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We analyze birational transformations obtained from very simple algebraic calculations, 
namely taking the inverse of q x q matrices and permuting some of the entries of these 
matrices. We concentrate on 4 x 4 matrices and elementary transpositions of two entries. This 
analysis brings out six classes of birational transformations. Three classes correspond to 
integrable mappings, their iteration yielding elliptic curves. The iterations corresponding to 
the three other classes are included in higher dimensional non-trivial algebraic varieties. For 
many initial conditions in the parameter space these orbits lie on (transcendental) curves, and 
finally explode in these higher dimensional varieties. These transformations act on fifteen (or 
q2_ 1) variables, however one can associate to them remarkably simple non-linear recur- 
rences bearing on a single variable. The study of these last recurrences gives a complementary 
understanding of these amazingly regular non-integrable mappings. 

1. Introduction 

In previous publications, the study of integrability of lattice models in 
statistical mechanics has brought out the existence of an infinite discrete 
symmetry group of the Yang-Baxter equations [1-6], which originates from 
the so-called inversion relations [7-10]. More generally this group corresponds 
to non- t r iv ia l  symmet r i e s  of  phase  d i ag rams  of  la t t ice  m o d e l s  in s ta t is t ica l  

mechanics  [11-13] .  The  r ep re sen t a t i ons  of  this g roup  are  b i r a t i ona l  t r a n s f o r m a -  

t ion groups ,  g e n e r a t e d  by  involu t ions ,  act ing on  the  p a r a m e t e r  space  of  the  

m o d e l  [1,2]. This  analysis  has been  p e r f o r m e d  in de ta i l  for  the  s ix teen  ve r t ex  

m o d e l  assoc ia ted  to the  two-d imens iona l  square  la t t ice  and  for  a pa r t i cu l a r  

subcase  of  a s ix ty-four  ve r t ex  m o d e l  c o r r e s p o n d i n g  to the  t h r e e - d i m e n s i o n a l  

cubic la t t ice  [4,5,14,15]. In  bo th  cases,  the  p a r a m e t e r  space  of  the  m o d e l  can 

be r e p r e s e n t e d  by  4 x 4 mat r ices ,  one  of  the  g roup  g e n e r a t o r s  I ,  co inc id ing  

with the  matr ic ia l  inverse  and the o ther(s)  be ing  some  pe rmu ta t i ons ( s )  of  the  

ent r ies  of  the  4 x 4 mat r ix ,  d e n o t e d  t gener ica l ly  [1]. The  s tudy  of  this g r o u p  

br ings to ana lyze  these  b i ra t iona l  m a p p i n g s  and  espec ia l ly  the  (gene r i ca l ly )  

infinite o r d e r  t r ans fo rma t ion  t I  [1,2]. R e m a r k a b l y ,  for  the  s ix teen  ve r t ex  m o d e l  

and  some  subcases  of  the  s ix ty-four  ve r t ex  m o d e l ,  the  i t e r a t ions  of  these  
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birational transformations tI actually densify algebraic elliptic curves in the 
parameter space, CP15 [5] (generically for the sixty-four vertex model subcase 
detailed in [4,14], they densify algebraic surfaces). These algebraic curves (or 
algebraic surfaces) indeed define a foliation of the whole parameter space [5]. 
When elliptic curves occur in the whole parameter space, the mappings are 
integrable, though the associated lattice model may not be integrable itself (in 
the sense of Yang-Baxter equations, or of their higher dimensional generaliza- 
tions, to be satisfied) [11]. Such lattice models have been denoted quasi- 
integrable [5]. Integrable mappings acting on fifteen inhomogeneous variables 
have thus emerged from this analysis of the symmetry of integrability for lattice 
models. This result is interesting in itself, as far as discrete dynamical systems 
are concerned, since the examples known in the literature were always systems 
bearing on few variables [16]. Besides, it suggests considering other birational 
mappings in CP15, generated by the matricial inverse and some (involutive) 
permutations of the entries of the matrix, not even related to any symmetry of 
lattice models of statistical mechanics [17,18]. The results will be reported here 
and, in parallel, in a series of papers [17-19], for the simplest examples of 
permutations: the transpositions of two entries. It is important to note that, 
though one mainly deals here with 4 x 4 matrices and therefore mappings of 
CP15 , the results can be generalized to q × q matrices, the associated mappings 
acting in CPq2_ 1 [17,18]. 

In fact, one can reduce the study to six classes of such mappings [20]. Their 
iterations often lie on curves, however this emergence of curves does not 
correspond to a unique situation, but on the contrary to two different ones. For 
4 × 4 matrices three of these classes correspond to integrable mappings, their 
iterations actually yielding algebraic elliptic curves. The equations of these 
elliptic curves are given as intersections of fourteen quadrics in CP15. On the 
other hand, the three remaining classes correspond to another kind of 
mappings, which we will call "almost" integrable: they are not generically 
integrable, even if their iterations stay on curves in some regions of the 
projective space. Actually, these curves are not algebraic, but transcendental, 
though they may look very much like algebraic elliptic curves. This provides an 
illustration of a transition from integrable dynamical systems to weak chaos 
through highly stable curves. Indeed, for such "almost" integrable mappings, 
one can follow the evolution of an orbit from a transcendental curve close to an 
algebraic elliptic curve, up to an "explosion" into a spray of points. This is 
reminiscent of the KAM theorem [16]. More precisely, when iterating these 
mappings one gets orbits similar to the one described by Siegel's theorem [21], 
though there is no associated complex structure. 

In other publications [17-19], it is shown that the iterations of these 
birational transformations present some remarkable factorization properties, 
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and that the polynomial factors occurring in these factorizations satisfy for 
some classes non-trivial non-linear recurrences [17,18]. It is shown that these 
non-linear recurrences on one variable also describe algebraic elliptic curves or 
transcendental curves, and thus can also be classified in two categories: 
integrable recurrences and "almost" integrable recurrences. The equations of 
these elliptic curves are biquadratic relations, and the transcendental curves 
look like deformations of these algebraic elliptic curves. 

2. Six equivalence classes 

Let us consider the following 4 × 4 matrix: 

al a 2 bl b2) 

a3 a4 b3 b4 (2.1) 
R =  cl c2 dl d2 . 

C 3 C a d3 d 4 

Let us also introduce the homogeneous matrix inverse I: 

I :R--+ R -1° det(R).  (2.2) 

The homogeneous inverse I is a polynomial transformation on each of the 
entries. It associates with each entry its corresponding cofactor. The homoge- 
neous transformation I is an involution up to a multiplicative factor: it satisfies 
12 = [det(R)] 2- Id, where Id denotes the identity transformation. 

One will also introduce the involution t, which denotes an arbitrary 
transposition of two entries of matrix R, and K, = t . I ,  the infinite order 
transformation associated with each transposition t. Transformation K, is a 
polynomial transformation of the sixteen homogeneous entries of the matrix. F, 
will denote the infinite discrete group generated by I and t [1,2,6,11]. Such 
groups F~, generated by two involutions are isomorphic to 7, up to a semi- 
direct product by a two element group (the infinite dihedral group). The 
"infinite part" of the group (which is isomorphic to Z) is generated by K,, that 
is the simplest infinite order generator of the group. Notice that F, is a group of 
birational transformations [1,2]. 

Let us analyze these groups F, of birational transformations. At  first 
sight, one has to study as many groups of mappings as there are trans- 
positions t of two elements among the sixteen entries of the matrix, that is 
(~6) = 120. 
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In fact, the 120 corresponding groups F~ fall in only six different classes. 
With the notation [ r i j -  rkz ] for transposition exchanging the two entries rij 

and rkl of matrix R (2.1), seven classes emerge [20]: 
Class ~1 corresponds to all the 6 transpositions of the form [rij - rig ], 
Class c¢ 2 corresponds to all the 6 transpositions of the form [ r , -  rjj], 
Class ~3 corresponds to all the 12 transpositions of the form [rq - rgt], 
Class ~4 corresponds to all the 24 transpositions of the form [r~j- rjk ] or 

[rii - r j ,  
Class ~5 corresponds to all the 24 transpositions of the form [ r q -  r~] or 

[rji - rki], 
Class c~ 6 corresponds to all the 24 transpositions of the form Jr, - rj~], 
Class q¢7 corresponds to all the 24 transpositions of the form [rii- rij ] or 

[rii- rji], where all the indices i, j, k and l are different. 
Let  us note that such a classification is still valid for q × q-matrices instead 

of 4 x 4-matrices. Moreover ,  one can show [20] that classes ~1 and q¢2 lead 
to the same behavior as far as iterations of their associated birational mapp- 
ings are concerned. Therefore ,  classes c¢1 and ~2 can be brought together  
in the same class, we will denote class I in the following. The five 
other  classes ( c ¢ 3 , . . . ,  c¢7) can be relabelled classes (II . . . .  , VI) in the same 
order. 

One can now study a single mapping in each class and directly deduce the 
results concerning all the other  transformations of the same class. 

3. Numerical study 

An efficient method to analyze such transformations, especially when there 
are many variables, is to iterate numerically the action of the (generically) 
infinite order  transformation K,  on an arbitrary initial matrix and to visualize a 
two-dimensional projection of the orbit [1,2]. 

Fig. 1 shows a two-dimensional projection in the fifteen-dimensional space of 
a trajectory of the Kq-iteration, where t I is a transposition of class I. Similar 
figures can be obtained for the five other classes [20]. For  instance, fig. 2 shows 
a set of iterations corresponding to many different initial points for a 
transposition of class IV. 

All these figures exhibit curves [20]. This result is astonishing, if one takes 
into account the complexity of the birational transformation K~. Moreover ,  
this complexity, due to the degree of the homogeneous transformation and 
to the number of variables, does not yield any numerical instability of the 
curves. 
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Fig. I. Projection of the orbit of K, for class I in a fifteen-dimensional space. 

4. Algebraic invariants: almost integrable mappings 

Such numerical  studies tend to show that  the orbits of  the groups  of  
birational t ransformat ions  F t associated with any t ransposi t ion are curves (at 

least in some domain  of  the pa ramete r  space). One  can thus try to get the 
equat ions  of  these curves in CPls, for instance f rom explicit algebraic expres- 
sions, invariant  under  F,. 

Let  us recall that  the set of  p x p minors  of  2p x 2p-matr ices  is globally 
invariant,  up to a multiplicative factor,  under  the matricial inverse I. Let  us for  
instance restrict to 4 x 4 matrices,  that  is p = 2 and consider  the fol lowing 2 x 2 
minors  of  the 4 x 4 matrix R:  

m =  a l b  3 - a 3 b l ,  m ' =  a l b  4 - a 3 b 2 ,  

m " =  b 3 d  2 - d l b  4 . 

m " =  b 3 d  4 - b 4 d 3 ,  

(4.1) 
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4- 
(-0.002000,-0.002000) (0.002000,0.002000) 

Fig. 2. One hundred different orbits of K, for class IV. 

These minors transform very simply under I: 

I ( m )  = - ' 0 "  m " ,  I ( m ' )  = ~q" m ' ,  . . . , (4.2) 

where ~7 = det(R). 
The non-linear transformation I thus has a linear representation in terms of 

the 2 x 2 minors. 
One can thus barter the sixteen homogeneous variables for these thirty six 

quadratic minors (4.1). Of course the number of homogeneous variables being 
sixteen (the number of entries of R), there must exist many relations between 
these minors (in fact such relations are closely related to the so-called Plficker 
relations [22]). 

Let  us now take a representative in each of the six previous classes. Let  us 
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consider for instance for class I transposition t~ exchanging a 2 and a 3. It is 
straightforward to see that by taking well-suited linear combinations (mostly 
sums or differences) of the abovementioned minors, one can actually get 
homogeneous polynomials invariant under t I and covariant under I (see (4.2) 
and similarly for the other classes). For instance, one gets sixteen such 
homogeneous q-invariants polynomials, twenty-one tH-invariants polynomials, 
twenty-two qv-invariants p o l y n o m i a l s , . . . .  We have thus obtained in each 
class a set of homogeneous polynomials denoted p~, invariant under the 
transposition t and covariant under the homogeneous matricial inverse I, all 
with the same cofactor (the determinant of the matrix R) up to a sign. 
Therefore,  one gets algebraic invariants (up to a sign) [20] under the group of 
transformation F t as ratios of these covariants. For example, one can take in 

each case the ratios p i /P l  . 
The orbits of a particular group of birational transformations F~ are included 

into the intersection of quadrics defined by the invariants (P~/Pl = ki,  ki being 
arbitrary constants). One has to calculate the dimension of this intersection, to 
confirm, or not, if they actually are curves, as the numerical study previously 
suggested. The results are as follows: 

(i) the orbits of the groups of classes I, II and III are actually included into 
algebraic curves; 

(ii) in contrast, for class IV, one invariant is missing, the orbits are only 
included into algebraic surfaces. It is shown in [17], that these surfaces are 
actually planes; 

(iii) finally for classes V and VI, only thirteen algebraically independent  
polynomials are covariant, the orbits of the corresponding mappings are only 
assigned to lie on three dimensional algebraic varieties. 

In all these cases, the different algebraic varieties foliate the whole parame- 
ter space. 

The orbits corresponding to classes I, II and III are actually elliptic curves 
since they are algebraic curves stable under an infinite number of auto- 
morphisms [6] (or even they may degenerate into rational curves) [1,2]. Thus 
the corresponding mappings are integrable. This situation is very similar to the 
one encountered with the birational mappings associated to the sixteen-vertex 
model [5]. In terms of discrete dynamical systems, these three classes provide 
new interesting examples of integrable mappings, since the parameter  space is 
a fifteen-dimensional one. 

In contrast, since some algebraic invariants are missing for classes IV, V and 
VI, one does not understand straightforwardly how one can get curves from 
the iterations of the corresponding birational transformations: either the curves 
are not really curves (but for instance fractal-like set of point with the 
Hausdorff  dimension very close to 1), either one does have algebraic curves 
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and some covariants are missing, and have to be hinted among polynomials of 
higher degrees, or the curves are not algebraic anymore but transcendental.  In 
fact, iteration calculations with high precision rule out some subtle fractal-like 
difference with curves: one actually gets curves. These numerical figures are 
highly stable under a very large number  of iterations (more than 109), 
moreover ,  they also remain stable under perturbations of the initial matrix. 
Nevertheless strong enough perturbations can make some of them pop out in 
Julia-set like set of points [20]. This rules out the existence of some additional 
algebraic invariant, and shows that, in some domain of CP15, one actually has 
non-algebraic (transcendental) curves. Such a situation, where one gets 
transcendental curves in some regions of the parameter  space, has been called 
"almost"  integrable [20]. 

The situation one encounters here is visually similar to the one described by 
Siegel's theorem [21]. This theorem corresponds to describing the iteration of a 
quadratic transformation on one complex variable, namely 

z---~Az + z 2 , (4.3) 

where A = e 2i'~°, 0 being diophantian. Siegel's theorem shows that, in some 
neighbourhood of z = 0, these iterations yield curves holomorphically conju- 
gated to circles. These curves are R-analytic transcendental curves and are 
included in some domain with an involved Julia set-like frontier [23]. The 
situation encountered here with these birational mappings seems, as far as the 
visualization of the orbits is concerned, more related to Siegel's theorem than 
to the KAM theorem. This is well illustrated by fig. 2. One does not see any 
rapid succession of ordered and disordered regions like in the K A M dynamics. 
In fact it will be shown in [17] that, at least for class IV, one does not have any 
hidden complex structure enabling to introduce a unique complex variable z, 
but that transformation K 2 actually reduces to a birational transformation in 

t I  V 

some (a, b)-plane reading as follows (with origin taken at some fixed point of 

K,21v): 

(b)__~ ( cos 0 sin 0"] ( R l ( a , b )  
 sino  44, 

where R l ( a  , b )  and R2(a , b) are simple rational expressions of a and b, the 
lowest degree of their numerators being greater than two. 

In order  to study from another  point of view this distinction between 
integrable and "almost"  integrable mappings, let us now mention in the next 
section some results obtained in [17-19]: one can associate to these birational 
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mappings new recurrences in a single variable. This makes the numerical 
iterations simpler and numerically much more controlled. 

5. From birational mappings in Ceq2_ 1 to recurrences in one variable 

With the method described in [17,18], one can exactly study the iteration of 
K, = t .  I on an arbitrary q x q matrix. This exact study brings out remarkable 
factorization properties for these (q2 _ 1)-dimensional mappings [17]. In terms 
of homogeneous variables, K, is an homogeneous polynomial transformation of 
degree (q - 1), thus ( K , ) n ( R )  is a priori a matrix which entries are homoge- 
neous polynomials of degree (q - 1) ' .  In the cases considered here, the entries 
of ( K t ) n ( R )  matrices happen to factorize, and since they are homogeneous,  
they can all be divided by their greatest common polynomial divisor. These 
homogeneous polynomials which factorize in all entries can be expressed in 
term of some elementary polynomials (related to determinants),  we will denote 
the fn's (see [17-19]). Thus, the degree of transformations (K,) n falls some- 
times to the point of being polynomial in term of the variable n [17,18]. In 
other publications [17-19,24,25], the link between this polynomial growth, 
instead of the generic exponential growth, and integrability is detailed [17- 
19,24,25]. Indeed, if one can easily imagine that the integrable mappings do 
have a polynomial growth of the "complexity",  the reciprocal statement is far 
from being obvious [24]. In fact, the degree of transformation (K,)" becomes 
polynomial for all the mappings of classes I, and II and III, but only for q = 4 
[17], and even for the mapping associated with the sixteen vertex model [19], 
that is, for all cases corresponding to integrable mappings. This degree is 
exponential for the three remaining classes IV, V and VI, which do not 
correspond to integrable mappings [17] ~1. 

Let us illustrate these factorization properties on a lattice model of statistical 
mechanics. For instance, let us consider the symmetry group of the sixteen 
vertex model [5]. This infinite discrete group is generated by the matricial 
inverse I and a permutation of entries denoted t I [5,19]. Namely t 1 permutes 
the two off-diagonal 2 x 2 blocks of the 4 x 4 matrix [5,19]. 

When dealing with birational transformations associated to the sixteen vertex 
model [5] the polynomials which factorize are given in terms of some 
elementary homogeneous polynomials, denoted F,, (instead of fn) [17,18]. Let  
us denote M,, the successive " reduced"  matrices equal to (K,1)n(R) divided by 
the greatest polynomial which factorizes in all entries of ( K t , ) " ( R ) .  M o denotes 

#1 However, this exponential growth is independent of q and in fact strictly bounded by 3" (in 
comparison with (q - 1)" generically). 
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the initial matrix R. One does not have any factorization for the first two 
iterates: 

M 1 = K t l ( M o ) ,  M 2 = Ki t (M, ) ,  (5.1) 

but one does have factorizations for the next iterations [17,18]: 

g t l ( M n + l )  = F2n • M n +  2 . (5.2) 

Moreover  the Fn's do satisfy the following relation [17,18]: 

de t (Mn+l )  
F.+2 = 3 (5.3)  

F ,  

Factorizations of the K n ( R )  matrices, of course, yield factorizations of their 
determinants. However ,  these determinants factorize even more: one also has 
similar factorization equations as eq. (5.3) for all the six classes I . . . .  , VI 
[17-19]. For class I, and surprisingly for the generically non-integrable 
mappings of class IV, the determinants of the K " ( R )  matrices actually satisfy 
recurrences of a very simple form [17,18]. Let  us give here some results 
obtained in [17] concerning these recurrences. 

Actually the recurrence obtained for class I is exactly the same as the one 
corresponding to the sixteen vertex model up to a simple change of variables 
[18] and can be written in a more compact form in terms of some homogeneous 
variables q~ (simply related to the fn's) [18], namely 

qn - qn+l 1 qn+l -- q,+2 1 
m 

q n - 1  -- qn+2 q n q n + l  q .  -- qn+3 q n + l q n + 2 "  
(5.4)  

The recurrence obtained for class IV is actually different and reads [17] 

qn+3 -- q n + l  1 qn+5 -- qn+3 1 (5.5) 
qn+4 -- q .  q~+3q~+l q~+6 -- qn+2 q~+sq~+3 

In this last case, the relation between the f , ' s  and qn's is not as simple as for 
class I [17]. 

Note that recurrences (5.4) and (5.5) are still valid for classes I and IV 
generalized to q x q matrices. One thus has universal recurrences independent  
of q [17]. Let us now study the possible integrability of these recurrences. 

In fact, eq. (5.4) can be "integrated".  A first step introduces a constant h as 
follows: 
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(1 1) 
q~+2 - q,,-1 = - A  qn+l qn 

(5.6) 

and after two other  " in tegra t ions"  introducing two o ther  constants  p and ~,  

one  finally gets a biquadrat ic  equat ion relating qn and qn+~: 

(P - qn - q n + l ) ( q n q n + l  + A) = / z  . (5.7) 

It is well known that biquadrat ic  equat ions  are associated with elliptic curves 

[5]. Hence  this recurrence  on one variable has an elliptic parametr iza t ion ,  
cor responding  to the biquadrat ic  relat ion (5.7). In contrast ,  the lef t -hand side 

and the r ight-hand side of  eq. (5.5) are the same up to a shift of  two. The re fo re  

introducing the two constants  of  integrat ion A 1 and A 2, one  can see that  eq. 
(5.5) is equivalent  to equat ion  

(1 1) 
q , + 4 - q n :  An q ] +  ]+3" 

1 q ' 
(5.8) 

where  /~2n+l = ~1 and /~2n = /~2' Unfor tuna te ly  the A~ ¢ ~t 2 c a s e  does not  yield 
generically integrable mappings.  However ,  one  can study the restr icted 

recurrence,  corresponding to A 1 = A 2 --A. In that  subcase recur rence  (5.5) is 
actually integrable.  The  integrat ion in fact yields two biquadrat ic  equat ions:  

(Pz - qzn)(Pl - q2n+~)(qz ,  qzn+l + A) - / x  = 0 ,  

(P2 - qzn+z)(P~ - qzn+, ) (qzn+zq2~+l  + A) --/X = 0 .  (5.9) 

One  can also pe r fo rm iterations of  t ransformat ion  Kqv in the (qn, qn+l)-P lane. 
For  A l ¢ A 2, we have systematically considered the i terat ions of  t r ans format ion  

Kti v in the (%,  qn+l)-plane.  Remarkab ly ,  for  a large set of  initial condi t ions  
for the i terations, one still gets curves: these curves are highly stable even after  
more  than 10 9 iterations!! This study of  a one  variable recurrence  associated 
with class IV is complemen ta ry  of  the one  pe r fo rmed  in fifteen variables and 

actually confirms the "a lmos t "  integrability of  this class of  mappings.  
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