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The new solutions of the star-triangle relation for the chiral Potts model obtained recently by Au-Yang et al. are revisited. Their
symmetries are studied with a particular emphasis on their group of automorphisms.

Last year, a whole set of solutions of the star—tri-
angle relation have been obtained for the chiral Potts
models by Au-Yang, Baxter, McCoy and Perk [1-5].
A remarkable feature is that they are the very first
examples of models in two-dimensional statistical
mechanics uniformized with curves of genus greater
than one. In a more recent paper [5] new exact re-
sults for this nearest neighbor two spin interaction
model given in terms of two “rapidities” restricted
to lie on a curve which is the intersection of two Fer-
mat surfaces have been presented. These solutions
present many remarkable properties.

In this note, we consider the symmetries of the
model of the chiral N state Potts model with special
emphasis on the duality and the inversion relation.
In general, the set of transformations generated by
the inversion relation and the other symmetries is an
infinite discrete group. However, this situation is in-
compatible with a parametrization with curves of ge-
nus greater than one or with Fermat surfaces [6].
Here we analyze these symmetries and show that
these integrable models correspond precisely to the
cases where this group degenerates and becomes fi-
nite. The symmietries of the model are then closely
related to the automorphisms of the algebraic vari-
eties that occurin the parametrization of the model.

In ref. [5] a:general solution of the star-triangle

relation was discovered. This solution was written in
terms of two sets of rapidities namely two four vec-
tors (a,, b,, c,, d,) and (a,, b, c,, d,). These four
vectors occur in the model in particular
combinations:

x =bd,, xy=a,c,, x3=byd,, xs=cpa,,
xs=d,a,, X¢=d,a,, X;=Cb,, Xz=b,c,.
(1)

In order to point out the central role played by these
variables x; we consider the following problem. Given
the Boltzmann weights w(n) and w(n) we ask
whether a set of x; exists such that:

w(n)x, —w(n)w " 'x, —w(n+1)x;
+w(n+1)w"'x,=0,

w(n)wxs —w(n)w"x,—w(n+1)x;
+w(n+ 1w 'x =0, (2)

w is an Nth root of unity. Saying that the x; are prod-
ucts (such as (1)) amounts to imposing the two
conditions

" X3 X3 =X5Xg and X1 X4 =XgX7 . (3)

The periodicity of w and w is equivalent to
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xV+xi¥=xt+x§ and x¥+x¥=x¥+x¥ (4)

(when the x; are products this corresponds to eq. (6)
of ref. [5]).

Clearly, N=3 and N>3 are two cases to be dis-
tinguished as for N> 3 the homogeneous linear sys-
tem (2) is overdetermined.

(1) N=3. In this case egs. (2) are always com-
patible. The integrability condition of ref, [5] is
written as

F(w(0), w(1), w(2))F(w(0), w(1), w(2))=w,
(5)

where F(w(0), w(l), w(2))=x,Xx4/X>Xx3, with

x; =w(2)w(0)2+ow(1)w(2)2+w?w(0)w(1)?,

Xy =w(0)w(1)* +ow(1)w(2)*+w?*w(2)w(0)?,

—x3=w(2)w(1)*+ow(1)w(0)*+w?w(0)w(2)?,

—xa=w(0)W(2)*+ww(1)w(0)*+w>w(2)w(1)?.
(6)

Eq. (5) is nothing but eq. (3) which means that the
x; are products of two sets of homogeneous param-
eters (the “rapidities™). In the limit of the three state
scalar Potts model (w(1)=w(2), w(1)=w(2)), (5)
degenerates into the two conditions for which the
model also satisfies the star-triangle relations namely
the ferromagnetic and the antiferromagnetic critical
conditions [7,8]:

AB+A+B=0 (7a)
or
AB—A-B=2, (7b)

where A=w(0)/w(1) and B=w(0)/w(1).
One also remarks that, when w(n) and w(n) are
real for all n, (5) leads to only one condition.
Finally, setting

w(0)=1, w(0)=1,
w()=1+a,(w—Du+a(1—w)u+...,
w(l)=a,u+...,

w(2)=14+a,(l ~w)ut+a(w—1)u+...,
w(2)=a,u+..., (8)
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the leading order in u of (5) is nothing else but eq.
(7) of ref. [1].

(2) N=4 and N>4. For N=4, the homogeneous
linear system is overdetermined. One has non-trivial
solutions when the determinant of the system van-
ishes namely

[w(0)*+w(2)*]1w(1)w(3)
+[w(3)*+w(1)*1w(0)w(2)
—2w(0)2w(2)2=2w(1)?w(3)>=0. (9)

One recovers here eq. (19) of ref. [2]. The condi-
tions obtained in refs. [1,2,5] for the star~triangle
relation to be satisfied fall into two different classes:
this determinantal condition which insures the ex-
istence of the x; and condition (5) which amounts
to saying that the x; are products. As for N=3 one
can expand the Boltzmann weights to obtain from
(5) eq. (33b) of ref. [1] and from (9) the second
factor of egs. (33c) and (33d) of ref. [1].

For N>4 we have a similar situation with more
than one determinantal equation.

Let us also recall the conjectured critical variety of
the model described in ref. [5]. When written in our
set of variables one finds

(x¥ +x8)?=(x¥ +x7)>. (10a)
For N=3 this leads to
[w(1)>=w(2)*1[w(2)*=w(0)*][w(0)*—w(1)*]
E[w(1)*=w(2)°1[w(2)°—w(0)°]
X [W(0)*—w(1)3]=0. (10b)

We are now ready to discuss the symmetries of the
general chiral N state Potts model.

A trivial symmetry S of the model permutes the
horizontal and the vertical bonds:

S:w(n)e—w(n) .

Another, but “non-trivial” symmetry is the so
called inversion symmetry / which is defined as fol-
lows [9]: consider the NX N cyclic matrix M (W)
defined by M, ,=w(n) for n=0, ..., N—1. One can
introduce another set of weights denoted W, by the
relation: M(W,) =M ~' (W) where M ! is the cyclic
matrix which is the inverse matrix of M(W). Then,
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the inversion symmetry I acts on the Boltzmann
weights of the model according to

L w(n)-1/w(n) and w(n)-w,i(n). (11)

As in the scalar Potts model, a functional equation
is associated to 7 [10]:

T(W(0),...w(N—=1); w(0),...#(N—1))
XT(1/w(0),.; 1 /W(N=1); W;(0),.... 7, (N—1))
=1, (12)

where T is the symmetrized transfer matrix of the
model and 1 an identity matrix. With the notations
of ref. [5] one can verify that the transformation
w(n)—w;(n) corresponds to the permutation of the
two rapidities p and g provided that eq. (6) of ref.
[5] is satisfied. This a consequence of the star—tri-
angle relation in the limit r—p. The inversion rela-
tion (12), implicit in ref, [5], has also been explicitly
written out by Baxter and used in a recent paper on
the solution of the free energy of this model [11].

The well known Kramers-Wannier duality [12]
of the scalar Potts model may be generalized in the
chiral Potts maodel by

D:w(n)->w(0)+w~"w(l)+w~2"w(2)+..
+o="N-Dy(N=1) (13)

and by the similar expressions for w(n). D is no
longer an involution. Note that it is actually a trans-
formation of order 4 for any value of N.

This other symmetry of the model may be added
to the previous ones and it is easy to see that the
transformations w(n)-w,(n) and w(n)—1/w(n)
are conjugated under the duality transformation D
(diagonalization of a cyclic matrix).

S and I are two involutions that generate a discrete
group of transformations in the parameter space of
the model (Py_,XPy_;). On the other hand it has
been shown that the star-triangle relations are com-
patible with this discrete group of transformations
[13]. More precisely, the algebraic varieties related
to the parametrization of the star-triangle relations
must possess some invariance properties under the
action of this group: this group is a set of auto-
morphisms of these algebraic varieties [6].

In general, for N> 3, this set of automorphisms is
an infinite discrete set of birational transformations
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(for N=3 this group is finite and (5) is globally in-
variant under its action). At first sight this would be
in contradiction with the occurrence of curves of ge-
nus greater than one or Fermat surfaces [6]. It is in
fact possible to show that for N=4 the algebraic va-
rieties defined by (5) and (9) are invariant under
the group of automorphisms and that the restriction
of the group to this variety is finite. Moreover, the
intersection of (5) with the condition (9) or with
the conjectured critical condition (10) is also in-
variant under the group of automorphisms. To prove
this invariance it is sufficient to verify the invariance
under T: w(n)—1/w(n) and under D. However, in
terms of the w and w, the calculations are involved.

It is possible to give a more suggestive proof of the
degeneracy of the automorphy group by using the x;
variables. Indeed, it is a straightforward matter to
see, when the determinantal conditions (such as (9))
are satisfied, that the transformation 7 reads:

T:x,-X3, X»—Xs, X3—oX1, X4—X2. (14)
The duality acts as:
Dix\ox0, XXy, X3-X, Xs—oX3, (15)

and of course similar transformations for xs, xs, X7,
xg. Note that a relation exists between T and D:

D?T=TD?. For N>3 the transformation
w(n)-w;(n) reads:
Xs—Xg, Xeg—Xs, X7—>Xg, Xg—X;. (16)

Now it is obvious that (3)-(5) and (10) are in-
variant under this set of transformations which is
finite.

As mentioned before, the group generated by S and
Iis in general infinite. The linear system (2) defines
a set of variables which appears to be well suited to
the analysis of this automorphy group and which, at
the same time, corresponds to saying that this group
is finite even if (5), the condition for the existence
of the star—triangle relaton, is not satisfied (when the
star-triangle relation is satisfied, at least 4N 2 of the
automorphisms are explicitly written out in ref. [5]).
On the example of the scalar N state Potts model,
there also exist homogeneous variables well suited to
the description of the action of the automorphy group
defined by [10]

w(0)x; —w(0)x; —w(1)g_x, +w(1)g, x, =0,
(17)
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where ¢, =1—1N+1,/N(N—-4). Despite the fact
that here g, is not in general an Nth root of unity,
(17) is also compatible with the duality. Eq. (17) is
reminiscent of the linear system (2). One can even
verify that for g=3, for which ¢, is a root of unity,
the linear system (2) degenerates into (17). One has
also a similar but more involved situation in another
subcase of the N=4 chiral Potts model, that is, the
anisotropic symmetric Ashkin-Teller model [14]. It
is thus tempting to suppose that such linear systems
could play a key role in the analysis of the auto-
morphic properties of the models.

For the chiral Potts model, one remarks that two
different kinds of varieties may be considered in the
parameter space:

- One for which it is possible to define well suited
variables x; and for which the automorphy group be-
comes finite.

— A subvariety of the previous one (5) for which
the model satisfies the star-triangle equation.

One can look for generalizations of these ideas to
the general case where the Boltzmann weights as-
sociated to two nearest neighbor spins s; and s; de-
pend on the two values of these spins and no longer
on their differences. The inversion relation again
corresponds to:

w(s;, s;,) > 1/w(s;, s;)
and WoW, with M(W)=M-""(W).

Here M is an N X N matrix (not necessearily cyclic).
In this very general class of models there is a par-
ticular subclass for which the matrices M (W) and
M(W,) belong to the same family of commuting ma-
trices and which has also to be closed under the
transformation w(s; s;)—1/w(s;, ;). The basis in
which these matrices are simultaneously diagonal
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defines a generalization of the Fourier transform
(which is the keypoint in refs. [1-5]). Is it possible
in such a general case to get linear systems similar to
(2) and to define well suited variables? Do non-triv-
ial solutions of the star-triangle relations which gen-
eralize refs. [1-5] exist? What then would be the
symmetries of these models? These questions will be
considered in the future.

We would like to thank the referee for many im-
portant comments and for mentioning refs. [3,4]
which we were not aware of.
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