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We present a new class of mappings acting on many variables, and depending on many parameters. These mappings are non-
linear (birational) representations of discrete groups generated by involutions, having their origin in the theory of integrable
models in statistical mechanics. Various quantities of statistical mechanics present automorphy properties under the action of
these groups, which appear thus as a generalization to several complex variables of the fundamental group for Riemann surface.
They enjoy many remarkable properties, and we give a preliminary study of these mappings.

1. Introduction

In a previous publication (preceding article [1]),
we have introduced a class of birational mappings in
projective space, and initiated their study. These
mappings are non-linear representations of infinite
Coxeter groups. One of the interest of these trans-
formations is that they are symmetries of the Yang-
Baxter equations and their higher dimensional gen-
eralizations [2,3]. They are also symmetries of var-
ious physical quantities as, for example, the partition
function: indeed these quantities have definite au-
tomorphy properties under these transformations
[4,5]. We will not describe here the applications to
integrability, but examine a number of aspects of our
mappings.

Their main characteristics is that they are con-
structed as products of involutions. With a pair of
non-commuting involutions 7, J, we naturally have
f=1J as a mapping to iterate, for it is generically of
infinite order, and the group generated by 7 and J
contains essentially the iterates of / (and its inverse

.
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This yields a natural generalization of iterated
mappings: just consider the group generated by more
than two involutions. This is what appears in ref. [3]
for higher dimensional lattices.

The basis of our construction is thus to provide
involutive transformations on the space of param-
eters we consider (projective space CP,,). These in-
volutions find their origin in the inversion relations
of statistical mechanics [6-8]. In all cases [1-3] they
amount to taking the inverse of a matrix whose en-
tries belong to the parameter space.

From the construction method, and the charac-
teristic features of these mappings, a number of
properties arise, which will be sketched here. We de-
liberately use pictures, in order to give a synthetic
presentation, and refer to refs. [1-3] for the more
algebraic results.

We first exemplify our construction method by de-
scribing two classes of inversions, issued respectively
from IRF [6] and vertex {9,10] models in statistical
mechanics (section 2), and then proceed with their
study.

Remarkably, the orbits of some of these mappings
(called quasi-integrable in ref. [1]) are dense in
smooth non-trivial algebraic subvarieties of the pa-
rameter space (curves in the simplest cases we show
here in fig. 1). These subvarieties are of the same
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nature as the integrability tori appearing in the study
“*a la Poincaré” of dynamical systems.

We examine two types of deformations of our
mappings:

~ The first type is a continuous deformation pre-
serving one of the characteristic features of our map-
pings: the (almost everywhere) invertibility (figs. 2a
and 2b).

— The second type breaks the invertibility (fig. 3).

We next examine the problem of singularities.
There are few true singularities: our mappings are
defined on projective space and it is harmless to ap-
proach or reach the point at infinity. This may of
course be quite dangerous numerically. We describe
the distribution of the points going to infinity after
a finite number of iterations (fig. 4).

We considered in ref. [1] a specific action of the
mappings in a double copy of the parameter space
motivated by the study of exactly solvable models.
We have produced, in the quasi-integrable case, spe-
cific curves and we examine here their stability (fig.
5). We also give an example of this action in a non-
quasi-integrable case, with the emergence of order
from a rather chaotic background (fig. 6).

In all this the fundamental object is the represen-
tation I' of some Coxeter group. In many cases, there
is an attracting smooth subvariety (possibly points).
It 1s then natural to look for a fundamental domain
(and this will be useful in relation to automorphy
properties of various quantities of statistical me-
chanics). We describe this fundamental domain for
a mapping related to the symmetric Ashkin-Teller
model [11] (fig. 7).

2. Construction of the mappings

We give here the construction in two specific ex-
amples, coming from statistical mechanics. This is of
course not limitative [1,3].

2.1. Vertex models

Let us consider a vertex model on a two-dimen-
sional square lattice of size M XM with periodic
boundary conditions. To each bond is associated a
variable with g possible states. A Boltzmann weight
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w(i, J. k, [) 1s assigned to each vertex configuration
[10]

/
l k
P .—ﬁ.)———w
J

The ¢* homogeneous weights w(i, j, k, [) are first ar-
ranged in a ¢° X g> matrix R:

Riy=w(i,j k. l). (1)
We introduce the inverse / by

Y RUHUIR)E=0,0.= Y (IR){sRY (2)
o f o ff

and another inverse J by

;ﬁRi-‘E(lR)i’ﬁ’=5h5iv= 2‘7} (JRYGREL. (3)
I and J are two involutions. They are related by par-
tial transposition of the indices (that is two say some
rearrangement of the entries of the matrices one con-
siders). They act as polynomial transformations with
integer coefficients if we work with homogeneous co-
ordinates, or equivalently rational transformations
on the inhomogeneous coordinates.

2.2. IRF models

Let us consider now an interaction around the face
(IRF) model [6] on a two-dimensional square lat-
tice of size M XM with periodic boundary condi-
tions. To each site is associated a variable with g pos-
sible states and a Boltzmann weight w(/, j, k, /) is
assigned to each face

The ¢* homogeneous weights w(7, J, k, [) are ar-
ranged in g matrices W(i, k) of size g X g with entries
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Wi, kYo =w(ij, k1. (4)
We introduce an inverse (inversion by blocks) 7 by

Y W kY UW) (i k), =6, (5)
/

that is to say
S (Iw) (i, m, k, yw(i, j, k, [)=4d.,. (6)
J

Similarly, we may define the inverse J corresponding
to the arrangement of the weights obtained by ex-
changing the role of (i, k) and (J, /):

Y (Iw)(p,j, i Dw(i, j, k1) =84 (7)

Iand J yield birational transformations on the ¢* ho-
mogeneous weights w(i, j, k, ).

One may reduce the number of independent vari-
ables as in refs. [1,12] by choosing admissible pat-
terns for the action of I and J. In our construction,
the number of homogeneous variables takes any
value, depending on the model. We thus provide non-
trivial (non-linear) mappings with arbitrary number
of variables. There are very few such examples in the
literature (see for instance the “‘trace mappings”
(21,221). The existence of singularities permits the
multiplication of new examples.

Notice that there exists a difference between the
transformations associated with vertex models and
the ones associated to IRF models. For vertex models
the determinant is a common factor we do not care
about (homogeneity of the weights). For IRF models
however, one has a priori g2 independent determi-
nants. The most general model will have transfor-
mations of degree g(g—1)(g®>—1) in the IRF case
and ¢g2—1 in the vertex case.

Note also that for both vertex and IRF models, the
two inversions / and J do not commute. They gen-
erate an infinite discrete group I', the infinite dihe-
dral group, isomorphic to the semi-direct product
ZX Z,. This group is represented on the matrix ele-
ments by birational transformations [1,13,14]. Re-
mark that for vertex models, the birational transfor-
mations associated to the two involutions 7 and J are
naturally related by collineations (which realize the
abovementioned rearrangement). This should be
compared with the situation for nearest neighbour
interaction spin models. In the examples developed
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in ref. [1], there is a collineation intertwining the
two involutions (matrix inverse / and element by
element inverse J). This collineation generalizes the
Kramers—Wannier duality. This remarkable prop-
erty is always verified for birational transformations
in CP, #.,

The situations where one defines and combines
more than two involutions appear in the study of sta-
tistical mechanical models in three or more dimen-
sions (see ref. [3]).

2.3. The Baxter model

As an example, let us consider the paradigm of the
exactly solvable models: the symmetric eight-vertex
model which can be seen both as a vertex and an IRF
model. Seen as a vertex model, it has the following
R-matrix:

R= (8)

S o n

oo O

o> 0 O
o

d 00

Notice that this form is preserved by the operations
I and J. The action of I is

a b
PR b b?—c*’
—c —d
> &
h2—c?’ a’—d?*’

and the action of J is

p a b
- R
a’—-c?’ b2—d*’
—C —d
> ————, do—s.
ai_c?’ bE_ g2

One would obtain exactly the same formulae by con-
sidering the model as an IRF model.

We use the visualization method already em-
ployed [1] for spin models, i.e. just draw the orbits
obtained by numerical iteration and look. Fig. 1

#1 In CP,, the Noether theorem [15] proves that every bira-
tional automorphism of the plane can be represented as a
product of quadratic transformations and a projective trans-
formation, but this is very specific of CP,: the birational trans-
formations in CP,, n> 2, are much more complicated.
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Fig. 1. 3d perspective of an orbit for the Baxter model.

shows in the variables u=b/a, v=c/a, w=d/a, the
result of the iteration of IJ. The orbit is dense in a
curve. The study of the invariants under the action
of I and J shows that this curve is elliptic, as it should
since it has an infinite number of automorphisms. It
is given by the intersection of the two quadrics
4,=const and 4,=const (Clebsch’s biquadratic),
with 4, and 4, the I" invariants [1],

g a*+b*—c?-d?
' ab+cd

_ab—cd
2T ab4cd

ki

(9)

There exists an elliptic parametrization of this curve
in CP, [16,17]. In terms of the elliptic parameter 6,
IJ is merely a translation. This proves that the ge-
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neric orbits of IJ are dense in curve similar to the
one of fig. 1 and that d@ is the invariant density on
this curve. We leave it to the reader to rewrite this
density in the original variables.

3. Deformations

From the very construction of the two involutions
I and J, they are birational transformations with /n-
teger coefficients. This means that the construction
has a certain rigidity. It is nevertheless possible to
introduce deformations of our mappings. In this sec-
tion, we shall concentrate on the deformations of the
mappings associated with the symmetric five-state
chiral Potts model, denoted SP2 in ref. [1]. The
original / and J read
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—u+tuv—u?+v?

I: -
e Y utr—u—r—u?’
—vtuv—vi4u’
s vHuv—v L (10)
l4ut+v—vu—v —u
Jo o u-l/u, v-1/v. (11)

3.1. Deformations preserving invertibility

For the Baxter model (9) as well as for the sym-
metric five-state chiral Potts model (10) or various
other models (see ref. [1]), there exists a foliation
of the whole parameter space by a linear pencil of
elliptic curves, and 1/ is just a translation on each of
these curves. It is represented by a shift of a “spec-

a=1.00001 —

oL \
L b=1.00001

-

T
2

a=1.0001
b=1.0001
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tral” parameter 6. This shift replaces the rotation
number on a circle. The evaluation of this shift for
each curve [18] should permit:

(1) to examine the location of periodic orbits, and
probably show that they are dense in the parameter
space;

(2) to have a notion of deformations with fixed
rotation number.

In a first step, we consider a two parameter family
of deformations preserving the involutive character
of I and J. We choose to leave I unchanged and to
deform J into J, ,;

Jon: u—aju, v-blv. (12)

Figs. 2a and 2b show how the initial invariant curve
deforms with increasing values of a and 4. For very

\ a=1.00005
b=1.00005

Fig. 2a. Blow up of the tori (I).
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Fig. 2b. Blow up of the tori (II).

small deformations (a=b=1+5x1077), the curve
is slightly deformed. For a=b=1+10"%, the situa-
tion is drastically modified. The trajectories seem to
wander between curves of the linear pencil described
in ref. [1], with different values of the invariant.
After a more or less chaotic crossover region, one re-
covers another particular situation in the limit where
a and b are close to 2: the iterates rapidly contract
towards a cycle of order four.

3.2. Deformations breaking invertibility

There are many other possible deformations. One
can consider deformations breaking the birational
character of these mappings. We may for instance

replace 7 by I

238

—utuv—u’+v’

I u 5.
Tt utr—u—vi+ul

—vtur—vitu’
- 2 2"
l+utv—vu—v-—u”

'

(13)

We have just switched the sign of the coefficient of
#? in the denominator of (u), thus breaking the in-
vertibility of /. Fig. 3 shows a typical orbit of IJ. The
situation is now drastically different and any initial
point leads to orbits trapped by this strange attractor
[19].

4. The singularities of birational mappings

Our birational mappings are non-linear represen-
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Fig. 3. Orbits of a non-invertible rational mapping.

tations of Coxeter groups. They renew the well-known
linear representations of these groups [20]. The it-
eration may evidently send a point of the orbit to
infinity. This is not a true singularity in CP,. It is
merely an effect of the choice of coordinates. It may
however be quite problematic for the numerical cal-
culations. Fig. 4 shows the singularities of (IJ)” with
p going from — 17 to 17 for the symmetric five-state
chiral Potts model (10, 11). In fact fig. 4 is repre-
sentative of the orbits of an arbitrary curve under the
action of the group I', which tend to fill the whole
plane. This leads to the problem of the orbit of a curve
(rather than of a point).

Remark. There might exist true singularities, i.e.
points where the action of I' is not defined. In the
quasi-integrable case, these points are related to the
intersection points of the pencils. There are also spe-
cial points: the accumulation points of the action of
I'. The exegesis of these particular points will not be
done here.

5. The representation pXp~*

We consider the action of I" on a double copy of
the parameter space introduced in ref. {1]. One acts
with ge T on the first copy, and with its inverse g’
on the second one, from which the notation pXp~!
(the variables corresponding to this second copy will
be written with a bar). This seemingly odd construc-
tion can be justified from considerations on exactly
solvable models [ 1,2]. For the sake of simplicity we
examine the iterations in the plane CP..

5.1. Stability of the quasi-integrable cases

When the iteration of IJ leads to a curve on one
copy, there exist algebraic invariants 4 such that the
curve reads A=const [1]. If 4 is the same for the ini-
tial points in the two copies, then the action of I' on
the double copy yields a curve. This can be easily
understood in terms of the elliptic parameters 6 and
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Fig. 4. A “few” singularity points of the iteration of 1J.

@ on the two copies of the curve: 8+ is invariant
under this action of I'.

It is natural to wonder if the existence of this curve
is stable with respect to small differences between
the A’s of the two initial points. Let us consider again
the mapping associated to the symmetric five-state
chiral Potts model (10, 11). We take initial points
belonging to the hyperbola 2uv+3u+3v+2=0, i.e.
a genus zero component of the curve 4= 32. If we in-
troduce a mismatch of the invariants 4 of the order
10 =3, the curve in the u, i@ plane give way to the tra-
Jjectories shown in fig. 5.

This situation is representative of most of the
studies we have performed in the quasi-integrable
cases. Although the orbits in one copy are astonish-
ingly stable with respect to the numerical errors (they
“survive” a few thousand iterations in single preci-
sion mode) and they still appear in the perturbed
mapping (see fig. 2a), the precise location of the
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points on the curve diverges in no more than a
hundred points with numerical drift and no trace of
the curve in the (u, #) plane subsists after
perturbation.

5.2. 4 non-integrable case

We examine this action pXp~' for the model
linked to Z; introduced in ref. [1]. For this model
the orbits of I/ are chaotic (see fig. 4 of ref. [1]).
Fig. 6 shows a remarkable structure: when one ob-
serves the accumulation of the points, one sees that
the hyperbolae appear one after the other over an al-
ready constituted background. A very heuristic ex-
planation of this emergence of order from disorder
is the following: with the same notations as in ref.
[1]. the two lines =1 and v=1 are exchanged
under the action of IJ, and contain an infinite
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Fig. 5. (u, u) trajectories with a mismatch of invariants.

set of remarkable attractive-repulsive points
sin[ (n+1)a]/sin(na), with tan(a):ﬁ. When
the point (u, v) roves about the plane, it eventually
passes nearby one of these highly unstable points.
This stabilizes for a while the trajectories near their
exact values. When restricted to the two lines u=1
and v=1, the transformation 7/ is an homography of
infinite order. Orbits in the (u, #) plane are then hy-
perbolae as shows as calculation similar to the one
of ref. [4].

6. I" as a fundamental group

One should emphasize again that the group I is a
symmetry group in the whole parameter space, and
not only to possible integrability varieties. The par-
tition function is a multivalued automorphic func-
tion of several complex variables for this group. A

rough glimpse of the involved but remarkable struc-
ture of the covering for the standard scalar check-
erboard Potts model can be found in ref. [5]. We
want to find the fundamental domain of the group
I', in the same spirit as was done by Poincaré for au-
tomorphic functions (Fuchsian groups, Poincaré
groups, ...). We deal here with the group associated
to the symmetric Ashkin-Teller model. This is model
SPIinref. [1]. The interest of this model is that there
exists an algebraic invariant

l—uv

A= ,
Uu—v

(14)

with ¥ and v the inhomogeneous coordinates given
inref. [ 1], and that there exists moreover a partition
of the parameter space in two regions with a differ-
ent behaviour of the orbits under the group. The two
regions are delimited by the value of the invariant.
If 4] <1, the generic orbits of I" are dense in the
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Fig. 6. Saturn’s rings for a Z, model.

curve A=const. If | 4| > 1, the points of the orbits ac-
cumulate towards the diagonal u+v=0 (and of
course remain on the curve A=const). Looking for
a fundamental domain has a meaning only in this
last region. Indeed the action of I" is not discontin-
uous in the other region.

The model is particularly simple since there is a
rational parametrization [11]. There exists again a
parameter 6 on the curves A=const, for which the
action of 7 and J reduces to

I 6--6, (15)
J: 0-1-6. (16)
Remark that the action of IJ is the translation of 6
by A

From the action of the symmetry group, we may
deduce the expression (or more precisely the ana-
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lytic continuation [4]) of (e.g.) the partition func-
tion for all  from its value on the interval 8¢ [0, 4/
2]. The points §=4/2 are the blowing up of the sin-
gular points (u=1, v=1), (u=—1, v=-1) (fixed
points of J) in the direction tangent to the curve
A=const. We can give the localization of the points
f#=21 for each curves 4=const. They all lie on the
hyperbola

2uv+u+v=0, (17)

or its symmetric with respect to the diagonal v+ v=0.
These hyperbolae, together with the straight lines
u= 11, v= 11, delimit the fundamental domain of
I'. The straight lines are globally invariant by I'. The
images of the two hyperbolae gives the boundaries of
the successive images of the fundamental domain.
Fig. 7 shows the different regions and the funda-
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Fig. 7. Fundamental domains for the symmetric Ashkin-Telier model.

mental domain together with its images under the
iteration of 1J.

It is worthwhile saying that any other symmetry
acting on the model, such as for example the renor-
malization group has to be compatible with the group
r[23].

7. Conclusion

We would like to emphasize that the construction
we present here could not have easily been found ex
nihilo. Considerations about statistical mechanical
models were essential in their building up. Indeed
the “inversion relations” have been a long standing
tool in statistical mechanics on lattices, and they
strongly motivate our construction. What is notice-
able is that, in return, it yields a powerful tool for the
exploration of lattice models, integrable or not, to-

gether with new openings in many more directions
of research. Among them are of course the investi-
gations related to the mappings per se. Beyond that,
and more in the direction of statistical mechanics and
field theory, is the understanding of the role of the
dimension of the lattice on both the algebraic aspects
and the topological aspects.

All this touches various fields of mathematics and
physics: algebraic geometry, algebraic topology,
quantum algebra. Indeed the Coxeter groups we use
are at the same time groups of automorphisms of al-
gebraic varieties, generalized fundamental groups of
algebraic varieties, symmetries of quantum Yang-
Baxter equations (and their higher dimensional
avatars).

We believe moreover that the space of parameters
in the appropriate place to look at, if one wants to
substantiate yet more the deep topological notion
embodied in the notion of Z-invariance [19] and free
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the models from the details of the lattice shape.
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