearing in the main diagonal, then the
transmissivities can also be taken to be (5).
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3. Diagrammatic analyses

We continue discussions of the case of commuting interaction matrices and examine
the role played by the transmissivity (5) in diagrammatic analyses. Let u; (a column
matrix) and v; (a row matrix) be the respective right and left eigenvector correspond-
ing to A,, which are shared by the commuting interaction matrices, satisfying}

P =AW

V!'W = Aiv,- V,'uj; = 6.'.,'. (6)

By Frobenius’ theorem and explicit construction all elements of u, and v, are equal
to 1/.,/9. Define ¢ x g matrices

M‘Eu‘v' i=0,1,...,q—1. (7)
We have
i1 ..o 1
111 o1
M=t ! ®)
q :
1 1 1

and, wing (6),
M;M; = M,5;; ®

and thus we can write

1
W=, [MD + EF] (10)
where
q=1
F = qu.—Mi. (11)

Explicitly, we have

o

W
Foy=q—2£ -1 (12)

and, from (1),

g=—1

> F5=0. (13)
/=0

+ It is assumed that, in the casc of degenerate eigenvalues, we have formed linear combinations of the
eigenvectors so that (6) holds.
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Thus, if F, 4 is taken to be the bond variable in diagrammatic expansions, all diagrams
containing vertices with a single incident bond will have zero weight. This fact con-
siderably reduces the number of diagrams that need to be considered. Furthermore,
using (6) and (9), one finds for a series of two interactions K and K/,

Z ﬁ(t )Fﬂ-y(t’) = a-y(ts'ti) (15)

A=0

where t; = 1,(K),t; = t;(K’), i(3# 0) ranging over all transmissivities. Therefore,
the intervening spins in a sequence of interactions can be conveniently decimated,
with the net resuit that the sequence is replaced by a single interaction whose effective
transmissivity is given by the product relation (2). This property has been found to
be extremely useful in analysing spin models [4, 14] and in carrying out real-space

renormalization group analyses {2, 3, 5-7].

4. Non-commuting interaction matrices

If different interaction matrices do not commute, they cannot be simultaneously diag-
onalized. However, by Frobenius’ theorem the largest eigenvalue A, is always given
by (1) and non—degenerate and therefore can be singled out by takmg a snmllar-
ity transformation P with Py, = (P~');, = 1/,/q. Furthermore, there may exist
some symmetry in the interaction which permits further simultaneous diagonalization
and/or block-diagonalization of the remainder of the interaction matrices. Then, the
transmissivity can be taken to be the set of eigenvalues and block matrices thus ob-
tained. Of course, if one is only interested in transmissivitics which are scalars, one
can always take the associated determinants instead of the matrices themselves. In
case some of the block matrices are triangular, then the set includes the diagonal
clements of these triangular matrices, which are eigenvalues themselves, instead of
the matrices.

An important class of spin models with non-commuting interaction matrices satis-
fying (1) are the interaction models introduced by Biggs [15, 16]. Let o, 3, ... denote
the clements of a group G of order N. Then the interaction model i an N-state
spin model with Boltzmann weights

Wa,ﬁ = W(a-lﬁ) a,fed. (16)
Here, the interaction matrices (16) are elements of the group algebra for &. Namely,
the decimation of a spin in a sequence of two interactions gives rise to an effective
interaction of the same type, a fact which follows from the identity

S WagWhy = 3 W(a™ B)W(57')
BeG BeG (17)

= Y W@W (e a ) = W(aly) = Wi,
zeGG

We use the permutation group G = S, to illustrate our discussions. For defi-
niteness order the six elements {e, Py, Pys, Py3 Pyg, Pig, Py3, Py} 0f S5 in the order
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given, where e is the identity permutation and the F;; the transpositions. The inter-
action matrix (16) then takes the form

— (W1 W,
w=(w w) a9
where
a b ¢ d e [
W=]lc e b W,=|e f dj. (18a)
b ¢ a F d e
Note that W, is not c¢yclict. Using a similarity transformation generated by
= L(a a) (19)
vada -q)
we find
_ (W, +W,)q~?! 0 )
pwp-t = (AW + W, . 20
( 0 qQ(W, - W,)q* 29)
Further choosing
1 1 1 1
g=—[(1 w w? (21)
V3 1 w? w

where w = €2™/3 we find

(W, W, )q"' = ('\0* 0 )

my
Ap=a+t+btcx(d+e+ f) 22)

me = [ Bu Fup ) at+bwidew E(d+ ew+ fw?)
T\ 2y, Uy /T \HdF e+ fw) et botan? [°

Here A, = A, is the largest eigenvalue. In a similar fashion the product of two
matrices WW’ is transformed by the same similarity transformation into one with
block diagonal elements A, A/, and m_ m. The transmissivities are now taken to be
the function ¢, and the two matrices given by

o=\ /A T, =m, /A

= T.=m /\
/Ay T, =m, T, 3

/ k)
Ay (&

\
1 + 7

To clarify the meaning of the transmissivity (23), we consider the diagrammatic
expansion (of the partition function, for example) and writc W in the form of (10)
but now with

F=q[t,M +0,T,Q +P,T,Q,)] (24)

t With other orderings of elements of S corresponding to the interchange of some columns and rows,
L
W can be put into other forms including one given by (V_V; Wf) where both W, and W, are cyclic,

and Wy denotes the wranspose of W;.
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where M, is given by (7), P, is the 6 x 2 matrix consisting of the (3i~1)th and (3{)th
columns of P~1, and Q; the 2 x 6 matrix consisting of the (37— 1)th and (3:)th rows
of P. Again, the identity (13) holds, meaning that all diagrams containing vertices
with a single incident bond will have zero weight in the expansion, We further find,
in analogy to (15),

5
Z Fog(ty, T, To) Fao (8,1, To) = F (4,1, T, T1, T, T3). (25)
B=0

Thus, the decimation of an intervening spin in a series of two interactions generates
an equivalent transmissivity according to the product rule (2), now applying to t; as
well as matrices T, and T,.

While the two matrices m, = m_(a,b,..., f) and m), = m, (a',¥,...,f"),
a = 4 or —, with different parameters generally do not commute, it is readily
verified that they do commute if we have

uppfug = (P LTS (uyy — Ugg) /1y = (uyy — Uy ) /115 (26)

That is, my and hence T, and T,, can be completely diagonalized by a similarity
transformation, independent of the parameters, in the parameter space

e—f
2d—e—f

(b—e)? _
24 e+ fi—bd—ef— fd

=C, C, 27)

where C| and C, are constants. In this subspace the transmissivities are given by

t, = X[fAp i =1,2,...,5, where A; are the ecigenvalues of W. Explicit examples
satisfying (27) are given in the next section.

5. Examples

Ising model. t = A\, /), = tanh K.

Potts model. The interaction matrix has two distinct eigenvalues, Ay = e + g— 1 and
a (g —1)-fold degenerate A, = e —1. Hence, t = A /A, = (ef 1) /(eX +q-1).
g-state chiral Potts model [9, 10]. Let the lattice edges be oriented from site ¢ to site
j such that the Boltzmann factor s W, .- = W(a; — «;),(modq). Then, there
exist g — 1 distinct transmissivities

_ 1 riepre
t5(W) = SEEOE W(a) (28)

where A; = 1;10 W (). This result also applics to the Z{q) model [5, 17]. For
symmetric (and cyclic) W the transmissivities (28) are real if W(a) are real.

Cubic model. A discrete n-component cubic model [13] can be described by an
interaction matrix with elements

Wog = exp[K(5,-S5) + L(S, - 54)°] (29)
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where S, is a vector which can point in one of the 2n directions along the positive
and negative Cartesian axes in an n-dimensional space, ie.

S, = (£1,0,...,0),(0,%1,...,0),...,(0,0,...,%1). (30)
This interaction matrix has three distinct eigenvalues
M=el(e® +e Ky +2(n—1)
M =el(eX — e K) n-fold @31
A, = el (K feKy—2 (n —1)-fold
and hence we have
= XA/X 1y = Ag/ X (32}

These yicld the known results [7).
Interaction model S,-commuting subspace. In the preceding section we have consid-
ered one example of Biggs' interaction models corresponding to the group S;, and
showed that its interaction matrices commute in the subspace (27). Generally, the
constraint (27) gives rise to intersections of two hypersurfaces in the parameter space.
But there exist special solutions of (27) for which some of the Boltzmann weights are
equal and the constraint is automatically satisfied. For positive Boltzmann weights
there are three such cases, which are listed below together with the two additional
transmissivities obtained from the further diagonalization of T, and T,:
b=ce= fitz=(a-b+d—e}fdg,t,=(a-b-d+e}/}
(ii)b=e=fe=d,ig=(a—-b)/ A1, = (a—c)A
(ii) b=d,e=e = f,i,=(a - b}/ Ay, f, = (a — ),
Case (ii) has also been noted very recently to be of interest in another context; its
parameter space is naturally foliated in terms of elliptic curves [18].
Interaction model S,. The group S, has 24 elements. Arranging them in the or-
der of {{S},{5P,}}, where S = {e, Py Poy, PryPps; Py Posy Poy Pozy Pry Py, Py
Py, Pia Py Py Py, Pig Pyay Py Pis, Pyo Py}, we find the interaction matrix W to
again assume the form (18) but now with

A B C D234 Ejnzg Froag
w=|CAEB W, = Eugn Fiaa Dasr (33}

B C A Fase Daam  Eoig
where

a; g dz (4 by by by by
_ | g a a4 &3 B = by by b b
A= ) @ =\t b, b, b
\“3 g Oy 2 4 D3 Uy Oy
ay @3 4y &y by by by by

(Cl Cyg C3 Cy

c= C4 (:3 CZ Cl

C, € €4 C3

\‘33 €y € €y
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j, :iij ‘jik :iil e, € € €
o=l d A d o en e & e
D'Jk, di dk d] di E”kl BJ- ey € ei

dk d! di dJ €; € ej e;

b '4;_:' ? hi

i K ;i &
F.ooy = J L 34
ZLTAl I M A A S

i & hHi T

As before, this interaction matrix can be block-diagonalized by a similarity transfor-
mation generated by P given by (19), but now with

q= 1 { ¢ l::z ::;f \ g l= 1 {1:7 "';IB ,..llb\ (35)
- ‘C —-— A ] -a s W L] ~~}
V3 \I w2|b wlc} V3 \Icla wl, wzlc}
where w = 2773, and
1 0 0 0 1 1 1 1
I___0100 l_l_l_lll-l—l
“lo 0o 1 0 a”% "ol 1 1 -1
00 0 1 1 -1 -1 1
(36)
0 01 0 0 10 0
_ci_[0o 0 01 Lot |t 000
h=Lk"={1 00 0 =L'=10 00 1
0 1 0 0O 0 010
This again leads to the diagonal form (20) for PWP-! with, in place of (22),
A, 00
W, =Wl = ¢ my 0
0 0 M,
4
Ay = la;+ bt £(di +e;+ f)]
i=1 (37)
(a+d) sz (b €)1304 (e flaana
my=| (¢cFem (aF iz ,(b :F.d)gam
\(—bx fligaa (—cEd)agy (~Cx€)a/
M =( A + w?®Bl, + wCl, £[D) 334 + wEyza4ly +2‘*’2F1234|c3)
* +[D 234 + W E 534l + WF a34l.] A + w8l + w*Cl,
where
(atd)p=(a;+a;—a—a)x(d;+d; —dp—d)) (38)

etc. Thus, the transmissivity consists of £ = A_/A_, the two 3 x 3 matrices my /A,
and two 8 x 8 matrices M, /A given by (37) and (38).
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Ky

A

Ky, A

Figore 1. Unit cell of a chiral checkerboard lattice. The full circles denote spins that
are decimated.

6. Disorder solution

Our formuiation of the transmissivity permits a simple and direct derivation of dis-
order solutions [19]. Consider, for example, the case of a chiral square lattice a
unit cell of which, say, the black square of a checkerboard, is shown in figure 1,
where the lattice edges are oriented to indicate that the interaction matrix may not
be symmetric. Define W,,(K) = W, (K) which is always possible, provided that
the interaction is of the same class when the edge orientation is reversed. Then, in
the example shown in figure 1, the criterion for disorder solution is [19]

g=1 . A
,B—-,-Z=0 W, a(K)) Wy (K W5 (Ky) = WKy (39)

where X is a multiplicative factor which turns out to be the per-site partition function.
Combining (13) with (15) and using the fact that

Wy (K) =W, 3(—K) (40)

we find from (39) the following conditions for the disorder solution:
(KK 1(Ky) = t(—Ky) (41)
T:‘(R1)Ti(K2)T£(K3) = T{-K,} 42)

where i ranges over all transmissivities. This results in the following expression for
the per-site partition function:

A=A oWas 3
8
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7. Summary and discussions

We have shown that the transmissivity of a spin system, which are entities transforming
according to the product property (2) under the decimation of spins, can be taken
to be the eigenvalues as well as matrices which block-diagonalize the interaction
matrices. If the interaction matrices with different parameters commute and are
diagonalizable, then the transmissivity is given by the ratios of the eigenvalues. If
the interaction matrices do not commute as in the example of the interaction model
defined by S;, the transmissivity entities are given by eigenvalues as well as block
matrices. In all cases the largest eigenvalue is distinct permitting the use of F 4
given by (12) as a bond variable in diagrammatic expansions. Then we find all
diagrams containing vertices with a single incident bond to vanish identically. In
addition, diagrams transform according to (15) or (25) when spins are decimated.

Finally, it is useful to mention some possible extensions of our formuiation. Our
analysis of the transmissivity using the method of interaction matrices now opens
the door for carrying out similar analyses for a host of other problems. These
include the dual transmissivity [3], the break-collapse method widely used in real-
space renormalization group studies [3, 7, 20], and the important connection of
transmissivity with correlation functions [21, 22]. In addition, the new formulation
of transmissivity as developed here can also be used as a tool to obtaining high-
temperature expansions for complex discrete spin systems.
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