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Abstract
We provide a set of diagonals of simple rational functions of three and four 
variables that are squares of Heun functions. These Heun functions obtained 
through creative telescoping, turn out to be pullbacked 2F1 hypergeometric 
functions that correspond to classical modular forms. We also obtain Heun 
functions that are associated with Shimura curves as solutions of telescopers 
of rational functions.

Keywords: diagonals of rational functions, Heun functions,  
creative telescoping, automorphic forms, modular forms, Shimura curves, 
pullbacked hypergeometric functions

1.  Introduction

Diagonals of rational functions naturally emerge in lattice statistical mechanics, enumerative 
combinatorics, and more generally, in the context of n-fold integrals of theoretical physics 
[1, 2]. In previous papers [3, 4, 5] we have seen5 that many diagonals of rational functions 
were pullbacked 2F1 hypergeometric functions6 that turn out to be related to classical modular 
forms7. Sticking with diagonals of rational functions that are solutions of linear differential 
operators of order two, it is natural to study diagonals of rational functions that are Heun 
functions.
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5 These calculations were performed using the creative telescoping program of Koutschan [6].
6 See [7] equation (6) for a definition of a pullback of a hypergeometric function.
7 In a sense that we define in appendices A and B.
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Heun functions emerge in different areas of physics [1, 8–10] (see also page 60 of [2]) 
and enumerative combinatorics: the simple cubic lattice Green function [11] can be written 
as a Heun function, the eigenvalue equation of the Laplace-Beltrami operator on the Eguchi–
Hanson space is given by a Heun equation [12, 13]. Heun functions emerging in physics often8 
correspond to globally bounded series [1, 2], i.e. series that can be recast into series with inte-
ger coefficients. Most of the time they turn out to be pullbacked 2F1 hypergeometric functions 
[14] and in fact classical modular forms. In [3] we found diagonals of ‘simple’ rational func-
tions corresponding to classical modular forms when the operator annihilating the diagonal 
of the rational function had order two. This leads us here to study the class of Heun functions 
related to classical modular forms that are diagonals of rational functions9. We will discard 
the case where the Heun functions are almost trivial, their linear differential operators of order 
two factorising into two linear differential operators of order one [15, 16]. In this paper we 
examine Heun functions, which happen to be either diagonals of simple rational functions [2] 
in three or four variables, or solutions of ‘telescopers’. A telescoper is an operator annihilat-
ing an n-fold integral over all possible integration cycles, including evanescent integration 
cycles which correspond to diagonals of rational functions. More specifically, the ‘telescoper’ 
of a rational function, say R(x, y, z), we refer to here, is the output of the creative telescoping 
program [6], applied to the transformed rational function R̃ = R(x/y, y/z, z)/(yz). Such a tel-
escoper is a differential operator T in x,Dx such that T + Dy · U + Dz · V  annihilates R̃, where 
U, V  are rational functions in x, y, z. In other words, the telescoper T represents a linear ODE 
that is satisfied by Diag(R). Now the Heun functions examined in this paper fall into one of 
three categories:

	(1)	�Heun functions that are diagonals of rational functions, having globally bounded series 
expansions, and can be rewritten as pullbacked hypergeometric functions that are clas-
sical modular forms.

	(2)	�Heun functions that are diagonals of rational functions, having globally bounded series 
expansions, and can be rewritten as pullbacked hypergeometric functions that are deriva-
tives of classical modular forms.

	(3)	�Heun functions that are solutions of telescopers of rational functions that have series 
expansions that are not globally bounded and hence cannot be diagonals of rational func-
tions, but are instead solutions of the telescoper10. We show that in this case the Heun 
functions correspond to Shimura automorphic forms.

The Heun function Heun(a, q,α,β, γ, δ, x) is solution of the order-two Heun linear differ
ential operator with four singularities (Dx denotes d/dx)

H2 = D2
x +

(γ
x

+
δ

x − 1
+

ε

x − a

)
· Dx +

αβ x − q
x · (x − 1) · (x − a)

,

� (1)
where one has the Fuchsian constraint ε = α + β − γ − δ + 1, where α,β, γ, δ  need to 
be rational numbers, and a is an algebraic number. The parameter q is called the accessory 
parameter and the ratio q/(αβ) is called the normalised accessory parameter.

In the first two sections, we examine the Heun functions emerging from diagonals of sim-
ple rational functions that fall into the first and second category above, and show how they 
happen to be related to classical modular forms, or derivatives of classical modular forms, 

8 This is not the case for the Heun functions in [10] which do not correspond to globally bounded series.
9 Diagonals of rational functions are necessarily globally bounded [1, 2].
10 In this case the diagonal is equal to zero.
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corresponding to pullbacked 2F1 hypergeometric functions. These Heun functions turn out to 
be globally bounded. This leads us to define a criterion in appendix A, that allows us to draw a 
list of parameters of the Gauss hypergeometric function 2F1([a, b], [c], x) that correspond to a 
classical modular form in appendix B. Furthermore, we show in section 2.2 that some of these 
Heun functions are periods of extremal rational surfaces.

In the third section, we examine the solutions of the telescoper of a rational function, corre
sponding to a Heun function with a series expansion that is not globally bounded, and we 
show that this Heun function is related to a specific Shimura curve [17–23].

1.1.  Lattice Green functions as diagonals of rational functions

The diagonal of a rational function in n variables R(x1, . . . , xn) = P(x1, . . . , xn)/Q(x1, . . . , xn), 
where P ,Q ∈ Q[x1, . . . , xn] such that Q(0, . . . , 0) �= 0, is defined through its multi-Taylor 
expansion around (0, . . . , 0):

R
(

x1, . . . , xn

)
=

∞∑
m1 = 0

· · ·
∞∑

mn = 0

Rm1, ..., mn · xm1
1 . . . xmn

n ,� (2)

as the series in one variable x :

Diag
(
R
(

x1, . . . , xn

))
=

∞∑
m = 0

Rm, m, ..., m · xm.� (3)

With this definition in mind, one can see the simple cubic lattice Green function [24]

1
(2π)3 ·

∫ 2 π

0

∫ 2 π

0

∫ 2 π

0

dθ1 dθ2 dθ3

1 − x · (cos(θ1) + cos(θ2) + cos(θ3))
,� (4)

as the diagonal of the rational function in four variables x, z1, z2, z3:

1
1 − x · z1 z2 z3 · ((1 + z2

1)/z1/2 + (1 + z2
2)/z2/2 + (1 + z2

3)/z3/2)

=
2

2 − x · z1 z2 z3 · (z1 + 1/z1 + z2 + 1/z2 + z3 + 1/z3)
,

�

(5)

where the simple lattice Green function is obtained as the diagonal of a four variable rational 
function through the following substitution: cos(θi) = (1 + z2

i )/2/zi, i.e. zi = exp(i θi), and 
x → x · z1 z2 z3.

The linear differential operator annihilating the diagonal (5), has order three. This operator 
is the symmetric square11 of a linear differential operator of order two where θ is the homoge-
neous derivative x · d/dx:

9 x4 · (2 θ + 3) · (2 θ + 1) − 4 x2 · (10 θ2 + 10 θ + 3) + 4 θ2,� (6)

whose solution is given by a Heun function. Hence, we see that the diagonal of (5) reads:

Heun
(1

9
,

1
12

,
1
4

,
3
4

, 1,
1
2

, x2
)2

or Heun
(

9,
3
4

,
1
4

,
3
4

, 1,
1
2

, 9 x2
)2

.
� (7)

11 The symmetric power of an operator L is the minimal operator M such that for every set of m solutions y1, . . . , ym 
of L, the product y1y2 . . . ym is a solution of M. In particular, the symmetric square of an operator L is the symmetric 
power of the operator L with m  =  2.
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The Heun function on the right in (7) happens to be a period of an extremal rational curve as 
can be seen in the work of Doran and Malmendier [25]. These Heun functions12 in (7) can be 
rewritten as pullbacked 2F1 hypergeometric functions that correspond to classical modular 
forms as can be seen in example 1 in section 2.1 below13.

2.  Diagonals of rational functions in three and four variables, corresponding 
to Heun functions related to classical modular forms

In the previous section we have mentioned that the rational function whose diagonal is given 
by the simple cubic lattice is related to modular forms. We will begin by showing this link 
explicitly in Example 1. In the five other examples we give different rational functions in four 
variables, some of whom can be found in [27], whose diagonal is given by Heun functions that 
can be rewritten in terms of Gauss hypergeometric functions related to modular forms. As the 
reader might guess, the problem of finding rational functions in four variables, whose diagonal 
is given by Heun functions that can be rewritten in terms of modular forms, is not an easy task!

2.1.  Diagonals of rational functions corresponding to Heun functions

	 •	�Example 1. Let us consider the following rational function in four variables x , y, z and w

R(x, y, z, w) =
1

1 − (y + z + w y + x z + w x y + w x z)
,� (8)

		 or the rational function:

R(x, y, z, w) =
1

1 + x y + y z + z w + w x + y w + x z
.� (9)

		 The diagonals of these two rational functions (8) and (9) have the same series expansion 
with integer coefficients:

Diag
(

R(x, y, z, w)
)

= 1 + 6 x + 90 x2 + 1860 x3 + 44 730 x4 + 1172 556 x5

+ 32 496 156 x6 + 936 369 720 x7 + · · ·
� (10)

		 The linear differential operator of order three annihilating the series (10) is the symmetric 
square of a linear differential operator of order two. The diagonal (10), solution of this 
order-three operator, can be written as:

Heun
(1

9
,

1
12

,
1
4

,
3
4

, 1,
1
2

, 4 x
)2

= (1 − 4 x) · Heun
(1

9
,

5
36

,
3
4

,
5
4

, 1,
3
2

, 4 x
)2

.� (11)

12 These Heun functions can be alternatively written as Heun
(

1
9 , 1

3 , 1, 1, 1, 1, x
)
. See appendix A equation (A.12) 

in [2] for more details.
13 An example of emergence of modular functions in the context of K3 surfaces through Dedekind’s η-functions 
can be found in section 4 of [26].
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The Heun function (11) can be written as a pullbacked 2F1 hypergeometric function

Heun
(1

9
,

1
12

,
1
4

,
3
4

, 1,
1
2

, 4 x
)

= A(1)
± · 2F1

(
[
1
6

,
2
3
], [1], H(1)

±

)
= A(2)

± · 2F1

(
[
1
8

,
5
8
], [1], H(2)

±

)
,

� (12)

		 where the two pullbacks H(1)
± , H(2)

±  are square root algebraic functions

H(1)
± = −54 · x · 1 − 27 x − 108 x2

(1 − 54 x)2

± 54 · x · (1 − 9 x) · (1 − 4 x)1/2 · (1 − 36 x)1/2

(1 − 54 x)2 ,
� (13)

H(2)
± = −128 · x · 1 − 38 x + 200 x2

(1 − 100 x)2 · (1 − 4 x)

± 128 · x · (1 − 20 x) · (1 − 36 x)1/2

(1 − 100 x)2 · (1 − 4 x)
,

� (14)

		 where Y± =
(
A(1)

±
)

12 are simple algebraic functions, respectively solutions of

64 + p3(x) · Y+ + (1 − 54 x)4 · Y2
+ = 0,� (15)

1 + p3(x) · Y− + 64 · (1 − 54 x)4 · Y2
− = 0,� (16)

		 where

p3(x) = 186 624 x3 − 15 552 x2 + 2484 x − 65,� (17)

		 and where Y± =
(
A(2)

±
)

8 are simple algebraic functions, respectively solutions of

81 − 2 · (41 − 900 x) · (1 − 4 x) · Y+ + (1 − 100 x)2 · (1 − 4 x)2 · Y2
+ = 0,

�
(18)

		

1 − 2 · (41 − 900 x) · (1 − 4 x) · Y− + 81 · (1 − 100 x)2 · (1 − 4 x)2 · Y2
− = 0.� (19)

The two Hauptmoduls H(1)
±  have the following series expansions

H(1)
− = −108 x − 8640 x2 − 615 168 x3 − 41 167 872 x4 − 2650 337 280 x5

− 166 137 937 920 x6 − 10 213 026 103 296 x7 − 618 505 440 067 584 x8 + · · ·
� (20)

		 and

H(1)
+ = −108 x2 − 3024 x3 − 87 696 x4 − 2616 192 x5 − 79 800 768 x6

− 2477 350 656 x7 − 78 006 945 024 x8 − 2485 113 716 736 x9 + · · ·
�

(21)

		 and are related by the genus zero modular equation:

625 A3 B3 − 525 A2 B2 · (A + B) − 96 AB · (A2 + B2) − 3 A2 B2

− 4 · (A3 + B3) + 528 · A B · (A + B) − 432 · A B = 0.
�

(22)

Y Abdelaziz et alJ. Phys. A: Math. Theor. 53 (2020) 075206
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	 •	�Example 2. The diagonal of the rational function

R(x, y, z, w) =
1

1 − (w x + y z + w x y + w x z + w y z + x y z)
,� (23)

		 reads:

Diag
(

R(x, y, z, w)
)

= 1 + 2 x + 18 x2 + 164 x3 + 1810 x4 + · · ·
�

(24)

		 The linear differential operator annihilating the diagonal (24) of the rational function (23) 
has order three:

L3 = 2 + 60 x − (1 − 40x − 444 x2) · Dx − 3 x · (1 − 18 x − 128 x2) · D2
x

− x2 · (1 + 4 x) · (1 − 16 x) · D3
x .

� (25)

		 The operator (25) is the symmetric square of a linear differential operator of order two. 
Hence the solution corresponding to the diagonal of (23) is given by the square of a Heun 
function:

Heun
(
− 1

4
,

1
16

,
3
8

,
5
8

, 1,
1
2

, −4 x
)2

= 1 + 2 x + 18 x2 + 164 x3 + 1810 x4 + 21 252 x5 + 263 844 x6

+ 3395 016 x7 + 44 916 498 x8 + · · ·

�

(26)

This Heun function can be written as a pullbacked 2F1 hypergeometric function:

Heun
(
− 1

4
,

1
16

,
3
8

,
5
8

, 1,
1
2

, −4 x
)

= A± · 2F1

(
[
1
8

,
3
8
], [1], H±

)
,� (27)

		 where A± and the Hauptmodul H± are algebraic functions expressed with square roots:

H± = −128 x · 1 − 20 x + 50 x2 + 400 x3 − 224 x4 − 512 x5

(1 − 88 x − 112 x2 − 256 x3)2

± 128 x · (1 + 2 x) (1 − 12 x) (1 − 4 x) · (1 + 4 x)1/2 · (1 − 16 x)1/2

(1 − 88 x − 112 x2 − 256 x3)2 .
�

(28)

		 These Hauptmoduls (28) are also given by the quadratic relation having genus zero:

(256 x3 + 112 x2 + 88 x − 1)2 · H2
±

− 256 · x · (512 x5 + 224 x4 − 400 x3 − 50 x2 + 20 x − 1) · H±

+ 65 536 x6 = 0,
�

(29)

		 and have the series expansions:

H− = −256 x − 39 936 x2 − 5116 416 x3 − 595 357 696 x4 − 65 525 931 776 x5

− 6954 923 846 656 x6 − 719 583 708 750 336 x7 + · · ·
H+ = −256 x5 − 5120 x6 − 89 600 x7 − 1433 600 x8 − 22 201 600 x9

− 337 755 136 x10 − 5094 679 040 x11 + · · ·

�

(30)

		 The relation between these two Hauptmoduls corresponds to a genus zero q ↔ q5 
modular equation (q denotes the nome of the operator of order two).

Y Abdelaziz et alJ. Phys. A: Math. Theor. 53 (2020) 075206
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	 •	�Example 3. The rational function in four variables:

R(x, y, z, w) =
1

1 − (y + z + x y + x z + w x y + w x z + w y z)
,� (31)

		 has a diagonal that reads:

Diag
(

R(x, y, z, w)
)
= 1 + 4 x + 48 x2 + 760 x3 + 13 840 x4 + 273 504 x5

+ 5703 096 x6 + 123 519 792 x7 + · · ·
�

(32)

		 The linear differential operator annihilating the diagonal of this rational function is the 
following linear differential operator of order three, which is the symmetric square of an 
operator of order two:

x2 · (1 + x) · (1 − 27 x) · D3
x + 3 x · (1 − 39 x − 54 x2) · D2

x

+ (1 − 86 x − 186 x2) · Dx − 4 · (1 + 6 x).
�

(33)

		 The operator (33) admits a Heun function that has series expansion with integer coef-
ficients as a solution:

Heun
(
− 1

27
,

2
27

,
1
3

,
2
3

, 1,
1
2

, −x
)2

= 1 + 4 x + 48 x2 + 760 x3 + 13 840 x4

+ 273 504 x5 + 5703 096 x6 + 123 519 792 x7 + · · ·
�

(34)

We also have the following series expansion with integer coefficients:

Heun
(
− 1

27
,

2
27

,
1
3

,
2
3

, 1,
1
2

, −x
)

= 1 + 2 x + 22 x2 + 336 x3 + 6006 x4

+ 117 348 x5 + 2428 272 x6 + 52 303 680 x7 + · · ·
�

(35)

		 The Heun function (35) can be written as a pullbacked 2F1 hypergeometric function

Heun
(
− 1

27
,

2
27

,
1
3

,
2
3

, 1,
1
2

, −x
)

=

(
25 − 80 x − 24 · (1 + x)1/2 · (1 − 27 x)1/2

)−1/4
· 2F1

(
[

1
12

,
5
12

], [1], H+

)
,

�
(36)

		 where the Hauptmodul H reads:

H± = 864 · x · (1 − 21 x + 8 x2) · (1 − 42 x + 454 x2 − 1008 x3 − 1280 x4)

(1 + 224 x + 448 x2)3

± 864 · x · (1 − 8 x) · (1 − 2 x) · (1 − 24 x) · (1 − 16 x − 8 x2)

× (1 + x)1/2 · (1 − 27 x)1/2

(1 + 224 x + 448 x2)3 .

�

(37)

		 The series expansions of these two Hauptmoduls (37) read respectively

H+ = 1728 x − 1270 080 x2 + 593 381 376 x3 − 226 343 666 304 x4

+ 76 907 095 308 288 x5 − 24 246 668 175 851 520 x6 + · · ·
�

(38)

and:

H− = 1728 x7 + 108 864 x8 + 4536 000 x9 + 158 251 968 x10

+ 5017 070 016 x11 + 150 134 378 688 x12 + 4328 271 255 168 x13 + · · ·
� (39)

Y Abdelaziz et alJ. Phys. A: Math. Theor. 53 (2020) 075206
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		 These two Hauptmoduls are the two solutions of the quadratic genus zero relation:

17282 · x8 + 1728 · (1 − 21 x + 8 x2) (1280 x4 + 1008 x3 − 454 x2 + 42 x − 1) · x · H±

+ (1 + 224 x + 448 x2)3 · H2
± = 0,

�
(40)

		 and the two j-invariants (H± = 1728/j±) are solutions of the quadratic relation:

x8 · j2± + (1 − 21 x + 8 x2) (1280 x4 + 1008 x3 − 454 x2 + 42 x − 1) · x · j±

+ (1 + 224 x + 448 x2)3 = 0.
� (41)

		 Denoting A = H+ and B = H− and considering the two (identical) quadratic relations 
(40) Q(x, A) = 0 and Q(x, B) = 0, one easily gets by performing the resultant between 
Q(x, A) = 0 and Q(x, B) = 0 in x , and thus eliminating x , the modular equation 
P(A, B) = 0. One gets a large modular equation of genus zero corresponding to q ↔ q7 
in the nome q (see (38) and (39)):

81 6009 · A6 B6 · (343 A2 + 286 A B + 343 B2) + · · · − 236 · 318 · A B = 0.
�

(42)

		 Now the previous Heun function can be written with a different algebraic Hauptmodul H  
and a different algebraic function A:

Heun
(
− 1

27
,

2
27

,
1
3

,
2
3

, 1,
1
2

, −x
)

= A · 2F1

(
[

1
12

,
5

12
], [1], H

)
,� (43)

		 where this Hauptmodul is solution of the degree six equation:

p6(x)3 · (1 − 2 x)6 · H6 + 3 · 1728 · x4 · p20(x) · (1 − 2 x)3 · H5

− 17282 · x · p23(x) · H4 + 17283 · x3 · p21(x) · H3 + 17284 · x8 · p16(x) · H2

− 17285 · x10 · p14(x) · H + 17286 · x24 = 0,

�
(44)

		 where the polynomials pn(x) are polynomials of degree n. Note that the curve (44) is 
a genus one curve. This degree six polynomial equation (44) in H , gives Hauptmoduls 
having the following series expansions:

1728 x2 + 31 104 x3 − 689 472 x4 − 34 193 664 x5 − 431 329 536 x6 + · · ·
�

(45)

		 and

1728 x14 + 217 728 x15 + 15 930 432 x16 + 888 039 936 x17 + · · ·� (46)

		 corresponding to q ↔ q7 in the nome q. By denoting A and B two Hauptmoduls solu-
tions of degree six of (44), Q6(x, A) = 0 and Q6(x, B) = 0, one gets by elimination of 
x  through a resultant of Q6(x, A) and Q6(x, B) in x , the modular equation P(A, B) = 0. 
Now this modular curve is also a genus one curve.

	 •	�Example 4. The rational function in four variables

R(x, y, z, w) =
1

1 − (y + z + w z + x y + x z + w x y)
,� (47)

		 has a diagonal whose series expansion reads:

Diag
(

R(x, y, z, w)
)
= 1 + 4 x + 60 x2 + 1120 x3 + 24 220 x4 + 567 504 x5

+ 14 030 016 x6 + 360 222 720 x7 + · · ·
�

(48)

Y Abdelaziz et alJ. Phys. A: Math. Theor. 53 (2020) 075206
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		 The linear differential operator annihilating the diagonal of this rational function (47) has 
order three:

4 + 96 · x − (1 − 92 · x − 864 · x2) · Dx − 3 x · (1 − 42 · x − 256 · x2) · D2
x

− x2 · (1 + 4 x) · (1 − 32 x) · D3
x .

�
(49)

		 This order-three linear differential operator is the symmetric square of a linear differential 
operator of order two, admitting as solution the square of a Heun function, which has a 
series expansion with integer coefficents:

Heun
(
−1

8
,

1
16

,
1
4

,
3
4

, 1,
1
2

, −4 x
)2

= 1 + 4 x + 60 x2 + 1120 x3

+ 24 220 x4 + 567 504 x5 + · · · ,
�

(50)

which is related to the Heun function of example 1 through the following relation:

Heun
(
−1

8
,

1
16

,
1
4

,
3
4

, 1,
1
2

, −4 x
)2

= (1 + 4 x)−1/2 · Heun
(1

9
,

1
12

,
1
4

,
3
4

, 1,
1
2

,
4 x

1 + 4 x

)2
.

�

(51)

		 The linear differential operator (49) is the symmetric square of a linear differential 
operator of order two having a pullbacked 2F1 hypergeometric function as a solution:

Heun
(
−1

8
,

1
16

,
1
4

,
3
4

, 1,
1
2

, − 4 x
)

= 1 + 2 x + 28 x2 + 504 x3 + 10 710 x4

+ 248 220 x5 + 6091 680 x6 + 155 580 000 x7 + 4092 325 500 x8 + · · ·

= A(1)
± · 2F1

(
[
1
6

,
2
3
], [1], H(1)

±

)
= A(2)

± · 2F1

(
[
1
8

,
5
8
], [1], H(2)

±

)
,

�

(52)

		 where A(1)
± , A(2)

±  and the two Hauptmoduls H(1)
±  are square root algebraic functions:

H(1)
± = −54 x · 1 − 19 x − 200 x2

(1 + 4 x) · (1 − 50 x)2

± 54 · x · (1 − 32 x)1/2 · 1 − 5 x
(1 + 4 x) · (1 − 50 x)2 .

�

(53)

		 The two Hauptmoduls H(1)
±  are solutions of the quadratic relation:

(1 + 4 x) · (1 − 50 x)2 ·
(
H(1)

±
)2 − 108 x · (200 x2 + 19 x − 1) · H(1)

±

+ 11 664 x3 = 0.
�

(54)

		 The two Hauptmoduls H(2)
±  in (52) are also square root algebraic functions:

H(2)
± = −28 · x · 1 − 30 x + 64 x2

(1 − 96 x)2

± 28 · x · (1 − 16 x) · (1 + 4 x)1/2 · (1 − 32 x)1/2

(1 − 96 x)2 ,
�

(55)
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which are solutions of the quadratic relation

(1 − 96 x)2 ·
(
H(2)

±
)2

+ 256 x · (64 x2 − 30 x + 1) · H(2)
±

+ 65 536 x4 = 0,
� (56)

		 the algebraic function A(1)
±  being solution of

512 − 27 · (1 − 20 x) · (19 − 312 x − 6000 x2 − 80 000 x3) · Y

+ (1 + 4 x)3 · (1 − 50 x)6 · Y2 = 0,
�

(57)

		 where Y =
(
A(1)

±
)

18, and the algebraic function A(2)
±  being solution of

1 + 2 · q8(x) · Y + 332 · (1 − 96 x)16 · Y2 = 0, where:
�

(58)

q8(x) = 92 393 273 930 231 100 473 344 x8 − 182 396 792 383 587 915 661 312 x7

+ 7442 201 965 961 886 564 352 x6 + 10 564 527 655 702 470 066 176 x5

− 1994 146 206 485 388 984 320 x4 + 154 408 466 296 830 427 136 x3

− 6048 257 896 412 868 608 x2 + 118 593 292 086 518 528 x − 926 510 094 425 921,

�

(59)

where Y =
(
A(2)

±
)

64. The series expansions of the Hauptmoduls H(1)
±  read:

H(1)
− = −108 x − 8208 x2 − 547 776 x3 − 34 193 664 x4 − 2048 523 264 x5

− 119 335 292 928 x6 − 6811 411 267 584 x7 − 382 782 182 326 272 x8 + · · ·
�

(60)

		 and:

H(1)
+ = −108 x2 − 2160 x3 − 56 592 x4 − 1475 712 x5 − 39 711 168 x6

− 1088 716 032 x7 − 30 317 739 264 x8 − 854 924 599 296 x9 + · · ·
�

(61)

		 The relation between these two Hauptmoduls corresponds to the genus zero modular 
equation:

625 A3 B3 − 525 A2 B2 · (A + B) − 96 A B · (A2 + B2) − 3 A2 B2

− 4 · (A3 + B3) + 528 · A B · (A + B) − 432 · A B = 0,
�

(62)

		 which can (for instance) be rationally parametrised as follows:

A(v) =
108 · v · (1 + v)2

(16 + 15 v) · (2 + 3 v)2 , B(v) = − 108 · (1 + v) · v2

(4 + 3 v) · (32 + 33 v)2 ,

� (63)
		 where A(v) and B(v) are related by an involution:

B(v) = A
(
−64 · (1 + v)

63 v + 64

)
, A(v) = B

(
−64 · (1 + v)

63 v + 64

)
.� (64)

		 The series expansions of the Hauptmoduls H(2)
±  read:

H(2)
− = −56 x − 9072 x2 − 1229 256 x3 − 152 418 672 x4 − 17 935 321 320 x5

− 2038 883 437 584 x6 − 226 173 478 925 520 x7 + · · ·
�

(65)
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		 and

H(2)
+ = −56 x3 − 1680 x4 − 46 872 x5 − 1291 248 x6 − 35 752 752 x7

− 998 627 616 x8 − 28 151 491 032 x9 − 800 518 405 680 x10 + · · ·
�

(66)

		 The relation between these last two Hauptmoduls H(2)
±  corresponds to a genus zero 

modular equation:

640 000 · A2 B2 · (9 A2 + 14 A B + 9 B2)

+ 4800 A B · (A + B) · (A2 − 1954 A B + B2)

+ A4 + B4 − 56 196 A B · (A2 + B2) + 3512 070 A2 B2

+ 116 736 · A B · (A + B) − 65 536 · A B = 0,

�

(67)

		 which is the same modular equation as (62). Now the modular equation (22) of example 
1, is actually the same as the modular equation (67) of example 4! This is a consequence 
of identity (51).

	 •	�Example 5. The rational function in four variables

R(x, y, z, w) =
1

1 − (y + z + x y + x z + w y + w z + w x z)
,

�
(68)

		 has a diagonal that reads:

Diag
(

R(x, y, z, w)
)

= 1 + 6 x + 114 x2 + 2940 x3 + 87 570 x4 + · · ·
�

(69)

		 The operator annihilating the diagonal (69) of this rational function in four variables (68) 
reads:

6 + 12 · x − (1 − 144 · x − 108 · x2) · Dx − x · (3 − 198 · x − 96 · x2) · D2
x

− x2 · (1 − 44 · x − 16 · x2) · D3
x .

�
(70)

		 It is the symmetric square of a linear differential operator of order two which admits a 
Heun solution analytic at x = 0. Consequently the rational function of order three (70) 
has a solution that is the square of a Heun function, and admits the series expansion with 
integer coefficients:

Heun
(
−123

2
+

55
2

· 51/2, −33
8

+
15
8

· 51/2,
1
4

,
3
4

, 1,
1
2

, 2 · (11 − 5 · 51/2) · x
)2

= 1 + 6 x + 114 x2 + 2940 x3 + 87 570 x4 + 2835 756 x5 + 96 982 116 x6

+ 3446 781 624 x7 + 126 047 377 170 x8 + · · ·

�

(71)

		 The Heun solution (71) can also be rewritten as a pullbacked 2F1 hypergeometric func-
tion:

A(x) · 2F1

(
[

1
12

,
5

12
], [1], H

)2
,� (72)

		 where A(x) is an algebraic function and where the Hauptmodul H is solution of the 
quadratic relation:

(144 x2 + 216 x + 1)3 · H2

− 1728 x · (3456 x5 + 7776 x4 − 12 600 x3 + 1890 x2 − 80 x + 1) · H
+ 2985 984 x6 = 0.

�
(73)
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		 The two Hauptmoduls read

H± =
864 x · (3456 x5 + 7776 x4 − 12 600 x3 + 1890 x2 − 80 x + 1)

(144 x2 + 216 x + 1)3

± 864 (1 − 36 x) · (1 − 18 x) (1 − 4 x) x
(144 x2 + 216 x + 1)3 · (1 − 44 x − 16 x2)1/2,

�
(74)

		 and admit the respective expansions:

H+ = 1728 x − 1257 984 x2 + 575 828 352 x3 − 214 274 336 256 x4 + · · ·
H− = 1728 x5 + 138 240 x6 + 7793 280 x7 + 383 961 600 x8 + · · ·
�

(75)

		 These two Hauptmoduls series (74) are related by a genus zero modular equation which 
admits the following rational parametrization14 as:

H+ =
1728 z

(z2 + 10 z + 5)3 , H− =
1728 z5

(z2 + 250 z + 3125)3 .
�

(76)

	 •	�Example 6. The rational function in four variables

R(x, y, z, w) =
1

1 − (y + z + x y + x z + w z + w x y + w x y z)
,� (77)

		 has a diagonal that reads:

Diag
(

R(x, y, z, w)
)

= 1 + 5 x + 73 x2 + 1445 x3 + 33 001 x4 + · · ·
�

(78)

		 The operator annihilating the diagonal of the rational function (77) reads:

L3 = x2 · (1 − 34 x + x2) · D3
x + 3 x · (1 − 51 x + 2 x2) · D2

x

+ (1 − 112 x + 7 x2) · Dx + x − 5.
� (79)

		 It is the symmetric square of an order-two linear differential operator with a Heun solution, 
analytic at x = 0. Consequently the diagonal of (77), solution of (79), can be written in 
terms of the square of two Heun functions15 which have series expansions with integer 
coefficients:

(1 − 34 x + x2)

× Heun
(

577 + 408 · 21/2,
663
2

+ 234 · 21/2,
3
2

,
3
2

, 1,
3
2

, (17 + 12 · 21/2) · x
)2

= (1 − 34 x + x2)

× Heun
(

577 − 408 · 21/2,
663
2

− 234 · 21/2,
3
2

,
3
2

, 1,
3
2

, (17 − 12 · 21/2) · x
)2

= 1 + 5 x + 73 x2 + 1445 x3 + 33 001 x4 + 819 005 x5 + 21 460 825 x6 + · · ·

�

(80)

It can also be written as a pullbacked 2F1 hypergeometric function

A− · 2F1

(
[
1
3

,
2
3
], [1], H−

)2
,� (81)

14 It corresponds to N = 5 in tables 4 and 5 of [28].
15 These two Heun functions are Galois conjugates.
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		 where the Hauptmodul H± reads

H± =
1 − 24 x + 30 x2 + x3

2 · (1 + x)3 ± 1 − 7 x + x2

2 · (1 + x)3 · (1 − 34 x + x2)1/2,

� (82)
		 with the expansions:

H− = 27 x2 + 648 x3 + 15 471 x4 + 389 016 x5 + 10 234 107 x6 + 278 861 616 x7

+ 7808 397 759 x8 + 223 397 228 880 x9 + · · ·
� (83)

		 and where the algebraic factor A− reads:

A− =
3
2
· 1 − x
(1 + x)2 − (1 − 34 x + x2)1/2

2 · (1 + x)2 .� (84)

2.2.  Periods of extremal rational surfaces

The rational function in three variables:

R(x, y, z) =
1

1 + x + y + z + x y + y z − x3 y z
,

� (85)
has a diagonal given by the following series expansion:

Diag
(

R(x, y, z)
)
= 1 − 2 x + 6 x2 − 11 x3 − 10 x4 + 273 x5 − 1875 x6

+ 9210 x7 − 34 218 x8 + 78 721 x9 + 108 581 x10 + · · ·
�

(86)

In order to find the diagonal of this rational function of three variables, one gets the telesco-
per annihilating this diagonal using creative telescoping [6]. This telescoper is a linear differ
ential operator of order four L4, which is the direct sum of two16 linear differential operators 
having order two L4 = L2 ⊕ M2. These two operators read respectively

L2 = (1 + 9 x + 27 x2) · x2 · D2
x + (1 + 9 x)2 · x · Dx + 3 x · (1 + 9 x),

and:

M2 = (1 + 9 x + 27 x2) · (5 + 18 x) · (1 − 2 x) · x2 · D2
x

+ (5 + 70 x + 261 x2 − 756 x3 − 2916 x4) · x · Dx

+ x · (1 − 9 x) · (5 + 60 x + 108 x2).

�

(87)

The solution of the order-two linear differential operator L2 has the following Heun function17 
solution, analytic at x = 0:

S1 = Heun
(1

2
− i

√
3

2
,

1
2

− i
√

3
6

, 1, 1, 1, 1,
3
2
·
(
−3 + i

√
3
)
· x

)

�

(88)

16 These two operators L2 and M2 are not homomorphic because they do not have the same singularities.
17 This Heun function Heun(a, q,α,β, γ, δ, ρ x) is such that q = a/(1 + a), q/ρ = −1/9, a/ρ2 = 1/27, 1/ρ and 
a/ρ are complex conjugates.
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= 1 − 3 x + 9 x2 − 21 x3 + 9 x4 + 297 x5 − 2421 x6 + 12 933 x7 + · · ·
�

(89)

This Heun function (88) can also be written alternatively in terms of other 2F1 hypergeometric 
functions:

Heun
(1

2
− i

√
3

2
,

1
2

− i
√

3
6

, 1, 1, 1, 1,
3
2
·
(
−3 + i

√
3
)
· x

)

=
( 1

1 + 3 x

)1/4
·
( 1

1 + 9 x + 27 x2 + 3 x3

)1/4

× 2F1

(
[

1
12

,
5

12
], [1],

1728 · x9 · (1 + 9 x + 27 x2)

(1 + 3 x)3 · (1 + 9 x + 27 x2 + 3 x3)3

)
� (90)

= (1 + 9 x)−1/4 · (1 + 243 x + 2187 x2 + 6561 x3)−1/4

× 2F1

(
[

1
12

,
5

12
], [1],

1728 · x · (1 + 9 x + 27 x2)

(1 + 9 x)3 · (1 + 243 x + 2187 x2 + 6561 x3)3

)
.

�

(91)

The modular equation relating the Hauptmoduls of the two Gauss hypergeometric functions in 
(91) corresponds to q ↔ q9 in the nome q (see also tables 4 and 5 in [28]).

The Heun function (90) is in fact the period of an extremal rational surface [25], and was 
shown to be related18 to classical modular forms in table 15 in [28] for N = 9:

Heun
(−9 ∓ 3

√
3 i

−9 ± 3
√

3 i
,

9 ± 3
√

3 i
18

, 1, 1, 1, 1,
2 x

−9 ± 3
√

3 i

)

= Heun
(1 ±

√
3 i

2
,

3 ±
√

3 i
6

, 1, 1, 1, 1,
−3 ∓

√
3 i

18
· x

)
.

�

(92)

The other operator M2 has the following (classical modular form, see appendix B) pull-
backed 2F1 hypergeometric solution analytic at x = 0:

S2 =
1

(1 + 4 x − 2 x2 − 36 x3 + 81 x4)1/4

× 2F1

(
[

1
12

,
5

12
], [1],

1728 · x5 · (1 + 9 x + 27 x2) · (1 − 2 x)2

(1 + 4 x − 2 x2 − 36 x3 + 81 x4)3

)

= 1 − x + 3 x2 − x3 − 29 x4 + 249 x5 − 1329 x6 + 5487 x7 − 16 029 x8

+ 12 149 x9 + 252 253 x10 + · · ·

�

(93)

Thus the diagonal of (85) is the half-sum of the two series (88) and (93) corresponding to clas-
sical modular forms:

Diag
(

R(x, y, z)
)

=
S1 + S2

2
.� (94)

2.3.  Derivatives of classical modular forms

We give here an example of a diagonal of a rational function in three variables yielding a 
derivative of a classical modular form (or a derivative of a Heun function). Let us consider the 
following rational function in three variables:

18 Change x → x/27 to match S1, given by (88), with (92).
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R(x, y, z) =
3 x3 y

1 + x + y + z
.� (95)

The diagonal of (95) has the following series expansion with integer coefficients:

− 30 x3 + 840 x4 − 20 790x5 + 504 504 x6 − 12 252 240 x7 + 299 304 720 x8

− 7362 064 710 x9 + 182 298 745 200 x10 + · · ·
� (96)

The telescoper of this rational function of three variables (95) gives a linear differential opera-
tor of order three L3 = L1 ⊕ L2 that is the direct sum of a linear differential operator of order 
one L1, and a linear differential of operator of order two L2, where:

L1 = x · Dx − 1,

L2 = (1 + 27 x) · (1 + 30 x) · x · D2
x − 3 · x · Dx + 180 x + 3.

� (97)

The operator L1 admits the solution y(x) = x, while the operator L2 has the following Heun 
solution:

x · Heun
( 9

10
, 0,

1
3

,
2
3

, 2, 1, −27 · x
)

= x − 30 x3 + 840 x4 − 20 790x5

+ 504 504 x6 − 12 252 240 x7 + 299 304 720 x8 + · · ·
�

(98)

= −x · 2F1

(
[
1
3

,
2
3
], [1], −27 · x

)

+ 2 · x · (1 + 27 x) · 2F1

(
[
4
3

,
5
3
], [2], −27 · x)

� (99)

= L1

(
2F1

(
[
1
3

,
2
3
], [1], −27 · x)

)
� (100)

where: L1 = −x − 1 + 27 x
3

· x · d
dx

.� (101)

With this example we see that a Heun function which has a series expansion with integer 
coefficients (or more generally a globally bounded series), may not necessarily be a classical 
modular form19, and can instead be a linear differential operator of order one acting on a 
classical modular form.

2.4.  Generalization of the previous result

Let us recall example 6, and let us consider, instead of the rational function (9), its homomo-
geous partial derivative with respect to one of its four variables:

x · ∂R(x, y, z, w)
∂x

=
x · (y + z + w)

(1 + x y + y z + z w + w x + y w + x z)2 .� (102)

The telescoper of this rational function (102) is a linear differential operator of order three 
M3 which is homomorphic to the operator of order three L3 which was the telescoper of the 
rational function (9). This homomorphism reads:

M3 · θ = L1 · L3 where: L1 = (1 − 18 x) · θ + 18 x,� (103)

19 In the sense defined in appendices A and B.
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where θ is the homogeneous derivative θ = x · Dx. Consequently the solutions of the order-
three linear differential operator M3 are simply obtained by taking the homogeneous deriva-
tive θ = x · Dx of the solutions of the order-three linear differential operator L3. In particular, 
the diagonal of the rational function (102) is the homogeneous derivative of the diagonal of 
the rational function (9):

Diag
(

x · ∂R(x, y, z, w)
∂x

)
= x · d

dx

(
Diag

(
R(x, y, z, w)

))
.� (104)

The diagonal of (102) will thus be the homogeneous derivative of the classical modular form 
(11). We do not provide a proof, but in the experimental framework the following identity 
seems to hold for any order-N linear differential operator L:

Diag
(
L
(

R(x, y, z, w)
))

= L
(
Diag

(
R(x, y, z, w)

))
,� (105)

where: L =

N∑
n=0

Pn(x) · θn, L =

N∑
n=0

Pn(x y z w) · Θn,� (106)

with: θ = x · d
dx

, · · · Θ = w · ∂

∂w
,� (107)

where the Pn’s are polynomials. This identity can, of course be generalized to the diagonal 
of rational functions of an arbitrary number of variables. For any Heun function or classical 
modular form of this paper obtained as a diagonal of a rational function, we can use these 
identities (104), (105) to get other rational functions that will be derivatives of Heun functions 
or classical modular forms20.

3.  Heun function solutions of telescopers of rational functions related to 
Shimura curves

The rational function in four variables

R(x, y, z, w) =
x y z

1 − x y z w + x y z · (x + y + z) + x y + y z + x z
,

�

(108)

has a telescoper that is a linear differential operator of order three:

L3 = 8 x · (1 − x) · (1 − 4 x) · D3
x + 12 · (1 − 10 x + 12 x2) · D2

x

− 6 · (7 − 17 · x) · Dx + 3,
� (109)

which corresponds to the symmetric square of a linear differential operator of order two. The 
solutions of L3 are thus expressed in terms of the following Heun functions:

Heun
(1

4
,

1
64

,
1
8

,
3
8

,
1
2

,
1
2

, x
)2

, x · Heun
(1

4
,

21
64

,
5
8

,
7
8

,
3
2

,
1
2

, x
)2

,
�

(110)

or:

x1/2 · Heun
(1

4
,

1
64

,
1
8

,
3
8

,
1
2

,
1
2

, x
)
· Heun

(1
4

,
21
64

,
5
8

,
7
8

,
3
2

,
1
2

, x
)

.� (111)

20 Derivatives of modular forms are not modular forms.

Y Abdelaziz et alJ. Phys. A: Math. Theor. 53 (2020) 075206



17

The series expansion of the first expression in (110) reads:

1 +
1
4

x +
5

16
x2 +

5
8

x3 +
2795
1792

x4 +
15 691
3584

x5 +
1039 363

78 848
x6 + · · ·

�

(112)

While the other Heun functions obtained in this paper are diagonals of rational functions 
and have globally bounded series expansions, the series expansion (112) is not21 globally 
bounded: it cannot be recast into a series with integer coefficients. Hence (112) cannot be a 
diagonal of a rational function since diagonals of rational functions are necessarily globally 
bounded [1]: it is instead a solution of the telescoper of a rational function. In fact the diagonal 
of the rational function (108) is zero.

The operator (109) is the symmetric square of the linear differential operator of order two 
L2:

L2 = D2
x +

1 − 10 x + 12 x2

2 x · (1 − 4 x) · (1 − x)
· Dx − 1 − 3 x

16 · x · (1 − 4 x) · (1 − x)
,

�

(113)

whose (formal) series expansions at 0, 1, and ∞ do not contain logarithms. This linear differ
ential operator of order two L2 admits the solutions:

x1/2 · (1 − x)−7/8 · 2F1

(
[

7
24

,
11
24

], [
5
4
],

27
4

· x2

(1 − x)3

)
,

(1 − x)−1/8 · 2F1

(
[

1
24

,
5
24

], [
3
4
],

27
4

· x2

(1 − x)3

)
.

� (114)

The precise correspondence with the Heun functions in (110) reads:

Heun
(1

4
,

1
64

,
1
8

,
3
8

,
1
2

,
1
2

, x
)

= (1 − x)−1/8 · 2F1

(
[

1
24

,
5
24

], [
3
4
],

27
4

· x2

(1 − x)3

)
,

� (115)

Heun
(1

4
,

21
64

,
5
8

,
7
8

,
3
2

,
1
2

, x
)

= (1 − x)−7/8 · 2F1

(
[

7
24

,
11
24

], [
5
4
],

27
4

· x2

(1 − x)3

)
.

� (116)

The two solutions of the linear differential operator (113) can be used to construct a basis 
for the space of automorphic forms, which can then be used to construct Hecke operators rela-
tive to this basis22. The second solution in (114) corresponds to an automorphic form associ-
ated with a Shimura curve with signature (0, 4, 2, 6) which appears in table 1 in [30]. Hence 
one obtains Shimura curves associated to telescopers of rational functions. More details on 
Heun functions or 2F1 automorphic forms associated to Shimura curves [31–35] are given in 
appendix C.

21 After a rescaling of the variable.
22 See example 9 in [29] for more details.
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4.  Conclusion

The examples of diagonals of rational functions in three or four variables, that we presented 
here, illustrate cases where the diagonal of the rational functions are given by Heun functions 
having series with integer coefficients, and can be expressed either in terms of pullbacked 
hypergeometric functions that are classical modular forms, or derivatives of classical modular 
forms. Furthermore, we constructed in section 2.2, a rational function whose diagonal is given 
by a Heun function that has already been identified as a ‘period’ of an extremal rational ellip-
tic surface [25], and that has also emerged in the context of pullbacked 2F1 hypergeometric 
functions [28]. Finally we have also seen a case where the rational function has a telescoper 
with Heun function solutions, that can be expressed as pullbacked 2F1 hypergeometric func-
tions that are not globally bounded, and happen to be associated with one of the 77 cases of 
Shimura curves [30]. Such remarkable 2F1 hypergeometric functions solutions of a telescoper 
of a rational function are not diagonals of that rational function since their series are not glob-
ally bounded. They can be interpreted as ‘periods’ [36, 37] of an algebraic variety over some 
non-evanescent23 cycles.

These examples suggest an algebraic geometrical link between the diagonals/solutions of 
the telescopers, and the original rational functions, and this link should be investigated. This 
study should help shed light on the geometrical nature of the algebraic varieties associated 
with the denominators of the rational functions (K3, Calabi-Yau threefolds, extremal rational 
elliptic surfaces, Shimura varieties). In a forthcoming paper which is a work in progress at 
the current stage, we intend to introduce an algebraic geometry approach that proves to be 
efficient in explaining this link.
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Appendix A.  A nome necessary condition to be a classical modular form: why 
2F1([1/5, 1/5], [1], x) is not a classical modular form

Consider the identity:

2F1

(
[
1
3

,
2
3
], [1], x

)

= (1 + 8 x)−1/4 · 2F1

(
[

1
12

,
5
12

], [1], 64 · x · (1 − x)3

(1 + 8 x)3

)
.

� (A.1)

The nome associated to the linear differential operator of order two having 2F1([1/3, 2/3], [1], x) 
as a solution is given by:

Q(x) = x +
5
9

x2 +
31
81

x3 +
5729

19 683
x4 +

41 518
177 147

x5 +
312 302
1594 323

x6 + · · ·
�

(A.2)

and the nome associated to the operator of order two having 2F1([1/12, 5/12], [1], x) as a 
solution expands as follows:

q(x) = x +
31
72

x2 +
20 845
82 944

x3 +
27 274 051

161 243 136
x4 +

183 775 457 147
1486 016 741 376

x5 + · · ·� (A.3)

The two 2F1 hypergeometric series are globally bounded, the series of the corresponding 
nomes (A.2) and (A.3) are also globally bounded, as one expects for a classical modular 
form. The identity (A.1) on the other solutions of the linear differential operators annihilating 
2F1([1/3, 2/3], [1], x) and 2F1([1/12, 5/12], [1], p(x)), gives the following identity on their 
respective ratio τ

τ
(
[
1
3

,
2
3
], [1], x

)
= µ · τ

(
[

1
12

,
5
12

], [1], 64 · x · (1 − x)3

(1 + 8 x)3

)
,� (A.4)

where µ is a constant, which gives after exponentiation:

64 · Q(x) = q
(

64 · x · (1 − x)3

(1 + 8 x)3

)
.� (A.5)

Now, the RHS of (A.5) is necessarily globally bounded, which agrees with the globally 
bounded character of the nome (A.2).

In contrast, let us consider 2F1([1/5, 1/5], [1], x). The corresponding series is globally 
bounded24, however the corresponding nome which reads

Q[1/5,1/5](x) = x +
8

25
x2 +

102
625

x3 +
4744

46 875
x4 +

81 914
1171 875

x5

+
63 094 248

1220 703 125
x6 +

11 003 093 386 x7

274 658 203 125
+ · · ·

� (A.6)

is not globally bounded. Therefore, it is not possible to find any algebraic (or rational) pull-
back p(x) such that

µ · Q[1/5,1/5](x) = q
(

p(x)
)

,� (A.7)

24 Any 2F1(a, b], [c], x) with c = 1 is globally bounded since it is of weight zero: it is of the form nFn−1, and has c 
given by an integer and not a fractional number.
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since the RHS of (A.7) is necessarily globally bounded when µ · Q[1/5,1/5](x) cannot be glob-
ally bounded regardless of the constant µ. In appendix B we give the exhaustive list of these 
28 hypergeometric 2F1’s related to classical modular curves that were obtained using the 
necessary condition on the nome explained here.

Appendix B.  Special 2F1 hypergeometric functions associated with classical 
modular forms

The Heun functions of this paper can all be rewritten in terms of pullbacked 2F1 hyper-
geometric functions which turn out to correspond to classical modular curves (with the 
exception of the ‘Shimura’ Heun functions of section  3. These 2F1 hypergeometric func-
tions correspond in fact to classical modular forms because they can be rewritten [38] as 
A · 2F1([1/12, 5/12], [1], p(x)) where the pullback p(x) is in general more involved than 
simple rational pullbacks, being often algebraic functions. Using the globally bounded nome 
condition of appendix A, we looked for all possible 2F1 hypergeometric functions related25 to 
pullbacked 2F1([1/12, 5/12], [1], x) (see (A.7)). We give here a list of 28 hypergeometric func-
tions that have series with integer coefficients, that are related to modular forms.

2F1

(
[
1
2

,
1
2
], [1], 16 x

)
, 2F1

(
[
1
2

,
1
3
], [1], 36 x

)
, 2F1

(
[
1
3

,
1
3
], [1], 27 x

)
,

2F1

(
[
1
3

,
2
3
], [1], 27 x

)
, 2F1

(
[
1
6

,
1
2
], [1], 432 x

)
, 2F1

(
[
1
6

,
1
3
], [1], 108 x

)
,

2F1

(
[
1
6

,
2
3
], [1], 108 x

)
, 2F1

(
[
1
6

,
1
6
], [1], 432 x

)
, 2F1

(
[
1
6

,
5
6
], [1], 432 x

)
,

2F1

(
[
1
4

,
1
4
], [1], 64 x

)
, 2F1

(
[
1
4

,
1
2
], [1], 32 x

)
, 2F1

(
[
1
4

,
3
4
], [1], 64 x

)
,

2F1

(
[
1
8

,
3
8
], [1], 256 x

)
, 2F1

(
[
1
8

,
5
8
], [1], 256 x

)
, 2F1

(
[
3
8

,
7
8
], [1], 256 x

)
,

2F1

(
[
2
3

,
5
6
], [1], 108 x

)
, 2F1

(
[
1
3

,
5
6
], [1], 108 x

)
, 2F1

(
[
1
2

,
3
4
], [1], 32 x

)
,

2F1

(
[
3
4

,
3
4
], [1], 64 x

)
, 2F1

(
[
5
8

,
7
8
], [1], 256 x

)
, 2F1

(
[
2
3

,
2
3
], [1], 27 x

)
,

2F1

(
[
5
6

,
5
6
], [1], 432 x

)
, 2F1

(
[
1
2

,
5
6
], [1], 144 x

)
, 2F1

(
[
1
2

,
2
3
], [1], 36 x

)

2F1

(
[

1
12

,
7
12

], [1], 1728 x
)

, 2F1

(
[

1
12

,
5
12

], [1], 1728 x
)

,

2F1

(
[

5
12

,
11
12

], [1], 1728 x
)

, 2F1

(
[

7
12

,
11
12

], [1], 1728 x
)

.
�

(B.1)

Using this globally bounded condition of the nome criterion, we wrote a program that went 
through all the values of a and b in [−1, 1] (with small increments like 1/200), with c = 1, 
singling out the 2F1 hypergeometric functions that have series with integer coefficients (or 
more generally globally bounded), both for the 2F1 hypergeometric functions, and for the 
nome. Running this program returned to us exactly the 2F1 hypergeometric functions in the 
above list (B.1).

25 See [1, 2], and the hypergeometric functions in the previous sections in this paper.
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Appendix C.  Heun functions solutions of telescopers of rational functions 
related to Shimura curves

The rational function in four variables

R(x, y, z, u) =
x y z u

uxy + uxz + uyz − xyz + ux2yz + uxy2z + uxyz2 + ux2y2z2 ,�
(C.1)

has a telescoper that is a linear differential operator of order three which actually corresponds 
to the symmetric square of a linear differential operator of order two. The solutions of this 
operator of order two are expressed in terms of the following Heun functions:

x3/8 · Heun
(

4,
49
64

,
3
8

,
7
8

,
5
4

,
1
2

, x
)

, x1/8 · Heun
(

4,
9

64
,

1
8

,
5
8

,
3
4

,
1
2

, x
)

,

or equivalently, the pullbacked 2F1 solutions:

x3/8 · (1 − x)−7/8 · 2F1

(
[

7
24

,
11
24

], [
5
4
],

−27
4

· x
(1 − x)3

)
,

x1/8 · (1 − x)−1/8 · 2F1

(
[

1
24

,
5
24

], [
3
4
],

−27
4

· x
(1 − x)3

)� (C.2)

similar to (114) but with a different pullback. One recovers the same ‘Shimura’ 2F1 hypergeo-
metric function as the one in (114), but with a different pullback.

Like the pullback in (114), this last pullback −27
4 · x

(1 −x)3  is ‘special’ as can be seen in 
appendix C.1 with equations (C.5) and (C.6).

C.1. The pullbacks in 2F1([
1

24 , 7
24 ], [

5
6 ], x) and 2F1([

5
24 , 11

24 ], [
7
6 ], x) are special

Like all the Belyi coverings [39], the pullback 27
4 · x2

(1 −x)3  in (114) is ‘special’. It has already 

been seen to occur in another framework [40], namely26 the walk in a Weyl chamber of the 
Lie algebra sl3(C). It actually occurs in the well-known ‘kernel equation’ for that particular 
walk described in [40]

G(x, y) + G(0, 0) = G(x, 0) + G(0, y),� (C.3)

where: G(x, y) = L(x, y) · H(x, y),� (C.4)

and where the generating function H(x, y) of the walk and the kernel of the walk L(x, y), read 
respectively:

H(x, y) =
1 − x y

(1 − x)3 · (1 − y)3 , L(x, y) =
27
4

· (y + x y2 + x2 − 3 x y).

Noticeably, G(x, y) is the sum of the particular rational function pullback w(x) = 27
4 · x2

(1 −x)3  

and of another rational function of y:

G(x, y) =
27
4

· x2

(1 − x)3 +
27
4

· y
(1 − y)3 .� (C.5)

Note that this additional rational function of y corresponds to the duality x ↔ 1/x :

26 See equation w(x) = 27
4 · x2

(1 −x)3 , page 3165 in [40].
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G(x, y) = L(x, y) · H(x, y) = w(x) − w
(1

y

)
.� (C.6)

C.2.  Identities on Shimura 2F1 hypergeometric functions and modular equations

There exists an algebraic series y(x) such that the two hypergeometric (114) (or (C.2)) verify 
the two following identities:

w3/8 · ρ · y′(x)1/2 · x3/8 · (1 − x)1/4 · 2F1

(
[

1
24

,
5
24

], [
3
4
], x

)

= y(x)3/8 · (1 − y(x))1/4 · 2F1

(
[

1
24

,
5
24

], [
3
4
], y(x)

)
,

�

(C.7)

and (with the same ρ and w )

w5/8 · ρ · y′(x)1/2 · x5/8 · (1 − x)1/4 · 2F1

(
[

7
24

,
11
24

], [
5
4
], x

)

= y(x)5/8 · (1 − y(x))1/4 · 2F1

(
[

7
24

,
11
24

], [
5
4
], y(x)

)
,

�

(C.8)

where the two complex constants ρ and w are given by ρ = (7 − 24 i)/25 and w = 1/ρ2. 
These two complex numbers w and ρ are on the unit circle |w| = |ρ| = 1 but are not Nth 
root of unity. The algebraic series y(x) is given by the symmetric genus zero modular equa-
tion of level five P(x, y) = 0 which is parametrised by:

x = x(v) = −225 v2 + 18 v + 1
1350 000 · v6 , y = y(v) = x

( 11 v + 2
252 v − 11

)
.

� (C.9)
The algebraic series y(x) in (C.7) or (C.8), given by the modular equation of level five 
P(x, y) = 0 reads:

y(x) = w · x +
(172 937 w

168 750
+

103
270

)
· x2 +

(338 124 694 601 w
398 671 875 000

+
270 081 319
637 875 000

)
· x3 + · · · .
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