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Abstract

In this paper we compare the integrable hard hexagon model with the non-
integrable hard squares model by means of partition function roots and transfer
matrix eigenvalues. We consider partition functions for toroidal, cylindrical,
and free—free boundary conditions up to sizes 40 x 40 and transfer matrices up
to 30 sites. For all boundary conditions the hard squares roots are seen to lie in
a bounded area of the complex fugacity plane along with the universal hard
core line segment on the negative real fugacity axis. The density of roots on
this line segment matches the derivative of the phase difference between the
eigenvalues of largest (and equal) moduli and exhibits much greater structure
than the corresponding density of hard hexagons. We also study the special
point z = —1 of hard squares, where all eigenvalues have unit modulus, and
we give several conjectures for the value at z = —1 of the partition functions.
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1. Introduction

There is a fundamental paradox in the practice of theoretical physics. We do exact compu-
tations on integrable systems which have very special properties and then apply the intuition
gained to generic systems which have none of the special properties which allowed the exact
computations to be carried out. The ability to do exact computations relies on the existence of
sufficient symmetries which allow the system to be solved by algebraic methods. Generic
systems do not possess such an algebra and the distinction between integrable and non-
integrable may be thought of as the distinction of algebra versus analysis.

This paradox is vividly illustrated by the two-dimensional Ising model. In zero magnetic
field Onsager [1] computed the free energy by means of exploiting the algebra which now
bears his name. On the other hand in 1999 Nickel [2, 3] analyzed the expansion of the
susceptibility at zero magnetic field for the isotropic Ising model on the square lattice and
discovered that as a function of the variable s = sinh 2E /kpT the susceptibility has a dense
set of singularities on the circle Is| = 1 which is the same location as the thermodynamic limit
of the locus of zeros of the finite lattice partition function. From this Nickel concluded that the
curve of zeros is a natural boundary of the susceptibility in the complex s plane. This is a
phenomenon of analysis not seen in any previously solved statistical system. Further study of
this new phenomenon has been made by Orrick et al [4] and in [5] the phenomenon of the
natural boundary was studied on the triangular lattice. However the implication of these
results for other models has not been investigated.

The hard square and hard hexagon models can be obtained from the Ising model in a
magnetic field H in the limit H — oo for the square and triangular lattices respectively, and
thus it is natural to study the question of analyticity in these two models. However, unlike the
Ising model at H = 0, where both the square and triangular lattices have been exactly solved,
the hard hexagon model is exactly solved [6—8] whereas the hard square model is not. Thus,
the comparison of these two models is the ideal place to study the relation of integrability to
the analyticity properties of the free energy in the complex plane.

Three different methods may be used to study the non-integrable hard square model:
series expansions of the free energy in the thermodynamic limit, transfer matrix eigenvalues
for chains of finite size L;, and zeros of partition functions on the L, X L, lattices of finite size
and arbitrary aspect ratio L,/Lj,.

Series expansions of the partition function per site « (z) of the hard square model [9-14]
of up to 92 terms [13] and analysis of transfer matrix eigenvalues [12] for chains of up to 34
sites [15] show that x (z) has a singularity on the positive z-axis [15]

Z. = 3.79625517391234(4) (1)
and a singularity on the negative z-axis [16, 17]

zq = —0.119338886(5). 2)
The hard hexagon model has two singular points at [6—8]
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For hard squares, series expansions [9—14] have been used to estimate the leading critical
exponents at z. and z,4, and correction to scaling exponents have been estimated as well. For
hard hexagons there are no singular points of the free energy other than z..ps, zgum, 0. It1is
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not known if there are any further singular points for hard squares. In [15] the singularity at z,.
is determined to be in the Ising universality class and in [17] the first two exponents at z,; are
shown to agree with those of the Lee—Yang edge and hard hexagons. However these long
series expansions have not given information about additional higher order singularities at z,.
and z, or singularities which may occur at other values of z.

In 2005 a very remarkable property of hard squares, which is not shared by hard
hexagons, was discovered [18] by means of studying the eigenvalues of the transfer matrix for
finite size systems [18-23]. These studies discovered that at the value of the fugacity z = —1
all eigenvalues of the transfer matrix with cylindrical boundary conditions have unit modulus
and the partition function of the L; X L, lattice with toroidal boundary conditions depends on
divisibility properties of L, and L;,. However, the free energy for these boundary conditions in
the thermodynamic limit is zero. For the lattice oriented at 45°, on the other hand, for
cylindrical boundary conditions of the transfer matrix, there are some eigenvalues which do
not have unit modulus [20] and for free boundary conditions of the transfer matrix with
L;, = 1 (mod 3) all roots of the characteristic equation are zero and thus the partition function
vanishes.

In [24] we computed for hard hexagons the zeros of the partition function for L x L
lattices with cylindrical and toroidal boundary conditions as large as 39 x 39 and the
eigenvalues of the transfer matrix with cylindrical boundary conditions. For these cylindrical
transfer matrices both momentum and parity are conserved, and for physical (positive) values
of z the maximum eigenvector is in the sector of zero momentum positive parity P = 0*.
From these cylindrical transfer matrices we computed the equimodular curves, where there
are two eigenvalues of the row transfer matrix of (equal) maximum modulus both in the sector
P = 0% and for the full transfer matrix.

In this paper we extend our study of partition function zeros and transfer matrix equi-
modular curves to hard squares for systems as large as 40 x 40 and compare them with
corresponding results for hard hexagons [24]. There are many differences between these two
systems which we analyze in detail. In addition to the transfer matrix with cylindrical
boundary conditions we also introduce the transfer matrix with free boundary conditions.
Thus we are able to give two different transfer matrix descriptions for the partition function
zeros of the cylindrical lattice. For hard hexagons there is strong evidence that this boundary
condition preserves integrability.

In section 2 we recall the relation between finite size computations in the complex plane
of zeros of L x L lattices and eigenvalues of the L site transfer matrix. In section 3 we make a
global comparison in the complex z plane of the equimodular curves and partition function
zeros of hard squares with hard hexagons. In section 4 we make a more refined comparison on
the negative z axis.

The comparisons presented in sections 3 and 4 reveal many significant differences
between hard squares and hard hexagons which we discuss in detail in section 5. We conclude
in section 6 with a presentation of potential analyticity properties of hard squares which can
be different from hard hexagons.

In appendix A we tabulate the factored characteristic polynomials of the transfer matrix at
the point z = —1 and the multiplicity of the eigenvalue +1. We also give formulas for the
growth of the orders of the transfer matrices, where such a formula is known, and for all cases
the asymptotic growth is given by N5, where Ng is the golden ratio.

In appendix B we consider the partition function values at z = —1 on L, X L, lattices for
the torus, cylinder, free—free rectangle, Mobius band and Klein bottle boundary conditions.
We give generating functions for the sequences of values of the partition function of the
L, X Ly lattice as a function of L, and find that almost all sequences of values are repeating.

3
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We conjecture that along the periodic L, direction (including twists for the Mobius band and
Klein bottle cases) the sequences will always be repeating. Furthermore, for the torus and the
cylinder (along the periodic L, direction), we conjecture that the generating functions are
given by the negative of the logarithmic derivative of the characteristic polynomial of their
transfer matrices at z = —1. This allows us to conjecture the periods of their repeating
sequences. Finally, for the Mobius band (along the periodic L, direction) and Klein bottle we
conjecture that their generating functions are the logarithmic derivative of products of factors
(1 — x™)™i, where n;, m; are integers.

2. Formulation

The hard square lattice gas is defined by a (occupation) variable ¢ = 0, 1 at each site of a
square lattice with the restriction that no two adjacent sites can have the values ¢ = 1 (i.e. the
gas has nearest neighbor exclusion). The grand partition function on the finite L, X L, lattice
is defined as the polynomial

Z1,1,() = D,2"¢(n; Ly, Ly), )
n=0

where g (n; L,, L) is the number of hard square configurations which have n occupied sites.
These polynomials can be characterized by their zeros z; as

Zr,@ =] (1 -z2/2) )
J
where z; and the degree of the polynomial will depend on the boundary condition imposed on
the lattice. This formulation of the partition function as a polynomial is completely general for
lattice models with arbitrary interactions.
The partition function for hard squares may also be expressed in terms of the transfer
matrix formalism. For the cylindrical transfer matrix with periodic boundary conditions in the
horizontal direction, the transfer matrix for hard squares is defined as

Ly
Tetby,wbry ) Lanary) (23 Li) = H (Clj, ajyi; by, bj+1)7 (6)

where the local Boltzmann weights W (a;, a;1; bj, bj;y) for hard squares of figure 1 may be
written as

W(aj, ajii; by, bj+1) =0forajaj i =ajbjy1=bjbj.1=a;b;j=1 7
with ar,+1 = a1, br,+1 = by and otherwise
W(a +l, b b]+1) b/. (8)

For the transfer matrix with free boundary conditions

L,-2
Trty-biy) L arany) (25 Lh)=(H,i1 W(aj, aji; bj, ij))

X WF(aLh—l, ar,; br,-1, bLh), 9
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bj bj+1

4] di+1
Figure 1. Boltzmann weights for the transfer matrix of hard squares.

where
. — Sbp,—1+b
Wr(@L,-1 as,; br,-1, br,) = gPu-1+u, (10)

The corresponding transfer matrices for hard hexagons are obtained by supplementing (7)
with

W (aj, ajii; by, bjp1) =0 for ajyib; = 1. (11)

We will consider four types of boundary conditions.
The grand partition function for L, X L, lattices with periodic boundary conditions in
both the L, and L, directions is given in terms of T¢ as

Z£C, (@) = Tr T&(z Ly). (12)

For free boundary conditions in the horizontal direction and periodic boundary condi-
tions the vertical direction the partition function is obtained from Ty as

L Lh(Z) = Tr T#“(Z; Lh)- (13)

For periodic boundary conditions in the horizontal direction and free boundary condi-
tions the vertical direction the partition function is obtained from T as

L L,I(Z) <VB| TCL"_ ](Z; Lh)lV/B>, (14)

where vg and v are suitable vectors for the boundary conditions on rows 1 and L,. For the
transfer matrix (6) with Boltzmann weights given by the asymmetrical form (7), (8) the
components of the vectors vz and v for free boundary conditions are

Ly

VB(al’ any «..y aL;,) = H Zaj’ V/B(bls bZ’ [RRY} bL;,) = 1. (15)

These vectors are invariant under translation and reflection.
For free boundary conditions in both directions

Z[F, @ = (vg| TF = (2 Ly)| vi)- (16)

When the transfer matrix is diagonalizable (12)-(16) may be written in terms of the
eigenvalues 4; and eigenvectors v, of the transfer matrix

5
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Z£, @ = Zﬂk?c(z; Ly). (17)

ZfF @ = ZA,?F(Z; Ly), (18)

Z{C,@ = DAk Nz Ly) - dess where dey = (Vg - Ve, K)( Ve - Vi)- (19)
p

Z{f, @ = ZAL "'z Ly) - dpg. where dpy = (Vg - vp. K)( Vi - VB). (20)

For hard squares and hard hexagons the transfer matrices 7¢-(z; L) are invariant under
translations and reflections and thus momentum P and parity + are good quantum numbers.
Furthermore the boundary vectors vg and vj of (15) are invariant under translation and
reflection, and consequently d¢; = O unless the eigenvectors v, lie in the positive parity
sector P = 07.

For hard squares the matrix 7 (z; Lj) is invariant under reflection so the eigenvectors in
the scalar products are restricted to positive parity states. However for hard hexagons
Tr(z; L) is not invariant under reflection and all eigenvectors will contribute to (20).

Note that partition function zeros for all four boundary conditions have previously been
studied for antiferromagnetic Potts models [25-29]. In that case the relations to transfer
matrix eigenvalues were similar to (19) and (20). However, with periodic boundary condi-
tions along the transfer direction the partition function was defined as a Markov trace, and
(17) and (18) were replaced by expressions involving non-trivial eigenvalue multi-
plicities [30, 31].

2.1. Integrability

To compare integrable with non-integrable systems a definition of integrability is required.

The notion of integrability originates in the discovery by Baxter that the Ising model and
the six and eight vertex models, which have transfer matrices that depend on several vari-
ables, have a one parameter subspace for which the transfer matrices with different parameters
will commute if cyclic boundary conditions are imposed [7]. This global property of the
transfer matrix follows from a local property of the Boltzmann weights used to construct the
transfer matrix, known as the star-triangle or the Yang—Baxter equation.

The hard hexagon model has only one parameter, the fugacity, but is also referred to as
integrable because Baxter [6, 7] found that it may be realized as a special case of the model of
hard squares with diagonal interactions which does have a one parameter family of com-
muting transfer matrices with cylindrical boundary conditions.

This concept of integrability has been generalized to transfer matrices with boundary
conditions which are not cylindrical if special boundary conditions are imposed which satisfy
a generalization of the Yang—Baxter equation [32, 33] known as the boundary Yang—Baxter
equation. This has been investigated for models closely related to hard hexagons [34, 35] but
the specialization to hard hexagons with free boundary conditions has apparently not
been made.

2.2. The physical free energy

For thermodynamics we are concerned with the limit L,, L, — oo, and in the physical region
where z is real and positive the partition function per site x (z), the physical free energy F(z)

6
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and the density p(z) are defined as limits of the finite size grand partition function as

k(z) = lim Z g, ()", 21
L, L,—oc0
~F@/ksT = lim (L,Ly)" - nZy 0,2 (22)
v L= 00
and

d

p(x) = —2z—F (2). (23)
dz

This limit must be independent of the boundary conditions and aspect ratio 0 < L, /L, < o0
for thermodynamics to be valid. The free energy vanishes and is analytic at z = 0. For hard
hexagons as z = o

1 - 1
F(2)/kgT = 3 Inz + Fyy(z) and p(z) — 3 (24)
and for hard squares
1 - 1
F(2)/kpT = > Inz + Fys(z) and p — 5’ (25)

where Fyy (z) and Fyg(z) are analytic at z — oo. From this formulation series expansions of
the free energy about both z = 0 and 1/z = 0 are derived. The partition function per site,
physical free energy and density for 0 < z < z. and z,. < z < oo are different functions which
are not related to each other by analytic continuation around the singularity at z.. For hard
hexagons the density for both the low and the high density regime may be continued to the
full z plane which for low density is cut from —oo < z < zg, and z.., < 2 < oo and for high
density cut from z4., < 2 < Zeun. Indeed, both the low and high density partition functions
per site and the density for hard hexagons are algebraic functions [24, 36] and thus have
analytic continuations even beyond the cuts in the z plane.

To study the possibility of analytic continuation for hard squares of the physical partition
function per site and density from the positive z axis into the complex z plane we consider
both the formulation in terms of the transfer matrix and the zeros of the partition function.

2.3. Analyticity and transfer matrix eigenvalues

For 0 < z < oo all matrix elements of the transfer matrices are positive so the Perron—
Frobenious theorem guarantees that the largest eigenvalue A, is positive and the corre-
sponding eigenvector has all positive entries. Thus for all cases

lim L' InZ;,7,z) = Indm (23 L) (26)

L,—

and thus the free energy is

—F/kpT = 1im L;"In Amax (23 Ly). 27)

Ly—> o
Furthermore the cylindrical transfer matrices for both squares and hexagons have
translation and reflection invariance. Therefore the eigenvalues of the lattice translation
operator are el” where P, the total momentum, has the values 2zn /L), and the eigenvalues of
the reflection operator are +1. Each transfer matrix eigenvalue has a definite value of P and
parity and A,,,x has P = 0" (where + indicates the reflection eigenvalue). Therefore for

7
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0 < z £ oo the eigenvalue A,,,x of the transfer matrix T¢ is the eigenvalue of an eigenvector
in the sector P = 07.

To obtain the analytic continuation of the density from the positive z axis into the
complex z plane we need to continue the limit as L, — oo of the eigenvalue with P = 0%
which is maximum on the positive axis. However, the analytic continuation of 4, off of the
segment 0 < z < oo will not, of course, have the largest modulus in the entire complex z
plane. The analytic continuation of A,,,x will be maximum only as long as it has the largest
modulus of all the eigenvalues and ceases to be maximum when z crosses an equimodular
curve, where the moduli of two (or more) eigenvalues are the same. It is thus of importance to
determine the thermodynamic limit of the equimodular curves of the largest eigenvalues of
the transfer matrix. In the thermodynamic limit the regions of 0 < z < z. and z, < z < oo are
separated by one or more of these equimodular curves. In [24] it was seen that for hard
hexagons with finite L, the equimodular curves separate the z plane into several regions.
However, because the eigenvectors with different momentum and parity lie in different
subspaces only the eigenvalues corresponding to eigenvectors with P = 0% can affect the
analytic continuation of the density.

For the hard square transfer matrix with free boundary conditions, 7r(z; Lj), the
eigenvalue A, will lie in the positive parity sector for positive z and the analytic con-
tinuation off the positive real axis will be constrained to eigenvalues in the positive parity
sector. For hard hexagons, where Ty (z; L) is not reflection symmetric, A,,x iS not con-
strained to lie in a restricted sub-space.

It is thus clear from the formulation of the physical free energy and the density in terms
of the transfer matrix that the process of analytic continuation off of the positive z axis and the
taking of the thermodynamic limit do not commute. In the thermodynamic limit it is not even
obvious that for a non-integrable model an analytic continuation through the limiting position
of the equimodular curves is possible.

2.4. Analyticity and partition function zeros

The considerations of analytic continuation in terms of partition function zeros is slightly
different because by definition polynomials are single valued. However, once the thermo-
dynamic limit is taken the limiting locations of the zeros will in general divide the complex z
plane into disconnected zero free regions. For hard squares and hard hexagons the physical
segments 0 < z < z, and z, < z < oo lie in two separate zero free regions. The density is
uniquely continuable into the zero free region and in these regions the free energy will be
independent of boundary conditions and aspect ratio. For hard hexagons the density for both
the low and high density cases are further continuable beyond the zero free region into the
respective cut planes of section 2.2. However, for hard squares there is no guarantee that
further continuation outside the zero free regions is possible.

2.5. Relation of zeros to equimodular curves

For finite lattices the partition function zeros can be obtained for Z LCWCLh (z)and Z LCF 1, (@) from

(17) and (18) if all eigenvalues are known. For Z £ ,CL,, (z) and Z LF F 1, (2) both the eigenvalues
and eigenvectors are needed to obtain the zeros from (19) and (20).
The limiting case, where

L, - o with fixed Ly, (28)
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is presented in [25-29], [37-39] with various boundary conditions extending the work of
[40—42]. In this limit (28) the partition function will have zeros when two or more maximum
eigenvalues of T (z; L;) have equal moduli

|z L) = |42(z: L)l (29)

Consider first ZLCV,CLh (z) and ZLCth (z), where we see from (17) and (18) that only
eigenvalues are needed. Thus, for these two cases, when only two largest eigenvalues 4,
need to be considered we may write

)
Zp,1,(@) = ,11Lv 1+ (/1—2) + . (30)
1
Then at values of z, where |4;] = ;] with ,12//1] — ¢ we have for large L,
Zp,1,(@) = /IIL"[I + eifls 4 ] G1)

and hence Z; ;,(z) will have a zero close to this z when
eifly = _ 1, (32)
that is when

0L, = 2n + Dz (33)

with n an integer. This relation becomes exact in the limit L, — oo. Calling z; and z;4 the
values of z at two neighboring zeros on the equimodular curve we thus obtain from (33)
0(zi+1) — 0(z;) = 2x/L,. (34)

Let s(z) be the arclength along an equimodular curve. Then the derivative of 8 (s (z)) with
respect to s is defined as the limit of

49 _ 0(s(zix) — 0(s(2)

= . (35)
As s(ziv1) — 5(2)
Thus, defining the density of roots on the equimodular curve as
. 1
D(s) = lim (36)

L, LV[S(ZHI) - S(Zi)]’

we find from (34) and (35) that for L, - oo with L, fixed that the density of zeros on an
equimodular curve is

dé (s)
ds
For Z/€, (z) and Z/"} (z) from (19) and (20) we have instead of (30)

L) d
Zr,@ =2 1+ [_2] d_2 4+ o, (38)
1 1

= 27D (5). 37
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with
d )
42 _ relv, (39)
d

where in general r # 1. Thus writing
A )
22 _ e, (40)
A

the condition for a zero in the limit L, — oo which generalizes (32) is

€L‘, eiGL

vrei'// = — 1’ (41)
from which we obtain

Inr
L,

€ = l"_]/L" - e—ln r/L, ., 1 —

, (42)

OL, +w=(2n+ 1)x. (43)

Thus as L, — oo the locus of zeros approaches the equimodular curve as In r/L, and the
limiting density is still given by (37).

These considerations, however, are in general not sufficient for the study of the ther-
modynamic limit where instead of (28) we are interested in the limit

L, - o, L,— oo, with fixed L,/L, 44)

and the physical free energy must be independent of the aspect ratio L,/L.
To study the limit (44) there are several properties of the dependence of the equimodular
curves on L; which need to be considered:

(1) the derivative of the phase 0 (s) on a curve can vanish as L, — oo on some portions of
the curve;
(i) the number of equimodular curves can diverge as L, — oo and there can be regions in
the z plane where they become dense;
(iii) the length of an equimodular curve can vanish as L, — 0.

The first of these properties is illustrated for hard hexagons in [24]. The second and third
properties have been observed for antiferromagnetic Potts models in [43].

We will see that all three phenomena are present for hard squares. The roots of the L x L
partition function in the limit L — oo converge to lie on the L;, — oo limit of the equimodular
curves.

3. Global comparisons of squares and hexagons

In [24] we computed for hard hexagons the zeros for L x L lattices of Z LCCL (z) for toroidal
boundary conditions, and for cylindrical boundary conditions, where

zfS @ = z2f" ). (45)

We also computed the equimodular curves for both the full transfer matrix 7¢ (z; Lj) relevant
toZ LC ,CLh (z) and the restriction to the subspace P = 0% relevant for Z LF ,CLh (z). In this paper we
compute the same quantities for hard squares and compare them with the results of [24]. We
also compute the equimodular curves for Ty (z; L) relevant for Z E F £,(z) and Z f F 1, (@). For
hard hexagons we restricted attention to L,, L, multiples of three which is commensurate

10
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with hexagonal ordering. Similarly for hard squares we restrict attention here to L,, L, even
to be commensurate with square ordering.

3.1. Comparisons of partition function zeros

We have computed zeros of the hard square partition function in the complex fugacity z plane
for L x L lattices with cylindrical and free boundary conditions for L < 40 and for toroidal
boundary conditions for L < 26 using the methods of [24]. In figure 2 we compare partition
function zeros for cylindrical boundary conditions of hard squares on the 40 x 40 lattice with
hard hexagons on the 39 x 39 lattice and in figure 4 the comparison is made for free boundary
conditions. In figure 3 we compare for toroidal boundary conditions hard squares on the
26 x 26 lattice with hard hexagons on the 27 x 27 lattice.

For both hard squares and hard hexagons there is a line of zeros on the negative real axis
ending at z; and z,.j,, respectively. The ratio of real roots to complex roots for hard squares is
roughly 1/2 : 1/2 while for hard hexagons the ratio is roughly 2/3 : 1/3.

The most obvious difference between hard squares and hard hexagons in figures 2—4 is
that the zeros of hard squares are seen to lie in an area instead of being confined to a few well
defined curves as is seen for hard hexagons.

For cylindrical boundary conditions the filling up of this area proceeds in a remarkably
regular fashion.

For the lattices 4N X 4N there are N — 1 outer arcs each of 4N points, then there is a
narrow arclike area with close to 4N zeros and finally there is an inner structure that is
connected to z = —1. For the innermost of the N — 1 arcs the zeros appear in well defined pairs.

For lattices (4N + 2) X (4N + 2) there are N — 1 outer arcs each of 4N + 2 points, then
a narrow arclike area which has close to 4N + 2 zeros and finally an inner structure that is
connected to z = —1.

For all boundary conditions the zeros of hard squares appear to converge in the L — oo limit
to a wedge which hits the positive z axis at z.. This is distinctly different from the behavior of
hard hexagons where the zeros appear to approach z..,;, on a well defined one-dimensional arc.

In figure 5 we illustrate the dependence on L of the hard square zeros of
Z£ Q@)= ZEFL(z) of the L x L lattice by giving a combined plot of all the zeros for
12 < L < 40. This reveals that the three cases of L = 6n + 4, 6n + 2 and 6n approach the
common limit in three separate ways. There is one well defined curve whose position does not
depend on L which consists only of the points of L = 6n + 4 lattices.

In table 1 we list the value of the zero closest to the three endpoints z., z4 and —1 for the
L x L cylindrical lattices with 24 < L < 40. We also list the number N; of zeroes in
- < z < z4 plus the number of zeroes z < —1. For L = 40 we note that Re [z.(40)] > z.
whereas for L < 38 we have Re [z.(L)] < z.. This behavior of z.(L) in relation to z. is similar
to what is seen for hard hexagons in table 5 of [24], where Re [z.(L)] > z, for L > 21 and
only starts to approach z. from the right for L = 36.

3.2. Comparisons of equimodular curves with partition zeros

We have computed equimodular curves for the hard square transfer matrix T¢- (z; L) in the
sector P = 0F for even L;, < 26 and for the full transfer matrix for L;, < 18. For hard squares
we have computed the equimodular curves for the full 7¢(z; L;) and the restriction to the
positive parity sector for L, < 16. For hard hexagons the equimodular curves of T¢-(z; Lj)
were computed in [24] for L, < 21 and in the sector P = 0% for L, < 30. Equimodular
curves for the hard hexagon transfer matrix 7 (z; L;) are computed here for L, < 21.

11
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Figure 2. Comparison in the complex fugacity plane z of the zeros of the partition
function Z£ )= Z,S F (z) with cylindrical boundary conditions of hard squares on
the 40 x 40 lattice on the left to hard hexagons on the 39 x 39 lattice on the right. The
location of z. and z..;;, is indicated by a cross.
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Figure 3. Comparison in the complex fugacity plane z of the zeros of the partition
function ZLCCL (z) with toroidal boundary conditions of hard squares on the 26 x 26

lattice on the left to hard hexagons on the 27 x 27 lattice on the right. The location of z..
and z..p;, is indicated by a cross.

In figure 6 we plot the equimodular curves and zeros for hard squares. This is to be
compared with the similar plot for hard hexagons in figure 7. In both cases we note that the
zeros for ZZ C(z) and Z LCFL are identical while the corresponding equimodular curves are
different.

The equimodular curves of hard squares are strikingly different from those of hard
hexagons for all cases considered. The hard hexagon plots consist of a few well defined sets
of curves which, with the exception that the curves for P = 0* do not have rays extending to

12
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Figure 5. Combined plot of hard square zeros of ZLCFL @)= Zfi(z) for the L X L
lattice with cylindrical boundary conditions for 12 < L < 40. We exhibit a mod six
effect by plotting L = 6n + 4 as circles, L = 6n + 2 as boxes and L = 6n as crosses,
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Table 1. The endpoints z.(L), z4(L) and z_; (L) for the L x L cylindrical lattices with
24 < L < 40. The number of zeros N, on the segment —1 < z < z4 as well as the very
small number of points z < —1 which do not contribute to the density.

L z) za (L) z-1(L) Ny

24 3.690334 +1i1.324109 -0.119976 -0.956723 128 +0
26 3.718433 +1i1.226238 -0.119871 0979835 153 +5
28 3.739986 +1i1.141529 -0.119788 0986589 176+ 0
30 3.756751 +11.067 554 -0.119723 -0.991656 201 +5
32 3.769947 +1i1.002431 -0.119671 -0.992168 231 +1
34 3.780438 +10.944 686 —0.119628 -0.989045 259 +9
36 3.788852 +i0.893 150 -0.119592 -0.976523 288 + 0
38  3.795647 +10.846 884 -0.119563 -0.994325 325+9
40 3.801 169 +i0.805129 -0.119538 —-0.991673 358 +0
o 3.796 255 -0.119338 -1

infinity, are qualitatively very similar for all four cases. For hard squares, on the other hand,
the four different plots are qualitatively different from each other and are far more compli-
cated than those for hard hexagons.

The cylinder partition function Z£ @)= ZLCFL (z) allows a direct comparison between
the equimodular curves of Tx(z) and T¢-o+(z) in figures 6 and 7, since both transfer matrices
can be used to construct the same partition function. For both hard squares and hard hexagons
these figures show that the zeros of the L x L cylindrical partition function lie much closer to
the equimodular curves of Tx(z) rather than T¢-g+. It is only for much larger aspect ratios that
the cylinder zeros lie close to the 7o+ equimodular curves, as can be seen, for example, in
figure 8, where we plot the hard square Z{;f, 2 (z) roots forn =1, 2, 3, 4, 5, 10 along
with the L;, = 26 equimodular curves of T¢o+(z).

For hard squares, the arclike structures noted above for figure 2 are in remarkable
agreement with the Tx(z) curves which originate near z = —1 and extend to infinity. There are
L, such equimodular curves which is exactly the number of points seen above to lie on each
of the arclike structures of zeros.

For hard squares both 7¢(z; Lj) and Tr(z; Ly) shown in figure 6 have equimodular
curves which extend out to Iz] = co. In appendix C we present an analytical argument that
both the T¢-(z; L) and Tr(z; Lj) curves have L, branches going out to infinity at asymptotic
angles arg z = % withk=0,1,...,L,— 1

For hard hexagons it was seen in [24] that when L, = 0 (mod 3) the curves for 7¢ (z; Ly)
as illustrated in figure 7 have 2L;/3 rays extending to infinity which separate regions with
P = 0% from regions with +27/3. However, for the hard hexagon matrix Tr(z; L) it is
evident in figure 7 there is much more structure in the curves which extend to infinity. This is
shown on a much larger scale in figure 9. This more complicated structure for the equi-
modular curves of Tr(z; L;) presumably results from the fact that for hard hexagons
Tr (z; Ly) is neither translation nor reflection invariant.

Just as for hard hexagons it is only possible for hard squares to identify an endpoint of an
equimodular curve approaching z. for the transfer matrix 7¢ (z; Ly,) in the P = 0% sector. We
give the location of the z.(L;) and z,4(Lj) endpoints for P = 0% in table 2.

For hard squares the transfer matrix 7y (z; L;) with free boundary conditions is invariant
under parity in contrast with hard hexagons where there is no parity invariance. The max-
imum eigenvalue for hard squares has positive parity and in figure 10 we compare for L, = 16

14



J. Phys. A: Math. Theor. 47 (2014) 445001 M Assis et al

CC
3 z16,16
To(z:16) 7

/

-1}
-2

-4

6 -4 -2 0 2 A "oR -4 -2 0 2 4

Figure 6. Comparison for hard squares of the three types of zeros and the four types of
equimodular curves. Clockwise from the upper left we have for L = 16: Z Lch (z) with

Te (z; L), ZLCFL (z) with Tr(z; L), Zg‘i(z) with T¢(z; L) restricted to P = 0% and
Z LF  (z) with Tr(z; L) restricted to positive parity. We note that the zeros of Z LF <)
and Z LCQ (z) are identical even though the equimodular curves are very different. The
location of z. is indicated by a cross.

the equimodular curves of Tr(z; Lj,) with the restriction to positive parity. We also compare
the equimodular curves for L;, = 16 of T-(z; L) and its restriction to P = O*.

4. Comparisons on -1<z<z4

A much more quantitative comparison of hard squares and hard hexagons can be given on the
interval —1 < z < z4. We treat both transfer matrix eigenvalues and partition function zeros.
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Figure 7. Comparison for hard hexagons of the three types of zeros and the three types
of equimodular curves. Clockwise from the upper left we have for L =21: Z Lch (z) with
Te(z; L), ZET (2) with Te(z; L), ZFG (z) with Tp(z; L) restricted to P = 0* and
Z LF FL (z) with T (z; L). We note that the zeros of Z LF CL (z) and Z LCFL (z) are identical even
though the equimodular curves are very different. The location of z..;, is indicated by a
Cross.

4.1. Transfer matrix eigenvalue gaps

The eigenvalues of the transfer matrix T¢ (z; L) for hard hexagons for P = 0 have two very
remarkable properties discovered in [24]

(i) The characteristic polynomial of T¢(z) in the sector P = 0% for L, =9, 12, 15, 18
factorizes into the product of two irreducible polynomials with integer coefficients.

(i1) The roots of the discriminant of the characteristic polynomial which lie on the real axis
for z < zg.un (L) all have multiplicity two for L, < 18. In particular on the negative real
axis the maximum eigenvalue is real only at isolated points. We conjecture this is valid
for all L,
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V4 LFV (,:Lh (z) of hard squares for L, X 26 lattices with cylindrical boundary conditions (in
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location of z. is indicated by a cross.



J. Phys. A: Math. Theor. 47 (2014) 445001 M Assis et al

250-.|.F(Z;2 1) : ‘ ' -
2001 5 ; P ]
150 -
100+

50/

P —
50+
-100|

-150 -

-200+

250} wd ‘ ) . \
300 200 -100 0 100 200 300

Figure 9. Equimodular curves for the hard hexagon transfer matrix 7y (z; L;) for
L;, = 21 showing the complex structure which exists for Izl > 12. The location of z, is
indicated by a cross.

Table 2. The endpoints of the equimodular curves of Tx(z; L) with P = 0% which
approach z. and z,; as L, increases. For L, < 14 the endpoints are computed from the

vanishing of the discriminant of the characteristic polynomial and have been computed
to 50 decimal places. For L;, > 16 they are determined numerically to three decimal

places and consequently the deviation from z, is too small to be accurately determined.

L, z.(L,) endpoint zq4(Ly) endpoint

4 -0.8806 +i3.4734  -0.1259
6 1.6406 + i3.2293 -0.1216
8 2.5571 +i2.6694 -0.1204
10 2.9955 +i2.2264 -0.1200
12 3.2374 +11.8961 -0.1197
14 3.3845 +i1.6461 -0.1196
16 3.479 +i1.4547

18 3.544 +i1.3032

20 3.591 +11.1780

22 3.627 +11.0722

24 3.654 +10.9841

26 3.675 +10.9117

o 3.796 255 —0.119 338

The hard hexagon transfer matrix 7x(z; Ly,) for L, = 3, 6, 9 also has the remarkable
property that all the roots of the resultant on the interval —1 < z < z,; have multiplicity two.
This is very strong evidence to support the conjecture that hard hexagons with free boundary
conditions in one direction and cyclic in the other direction is obtained as a limit from a model
which obeys the boundary Yang—Baxter equation of [32, 33].
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Figure 10. On the left the comparison for hard squares with L, = 16 of the equimodular
curves of Tc(z; L) in black with the restriction to P = 0% in red. On the right the

comparison for hard squares with L, = 16 of the equimodular curves of Tz (z; Lj) in
black with the restriction to the positive parity sector in red. The location of z. is
indicated by a cross.

Neither property (i) nor (ii) can be considered as being generic and neither property holds
for hard squares where there are small gaps in the equimodular curves where the maximum
eigenvalues of both T¢-(z; L) and Tr(z; Lj) are real and non-degenerate. These gaps are
caused by the collision of a complex conjugate pair of eigenvalues at the boundaries of the
gaps. On —1 < z < z4 the maximum eigenvalue of 7¢ (z; Ly,) is in the sector P = 0. We have
computed these gaps numerically for L, < 20 and more accurately from the discriminant of
the characteristic polynomial for L, < 14. We give these gaps in table 3 for L; < 20. For
Ly, > 22 most of the gaps are too small to actually observe their width, but their locations can
still be determined numerically and are given in table 4 for 22 < Lj, < 30.

The gaps of Tr(z; L) are not the same as those of T-(z; L;,). The gaps of Tr(z; L) are
given in table 5, where we see that with increasing L, they approach the gaps of T (z; L;) of
table 3.

The location of gaps for larger values of L, may be extrapolated by observing that when
the maximum eigenvalues Ay, are complex they may be written as [,y | €92, where 6 is
defined in section 2.5. The eigenvalues collide and become real when 6/z is an integer. In
principle each of the separate equimodular curves on —1 < z < z4 could be independent of
each other, but as long as we are to the right of any equimodular curve which intersects the z
axis, we define by convention the eigenvalue phase at the right of a gap to be the same as the
phase at the left of the gap. We then choose 6 not to be restricted to the interval O to z but to
continuously increase as z decreases from z; to the first crossing of an equimodular curve.
This convention preserves the alternation of the signs of the real eigenvalues seen in table 3.
For L, = 6 we illustrate the behavior of this phase in figure 11. At the boundaries of the gaps
the derivative of the phase diverges as a square root, and for L, = 6 this derivative is also
plotted in figure 11.

For any given value of 7 this unrestricted phase grows linearly with L, and thus we define
a normalized phase
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Table 3. The gaps on the segment —1 < z < z4, where the maximum eigenvalue of the
transfer matrix 7¢ (z; Ly) for hard squares on cylindrical chains of length L, is real for

6 < L,<?20.
L, z;(Ly) z,(Ly) Gap Eigenvalue sign
6 —-0.523 854 22 -0.474 81121 4.904 301 x1072 -
-0.306 052 27 —-0.303 600 84 235243 x1073 -
10 -0.237 372 68 —0.237 200 02 1.7266 x10~* -
—-0.779 292 38 —0.736 455 27 4283711 x1072 +
12 -0.204017 56 -0.204 002 39 1.517 x107° -
—0.495 39291 —-0.493 520 02 1.872 89 x1073 +
14 -0.184 64415 —0.184 642 65 1.50 x107¢ -
—-0.371932 69 -0.371 803 94 1.2875 x10~* +
—-0.925 510 46 -0.919 493 26 6.017 21 x1073 -
16 -0.17211444 -0.172 1143 1.4 x1077 -
—-0.305 086 -0.305 078 8 x107° +
-0.643 36 -0.642 04 1.32 x1073 -
18 -0.163389012 —0.163388998 1.4 x1078 -
—-0.264 305 4 -0.264 304 5 9 %1077 +
—0.494 482 -0.494 388 9.4 x107 -
20 -0.156991031 -0.156991029 2 x10~° -
-0.237 235 39 -0.237 235 30 9 %108 +
—-0.404 127 -0.494 120 7 x107° -
—-0.7537 -0.7523 1.4 x1073 +

Table 4. The location of the very small gaps on the segments —1 < z < z,4, where the
maximum eigenvalue of the transfer matrix 7¢(z; L) for hard squares is real. For
L, =22, 24, 26, 28, 30 the values are obtained from the data; for L, > 32 the
values are obtained from extrapolation using figure 12.

L, 1 2 3 4 5 6 7 8
2 -0.152  -0218  -0346  -0.598
24 -0.148  -0204  -0305  -0494  —0.844
26 -0.145  -0.193  -0276  -0423  -0.683
28 -0.143  -0.184  -0254  -0371  -0574  -0.93
30 -0.140  -0.178  -0237  -0334  -0495  -0.75
32 -0.1388  -0.172  -0.223  -0305  -0435  -0.642  -0.972
34 -0.1373  -0.167 0213  -0282  -0390  -0.558  -0.815
36 -0.1360  -0.163  -0204  -0264  -0355  -0494  -0.701
38 —0.1348  -0.160  -0.196  -0249  -0327  -0444  -0.616  -0.871
40  -0.338  -0.157  -0.190  -0237  -0305  -0405  -0.548  -0.752
0
¢ L, (46)

The gaps occur when L;¢ = 1. In figure 12 we plot the normalized phases ¢ of Tc(z; Ly)
for 4 < L; < 26 and observe that they fall remarkably close to a common limiting curve. We
may thus use this curve to extrapolate the locations of the gaps for L, > 32. These values are

20
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Figure 11. The normalized phase ¢ (z) of the equimodular curve of T (z; Lj) and the
derivative —d¢.(z)/dz for L, = 6 which has one gap on - < z < z4, where A
is real.

Table 5. The gaps on the segment —1 < z < z4, where the maximum eigenvalue of the
transfer matrix Tr(z; Lj,) for hard squares on the free chain of length L, is real for

6<L,<16.
L, zi(Lp) z-(Lyp) Gap Eigenvalue sign
6 -0.4517 —-0.4439 7.8 x1073 -
-0.3004 -0.2999 5x107* -
10 -0.239 87 —-0.239 83 4 %1073 -
-0.6933 —-0.6868 6.6 1073 +
12 -0.2079551 -0.207 950 4 4.6 x197° -
—0.469 77 —-0.469 08 6.9 x107* +
14 —-0.188 648 88 -0.886483 5 5.3 x1077 -
-0.362 749 -0.362 722 2.7 x1073 +
—0.85376 -0.853 15 6.1 x107* -
16 -0.175819604 —0.175819540 6.4 x1073 -
-0.302 4077 —-0.302 405 2 2.5 x1076 +
—0.610 69 -0.61049 2.0 x107* -

given in table 4 for 32 < L, < 40. We also plot in figure 12 the normalized phase ¢, for
Tr (z; Ly) and note that ¢ — ¢ as L, becomes large.

4.2. The density of partition zeros of L x L lattices on the negative z axis

For both hard squares and hard hexagons the zeros on the negative real axis are sufficiently
dense that a quantitative comparison in terms of a density is possible.

The density of partition function zeros on L, X L; lattices with L,/L, fixed and
L,, L, — oo is defined here as the limit of the finite lattice quantity

N 1
Dy, (zj))=————>0 “47)
T LyL(zj — )

and the positions of the zeros z; increase monotonically with j. To analyze this density we will
also need the nth order lattice derivative
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Figure 12. The normalized phase angles ¢~ of Tc(z; L;) (on the left) and ¢, of
Tr(z; Ly) (on the right) on the segment —1 < z < z4 as a function of z.
s —1) s —1)

Dy 1, (zj+1) = Dy, 1, (2))

Zj+1 T T

b, (z;) = (48)

As long as the density on —1 < z < z4 is the boundary of the zero free region which
includes the positive real axis (and where the thermodynamic limiting free energy is inde-
pendent of the aspect ratio L,/Ly), the limiting density computed directly for the L, X L
lattice is given in terms of the normalized phase angle (46) ¢ (z) on the interval -1 < z < z4
by use of (37) as

lim Dy 1,(z) = — lim 49e) (49)
Ly, L,— o0 Ly—> o dZ

Partition function zeros have been computed for systems much larger than it has been
possible to compute eigenvalues and the largest lattices are for the L x L cylinders. In
figure 13 we plot the density and the first three lattice derivatives for hard squares for the
40 x 40 cylindrical lattice on —1 < z < z4. On this scale the density appears to be quite
smooth and a local maximum is seen in the first derivative.

4.3. Partition zeros versus phase derivatives

For hard hexagons the density of partition function zeros on the negative z axis lie very close
to the density computed from the derivative of the phase angle (49). Moreover all the lattice
derivatives are smooth and featureless except very near z,., and also agree remarkably well
with the derivatives computed from the phase angle. This is in significant contrast to hard
squares.

In figure 14 we compare the density of zeros and its first two lattice derivatives with the
same quantities computed from the normalized phase derivative curves of the corresponding
transfer matrix for the 22 x 22 toroidal lattice and the 14 x 14 cylindrical lattice. For the
density almost all zeros are seen to fall remarkably close to the normalized phase derivative
curves. In the first derivative of the normalized phase derivative curve we see the divergences
due to the gaps at —0.60 for T¢-(z; 22) and at —0.85 and —0.36 for Ty (z; 14). In the second
derivative, the divergences become more pronounced and the gap at —0.35 of T (z; 22)
becomes noticeable.
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Figure 13. The density of zeros and the first three lattice derivatives for hard squares for
the 40 x 40 lattice with cylindrical boundary conditions in the region —1 < z < z4. The

glitch, defined in section 4.4, caused by the gap given in table 4 at z = — 0.752 is
clearly visible in the second and third derivatives.

The derivatives of the normalized phase derivative curves all exhibit oscillations in the
vicinity of z = —1 which become larger and cover an increasing segment of the z axis as the
order of the derivative increases. In these oscillatory regions noticeable discrepancies between
the lattice derivative of the zeros and the derivatives of the normalized phase are apparent.

4.4. Glitches in the density of zeros

The gaps in the equimodular curves of hard squares on —1 < z < z; which caused the
divergences in the normalized phase curves in figure 14 lead to irregularities in the density of
the L x L partition function zeros which we refer to as ‘glitches’. These glitches upset the
smoothness of the density of zeros on the finite lattice and become increasingly apparent in
the higher derivatives of the density. The glitch at z = —0.752 is quite visible in the second
and third derivatives in figure 13.

To illustrate further the relation of gaps to glitches in the density of zeros we plot the
third derivatives of the density of cylindrical L x L lattices on an expanded scale in figure 15,
where we indicate with solid arrows the positions of the corresponding gaps in the T-(z; Ly,)
equimodular curves of table 4. On these expanded scales we observe that as the size of the
L x L lattice increases the number of glitches increases, they move to the right and their
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Figure 14. The density and the first two derivatives of the partition function zeros (in
red) compared with the derivatives of the normalized phase derivative curves (in black)
of the toroidal lattice chz,czz (z) for the T¢(z; 22) on the left and the zeros of
Zﬁ},rm (@)= Zli,cm(z) cylinder and the T (z; 14) transfer matrices (on the right). The
divergences due to the gaps at z = -0.598, —0.346 for 7Tr(z;22) and at
z = —0.853, —0.3627 for Tr(z; 14) can be seen.

amplitude decreases. These properties follow from the properties of the gaps of table 4 and the
normalized phase curve of figure 12.

There also appear to be deviations of the zeros from a smooth curve at values of z, where
the phases of the complex conjugate pair of maximum modulus eigenvalues are +z/2. These
deviations have no relation to gaps in the equimodular curves and are indicate with dashed
arrows in figure 15.

4.5. Hard square density of zeros for z— z4

As 7 — z, the density diverges as
D(z) ~ (zg — 277 (50)

where from the universality of the point z; with the Lee—Yang edge it is expected that
a = 1/6, which was also found to be the case for hard hexagons. We investigate the exponent
a using the method used in [24] by plotting in figure 16 the quantity D (z) / D 151) (z) for L=40
and compare this with
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Figure 15. The third derivative of the density of hard squares for
40 x 40, 38 x 38, 36 x 36, 34 x 34 lattices with cylindrical boundary conditions
in the region 0.7 < z < —0.25. The gaps of table 4 are indicated by solid arrows.

D(2)/D'(z) ~ (24 — 2)/a with a = 1/6, (51)

which is expected to hold for z — z,.
As was the case for hard hexagons this limiting form is seen to hold only for z very close
to z; and for comparison we also plot a fitting function

f@ = (25 — Dfay with z; = -0.058, ay=1/0.88, (52)

which well approximates the curve in the range —0.30 < z < — 0.16. This same phenomenon
has been seen in ([44], equation (4.8) and figure 14) for Hamiltonian chains.

4.6. The point z = —1

Hard squares have the remarkable property, which has no counterpart for hard hexagons, that
at z = —1 all roots of the characteristic equation are either roots of one, or minus one, with
various multiplicities. These roots have been computed for the full transfer matrix 7 (—1; Lj)
either directly [18, 23] to size 15 or using a mapping to rhombus tilings [19] to size L, = 50.
In appendix A we present factorizations of the characteristic polynomial 7o (—1; Lj) for the
reduced sector P = 0 for L;, < 29, and of Tz (— 1; L;) for L, < 20 both for the unrestricted
and positive parity sectors. in appendix B we give the partition function values at z = —1.
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Figure 16. The plot of density/derivative for the partition function zeros of hard squares
for 40 x 40 cylindrical lattice. The red line has « = 1/6 and z; = —0.119. The blue line

has ay = 1/0.88 = 1.14 and z; = —0.058.

4.7. Behavior near z = —1

The density of zeros of figure 13 for the 40 x 40 cylinder is finite as z - — 1. However the
first derivative is sufficiently scattered for z < —0.95 that an estimate of the slope is

impracticable.
Furthermore there is a great amount of structure in the equimodular curves near the point
z = —1, where all eigenvalues are equimodular and which is not apparent on the scale of the

plots in figure 6. We illustrate this complexity for L, = 12 for P = 0% in figure 17, where we
see that there are equimodular curves which intersect the z axis for z > — 1. These level
crossings are a feature also for T (z) without the restriction to P = 0% and for T (z) and
Tr (z) with + parity as well. In general there are several such crossings for a given L;. We give
the values of the crossing furthest to the right in table 6. It is not clear whether these level
crossings will persist to the right of z = —1 as L, — oo0. We also note that often there are
more than one such level crossing, as illustrated in figure 17 for Tr (z; 12).

5. Discussion

The three different techniques of series expansions, transfer matrix eigenvalues and partition
function zeros give three quite different perspectives on the difference between the integrable
hard hexagon model and non-integrable hard squares.

5.1. Series expansions

Consider first the series expansion of the physical free energy of hard squares [13, 17], which
is analyzed by means of differential approximants, as compared with the exact solution of
hard hexagons [6].
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Figure 17. Plots in the complex fugacity z plane near z = —1 for L, = 12 of the
equimodular curves of hard square transfer matrix T (z; Lj,) with P = 0% (on the left)
and Tr (z, L) with + parity (on the right) on a scale which shows the level crossings on
the z-axis to the right of z = —1.

Table 6. Positions of the right-most equimodular curve crossings of the negative z-axis
for hard squares of T (z) in the sector P = 0% and unrestricted and of T (2) in the plus
parity sector and unrestricted.

L P=0" Tc Parity =+ T

12 -0.9973 -0.91295 -0.9988 same

14 none -0.9195 -0.999296 -0.999 092
16 none -0.96 none none

18 -0.999 94 -0.9990

20  -0.9995

22 -0.9999

24 -0.9974

26  -0.9990

28  -0.9996

The hard hexagon free energy for both the high and low density regimes satisfies
Fuchsian differential equations which can be obtained from a finite number of terms in a
series expansion [24].

For an non-integrable model like hard squares, the best kind of differential approximant
analysis to be introduced is not clear. For integrable models, even if one has a small number
of series coefficients, restricting to Fuchsian ODEs has been seen to be an extremely efficient
constraint. However for a (probably non-integrable) model like hard squares, there is no
reason to restrict the linear differential equations annihilating the hard square series to be
Fuchsian. In [17] the existing 92 term series are analyzed by means of differential approx-
imants but the series is too short to determine whether z = —1 is, or is not, a singular point.

The method of series expansions and differential approximants are not well adapted to
analyze qualitative differences between hard squares and hard hexagons. This is to be
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compared with the transfer matrix eigenvalues and partition function zeros presented above
which show dramatic differences between the two systems.

5.2. Transfer matrices

The clearest distinction between integrable hard hexagons and non-integrable hard squares is
seen in the factorization properties of the discriminant of the characteristic polynomials of the
transfer matrices 7¢ (z; Lj,) and Tr (z; Lj). At the zeros of the discriminant the transfer matrix
in general fails to be diagonalizable and the eigenvalues may have singularities.

For hard hexagons these discriminants contain square factors which exclude the existence
of gaps in the equimodular curves and singularities of the maximum eigenvalue on the
negative z-axis. This was observed for T¢(z; L) in [24]. In the present paper these square
factors and lack of gaps has been observed for the transfer matrix 7 (z; Lj) of hard hexagons
for all value of L, studied and supports the conjecture that integrability can be established by
extending the methods of [32-35]. For hard squares there are no such factorizations, so that its
equimodular curves have gaps and the maximum eigenvalue has singularities on the negative
real z-axis.

5.3. Partition function zeros

In [24] we qualitatively characterized the partition function zeros as either being on curves or
being part of a necklace, and in the present paper we have characterized the zeros as filling up
areas. However, further investigation is required to determine if these characterizations of the
qualitative appearance of zeros of the finite system characterize the thermodynamic limit. In
[24] we initiated such a study by examining the dependence of the right-hand endpoints of the
necklace on the size of the lattice and observed that the endpoints move to the right as the
lattice size increases. However, there is not sufficient data to reliably determine the limiting
behavior. Thus, if in the thermodynamic limit the endpoint moved to z.;, the notion of zeros
being on a curve might not persist. Similarly, it needs further investigation to determine if the
zeros of hard squares, which we have characterized as filling up an area, will fill the area in
the thermodynamic limit or whether further structure develops.

On the negative z-axis both hard hexagons and hard squares have a line of zeros which
has been investigated in detail in section 4. The density of zeros for z < z4., for hard
hexagons is mostly featureless and smooth, which is quite consistent with the low density free
energy having a branch cut starting at z,.,,. Hard squares zeros, on the other hand, have a
series of ‘glitches” whose number increases as z approaches z; and which correspond to the
locations of the gaps in the equimodular curves. A rigorous analysis of behavior of these
glitches needs to be made.

5.4. Behavior near z,

The equimodular curves of hard hexagons were extensively studied in [24]. The equimodular
curves, as illustrated for L, = 21 in figure 7, consist of the curve, where the low and high
density physical free energy are equimodular and a necklace region which surrounds this
equimodular curve in part of the left half-plane.

For hard hexagons there is only one unique curve of zeros of the L x L partition function
which is converging towards z..,;, as L — oo. However, for hard squares the partition function
zeros in figures 2—4 do not lie on a single unique curve near z... This is clearly seen in the plots
of figure 5, where the zeros appear to be converging to a wedge behavior as L — oo which is
analogous to the behavior of the equimodular curves of figure 18.
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Figure 18. The equimodular curves in the complex z plane of the T¢(z; Lj) transfer
matrix in the 0% sector for 4 < L, < 26 plotted together. The different values of L,, are

given different shadings as indicated on the plot. The location of z. is indicated by a
Cross.

The behavior of the equimodular curves of hard squares near z.. in figure 6 is qualitatively
different from the behavior of hard hexagons in figure 7. This is vividly illustrated in
figure 18, where we plot the equimodular curves for T.(z; L) with P = 0% for all values
4 < L, <£26. We see in this figure that there is an ever increasing set of loops in the
equimodular curves which approach z. as L, — .

It needs to be investigated if this behavior of both the zeros and the equimodular curves
for hard squares will have an effect on the singularity at z. beyond what is obtained from the
analysis of the series expansion of [13, 17].

5.5. Behavior near z = —1

Finally we note that the relation of the equimodularity of all eigenvalues at z = —1 to the
analytic behavior of the physical free energy is completely unknown, as is the curious
observation for 12 < L, < 28 found in table 6 that there are equimodular curves of T-(z; Ly,)
and for Tr(z; Lj,) which cross the negative z-axis to the right of z = —1. There are many
values of L; for which there are more than one such curve. It would be of interest to know if
this feature persists for L, > 28 and if it does, does the point of rightmost crossing move to
the right. If such a phenomenon does exist it would cause a re-evaluation of the role of zeros
on the negative z-axis.
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6. Conclusions

The techniques of series expansions, universality and the renormalization group apply equally
well to describe the dominant behavior at z. and z; of hard hexagons and hard squares.
However the results of this paper reveal many differences between integrable hard hexagons
and non-integrable hard squares which have the potential to create further analytic properties
in hard squares which are not present in hard hexagons.

The renormalization group combined with conformal field theory predicts that both z.
and z, will be isolated regular singularities, where the free energy will have a finite number of
algebraic or logarithmic singularities, each multiplied by a convergent infinite series. This
scenario is, of course, far beyond what can be confirmed by numerical methods. Indeed hard
squares are predicted to have the same set of five exponents at z, which hard hexagons have
[24, 36] even though only two such exponents can be obtained from the 92 terms series
expansion [17].

The emergence of the critical singularities predicted by the renormalization group at
either z. or z,; is a phenomenon which relies upon the thermodynamic limit and we have seen
that hard squares approach this limit in a more complicated manner than do hard hexagons.

Near z. the limiting position of the zeros for hard squares appears to be a wedge. This is
far more complex than the behavior of hard hexagons.

Near z; the zeros of both hard hexagons and hard squares are observed to lie on a
segment of the negative z-axis. If this indeed holds in the thermodynamic limit it would be
satisfying if a genuine proof could be found which incorporates the fact that some level
crossings have been observed to the right of z = —1.

On the negative z-axis hard squares have glitches in the density of zeros and gaps in the
equimodular curves which hard hexagons do not have. In the thermodynamic limit the
glitches and gaps may become a dense set of measure zero by the analysis leading to table 4 .
Does this give a hint of the analytical structure of non-integrable models?

Acknowledgments

We are pleased to acknowledge fruitful discussions with C Ahn, AJ Guttmann, and PA
Pearce. One of us (JJ) is pleased to thank the Institut Universitaire de France and Agence
Nationale de la Recherche under grant ANR-10-BLAN-0401 and the Simons Center for
Geometry and Physics for their hospitality. One of us (IJ) was supported by an award under
the Merit Allocation Scheme of the NCI National facility at the ANU and by funding under
the Australian Research Council’s Discovery Projects scheme by the grant DP140101110.
We also made extensive use of the High Performance Computing services offered by ITS
Research Services at the University of Melbourne.

Appendix A. Characteristic polynomials at z = -1

In [19] it was proven that all of the eigenvalues of the T-(—1; L) transfer matrix at z = —1
are roots of unity and the characteristic polynomials were given in that paper up to L; = 50.
Below we give the factorized characteristic polynomials PLChOJr in the O sectorat z = —1 up to

L;, = 29. The transfer matrix 7z (z; Lj,) has not been considered before in the literature, and
below we give the factorized characteristic polynomials PLFh and PLF;r of the full 7-(—1; L;)
and the restricted positive parity sector, respectively, at z = —1 up to L, = 20. In all cases
divisions are exact.
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A.1. Characteristic polynomials Pfh

The degree of PLFh is exactly the Fibonacci number F(n) defined by the recursion relation
F(Ly+2)=F(Ly+ 1)+ F(Ly) (A.D)

with the initial conditions F (—1) = 0, F (0) = 1, so that its generating function is

2+

and thus as L, —» oo the degree of the polynomial PLF,Z grows  as Néh, where

Ng=(1+ \/g)/Z ~ 1.618--- is the golden ratio.
The first 20 polynomials are

GF = (A.2)

A= (0= 1)( 1) (2= 1) = D)

Pl =(x* = 1)(x? - 1)_l(x -

Pf=(x8 = 1)(x* = 1) = D)

P (0= (st = ) = ) e

PE=(x0 = 1)(x* = 1) /(x* = 1) (@ = 1) e = D

PE= (a4 = 1)(x* - 1)2(x2 - 1)_1(x ~ 1

Pf=(x® - ) (x2 = 1)(x* = 1)(x = 1)(x* = 1) (= 1) @- D

PE= (a2 = 1) (56— 1) (&f 1) (x4 = 1) - 1)

PE= (22— 1) (2 = 1) (M = )( = 1) (B = 1) (2 - 1) (2= 1) -
Ply= (0 = 1) (2 = 1) (& = 1) (2 = 1) (2 = 1) (= 1) (2 - 1)
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A= (% = 1)(e = 1) (28 = 1) (2 = 1) (0 = 1) (22 = 1) (20 - 1)
(6 = 1) (& = 1) (2 = 1) @ - 1,

Rlo= (% = 1)( = 1) (2 = 1) (= )7 1) (2 =) (0 - 1) (-
(2 =) (0 = ) (o = ) = ) (=) (0 = ) -

Ply= (2% = 1) (6% = 1) (2% = 1) (20 = 1) (@ - 1) (2 - 1) (220 - 1)
R N CE N S Ry

(x =1,

Ply= (22 = 1) (2% = 1) (%0 = 1) (5% = 1) (63 = 1) (22 = 1) (22— 1)
(22— 1) (2o = 1) (2 = 1) 7 (= 1) (22 = 1) @ - D

Ply= (2% = 1) (2% — 1) (6% = 1) (% = 1) (22 = 1) (200 - 1) (60 - 1)
e R R R
(x* = 1) (= 1)@=,

Ply= (70 = 1) (6% = 1) (2% = 1) (252 1) (w0 — 1) 7 (20 — 1) (04 - 1)7
R LA (O

x-=1 (A.3)

and from these we see that the degrees of the multiplicity of the eigenvalue +1 are
0,1,1,2,1,3,2,5,3,8,9, 17, 20, 33, 45, 74, 105, 167, 250, 389, ..., (A.4)

where we find a ‘mod 4’ effect.

A.2. Characteristic polynomials Pfh"

The degrees of PLFh+ follow the sequence A001224 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [45] and they are related to the Fibonacci sequence F(n) as follows:

F(Lj + 1)+F(L’Jrl + 1)
2

Lh = Odd, (AS)

F(Ly + 1)+F(%)
2

This sequence has the following generating function

Lj, = even. (A.6)

G' P+r2+1+2

F+ _
o= 2 +2(1—t2—t4)

(A7)

so that the degree of the polynomials PLFh+ grow as NGLh with a sub-dominant growth of N(;Lh/ 2,
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The first 20 polynomials are
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(0= a2 = A ) 1) o 1) (5 -1
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= (o = (= (0 = ) ) = )0 - )
(0 (= 1 (= 1) ) () ()
(x* = 1) (2 = 1) = D,

P = (3 = 1 = (30 ) 1) (0= ) ) )
(2 = 1) (a1 = 1 (0 = 1) (= 1) (- 1) (2 1)

P = (0 = 1) (e = )T = 1) () () () ()
(= 1= ) (a0 =) (= 1) (= 1) (0 )
(58 = (7 = 1) = 1) (= ) = 1) = 1) (2 =)

P = (= ) = = ) = ) (= ) - )
(w20 = 1) = 1) 20 )7 = 1) )
(= 1) = 1) (A.8)

and from these we find that the degrees of the multiplicity of the eigenvalue +1 are

0,0,0,1,1,2,1,2,1,4,7, 11, 8, 10, 20, 47, 69, 86, 103, 162, ..., (A.9)

where again there is a ‘mod 4’ effect.

A.3. Characteristic polynomials Pfh

The characteristic polynomials PLCh for 7o (—1; Lj,) have been well analyzed in [19] and are
listed in appendix A of that paper to L, = 50. The degree of the polynomials are the Lucas
numbers which satisfy the recursion relation (A.1) with initial conditions L(0) = 2, L(1) = 1
and which have the generating function

e e (A.10)

(1 —t- tz).
From the long list of [19] we find that the degrees of the multiplicity of the eigenvalue +1 are

1,1,2,3,0,4,1,7,8, 13, 2, 26, 9, 49, 38, 107, 28, 228, 49, 501, 324, 1101,

258, 2766, 469, 5845, 3790, 13 555, 2376, 35 624, 5813, 75 807, 38 036,

180 213, 30 482, 480 782, 69 593, 1 047 429, 485 658, 2 542 453,

385020, 6 794 812, 914 105, 15 114 481, 9 570 844, 36 794 329,

5212 354, 101 089 306, 12 602 653, 222 317 557, ..., (A.11)

where we find a ‘mod 6’ effect.

A.4. Characteristic polynomials P‘Eho"

The degrees of the polynomials PLChO+ are discussed in appendix B of [12] and are the series
A129526 in the OEIS [45]. However, an explicit form is not known.
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We have computed the characteristic polynomials in the less restrictive case of the
momentum P = 0 sector. The degrees of the polynomials follow the series AO00358 in the
OEIS [45], which is given by the formula

L Zr/»(ﬂ)[nn ~2)+ F)l, (A12)
Lh n‘Ll, n

where ¢ (n) is Euler’s totient function (the number of positive integers <n which are relatively
prime with 7). In particular when L;, is prime (A.12) specializes to
F(Ly=2)+F(Ly)—1

Lh

1+

(A.13)

which grows as N&".

The order of the restricted positive parity polynomial P€** is greater than the negative
parity polynomial P€°~ and thus P%* also grows as NZ".
The first 29 polynomials are

PE% =(x - 1),

(- ) - - v

) S T
() (= ) e
20— 1) (2 = 1) (2 = 1) (30 = 1) (27 = 1) (S =) (o = 1)

(x2 - 1)_4(x - 1),
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PS+ = (xso _ 1)(x38 _ 1)120(x32 _ 1)168(x26 _ l)llo(xzs _ 1)_1(x22 _ 1)15
(= (1) S ) ) o
(0= 1) (=8 = 1) (2 = 1) (e = 1) (22 = 1) - 2,
P2%0+ _ (x23 _ 1)23()620 _ 1)205()617 _ 1)581(x14 _ 1)364(x11 _ 1)36(x7 _ 1)—14

(210 = 1)°(a% - 1)_5(x4 )M (A.14)
and from these we find that the degrees of the characteristic polynomials are

1,2,2,3,3,5,5,8,9, 14, 16, 26, 31, 49, 64, 99, 133, 209, 291, 455, 657,

1022, 1510, 2359, 3545, 5536, 8442, 13 201, 20 319, 31 836, 49 353, 77 436,

120 711, 189 674, 296 854, 467 160, 733 363,

1 155647, 1 818 594, 2 869 378, 4 524 081, 7 146 483, ..., (A.15)

where we find there is a ‘mod 6’ effect.

Appendix B. Partition functions at z = -1

Successive powers of transfer matrices always satisfy a linear recursion relation, since any
matrix satisfies its own characteristic polynomial. Therefore, any linear function of the matrix
or its components which is independent of the power of the matrix will also satisfy the same
linear recursion relation. The usual functions involved in creating partition functions from
transfer matrices, the trace of the matrix, dot products with boundary vectors, and modified
traces to account for Mobius and Klein bottle boundary conditions, all cause the respective
partition functions to satisfy the same linear recursion relation as their transfer matrix, its
characteristic polynomial. In particular, the Klein bottle partition function Z LIiCLh (z) satisfies

the same linear recursion relation in L, as the torus Z LC;CLh (2), since it is constructed from the
same transfer matrix 7¢- (z; Lj), and the cylinder partition function Z LC F 1, (2) satisfies the same

recursion relation in L, as the Mobius partition function Z LMF 1, (2) since they are both con-
structed from the same transfer matrix 7x(z; Ly).

Therefore, the generating functions for the partition functions for a given L, and for
general z are rational functions in z and x = L, whose denominators are the characteristic
polynomials of the L, transfer matrix and whose numerators are polynomials given by the
product of the characteristic polynomial and the initial terms of the series (the numerator has
degree 1 less in x than the degree of the characteristic polynomial).

When the transfer matrix can be block diagonalized and the boundary vector dot products
cause the partition function to be a function of only a restricted set of matrices in the direct
sum, the partition function will satisfy a recursion relation of smaller order than the order of
the full transfer matrix. As an example, 7-(z; L) can be block diagonalized into different
momentum sectors, and Z £ ,CL,, (z) is only a function of the reflection symmetric zero

momentum sector 0%, so that the cylinder Z LFV ,CLh (z) will satisfy a recursion relation in L, of

the order of the O sector and not the order of the full T (z; Lj;) matrix. Likewise, Z LF‘ F £,(@)
satisfies a recursion relation in L, of the order of the positive parity sector of Tz (z; Ly).
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Beyond restrictions to particular matrix sectors, however, in general the polynomials in
the numerator and denominator of the generating functions do not partially cancel, regardless
of the initial conditions of the recursion relation, so that partition functions in z generally
satisfy a recursion relation of the same order as its transfer matrix. This holds generically for
hard hexagons and hard squares even if at particular values of z some cancellations can occur
in the generating function.

For hard squares at z = —1 the denominators of the generating functions simplify to the
expressions given in appendix A, whose orders grow according to the order of the transfer
matrices. The numerators, however, are such that massive cancellations occur, so that the
partition functions as a function of x = L, at z = —1 satisfy linear recursion relations of much
smaller degree than than the partition function does for general z. The form of the numerator
is dependent on the initial conditions of the recursion relation, that is, the partition function
value at z = —1 for the first several values of L,. This, in turn, is dependent on boundary
conditions: both the torus and the Klein bottle partition functions satisfy the same linear
recursion relation of their transfer matrix 7 (—1; L), but the numerators of their generating
functions are different, so that the Klein bottle exhibits much more massive cancellations than
the torus for a given L,. Likewise, the cylinder Z LCF ,(=1) and the Mdbius band have
different recursion relation orders due to different amounts of cancellations at z = —1.

The cylinder has the property that for odd L, Z LF ?Lh(—l) = — 2 whenever

ged(L, — 1, L,) =0 mod3, and ZLFV,CL,, (=1) = 1 otherwise [21]. Therefore, the linear
recursion relation of Z LF ,CL,, (—1) for odd L, is always of order 1 or 2, even though for generic z
the partition function Z LF ,CLh (z) satisfies a linear recursion relation of the order of the 0* sector

of the T (z; Lj,) transfer matrices, which grows as NGLh. The initial conditions for the cylinder
for odd L,, therefore, are able to effect incredible cancellations to its generating function
whose denominators are given in appendix A.

In [19] it was proven that for the torus partition function, ZLCWCLh(—l) = 1 whenever
L,, L, are co-prime. Since for each L, the torus at z = —1 satisfies a linear recursion relation,
its initial conditions happen to be exactly suited to allow for this number theoretic property.
This property does not extend to other boundary conditions even when they satisfy the same
overall linear recursion relation. The Klein bottle satisfies the same 7-(—1; L;) linear
recursion relation that the torus also satisfies, but its initial conditions do not cause it to share
in the torus’ co-primality property.

A repeating sequence with period n will have a generating function of the form
p(x)/(1 — x™). Therefore, since all of the eigenvalues of the transfer matrices 7 (—1; L;) and
Ty (—1; L) are roots of unity, as long as the denominators have only square-free factors, the
sequences of partition function values at z = —1 will be repeating, with a period given by the
lcm of the exponents #; in the factors (1 — x”/). Most sequences below are repeating, with a
period often much larger than the order of the transfer matrix. For the limited cases considered
below, all generating functions along a periodic direction (including a twist for Mdbius bands
and Klein bottles) are repeating. Along the free direction, the sequences are not always
repeating; the cylinder for L, = 0 mod 4 is non-repeating and the free—free partition function is
non-repeating for four of the L, considered. In [22] a general form for the generating func-
tions of Z LF th (—1) for even L, is conjectured, along with the conjecture that for even L, the

only repeating sequences for Z LF ,CL,,(_l) are when L, = 2 mod 4. We make the following
conjecture:
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Conjecture 1. Along a periodic direction (including twists) all generating functions are
repeating.

We further find below that along the periodic direction, all repeating sequences are sums
of repeating sub-sequences of period p; which have value zero except at locations p; — 1 mod
pj» where their value is an integer multiple of p;. Often the value is exactly p;. Therefore, the
generating functions along a periodic direction are logarithmic derivatives of a product of
factors of the form (1 — x?;)™i, where my; is an integer. We conjecture that this always holds:

Conjecture 2. Along a periodic direction (including twists), all generating functions are
logarithmic derivatives of products of the form Hj (I — xPiy™i, where p; and m; are integers.

As it turns out, for the limited cases considered below, we find surprisingly that the
generating functions for the torus and the cylinder along the periodic direction are exactly the
negative of the logarithmic derivative of the characteristic polynomial of their transfer
matrices at z = —1, so that we have the further conjecture:

Conjecture 3. The generating functions of the torus and cylinder (along the periodic
direction) are equal to the negative of the logarithm of their characteristic polynomials, that
is, GLChC = —% ln(PLChC) and GLC;F = —i ln(PLChF), respectively.

This is similar to a conjecture in [46]. We note that this does not hold for general z, nor
for Mobius bands or Klein bottles at z = —1. Due to this conjecture, we can use the results
from appendix A to further the tables of periods for the sequences Z LC ’C,_h (=) and Z LCF L, (=1,
where we notice a mod 3 pattern.

For ZLC;CLh(—l), for L, = 0 mod 3 we conjecture that the periods are given by the
lem(Ly, 2Ly, ..., nLy), where n is often given by n = L,/3 — 1.

For ZLCF L,(=1), for L, = 1 mod 3 we conjecture that the periods are given by the
lem(6, 12, ..., 6n), where n is often 2(L, — 4)/3 + 1.

We also note that the periods of the cylinder (along the periodic L, direction), the Mobius
band, and the free—free plane are all equal, and the periods of the Klein bottle and cylinder
(along the free L, direction) are equal.

Below we list both the generating functions and tables of values for all boundary con-
ditions, since number theoretic properties such as the torus’s co-primality property can be
missed by simply considering the generating functions. The periods of repeating sequences
are tabulated, along with the minimal order of the recursion relations. All generating functions
listed were determined by computing all partition function values up to the order of the
transfer matrix and canceling the numerator and denominators of the generating function to
arrive at the minimal order linear recursion relation; however, we extend the table of values to
higher L,,.

B.1. The torus Z{5, (—1)
The generating functions GLC,C as a function of x = L, are given below.

3x2

(1-+)

1 4x3 2
GEC GEC = GF€ + X _ X GEC = GF€ +

Ta-x (1-+)  (1-2)
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Table B1. Z{€, (-1).

13 14 15 16 17 18 19

12

10

1

Ln\L,

—

on

11

11

14
1

18
1

40

47

43

76

40

13

43

11

69

43

10

11

126

166

18

12
13
14
15

=51

73

451

55

69

11

=27

11
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Table B2. The minimal order of the recursion relation and the period of the repeating
sequence of ZLCV?L,I(—I) as a function of L,.

z°c L, 1 2 3 4 5 6 7 8 9 10 11
Tc order 2 3 4 7 11 18 29 47 176 123 199
Minrecorder 1 3 3 4 6 8 15 12 18 24 77
Period 1 4 3 4 10 12 28 20 18 280 220
() (- -9
GEO=GE — G p g ¢ B gee ooy 0T 28
(1—x6) (1—x28) (1—x14)
GSCC _ G4CC + 4Ox9 ) GQCC _ G3CC + 36)617 + 36x8 ’
=0 (=) " (=)
7 13 1 4 4 7
Gl%c _ G 2CC + Ox + Ox + Ox i
(=2 (1-2%)  (1-x9)
54 43 21

(1-2%)  (1-x%)  (1-x2)

B.2. The Klein bottle Z{°, (—1) with twist in L, direction

The generating functions GL’ff as a function of x = L, are given below.

IKC = 1 ) ZKC = - GIKC + 4XS - 2x > G3KC = - GIKC + L’
(1 -=x (1—x4) (1—x2) (1—x3)
4
GFC=—GKC - 26K+ ., GKC=GfC+ G + GIC,
(1-+)
GEC=—GFC + GEC+ GFC,  GIC =265+ 3G/, G = Gf + 26/,
14513 8x7 14x6
GQKC: GSKC + G3KC + 3G1KC, G]I({)C — GSKC _ X + X + X )
(EOMOEC Ry
4
Gh®=Gf - 26/ + 10x (B.2)

B.3. The cylinder ZfS, (1) = Z&, (-1)

The generating functions G5C as a function of x = L, are given below. For odd L, there are
only two cases:
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Table B3. Z£C,, (-1).
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Table B4. The minimal order of the recursion relation and the period of the repeating
sequence of ZL’iFL,I(—l) as a function of L,.

VAN M 1 2 3 4 5 6 7 8 9 10 11
T order 2 3 4 7 11 18 29 47 76 123 199
Minrecorder 1 3 2 4 2 5 3 4 4 20 7
Period 1 4 3 4 2 12 4 4 6 5 20
1 3
GSI;;C 1= G3n G3n 1= 7 N
- o (1-x)
For even L;:
2(1 1 —x)?
GzFC=G1FC—7( J”i), el — - ( x)z, G{“=-G{“+GJ°+ G,
(=) 7 7= (o)
— x> 2 3 _ 45
Gre<Lgre_ 4 +0(1-x0)  gx+0(x+3)(1-2)

5 S(1-2")1-x2 5 (1-29)1-x

10x(1 +x)(1 +x2) IOx(x +x + )

(1-+) (1-+)
o5 = Lore - a(1-x)(1-2) Ha+n(1-2)(1-x)
9 (1 _x18) (1 —x6)2

(2x5 + 2x* +55¢3 + 55)
+ :

9(1 — xé)
28x3p]ic 14x3(x7+x6+x2+x+ 1) 14)63(1 +x)
+ - - ,
(1—x16) (l—x”) (1—x5)
e 243GLC 4 2108GFC 1601 +0)(1 = x7)pycS
Gf€ = +
455 13(1 - x%)

+ 3200+ 0(1 = 2T)p + 8(1 - "2)”125, (B.3)

7(1 - x4) 5(1 - x19)

phE=x2 4l 427+ 20+ x5+ 2+ x + 1,

GlO — GFC

+2
"3

Gl =G ¢

p16 = 201l 4 6x% — 3x8 + 4x7 — 9x0 4+ 5x° — 5x* + 9x3 — 4x2 + 3x — 6,
p162 x5 4+ 3x3 = x2 +x - 3,

pEG =TT + 7x® = 3x% + x* — 523 4+ 12x% + 6x + 10. (B.4)
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Table B5. 2/, (=1) = Z£F | (-1).

13 14 15 16 17 18 19

12

10

1

Ln\L,

—

—

21

-11 13 -13 15 -15 17 -17 19 -19

11
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Table B6. The minimal order of the recursion relation and the period of the repeating
sequence of Z[V?L,I(— 1) as a function of L,.

Vil 2 4 6 8 10 12 14 16
Teo+ order 2 3 5 8 14 26 49 99
Min rec order 2 3 5 7 13 15 25 29
Period 4 — 12 — 56 — 880 —

Table B7. The minimal order of the recursion relation and the period of the repeating
sequence of Z,fF 1, (=1) as a function of L,.

zZ°F L, 1 2 3 4 5 6 7 8 9 10
Tr order 2 3 5 8 13 21 34 55 89 144
Minrecorder 2 3 5 6 13 16 26 36 60 60
Period 6 4 8 12 40 28 72 176 3640 360

The generating functions GLChF as a function of x = L, are given below.

cr_ 6K 3T 2x 1
“ _(1—)66) (l—x3) (l—x2)+(l—x)’
o . S 1
S0 (- A
cr_ 8T 4 1
oS (1) (1-x% Ta—n
4x 1
Gt =G w oty (-0 a-»
CF _ ~CF 1OX9 _ 2x
Gs' =G3 +(1—x10) (l—xz)’
CF _ npCF 14x"3 21
Gy =2G, +(1_xl4)+(1—x2) 1
18x17 12x!1
G =G" - G + G + T _xxw) + € _xxlz),
CF _ _CF 22x% 32415 43 )
Gg' = —G; +(1—x22)+(1—x16) (1_x4) 1-n
GEF = GCF _ GCF 4 GCF 4 26x% N 60x" N 16x7 ~ 24x3
9 6 5 2 (l_xzﬁ) (1_x20) (1_x8) (l—x“)’
GI%F = G4CF - G3CF + GZCF + 30x* + 72x23 + 36x!7

45

(B.5)
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Table B8. Z/"", (-1).
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Table B9. The minimal order of the recursion relation and the period of the repeating
sequence of ZLMWFLh(— 1) as a function of L,.

ML, 1 2 3 4 5 6 7 8 9 10
Ty order 2 3 5 8 13 21 34 55 89 144
Min rec order 2 3 5 5 13 16 23 35 60 59
Period 6 4 8 12 40 28 72 176 3640 360

B.4. The Mébius band Z}*, (—1) with twist in the L, direction

The generating functions foF as a function of x = L, are given below.

ME _ 6x° B 3x? B 2x 1
R FIT B FRe) S P R (o)
GMF — 4x3 B 2x _ 1
(=) (1-27) (-w
GMF _ &7 4]
(=) (1-x%) a-w
dx 3
G =-G" + GM + (1 —x2) T,
10x° 10x* 2
GSMF=G3MF _ (1 _XXIO) + (1 _xxs) " (1 _xxz)’
MF _ MF _ 14)Cl3 14X6 _ 2x 3
e iy R F S e
18x!17 12x1 18x8

GMF = GMF + GMF + GMF + - -

(1-x%)  (1-x7) (1-x)

N 12x° + 2
(1 - x6) (1 -x’

MF _ _a~MF _ s MF 222! 32x1 3 22x10 _ 6x __ 7
N (R A (e BN (D R (s )
26x 60x"

G =-Gi" + G+ G - (1 —xx26) ’ (1 —xsz)
26x2 50x° 2x 4

+ —_ —_

(1-) (1-+%) (1-2) (-0
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Table B10. Z/", (- 1).
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Table B11. The minimal order of the recursion relation and the period of the repeating
sequence of ZLFth(—l) as a function of L,.

zZrr r, 1 2 3 4 5 6 7 8 9 10 11
Ty order 2 2 4 5 9 12 21 30 51 76 127
Min rec order 2 2 4 5 9 9 17 21 31 35 51
Period 6 4 8 — 40 28 — — 3640 — 20944
GlUr = 26T — g _ g 30T T2
- (1 _ x30) (1 _ x24)
30x™ 96x!! 24x3 3
PR T A (B.6)

(1 —x15) (1 —xlz) (1 —x6) T

B.5. The free—free plane Z|' | (-1)

The generating functions GLFhF as a function of x = L, are given below.

GFF — 2x4(1 + x) N 1 1 p_ 221 4+x) 1
(=) (1-4) A= T T (1) (-
FF_2x3(x—1)(l+x2)+ n
P (l—xg) (l—xz) (l—x)’
r_ 1 (1 =x)? x 1
R s(1-x)  3(1-%) -’
S 10x3(1 = x) + 4(1 —x)2(2x2+x+2) L2
5(1 - x%) 51 - x)
- 21 = )(52 + 10x* + x° = x? + 11x + 9) L
7(1 - x7) 7(1 - x)
G — 3FF_{_p7FF()c(’+x3+1)(1 —x2)+ (1 —x)(l —)cz)z(x2+x+1)2
3(1-x1%) 3(1 - x°)
I S
3(1 = x)’
GFF__3G4{F+G1FF 2(1 +x)(1 —x“)pgff . 2(1 —xg)pgf; _ 15
S 11 (1 - 22) (1-x9)  10-»
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PP ST S (E0 U
Gy =Gy +(1_x20)+(1—x14)+13(1_x13)+13(1_x)’
e, Y e Phy P
Gio _9G4 +3(1—x‘3)+5(1—x15) 2(1—x'2) 90(1—x6)2
Pio:s 4
90(1 - x°) EETRES)
G]I]"F _ GSFF " p_llfl34 + P_ﬁgm _ 2(1 —jz)iﬁg
(1 x ) (1 x ) 7(1 R )
(1~ Dpiia 27

B.7)

D D)

p7FF:x9+x8+2x6—7x5+4x4—4x3+7x2—2x+ 1,
pgff=8x9+9x7—2x6+x5+5x4—5x3—x2+2x—9,
p8f5=—x7—x6 -2 —x* +x+ 2,
p9ff = 2(2x5 +x* —x - 2)(1 + xz)(l - xw),
pgfg = 2(—x5 x4+ —x+ 1)(1 + x)(l - x7),
pgfg =14x" + 28x10 4+ 16x° + 17x8 — 8x7 — 7x®
+ 7x% 4+ 21x* + 35x3 4+ 36x% + 11x + 12,
P =x(1 =0 (x0 + 53 + 1)(1 = x9),
Pron = + x)(l - x3)(2x10 —4x® + AT+ 4x0 — T+ Xt + T — 4 - 2+ 4),
p]gg :(1 - x6)(5x5 +5x* —4x3 —TxP 4+ Tx + 4),
= (1= 0(1 = 22) (372 + 862° + 11122 + 86x + 37),
Pios = (9723 + 97x + 48x + 49)(1 - x?),
Pl =221 + x)(l - x”)(x13 —20 a0 —xt - —x+ 2),
pl?;:(l —xs)(x7+x6+x5 =3t =+ X%+ 3 - 1),
plfg =8x" + 8x10 4+ 2x% 4+ 9x8 — 4x7 — 4x° — 3x7 4+ 11x* + 12x3 + 1242 — x + 6,
Py = —4x? — 8x% — 56x7 — 16x® + 24x% + 20x* — 28x% — 3247 + 8x + 48. (B.8)

Appendix C. Hard square equimodular curves as |z| - o

Consider hard squares for a system of width L;, = 2L sites. The boundary conditions can be
free or periodic, but not restricted by parity or momentum. We wish to show that the transfer
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matrices T¢-(z; L) and T (z; Lj) both have 2L branches of equimodular curves going out to
Izl = oo.

Let A (respectively B) denote the maximally packed state with L particles occupying the
even (respectively odd) numbered sites. Similarly, for k << L, let A; denote the classes of
states having L — k particles of which O(L) have positions overlapping with those of A and
O (1) overlap with those of B. More loosely, the states A; have the same order as A, up to
small local perturbations. The states B are similarly defined from B.

To discuss the Izl = oo limit we replace z by z~! and consider a perturbation theory for
Izl < 1. After division by an overall factor, the Boltzmann weight of state A is 1, and each of
the states in the class A, have weight z*.

To order zero (i.e., considering only states A and B) the transfer matrix is the permutation
matrix of size 2, with eigenvalues 4y = 1 and 4, = — 1.

To order k < L it is easy to see that the only non-zero matrix elements connect an A-type
state to a B-type state and vice versa. Physically this means that if we start from a state which
has predominantly particles on the even sublattice, it will remain so forever: we stay in the
same ordered phase. Mathematically it is not hard to see that this implies that the eigenvalues
A1 and 1, will continue to just differ by an overall sign, order by order in perturbation theory.
Other eigenvalues are O(z), hence play no role since then cannot be equimodular with 4,
and 4,.

The perturbative result 4; + A, = 0 breaks down at an order k which is sufficiently high
to create a domain wall across the strip/cylinder/torus between the two different ordered
states. This happens precisely for k = L. It follows that A; + 4> = O(z%), implying that

/12//11 =—1+ O(ZL) . (C.1)

To obtain equimodularity, the left-hand side must be on the unit circle. For Iz| < 1 this will
happen when z" is perpendicular to — 1, so that arg(z%) = + 7/2. It follows that there are 2L
equimodular curves going out of z=0 with the angles

arg(z) = %withk =0,1,..,2L — 1. (C.2)
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