Article

DIAGONALS OF RATIONAL FUNCTIONS: FROM
DIFFERENTIAL ALGEBRA TO EFFECTIVE ALGEBRAIC

GEOMETRY

Y. Abdelaziz !, S. Boukraa 2, C. Koutschan 3©Vand J-M. Maillard 40*

Citation: Abdelaziz Y.; Boukraa$.;
Koutschan C.; Maillard J]-M. Diagonals
of rational functions: from differential
algebra to effective algebraic geometry.
Journal Not Specified 2022, 1, 0.

https:/ /doi.org/

Received: 28 April 2022
Accepted:
Published:

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Submitted to Journal Not Specified
for possible open access publication
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 LPTMC, UMR 7600 CNRS, Sorbonne Université, Tour 23, 5eme étage, case 121, 4 Place Jussieu, 75252 Paris
Cedex 05, France; aziz@lptmc.jussieu.fr

2 LSA, IAESB, Université de Blida 1, Algeria; bkrsalah@yahoo.com

3 Johann Radon Institute for Computational and Applied Mathematics, RICAM, Altenberger Strasse 69, A-4040
Linz, Austria; christoph.koutschan@ricam.oeaw.ac.at

4 LPTMC, UMR 7600 CNRS, Sorbonne Université, Tour 23, 5éme étage, case 121, 4 Place Jussieu, 75252 Paris
Cedex 05, France; maillard@lptmc.jussieu.fr

*  Correspondence: maillard@lptmc.jussieu.fr

1t These authors contributed equally to this work.

Abstract: We show that the results we had obtained on diagonals of nine and ten parameters families
of rational functions using creative telescoping, yielding modular forms expressed as pullbacked »F;
hypergeometric functions, can be obtained, much more efficiently, by calculating the j-invariant of an
elliptic curve canonically associated with the denominator of the rational functions. This result can be
drastically generalised changing the parameters into arbitrary rational functions. In the case where
creative telescoping yields pullbacked ;F; hypergeometric functions, we generalise this algebraic
geometry approach to other families of rational functions in three, and even more than three, variables.
In particular, we generalise this approach to rational functions in more than three variables when the
denominator can be associated to an algebraic variety corresponding to products of elliptic curves,
or foliation in elliptic curves. We also extend this approach to rational functions in three variables
when the denominator is associated with a genus-two curve such that its Jacobian is a split Jacobian
corresponding to the product of two elliptic curves. We sketch the situation where the denominator
of the rational function is associated with algebraic varieties that are not of the general type, having
an infinite set of birational automorphisms. We finally provide some examples of rational functions
in more than three variables, where the telescopers have pullbacked ;F; hypergeometric solutions,
the denominator corresponding to an algebraic variety having a selected elliptic curve in the variety
explaining the pullbacked ,F; hypergeometric solution.

Keywords: Diagonals of rational functions, pullbacked hypergeometric functions, modular forms,
Hauptmoduls, creative telescoping, telescopers, elliptic curves, j-invariant, Hauptmodul, K3 surfaces,
split Jacobian, extremal rational surfaces, birational automorphisms, algebraic varieties of the general

type.
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1. Introduction

In a previous paper [1,2], using creative telescoping [3], we have obtained diagonals'
of nine and ten parameters families of rational functions, given by (classical) modular

1 For the introduction of the concept of diagonals of rational functions, see [4-11].
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forms expressed as pullbacked ;F; hypergeometric functions [12]. The natural emergence
of diagonals of rational functions’ in lattice statistical mechanics is explained in [19,20].
This can be seen as the reason of the frequent occurrence of modular forms, Calabi-Yau
operators in lattice statistical mechanics [21-27]. In another previous paper [17,18], dedicated
to Heun functions that are diagonals of simple rational functions, or only solutions of
telescopers [28,29] of simple rational functions of three variables, but most of the time four
variables, we have obtained many solutions of order-three telescopers having squares of
Heun functions as solutions that turn out to be squares of pullbacked ,F; hypergeometric
solutions corresponding to classical modular forms and even Shimura automorphic forms [30,31],
strongly reminiscent of periods of extremal rational surfaces [32,33], and other foliation
of K3 surfaces in elliptic curves. In other words one finds experimentally that the >F
hypergeometric functions emerging in the calculation of diagonal of rational functions, or
of solutions of the telescopers of rational functions, seem to be only special F;([a, ], [c], x)
hypergeometric functions with a selected set of parameters [a,b], [c] (see the list (B.1) in
Appendix B of [17], corresponding to classical modular forms®, together with a finite set of
parameters, like [7/24,11/24], [5/4], corresponding to Shimura automorphic forms [30,31]),
pullbacked by selected pullbacks. This last paper [17] also underlined the difference
between the diagonal of a rational function Diag(R), and the solutions of the telescoper of
the same rational function.

These results strongly suggested to find an algebraic geometry interpretation for all these
exact results, and, more generally, suggested to provide an alternative algebraic geometry
approach of the results emerging from creative telescoping®.

This is the purpose of the present paper. In particular, we are going to show that
most of these pullbacked ,F; hypergeometric functions can be obtained efficiently through
algebraic geometry calculations, thus providing a more intrinsic algebraic geometry inter-
pretation of the creative telescoping calculations which are typically differential algebra
calculations [28,29,34,35].

Creative telescoping [28,29,34,36] is a methodology to deal with parametrized symbolic
sums and integrals that yields differential /recurrence equations for such expressions. This
methodology became popular in computer algebra in the past twenty five years. By “tele-
scoper” of a rational function, say R(x,y,z), we here refer to the output of the creative tele-
scoping program [3], applied to the transformed rational function R = R(x/y,y/z,z)/(yz).
Such a telescoper is a linear differential operator T in x and %, such that T + aa% + %—‘Z/

annihilates R, where the so-called “certificates” U, V are rational functions in x, y,z. In
other words, the telescoper T represents a linear ODE that is satisfied by Diag(R).

The paper is essentially dedicated to solutions of telescopers of rational functions which
are not necessarily diagonals of rational functions. These solutions correspond to periods [37]
of algebraic varieties over some cycles which are not necessarily vanishing [38] cycles’
like in the case of diagonals of rational functions. The reader interested in the connection
between the process of taking diagonals, calculating telescopers, and the notion of Periods,
deRham cohomology (i.e. differential forms) and other Picard-Fuchs equations can read in
detail the thesis of Pierre Lairez [35] (see also [41]). We just sketch some of these ideas in A.

The purpose of this paper is not to give an introduction on creative telescoping [28,29],
but to provide many pedagogical (non-trivial) examples of telescopers using® extensively
the “HolonomicFunctions” Mathematica package [3].

The paper is organised as follows. We first recall in section 2 the exact results of [1,
2] for nine and ten parameters families of rational functions using creative telescoping,

The lattice Green functions are the simplest examples of such diagonals of rational functions [13-18].

See Felix Klein’s connection of the »F; ([1/12,5/12], [1], x) Gauss hypergeometric function with modular forms,
for instance in the very pedagogical and heuristic paper [12].

The reader may refer to [34] for an extensive survey of “creative telescoping” approaches.

In french “cycles évanescents” [39,40].

One can obtain these telescopers using Chyzak’s algorithm [42] or Koutschan’s semi-algorithm [3,43] (the
termination is not proven). Fo the examples displayed in this paper, Koutschan’s package [3] is more efficient.
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yielding modular forms expressed as pullbacked ;F; hypergeometric functions. We show
in section 3 that these exact results can be obtained, much more efficiently, by calculating
the j-invariant of an elliptic curve canonically associated with the denominator of the
rational functions, and we underline the fact that one can drastically generalise these
results, the parameters becoming quite arbitrary rational functions. Section 4 generalises the
previous calculations to denominators of the rational functions of more than three variables,
corresponding to products (or foliations) of elliptic curves. In section 5 we show how
modular forms expressed as pullbacked »F; hypergeometric functions occur for rational
functions in three variables when the denominator is associated with a genus-two curve
such that its Jacobian is a split Jacobian corresponding to the product of two elliptic curves.
In section (6) we sketch the situation where the denominator of the rational function
is associated with algebraic varieties of low Kodaira dimension, having an infinite set of
birational automorphisms. We finally provide some examples of rational functions in more
than three variables, where the telescopers have pullbacked ,F; hypergeometric solutions,
the denominator corresponding to an algebraic variety having a selected elliptic curve in
the variety explaining these pullbacked ;F; solutions.

2. Classical modular forms and diagonals of nine and ten parameters family of rational
functions

In a previous paper [1,2], using creative telescoping [3], we have obtained diagonals of
nine and ten parameters families of rational functions, given by (classical) modular forms
expressed as pullbacked ,F; hypergeometric functions. Let us recall these results.

2.1. Nine-parameters rational functions giving pullbacked ,F; hypergeometric functions for their
diagonals

Let us recall the nine-parameters rational function in three variables x, y and z:

1
a +bix+byy+bsz +cyz+ coxz+cxy + dy?z + ezx?

1)

Calculating’ the telescoper of this rational function (1), one gets an order-two linear differ-
ential operator annihilating the diagonal of the rational function (1). The diagonal of the
rational function (1) can be written [1,2] as a pullbacked hypergeometric function

1 1 5 Ps(x)?
W‘ 2Fl<[ﬁ/ E}r [1L 1 - Piggg,)r 2)

where Py(x) and Ps(x) are two polynomials of degree four and six in x, respectively. The
Hauptmodul pullback in (2) has the form

172 Pg(x)? 1728 x°- P
H = 78 = 1 — 6<x)3 = 8x—38(x), (3)
J Py(x) Py(x)
where Pg(x) is a polynomial of degree eight in x. Such a pullbacked »F; hypergeometric
function (2) corresponds to a classical modular form [1,2].

2.2. Ten-parameters rational functions giving pullbacked o F, hypergeometric functions for their
diagonals.

Let us recall the ten-parameters rational function in three variables x, y and z:

R(x,y,2z) = (4)
1
a +bix+byy+bsz +cyz+coxz+cexy + dix?y + dyy?z + dzz?x’

7 Using the “HolonomicFunctions” Mathematica package [3].
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Calculating the telescoper of this rational function (4), one gets an order-two linear differ-
ential operator annihilating the diagonal of the rational function (4). The diagonal of the
rational function (4) can be written [1,2] as a pullbacked hypergeometric function

1 1 5 Py(x)?
W : 2Fl([ﬁl E}/ [1}/ 1 - P§E§§3)’ (5)

where P3(x) and Ps(x) are two polynomials of degree three and six in x, respectively.
Furthermore, the Hauptmodul pullback in (5) is seen to be of the form:

2 3.
1728 | Pe(x)® _ 172820 RBy(x) ©

"= ] P3(x)3 P3(x)3

where Py(x) is a polynomial of degree nine in x. Again, (5) corresponds to a classical
modular form [1,2].

3. Deducing creative telescoping results from effective algebraic geometry

Obtaining the previous pullbacked hypergeometric results (2) and (5) required [1,2]
an accumulation of creative telescoping calculations, and a lot of “guessing” using all the
symmetries of the diagonals of these rational functions (1) and (4). We are looking for a
more efficient and intrinsic way of obtaining these exact results. These two pullbacked
hypergeometric results (2) and (5), are essentially “encoded” by their Hauptmodul pullbacks
(3) and (6), or, equivalently, their corresponding j-invariants. The interesting question,
which will be addressed in this paper, is whether it is possible to canonically associate
elliptic curves whose j-invariants correspond precisely to these Hauptmoduls H = 17%.

3.1. Revisiting the pullbacked hypergeometric results in an algebraic geometry perspective.

One expects such an elliptic curve to correspond to the singular part of the rational
function, namely the denominator of the rational function. Let us recall that the diagonal
of a rational function in (for example) three variables is obtained through its multi-Taylor
expansion [19,20]

R(x,y,2) = YY) ayur-x"y" Z, 7)

m n |

by extracting the "diagonal" terms, i.e. the powers of the product p = xyz:
Diag(R(x, v, z)) = Y ammm- X" (8)
m

Consequently, it is natural to consider the algebraic curve corresponding to the intersection

of the surface defined by the vanishing condition D(x, y, z) = 0 of the denominator

D(x, y, z) of these rational functions (1) and (4), with the hyperbola p = xyz (where

p is seen, here, as a constant). This amounts, for instance, to eliminating the variable z,
p

substituting z = ;% in D(x,y,z) = 0.

3.1.1. Nine-parameters case:

In the case of the rational functions (1) this corresponds to the (planar) algebraic curve

P a a
+cay +czxxy +c3xy

xy xy

2 P P2 _
+dy Py +exyx 0, 9)

a +bix +byy +b3
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which can be rewritten as a (general, nine-parameters) biquadratic:

axy + b Py +bhhxy? +bsp +apy Fapx + Xy
+dpy* +epx® = 0. (10)

Using formal calculations® one can easily calculate the genus of the planar algebraic curve
(10), and find that it is actually an elliptic curve (genus-one). Furthermore, one can (almost
instantaneously) find the exact expression of the j-invariant of this elliptic curve as a
rational function of the nine parameters a, by, by, - -+, e in (1). One actually finds that this
j-invariant is precisely the j such that the Hauptmodul H = 12 is the exact expression
(3). In other words, the classical modular form result (2) could have been obtained, almost
instantaneously, by calculating the j-invariant of an elliptic curve canonically associated
with the denominator of the rational function (1). The algebraic planar curve (10) corre-
sponds to the most general biquadratic of two variables, which depends on nine homogeneous
parameters. Such general biquadratic is well-known to be an elliptic curve for generic values
of the nine parameters’.

Thus, the nine-parameters exact result (2) can be seen as a simple consequence of the fact
that the most general nine-parameters biquadratic is an elliptic curve.

3.1.2. Ten-parameters case:

In the case of the rational function (4), substituting z = % in D(x,y,z) = 0,one
obtains the ten-parameters bicubic:

axy2 +b1x2y2 +b2xy3 + b3py —I—clpy2 + ¢ pxy+03x2y3
+di 3y + dyy® 4+ d3p? = 0. (11)

As before, we find that this planar algebraic curve is actually an elliptic curve'’ and
that the exact expression of its j-invariant is precisely the j of the Hauptmodul H = 1728/
in (6).

Thus, this ten-parameters result (5) can again be seen as a simple consequence of the
fact that there exists a family of ten-parameters bicubics (see (11)) which are elliptic curves for
generic values of the ten parameters.

These preliminary calculations are a strong incentive to try to replace the differential
algebra calculations of the creative telescoping, by more intrinsic algebraic geometry calcula-
tions, or, at least, perform effective algebraic geometry calculations to provide an algebraic
geometry interpretation of the exact results obtained from creative telescoping.

3.2. Finding creative telescoping results from j-invariant calculations.

One might think that these results are a consequence of the simplicity of the denom-
inators of the rational functions (1) or (4), being associated with biquadratics or selected
bicubics. In fact, these results are very general. Let us, for instance, consider a nine-
parameters family of planar algebraic curves that are not biquadratics or (selected) bicubics:

apxt 4 a2 +azx® +agx +a5+a6x2y +a7y2+a8y +agxy = 0. (12)

One can easily calculate the genus of this planar curve and see that this genus is actually
one for arbitrary values of the a,’s. Thus the planar curve (12) is an elliptic curve for generic

Namely using with(algcurves) in Maple, and, in particular, the command j_invariant.
So many results in integrable models correspond to this most general biquadratic: the Bethe ansatz of the Baxter
model [44,45], the elliptic curve foliating the sixteen-vertex model [45], so many QRT birational maps [46], ...

10 Generically, the most general planar bicubic is 1ot a genus-one algebraic curve. It is a genus-four curve.

151

152

153

154

155

156

160

161

162

163

164

165

167

168

169



Version April 28, 2022 submitted to Journal Not Specified 6 of 34

values of the nine parameters ay, - - -, ag. It is straightforward to see that the algebraic surface
S(x,y,z) = 0, corresponding to

z- (a1x4 +ay x> + az x? +a4x—|—a5—|—a6x2y +a7y2 +agy) +agp = 0, (13)

will automatically be such that its intersection with the hyperbola p = xyz gives back
the elliptic curve (12).

Using this kind of “reverse engineering” yields to consider the rational function in
three variables x, y and z

R(x,y,2z) =
1
1 +z- (apx* +ayx3 + a3x? + agx + a5+ agx?y + azy> + agy)’

(14)

which will be such that its denominator is canonically associated with an elliptic curve. Again
we can immediately calculate the j-invariant of that elliptic curve. If one calculates the
telescoper of this eight-parameters family of rational functions (14), one finds that this
telescoper is an order-two linear differential operator with pullbacked hypergeometric
solutions of the form

A(x) - zH([ll—z, 15—2], [1], H), (15)

where A(x) is an algebraic function and, where again, the pullback-Hauptmodul H =
1728/ j, precisely corresponds to the j-invariant of the elliptic curve.

More generally, seeking for planar elliptic curves, one can, for given values of two
integers M and N, look for planar algebraic curves

n=Nm=M

Yo ) ama-x"y" =0, (16)

n=0 m=0

defined by the set of a,,, ,’s which are equal to zero, apart of N homogeneous parameters
am,n being, as in (10) or (11) or (13), independent parameters. Finding such an N -parameters
family of (planar) elliptic curves automatically provides an N -parameters family of rational
functions such that their telescopers have a pullbacked ,F; hypergeometric solution we
can simply deduce from the j-invariant of that elliptic curve.

Recalling the results of section 2.2, the quite natural question to ask now is whether
it is possible to find families of such (planar) elliptic curves which depend on more than ten
independent parameters?

Before addressing this question, let us recall the concept of birationally equivalent elliptic
curves. Let us consider the monomial transformation:

(x,y) —— (xMyN, 2P yQ), (17)

where M, N, P, Q are integers such that M- Q — P- N = 1, then its compositional
inverse is the monomial transformation:

(xy)  — (;ﬁ {C—Z{) (18)

This monomial transformation (17) is thus a birational'! transformation. A birational
transformation transforms an elliptic curve, like (12), into another elliptic curve with the

11 This transformation is rational and its compositional inverse is also rational (here monomial).
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same j-invariant: these two elliptic curves are called birationally equivalent. In the case of the
birational and monomial transformation (17), the elliptic curve (12) is changed into!?:

a1~x4My4N +a2~x3My3N +a3~x2My2N +a4~xMyN + a5 (19)
tag- XPMIPYPNTQ gy 2P 2Q fgg. xPyQ 4ag . AMTPYNTQ =

With this kind of birational monomial transformation (17), we see that one can obtain
families of elliptic curves (19) of arbitrary large degrees in x and y. Consequently one can
find nine or ten parameters families of rational functions of arbitrary large degrees yielding
pullbacked ,F; hypergeometric functions. There is no constraint on the degree of the
planar algebraic curves (19): the only relevant question is the question of the maximum number
of (linearly) independent parameters of families of planar elliptic curves which is shown to be ten.
The demonstration'? is sketched in B.

3.3. Pullbacked »F; functions for higher genus curves: monomial transformations.

Let us recall another important point. We have already remarked in [1,2] that once we
have an exact result for a diagonal of a rational function of three variables R(x, y, z), we
immediately get another exact result for the diagonal of the rational function R(x", y", z")
for any positive integer n. As a result we obtain a new expression for the diagonal changing
x into x™. In fact, this is also a result on the telescoper of the rational function R(x, y, z): the
telescoper of the rational function R(x", y", z"*) is the x — x" pullback of the telescoper
of the rational function R(x, y, z). Having a pullbacked ,F; solution for the telescoper
of the rational function R(x, y, z) (resp. the diagonal of the rational function R(x, y, z)),
we will immediately deduce a pullbacked ,F; solution for the telescoper of the rational
function R(x", y", z") (resp. the diagonal of the rational function R(x", y", z")).

Along this line, let us change in the rational function (1), (x, y, z) into (x?, y?, z%):

Ry(x,y,2) = (20)
1
a 4+ byx2 4+ byy? + b3z% +c1y? 2% + 0 x?2% + 3x%y? + dytz? + ez?xt

The diagonal of this new rational function (20) will be the pullbacked ,F; exact expression
(2) where we change x — x2. The intersection of the algebraic surface corresponding
to the vanishing condition of the denominator of the new rational function (20), with
the hyperbola p = xyz (ie. z = %), is nothing but the equation (10) where we have
changed (x, y; p) into (22, y?; p?)
A2 Ao xR 4 b Pyt bsp b PP oo pra? 4oyt
+dp?yt +ep?xt =0, (21)

which is no longer'* an elliptic curve but a curve of genus 9.

With that example we see that classical modular form results, or pullbacked F; exact
expressions like (2), can actually emerge from higher genus curves like (21). As far as these
diagonals, or telescopers, of rational function calculations are concerned, higher genus
curves like (21) must in fact be seen as “almost” elliptic curves up toan x — x" covering.

Such results for monomial transformations like (x, y, z) — (x", y", z"") can, in fact,
be generalised to more general (non birational'®) monomial transformations. This is
sketched in C.

12 One can easily verify for particular values of the M, N, P, Q and a;’s, using with(algcurves) in Maple, that

the j-invariants of (12) and (19) are actually equal.

We thank Josef Schicho for providing this demonstration.

If we perform the same calculations with the ten-parameters rational function (4) we get an algebraic curve of
genus 10 instead of 9.

In contrast with transformations like (17).
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3.4. Changing the parameters into functions of the product p = xyz.

All these results for many parameters families of rational functions can be drastically
generalised when one remarks that allowing any of these parameters to be a rational function
of the product p = xyz also yields to the previous pullbacked ;F; exact expression, like
(2), where the parameter is changed into that rational function of x (see [1]). Let us consider a
simple (two-parameters) illustration of this general result. Let us consider a subcase of the
previous nine or ten parameters families, introducing, for example, the two parameters
rational function:

1 +2x+by-y +15yz +xz +c3-xy 2)
The diagonal of this rational function (22) is the pullbacked hypergeometric function:
sy 2P (g 3) 1) 4200 - 4, 23)
where
Py(x) = 1 —8-(bp +10)- x +8-(2b3 —20by +15¢3 +200) - x?, (24)
and
Py(x) = —675¢3- x* +4c3- (by+10)- (463 —100b, + 45 c3 4 400) - x°
+(64 b5 — 3265 c3 — 8b5 3 —1280b3 + 1280 b3 c3
—460by 3 — 53 4+ 6400 b3 — 3200 b, c3 — 800¢3) - x° (25)

—(by +10) - (3265 —16bac3 —c3) - x +2by - (2by — c3),

Let us now consider the previous rational function (22) where the two parameters by
and c3 become some rational functions of the product p = xy z, for instance:

1+ p?
1+2p

1+3
b(p) = 17 ) =

where: p=2xyz. (26)

The new corresponding rational function becomes more involved but one can easily calcu-
late the telescoper of this new rational function of three variables x, y and z, and find that
it is, again, an order-two linear differential operator having the pullbacked hypergeometric
solution (23) where by and c3 are, now, replaced by ( p is now x) the functions:

1+3x () = 142
1+7x2 S P

by(x) = (27)

In that case (22) with (26), one gets a diagonal which is the pullbacked hypergeometric
solution

5 . 43200 - x*- (1 +7x%)2- qzo)

1
X ZFl([ﬁ/ ﬁ]r [ ]r (1 +2x). qg (28)

where gg and gy are two polynomials with integer coefficients of degree eight and twenty
in x. The exact expression (28) is nothing but (23) (with (24) and (25)) where b; and c3
have been replaced by the rational functions (27). Similar calculations can be performed
for more general rational functions (1) or (4), when all the (nine or ten) parameters are more
involved rational functions.

When performing our creative telescoping symbolic calculations using the Holonomic-
Functions package [3], such results may look quite impressive. From the algebraic geometry
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viewpoint, it is almost tautological'®, if one takes for granted the result of our previous
subsections 3.1 and 3.2, namely that the pullbacked hypergeometric solution of the tele-
scoper corresponds to the Hauptmodul 1728/j, where j is the j-invariant of the elliptic
curve corresponding to the intersection of the algebraic surface corresponding to the van-
ishing condition of the denominator, with the hyperbola p = xyz: this calculation of
the j-invariant is performed for p fixed, and arbitrary (nine or ten) parameters a, by, - - - .
It is clearly possible to force the parameters to be functions'” of p, the j-invariant being
changed accordingly. Of course, in that case, the parameters in the rational function are the
same functions but of the product p = xyz.

One thus gets pullbacked hypergeometric solutions (classical modular forms) for an (unreason-
ably ...) large set of rational functions in three variables, namely the families of rational functions
(1) or (4), but where, now, the nine or ten parameters are nine, or ten, totally arbitrary rational
functions (with Taylor series expansions) of the product p = xyz.

We see experimentally that changing the parameters of the rational function into
functions, actually works for diagonals of rational functions, as well as for solutions of
telescopers of rational functions depending on parameters.

4. Creative telescoping on rational functions of more than three variables associated
with products or foliations of elliptic curves

Let us show that such an algebraic geometry approach to creative telescoping can be
generalised to rational functions of more than three variables, when the vanishing condition
of the denominator can be associated with products of elliptic curves, or more generally,
algebraic varieties with foliations in elliptic curves.

o The telescoper of the rational function in the four variables x, y, z and w
Xyz
(1+2)* —x-(1-2)- (x —xyzw)-y- (1-y)- (y —xyzw)’

(29)

gives an order-three self-adjoint linear differential operator which is, thus, the symmetric
square of an order-two linear differential operator. The latter has the pullbacked hypergeo-
metric solution:

1 3] 1] 27 x2-(1—x)2>
12712777 4 (x2—x+1)3

Silx) = (1—x+2%) 4 oR(] (30)

= zFl([E/ 5}’ 1], x).

In [18] we underlined the difference between the diagonal of a rational function and solutions
of the telescoper of the same rational function. In this case, the diagonal of the rational
function (29) is zero'® and is thus different from the pullbacked hypergeometric solution
(30), which is a “Period” [37] of the algebraic variety corresponding to the denominator
over some (non-vanishing'’) cycle. From now, we will have a similar situation in most of the
following examples of this paper.

16 An algebraic geometer will probably see this as a trivial remark: diagonalization is an algebraic procedure and

nothing really happens to the coefficients. Therefore if one replaces the coefficients by anything else, one will
find those replaced coefficients in the end result.

The functions should be rational functions if one wants to stick with diagonals and telescopers of rational
functions, but the result remains valid for algebraic functions, or even transcendental functions with reasonable
Taylor series expansions at x = 0: for instance, for ,F; hypergeometric functions, one gets a differentially
algebraic function corresponding to the composition of »F; hypergeometric functions.

17

18 The reason is that the integration takes place over a cycle homologically equivalent to the trivial cycle. The

cycle becomes trivial after taking the limit p — 0. Integrals over non vanishing cycles usually give logarithms
of p, like the second solution to the hypergeometric function F; ([1/2,1/2],[1],, x).

19 Diagonals of the rational functions correspond to periods over vanishing cycles [38,40].
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This example is a simple illustration of what we expect for products of elliptic curves,
or algebraic varieties with foliations in elliptic curves. Introducing the product p = xyzw,
the vanishing condition of the denominator of the rational function (29) reads the surface
S(x,y,z) = 0

(1+2)? —x-(1-x) (x=p)-y-1-y)- -p) = 0 (31)
For fixed p and fixed y, equation (31) can be seen as an algebraic curve

(14+2)?* —A-x-(1-x)-(x —p) = 0 (32)
with: A=y - 1-y) (y —p).

For fixed p and fixed y, A can be considered as a constant, the algebraic curve (32) being
an elliptic curve with an obvious Weierstrass form:

1+z

72 —x-(1-x)-(x—p) = 0 where:  Z = : 33
(1=x)- (x = p) Ny (33)

The j-invariant of (32), or?’ (33), is well-known and yields the Hauptmodul H:

1728 27 p*- (1 —p)?
H = — = _—.—— 34
j 4 (pP-pt+1)p .
For fixed p and fixed x, equation (31) can be seen as an algebraic curve

(1+2? —py- 1=y (y-p) = 0 (35)

for: p=x-(1—x) (x—p),

which is also an elliptic curve with an obvious Weierstrass form and the same Hauptmodul
(34). This Hauptmodul is precisely the one occurring in the pullbacked hypergeometric
solution (30).

More generally, the rational function of the four variables x, y, z and w

xXyz
(1+2)? —x- (1-x)- (x =R(p))-y- 1=y)- (¥ — Ra(p))’

where p = xyzw, and where Ry (p) and Ry(p) are two arbitrary rational functions (with
Taylor series expansions) of the product p = xyzw, yields a telescoper which has an
order-four linear differential operator which is the symmetric product’' of two order-two
linear differential operators having respectively the pullbacked hypergeometric solutions
(30) where x is replaced by Ry(x) and Rp(x). These two hypergeometric solutions thus
have the two Hauptmodul pullbacks

(36)

s Y R (- Ri(p)?

= T S T R R+ DY 37)
1728 27 Re(p)- (1 Ro(p))?

= S S T Ra(p) - Ralp) + DY (38)

obtained by calculations similar to the ones previously performed on (31) but, now, for the
Weierstrass form corresponding to the denominator (36).

20
21

Ashift z — z+1 orarescaling z2 — Z)TZ does not change the j-invariant of the Weierstrass elliptic form.
This paper belonging to the symbolic computation literature and not pure mathematics for algebraic geome-
ters, we use the standard Maple (DEtools) terminology of symmetric powers and symmetric products of
linear differential operators [47]. Note that "symmetric product” is not a proper mathematical name for this
construction on the solution space; it is a homomorphic image of the tensor product. The (Maple/DEtools)
reason for choosing the name symmetric_product is the resemblance with the function symmetric_power.
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A solution of the telescoper of (36) is thus the product of these two pullbacked hyper-
geometric functions. Let us give a simple illustration of this general result, with the next
example.

o The telescoper of the rational function in the four variables x, y, zand w

xXyz
(1+2)? —x-(1-x)- (x —xyzw)-y- (1-y)- (y —3xyzw)’

(39)

corresponding to (36) with Ri(p) = pand Ry(p) = 3 p, gives an order-four linear differen-
tial operator which is the symmetric product of two order-two operators having respectively
the pullbacked hypergeometric solution (30) and the solution (30) where the variable x has
been changed into 3 x:

82(x) = S] (3 x) (40)

51, 2 x2-(1—3x)2)
T4 (1-3x+9x2)3)

1
- (1- 2\-1/4 .
(1 =3x +9:3) 4R ([, ool |

4.1. Creative telescoping on rational functions of five variables associated with products or foliations
of three elliptic curves

Let us, now, introduce the rational function in five variables x, y, z, vand w

D u,% 5,0 @)
where the denominator D(x, y, z, v, w) reads:
D, = (42)
(1+0) —x-(1=x) (x =p)-y- (L-y)- (y =3p)-z- (1-2)- (z —5p),
where: p = xyzow.
22

The telescoper of the rational function (41) of five variables gives~ an order-eight linear
differential operator which is the symmetric product of three order-two linear differential
operators having respectively the pullbacked hypergeometric solution (30), the solution
(30) where x has been changed into 3 x, namely (40), and the solution (30), where x has
been changed into 5 x:

S3(x) = Si1(5x) (43)
1 5 675  x*- (1 —5x)? )

—, 2,0
TPIATLAL (1 —5x +25x2)3

= (1 -5x+25x%) /4. zpl([

In other words, the order-eight telescoper of the rational function (41) has the product
S = 8- 85+ 83, 0f(30), (40) and (43) as a solution. From an algebraic geometry viewpoint,
this is a consequence of the fact that, for fixed p, the algebraic variety D, = 0, where
D, is given by (42), can be seen, for fixed y and z, as an elliptic curve & of equation
Dy.p(v, x) = 0, for fixed x and z as an elliptic curve &, of equation Dy (v, y) = 0,
and for fixed x and y also as an elliptic curve &3 of equation Dy, (v, z) = 0, the j-
invariants ji, k = 1, 2, 3 of these three elliptic curves & yielding (in terms of p), precisely,
the three Hauptmoduls H;, = %

27 x*-(1-x)? 243 x*- (1 -3x)? 675  x*- (1 —5x) (44)
4 (x2—x+1)% 4 (1 —3x+9x2)% 4 (1 —5x+25x2)3

22 Such a creative telescoping calculation requires “some” computing time to achieve the result.
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occurring as pullbacks in the three S;’s of the solution S = &1 - &; - 83, of the telescoper
of (41).

Remark: Other examples of rational functions of three, four, five variables where
the denominators also correspond to Weierstrass (resp. Legendre) forms, are displayed
in D. They provide simple illustrations of rational functions where the denominator is
associated with K3 surfaces’®, or Calabi-Yau three-folds. In these cases the algebraic varieties
have simple foliations in terms of two or three families of elliptic curves, and the solutions
of the corresponding telescopers can be selected 3F, and 4F3 hypergeometric functions (see
(A28) in D), naturally associated with K3 surfaces and Calabi-Yau operators [27].

5. Creative telescoping of rational functions in three variables associated with
genus-two curves with split Jacobians

In a paper [17,18], dedicated to Heun functions that are solutions of telescopers of
simple rational functions of three and four variables, we have obtained’* an order-four
telescoper of a rational function of three variables, which is the direct sum of two order-two
linear differential operators, each having classical modular forms solutions which can be written
as pullbacked ;F; hypergeometric solutions. Unfortunately, the intersection of the algebraic
surface corresponding to the denominator of the rational function with the p = xyz
hyperbola, yields a genus-two algebraic curve.

Let us try to understand, in this section, how a genus-two curve can yield two classical
modular forms. Let us first recall the results in section 2.2 of [18].

5.1. Periods of extremal rational surfaces

Let us recall the rational function in just three variables [18]:

1
1 +x+y+z +xy +yz —x3yz’

R(x,y,2z) = (45)
Its telescoper is actually an order-four linear differential operator L, which, not only factor-
izes into two order-two linear differential operators, but is actually the direct sum (LCLM)
of two? order-two linear differential operators Ly = L, ® M. These two (non homo-
morphic) order-two linear differential operators have, respectively, the two pullbacked
hypergeometric solutions:

St = (14+9x)7 V4 (1 43x)7 V4. (1 42742714 (46)
5 F([i 3] ] 1728 - x3- (1 +9x +27x%)3 )
22 2" Y @ 3x)® (1 +9x)3 - (1 +27x2)3)7

and:
1
(1 +4x —2x2 —36x3 +81x%)1/4
y F([i i} ] 1728-x5~(1+9x—|—27x2)~(1—2x)2)
PV B T T ax —2x2 —3620 +81x4)3 )

S = (47)

The diagonal of (45) is actually the half-sum of the two series (46) and (47):

Diag(R(x, v z)) = @ (48)

23 See the emergence of product of elliptic curves from Shioda-Inose structure on surfaces with Picard number 19

in [48]. In [48], Ling Long considers one-parameter families of K3 surfaces with generic Picard number 19. The
existence of a Shioda-Inose structure implies that there is a one-parameter family of elliptic curves.

See equation (83) in section 2.2 of [18].

These two order-two linear differential operators L, and M, are not homomorphic.
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As far as our algebraic geometry approach is concerned, the intersection of the al-
gebraic surface corresponding to the denominator of the rational function (45) with the
hyperbola p = xyz gives the planar algebraic curve (corresponding to the elimination of
the z variable by the substitution z = %):

1 +x+y +10 +xy +y L -3yl = o (49)
ry Xy Xy

One easily finds that this algebraic curve is (for p fixed) a genus-two curve, and that
this higher genus situation does not correspond to the "almost elliptic curves" described
in subsection 3.2 namely an elliptic curve transformed by a monomial transformation.
How can a “true” genus-two curve give two j-invariants, namely a telescoper with two
Hauptmodul pullbacked ;F; solutions? We are going to see that the answer is that the
Jacobian of this genus-two curve? is in fact isogenous to a product £ x &’ of two elliptic
curves (split Jacobian).

5.2. Split Jacobians

Let us first recall the concept of split Jacobian with a simple example. In [49], one has a
crystal-clear example of a genus-two curve C

y? — (x®4+420x —5600) - (x> +42x% +1120) = O, (50)
such that its Jacobian ](C) is isogenous to a product of elliptic curves with j-invariants j; =
—27.72 = —6272 and j = —2°-7-17° = —1100512, corresponding to the following
two values of the Hauptmodul H = %: H; = —27/98and Hy = —54/34391. Let us
consider the genus-one elliptic curve

v = u® +4900u® + 7031500 u + 2401000000, (51)
of j-invariant j = j, = —25. 7. 17%. We consider the following transformation®’:
_ 882000 (x—14) 0 _ 49000 - (x% — 21 x2 — 140) (52)
x3 + 420 x — 5600” N (x3 + 420 x — 5600)2 ¥

This change of variable (52) actually transforms the elliptic curve (51) in u and v into the
genus-two curve (50) in x and y. This provides a simple example of a genus-two curve with split
Jacobian through K3 surfaces.

More generally, let us consider the Jacobian of a genus-two curve C. The Jacobian is
simple if it does not contain a proper abelian subvariety, otherwise the Jacobian is reducible,
or decomposable or “split”. For this latter case, the only possibility for a genus-two curve is
that its Jacobian is isogenous to a product & x &' of two elliptic curves’®. Equivalently, there is
adegree nmap C — & to some elliptic curves. Classically such pairs®” C, £ arose in the
reduction of hyperelliptic integrals to elliptic ones [49]. The j-invariants correspond, here, to
the two elliptic subfields: see [49].

2 An algebraic geometer will probably recall that it is very well-known that a genus two curve may have Jacobian

isogeneous to a product of elliptic curves. This is not the case in general. The genus two curves that have a
(nonconstant) map to an elliptic curve have this property. Our purpose in section (5.3) is to perform a creative
telescoping calculation in such a selected situation.

This transformation is rational but not birational. If it were birational, then it would preserve the genus. Here,
one goes from genus one to genus two.

Along these lines, see also the concepts of Igusa-Clebsch invariants and Hilbert modular surfaces [49-52].
One also has an anti-isometry Galois invariant £’ ~ & under Weil pairing. The decomposition corresponds
to real multiplication by quadratic ring of discriminant n2.
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5.3. Creative telescoping on rational functions in three variables associated with genus-two curves
with split Jacobians: a two-parameters example.

Let us now consider the example with two parameters, a and b, given in section 4.5 page
12 of [49]. Let us substitute the rational parametrisation®’

2 . 3 _ -2
‘= x I A sl | Sk N 53)
¥ 4+ax? +bx +1 (¥ +ax? +bx +1)?

in the elliptic curve
R-v*> = R-u® +2- (ab®> —6a* +9b)- u®> + (12a—b*)-u —4, (54)
where
R = 4-(a® +b%) —a’b*> —18ab +27. (55)
This gives the genus-two curve C, (x, y) = 0 with:
Cov(x,y) = R-y? +(4x° +02x2 +2bx +1)- (x> +ax®> +bx +1). (56)

The j-invariant of the elliptic curve (54) gives the following exact expression for the Haupt-

modul H = @:

4 — 108 (b—3)% (4a% 4+ 41> — a®h® —18ab +27)%- (> +3b+9)° 57)
N (a%b* +12b° — 126 ab® 4- 216 ba® 4- 405 b> — 972a)3 '

Let us consider the telescoper of the rational function of three variables xy/D,(x, y, z)
where the denominator D,(x, y, z) is C,,(x, y) givenby (56), butfor b = 3 + xyz:

Da(x/ Y, Z) = Ca,3+xyz(x/ y)
= %32 427?22 4502 9%y + 6x8yz + 3xtyP2? 4 36 yta?2?
+6x°yz +4x8 427 xtyz +9x° + 18 x3yz + 108 xy°z + 18 x* + 3x%yz
+32%% +27x% + 135> +9x +1
+ (20222 + 6 xX°yz + 2xtyz +4x° —18xyPz 4+ 9xt +64° +x2 —54y°) - a
—y*- (xyz +3)%- a* +4y*- a5 (58)

This telescoper of the rational function

X
Ra(x/ Y, Z) = Wyyz)r (59)

is an order-four linear differential operator L, which is actually the direct-sum, Ly =
LCLM(Ly, Mp) = Ly @& My, of two order-two linear differential operators, having two
pullbacked hypergeometric solutions. One finds out that one of the two pullbacks precisely
corresponds to the Hauptmodul H given by (57) for b = 3 +«x.

Let us consider the a = 3 subcase’!. For a = 3, the Hauptmodul H =

by (57) becomes for b = 3 + x:

1728

g given

y 4-x- (27+4x)% (x24+9x+27)° (60)
N (9+x)3- (4x2+27x+27)3

30 See also [53] section 6 page 48.
31 The discriminantin b of 44> +4b% —a?b®> —18ab +27 reads: (a—3)%- (a®> +3a +9)3, consequently the
exact expressions are simpler at a = 3.
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The telescoper of the rational function (59) with D,(x, y, z) given by (58) for a =
3, is an order-four linear differential operator which is the direct-sum of two order-two
linear differential operators Ly = LCLM(Ly, Mp) = L, & My, these two order-two linear
differential operators having the pullbacked hypergeometric solutions

1 5 27
27 + 4x)" V2. x4 R (=, =1, 1], 1+ =& 1
(27 + 4x) x 2 1([12’ A 4x>' (61)
for L,, and
34+ x
(94 x)1/4. (4x2 +27x+27)1/4. x3/2. (27 + 4 x)1/2
1 5 4. x-(27 +4x)% (22 +9x +27)3
F(l—, = 2
2 1([12’ ) 11 (9+x)3- (422 +27x +27)3 ) (62)

for My, where we see clearly that the Hauptmodul in (62) is precisely the Hauptmodul (60). The
Jacobian of the genus-two curve is a split Jacobian corresponding to the product £ x & of two
elliptic curves, the j-invariant of the second elliptic curve corresponds to the Hauptmodul
H = @ given by (57) when the j-invariant of the first elliptic curve reads

6912 x

n = iy (63)
1728
n

should, exactly the j-invariant of the second elliptic curve &', given page 48 in [53]:

corresponding to the Hauptmodul =1+ % in (61). This second invariant is, as it

256 - (3b —a?)3
4q3c —a?b? —18abc +4b3 4272’

j(&h = (64)

for c=1,a=3and b = 3 + «x.

5.4. Creative telescoping on rational functions of three variables associated with genus-two curves
with split Jacobians: a simple example

Another simpler example of a genus-two curve with pullbacked ,F; solution (not
product of pullbacked ;F;) of the telescoper can be given if one considers the genus-two
algebraic curve Cp(x, y) = 0 given in Lemma 7 of [54] (see also [55,56])

Cpo(x,y) = 2>+2° +p-x —y~ (65)

Let us introduce the rational function xy/D(x, y, z) where the denominator D(x, y, z)
is given by:

D(XI%Z) = C(p:xyz)(xly) = X+ +x2yz _yz' (66)

The telescoper of this rational function is an order-two linear differential operator which
has the two hypergeometric solutions

_ 15, 3
xR (15 2) 5] 4%) (67)
which is a Puiseux series at x = 0 and:

VAR ([% g], 1,1 - 4x). (68)
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These two hypergeometric solutions can be rewritten as*
1 5 1728
A(x) : ZFl([ﬁ/ E]/ [1]/ ] >/ (69)

where the j-invariant J, in the Hauptmodul @ in (69), corresponds exactly to the degree-two
elliptic subfields

2000 x2 + 1440 x +27)
(1 —4x)?

(100 x — 9)3

2 (
7o 1 -4x)3

0, (70)

-] —409 -

given in the first equation of page 6 of [54].

Remark: In contrast with the previous example of subsection 5.3 where we had two
j-invariants corresponding to the two order-two linear differential operators L, and M of
the direct-sum decomposition of the order-four telescoper, we have, here, just one order-two
telescoper, which is enough to “encapsulate” the two j-invariants (70), since they are
Galois-conjugate.

6. Rational functions with tri-quadratic denominator and N-quadratic denominator.

We try to find telescopers of rational functions corresponding to (factors of) linear
differential operators of “small” orders, for instance order-two linear differential operators
with pullbacked ;F; hypergeometric functions, classical modular forms, or their modular
generalisations (order-four Calabi-Yau linear differential operators [27], etc ...). As we
saw in the previous sections, this corresponds to the fact that the denominator of these
rational functions is associated with an elliptic curve, or products of elliptic curves, with K3
surfaces or with threefold Calabi-Yau manifolds corresponding to algebraic varieties with
foliations in elliptic curves®. Since this paper tries to reduce the differential algebra creative
telescoping calculations to effective algebraic geometry calculations® and structures, we want
to focus on rational functions with denominators that correspond to selected algebraic
varieties [45,59], beyond algebraic varieties corresponding to products of elliptic curves or
foliations in elliptic curves®®, namely algebraic varieties with an infinite number of birational
automorphisms™®. This infinite number of birational symmetries, excludes algebraic varieties of
the “general type” (with finite numbers® of birational symmetries). For algebraic surfaces,
this amounts to discarding the surfaces of the “general type” which have Kodaira dimension
2, focusing on Kodaira dimension one (elliptic surfaces), or Kodaira dimension zero (abelian
surfaces, hyperelliptic surfaces, K3 surfaces, Enriques surfaces), or even Kodaira dimension
—oo (ruled surfaces, rational surfaces).

In contrast with algebraic curves where one can easily, and very efficiently, calculate
the genus of the curves to discard the algebraic curves of higher genus and, in the case

32 The fact that 2 Fy ([%, 21, 11, z) can be rewritten as »F; ([1172, 3111, H(z)) where the Hauptmodul H(z) is
solution of a quadratic equation is given in equation (H.14) of Appendix H of [18].

Even if K3 surfaces, or threefold Calabi-Yau manifolds, are not abelian varieties, the Weierstrass-Legendre
forms introduced in D, amounts to saying that K3 surfaces can be “essentially viewed” (as far as creative
telescoping is concerned) as foliations in two elliptic curves, and threefold Calabi-Yau manifolds as foliations
in three elliptic curves.

One has birational automorphisms in projective spaces [57,58], but since this paper is dedicated to (efficient)
formal calculations we work exclusively in affine coordinates (see for instance (A41), (A42), (A43) below). For
algebraic geometers an ellitic curve is a smooth complete genus 1 curve with a choice of a base point. Here
our elliptic curves are, in fact, an affine piece of a genus 1 curve with no base point, but this does not really
matter because the j-invariant which is all we care about in this kind of creative telescoping calculations, is
determined by that much information.

K3 surfaces, threefold Calabi-Yau manifolds, higher curves with split Jacobian corresponding to products of
elliptic curves, ...

The best explicit illustration of this situation emerges in integrable models [45,59-61]

There are even precise bounds for the number of automorphisms. The upper bound is 84 (g — 1) for curves of
genus g and these bounds have been extensively studied in higher dimensions [62-64].
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of genus-one, obtain the j-invariant using formal calculations®, it is, in practice, quite
difficult to see for higher dimensional algebraic varieties, that the algebraic variety is not of
the “general type”, because it has an infinite number of birational symmetries. For these (low
Kodaira dimension) “selected cases” we are interested in, calculating the generalisation of
the j-invariant (Igusa-Shiode invariants, etc ...) is quite hard.

Along this line we want to underline that there exists a remarkable set of algebraic
surfaces, namely the algebraic surfaces corresponding to tri-quadratic equations:

Yo g XMy 2 =, (71)
m=0,1,2 n=0,1,2 1=0,1,2

depending on 27 = 3% parameters a,,, ;. More generally, one can introduce algebraic
varieties corresponding to N-quadratic equations:

Z Z P Z aml/mZ/"'/mN . x;nl xglz P x%N = O, (72)
m1=0,1,2 my=0,1,2 mn=0,1,2

With these tri-quadratic (71), or N-quadratic (72) equations, we will see, in E.1 and E.2,
that we have automatically (selected) algebraic varieties that are not of the “general type”
having an infinite number of birational symmetries, which is precisely our requirement for the
denominator of rational functions with remarkable telescopers™.

Let us first, as a warm-up, consider, in the next subsection, a remarkable example of
tri-quadratic (71), where the underlying foliation in elliptic curves is crystal clear.

6.1. Rational functions with tri-quadratic denominator simply corresponding to elliptic curves.

Let us first recall the tri-quadratic equation in three variables x, y and z

P2 -2 M-oxyz- (x +y +z) +4-M-(M+1)- xyz
M2 (PP 2% —2MP (xy +xz 4yz) = 0, (73)

already introduced in Appendix C of [65]. This algebraic surface, symmetric in x, y and z,
can be seen for z (resp. x or y) fixed, as an elliptic curve which j-invariant is independent of
z yielding the corresponding Hauptmodul:

1728 27- M%2- (M —1)?
"= i 4 (M2-M+1)¥ 7

This corresponds to the fact that this algebraic surface (73) can be seen as a product of two
times the same elliptic curve with the Hauptmodul (74). This is a consequence of the fact
that, introducing x = sn(u)?, y = sn(v)?> and z = sn(u +9v)%, and M = 1/k?, this
algebraic surface (73) corresponds to the well-known formula for the addition on elliptic
sine*’:

sn(u)cn(v)dn(v) + sn(v)cn(u)dn(u)

1 —k2sn(u)?sn(v)? (75)

sn(u +v) =

38
39

Use with(algcurves) in Maple and the command “genus” and “j_invariant”.

Telescopers with factors of “small enough” order, possibly yielding classical modular forms, Calabi-Yau
operators, ... Rational functions with denominators of the “general type” will yield telescopers of very large
orders.

40 See equation (C.3) in Appendix C of [65].
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For M = xyzw, the LHS of the tri-quadratic equation (73) yields a polynomial of four
variables x, y, z and w, that we denote T(x, y, z, w):

T(x,y,z, w) = (76)
PyPz? =2 PP we (x vy +z) +4- (xyzo +1) - P2y w
+x22 2w - (2428 - 2x%P2Pw? - (xy xz 4 yz).
The telescoper of the rational function in four variables x, y, z and w,

xXyz

T(x,y, 2z, w)’ 77)

is an order-three (self-adjoint) linear differential operator which is the symmetric square of the
order-two linear differential operator having the following pullbacked ,F; hypergeometric
solution:

x /2. (xz—x—i-l)*l/4
([i 3] 1] 27-x2-(x—1)2>
2\ 2V Y e =13

(78)

As it should the Hauptmodul in (78) is the same as the Hauptmodul (74). The algebraic sur-
face (73) can be seen as the product of two times the same elliptic curve with the Hauptmodul
(74): as expected the solution of the order-three telescoper is the square of the pullbacked
2F hypergeometric function (78) with that Hauptmodul.

More generally, we can also consider another tri-quadratic equation of three variables
x, y and z and two parameters M and N:

2222 —2M-xyz- (x +y +z) +N-axyz (79)

M2 (P4 +2%) —2M? (xy +xz +yz) = O.

This surface, symmetric in x, y and z, can be seen for z (resp. x or y) fixed as an elliptic
curve which j-invariant is, again, independent of z yielding the corresponding Hauptmodul:

1728 1728 M®. (64 M3 — N?) (80)

o= (48 M3 — N2)3

Let us consider the following change of variables M = m? and N = 8- m> + pin (79).
For p = xyzw, the LHS of the tri-quadratic equation (79) yields a polynomial in four
variables x, y, z and w, that we denote Ty, (x, y, z, w):

Tu(x, y, 2z, w) =
2.2.2

Xy —2m?oxyz- (x +y +z) +(8-m + xyzw)- xyz
+mt o (PP 422 —2mt (xy +xz 4 yz). (81)
For z (resp. x or y) fixed the corresponding Hauptmodul (80) reads:

1728 - m'2. p. (16m® + p)

= . 2
" (16mb +16m3 - p + p2)3 (82)

The telescoper of the rational function in four variables x, y, z and w,
Xyz (83)

Tn(x, y, z, w)’
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is an order-three (self-adjoint) linear differential operator which is the symmetric square of an
order-two linear differential operator having the following pullbacked ,F; hypergeometric
solution:

(16m® +16m3 - x +x%)"1/4.
y ([i E] 1] 1728-m12-x-(16m3+x))
227 27 Y T1emf £ 16md - x +22)°

(84)

As it should the Hauptmodul in (84) is the same as the Hauptmodul (82). The algebraic
surface (79) can be seen as the product of two times the same elliptic curve with the Haupt-
modul (80) (or (82)). As expected the solution of the order-three telescoper is the square of
the pullbacked ,F; hypergeometric function (84) with the Hauptmodul (82).

Remark: Let us perform some (slight) deformation of the rational function (77),
changing the first —2 coefficient in (76) into a —3 coefficient. One thus considers the
polynomial T(x, y, z, w):

T(x,y,z, w) = (85)
PyPz? =3 xPPwe (x vy +z) +4- (xyzw +1) - 22w
+x22 22w (P +22) -2 KPyPw? - (xy +xz 4 yz).
The telescoper of the rational function in four variables,

xXyz

T(x,y, 2z, w)’ (86)

is an (irreducible) linear differential operator of (only) order-four Ly which is non-trivially
homomorphic to its adjoint*!. A priori, we cannot exclude the fact that Ly could be
homomorphic to the symmetric cube of a second-order linear differential operator, or to
a symmetric product of two second-order operators. Furthermore, it could also be, in
principle, that these second-order operators admit classical modular forms as solutions
(pullbacks of special > F; hypergeometric functions). However, these options can both be
excluded by using some results from differential Galois theory [68], specifically from [69,
Prop. 7, p. 50] for the symmetric cube case, and from [69, Prop. 10, p. 69] for the symmetric
product case, see also [70, §3]. Indeed, if L, were either a symmetric cube or a symmetric
product of order-two operators, then its symmetric square would contain a (direct) factor of
order 3 or 1. This is ruled out by a factorization procedure which shows that the symmetric
square of L4 is (LCLM-)irreducible.

This example does not correspond to an addition formula like (75), but the polynomial
T(x, y, z, w) still corresponds to a tri-quadratic. Consequently it is an algebraic variety
with an infinite number of birational automorphisms, as shown in E.1.

6.2. Rational functions with tri-quadratic denominator: Fricke cubics examples associated with
Painlevé VI equations

Let us consider other simple examples of tri-quadratic surfaces that occur in different
domains of mathematics and physics.

Among the Fricke families of cubic surfaces, the family [71-73]

Xyz —i—xz—i—yz—l—z2 +bix +byy +b3z +c = O, (87)

of affine cubic surfaces parametrised by the four constants (b1, by, b3, ¢) is known [72]
to be a deformation of a Dy singularity which occurs at the symmetric (Manin’s) case
b1: b2: b3: -8, c = 28.

41 Tts exterior square has a rational solution. However this order-four linear differential operator is not MUM

(maximum unipotent monodromy [27,66,67])
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Among the symmetric by = by = b3 cases some selected sets of the four constants
(b1, by, b3, ¢) emerge: the Markov cubic by = b, = b3 = ¢ = 0, Cayley’s nodal cubic
by = bp = b3 =0, c = —4, Clebsch diagonal cubic b = b = b3 =0, ¢ = —20, and
Klein’s cubic by = bp = b3 = —1, ¢ = 0.

Some of these symmetric cubics can be seen as the monodromy manifold of the
Painlevé VI equation (see equation (1.7) in [74], see also equations (1.2) and (1.4) in [73]):
the Picard-Hitchin cases (0,0,0, 4), (0,0,0, —4), (0,0,0, —32), Kitaev’s cases (0,0,0, 0),
(—8,—8,—8, —64), and especially Manin’s case (—8,—8, —8, 28).

Let us consider the (symmetric) rational function in three variables x, y and z [72]:

1
2y +22 +xyz +c

R(x, y, z) (88)
which takes into account the other Picard-Hitchin cases*” (0,0,0, 4), (0,0,0, —4), (0,0,0, 32).
The rational function (88) has an order-fwo telescoper which has a simple pullbacked hyper-
geometric solution:

1 12 27 x2
—— Rz 2L 1], - —
(G 3 1 - ) )
B ~ 1 5 1728 - %% - p3(x)
— 174 VA LR (=, =], 1, - P3
(x+0) V4 ()R ([ ) 1 (x +c) qs(x>3)'
where®*:
p3(x) = x> +3-(c4+9)-x*> +3- - x +¢5,
g3(x) = 2* +3-(c+8)-x* +3-* x +¢,
Eliminating z = x—py in the denominator of (83) gives the genus-four algebraic curve:
PP (P4 +(pro) P+ = 0 40

Again, the question is to see whether the Jacobian of this genus-four algebraic curve (88)
could also correspond to a split Jacobian, with a j-invariant corresponding to the Haupt-
modul in (89).

7. Telescopers of rational functions of several variables

Let us consider the rational function in four variables x, y, z, u:

1
1 43y +z +9yz +1122y +3ux’

R(x,y,z,u) = 91)

The telescoper of this rational function of four variables is an order-two linear differential
operator Ly which has the pullbacked hypergeometric solution:

(1 — 2592x2)~1/4 (92)
([l 3] 1], - 419904 - x3- (5 —12x — 19440 x? +2665872x3))
22 v v (1 — 2592x2)3 '

42 As well as the Markov cubic by = by = by =c =0, Cayley’s nodal cubic by = by = b3 =0, ¢ = —4,and

Clebsch diagonal cubic by = b, = b3 =0, ¢ = —20 cases.

43 The values ¢ = 0 and ¢ = —4 are the only values such that the discriminant in x of p3(x) can be zero.
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The diagonal of (91) is the expansion of this pullbacked hypergeometric function (92):

1 +648x% —72900x3 + 1224720 x* — 330674400 x> + 23370413220 x° (93)
—1276733858400 x” + 180019474034400 x® — 12013427240614800 x° + - - -

If one considers the intersection of the vanishing condition of the denominator of (91) with
the hyperbola p = xyzu, eliminating for instance u = - in the vanishing condition
of the denominator of (91), one gets a condition, independent of x, which corresponds to a

genus-one curve
11y%2° +9y*2* +3y*z +yz> +yz +3p = 0. (94)
The Hauptmodul of this elliptic curve (94) reads:

g _ 419904 p>- (5 —12p — 19440 p* + 2665872 p°) 95)
- (1 — 2592 p2)3 ’

which corresponds precisely to the Hauptmodul pullback in (92).

Remark : The expansion (93) of (92) is not only the diagonal of the rational function
R(x, y, z, u) in four variables (91), it is also the diagonal of the rational function of three

variables R(x, y, z, 1). Actually, using section (3), one sees easily that eliminating x = £

vz
in the the vanishing condition of the denominator of R(x, y, z, 1) gives exactly the same

elliptic curve (94).

Let us, now, generalize the rational function (91) of four variables x, y, z, u, introducing
the rational function of N + 3 variables x, y, z, uy, up, - -+, uN:

R(x,y, z,uy, up, -+, Un) (96)
1

1 43y +z 4+9yz +1122y +3x-uguy -+ uy

The telescoper of this rational function of N + 3 variables is the same order-two telescoper
as for (91), which has the pullbacked hypergeometric solution (92). Again one can verify
that the diagonal of (96) is the expansion (93) of the pullbacked hypergeometric function**
(92). If one considers the intersection of the vanishing condition of the denominator of (96)
with the hyperbola p = xyzujuy --- uy, eliminating for instance uy = Wpqu in
the vanishing condition of the denominator of (96), one gets again a condition, independent
of x butalso of uy, - -+, un, which corresponds to a genus-one curve (94):

11y%2% +9y%2* +3y%z +yz> +yz +3p = 0. (97)

The Hauptmodul of this elliptic curve (97), or (94) reads again the Hauptmodul (95) which
corresponds precisely to the Hauptmodul pullback in (92).

Other examples, corresponding to simple polynomial deformations of (91), such that
their diagonal is the pullbacked ;F; hypergeometric function (92) are displayed in F. This
(infinite) family of rational functions correspond to a different algebraic geometry sce-
nario: the “canonical” algebraic surface corresponding to the intersection of the vanishing
condition of the denominator of the rational function with the hyperbola p = xyz, is
foliated in (generically high genus) algebraic curves depending on the variable x. One sees
(experimentally) that the Hauptmodul of the pullbacked ,F; hypergeometric functions
corresponds to the Hauptmodul of the x = 0 algebraic curve, which is an elliptic curve®.

“4 A pure algebraic geometer will probably consider this result as trivial from the computational point of view,

saying that the variety is a fiber bundle over a family of elliptic curves with constant fiber (see also below).
The algebraic curves for other values of x are not necessarily elliptic curves, they can be algebraic curves of
quite large genus.
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In contrast with the other examples and results of this paper, we have no algebraic geometry
interpretation of this experimental result yet.

8. Conclusion

Diagonals of rational functions emerge quite naturally in lattice statistical mechan-
ics [19,20]. This explains the frequent occurrence of modular forms, represented as pullbacked
2F1 hypergeometric functions [1,2] in lattice statistical mechanics [21-27].

We have shown that the results we had obtained on diagonals of nine and ten param-
eters families of rational functions in three variables, using creative telescoping yielding
classical modular forms expressed as pullbacked ;F; hypergeometric functions [1,2], can be
obtained much more efficiently calculating the j-invariant of an elliptic curve canonically
associated with the denominator of the rational functions. In the case where creative telescoping
yields pullbacked ;F; hypergeometric functions, we generalize this result to other families
of rational functions of three, and even more than three, variables, when the denomi-
nator can be associated with products of elliptic curves or foliation in terms of elliptic
curves, or when the denominator is associated with a genus-two curve with a split Jacobian
corresponding to products of elliptic curves.

We have seen different scenarii. In the first cases, we have considered denominators
corresponding to products of elliptic curves: in these cases the solutions of the telescoper
were products of pullbacked >F; hypergeometric functions. We have also considered
denominators corresponding to genus-two curves with split Jacobians isogenous to products
of two elliptic curves, and in these cases the solutions of the telescoper were sums of two
pullbacked ,F; hypergeometric functions, sometimes one pullbacked ;F; hypergeometric
function being enough to describe the two Galois-conjugate j-invariants (see 5.4). We
also considered denominators corresponding to algebraic varieties where the Hauptmodul
pullback in the pullbacked ,F; hypergeometric functions emerges from a selected (x = 0,
see F.1, F.2) elliptic curve of the algebraic variety. We also encountered denominators
corresponding to algebraic manifolds with an infinite set of birational automorphisms
and elliptic curves foliation yielding, no longer classical modular forms represented as
pullbacked F; hypergeometric functions, but more general modular structures associated
with selected linear differential operators like Calabi-Yau linear differential operators [27,66]
and their generalisations.

The creative telescoping method on a rational function is an efficient way to find the
periods of an algebraic variety over all possible cycles*®. The fact that the solution of the
telescoper corresponds to “periods" [37] over all possible cycles is a simple consequence of
the fact that creative telescoping corresponds to purely differential algebraic manipulations on
the integrand independently of the cycles, thus being blind to analytical details. In this paper, we
show that the final result emerging from such differential algebra procedures (which can be
cumbersome when the result depends on nine or ten parameters), can be obtained almost
instantaneously from a more fundamental intrinsic pure algebraic geometry approach,
calculating, for instance, the j-invariant of some canonical elliptic curve. This corresponds
to a shift Analysis — Differential Algebra — Algebraic Geometry. Algebraic geometry
studies of more involved algebraic varieties than product of elliptic curves, foliation in
elliptic curves (Calabi-Yau manifolds, ...) is often a tedious and/or difficult task (finding
Igusa-Shiode invariants, ...), and formal calculations tools are not always available or user-
friendly. Ironically, for such involved algebraic varieties the creative telescoping may then
become a simple and efficient tool to perform effective algebraic geometry studies.
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46 Not only the vanishing cycles [38,40] corresponding to diagonals of rational functions.
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Appendix A Diagonals of rational functions and Picard-Fuchs equations

For simplicity let us consider rational functions of three variables, and double inte-
grals [86]. The diagonal of a rational function of three variables is obtained through its
multi-Taylor expansion [19,20]

R(x,y,z) = ZZZ Ay, X" Y" Z, (A1)
m n ]
by extracting the "diagonal" terms, i.e. the powers of the product p = xyz:
Diag(R(x, Y, z)) = Y ammm-p" (A2)
m

Such diagonals are closely related to the integrals of rational functions. For example

Diag (R(x, v, z)) is the constant term (in y, z) in the infinite expansion

P _ LMo n—m l—m
R(yz,y,z) = Am,n,l P Y z ’ (A3)

m,n,1>0

which can be represented by the integral [35]

(2711_)2 }ffR(yL’z v, 2) ’i/y /\%. (A4)

The diagonal (A2) is also the constant term (in y, z) of

py m  n—m Jl—n
R(%, =,z) = Ay, 1 P Y z ", (A5)
(y z ) m,n,zlzo m,n
wich is of the form
1 Np(y/ Z) d]/ dZ
(27i)? }{f Dy(y,z) y N (46)

where the numerator N, (y, z) and the denominator Dj(y, z) are polynomials. it is well-
known that such integrals satisfy a linear differential equation with respect to p having
rational functions in p as coefficients, called the Picard-Fuchs equation?’. the problem of
determining such linear differential equations has been started by Griffiths [75] with the
assumption that the variety D,(y, z) = 0 is smooth, but later techniques were developed
to include examples with singular points [35,41]. The linear differential equations (Gauss-
Manin systems, telescopers) occuring in integrable models [16,23,24] are of order much
larger than order two® and almost never correspond to smooth varieties. Creative telescop-

47 The order of this linear differential equation is generally equal to the rank of the algebraic deRham cohomology

of Dy(y, z) = 0. For curves of genus g this rank is 2g.
Since Felix Klein it is well-known that the Picard-Fuchs equation corresponding to the (Weierstrass) elliptic
curve corresponds to the hypergeometric function »F; ([1/12,5/12],(1],1/]).
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ing?’ and more specifically the programs [3] corresponding to a fast approach to creative
telescoping [43], are a powerfull way to find these linear differential operators annihilating
these diagonal of rational functions in the cases emerging naturally in theoretical physics,
integrable models, enumerative combinatorics, for which the order of the linear differential
operators is quite large [16,23,24] and the variety D, (y, z) = 0 is (most of the time) not a
smooth one. All the pedagogical (but non-trivial) examples of telescopers displayed in this
paper can be viewed by an algebraic geometer as a presentation of examples of families of
varieties and their Picard-Fuchs equations.

Appendix B Maximum number of parameters for families of planar elliptic curves.

We have seen, in section 3, that the previous results on diagonals of nine or ten param-
eters families of rational functions of three variables being pullbacked ;F; hypergeometric
functions (and in fact classical modular forms) can actually be seen as corresponding to
the (well-known in integrable models and integrable mappings) fact that the most general
biquadratic corresponding to elliptic curves is a nine-parameters family and that the most
general ternary cubic corresponding to elliptic curves is a ten-parameters family. One can,
for instance recall page 238 of [76], which amounts to considering the collection of all cubic
curves in CP, with the homogeneous equation

ax® +bx*y +exy? +dy? +ex’z +fxz? +gyPz
+hyz* +iz® +jxyz = 0, (A7)

and the associated problems of passing through nine given points. One can also recall the
ternary cubics in [77,78] and other problems of elliptic curves of high rank [79] (see the
concept of Neron-Severi rank).

Since the rational functions of three variables we consider are essentially encoded
by the denominator of these rational functions, and in the cases we have considered, the
emergence of pullbacked ;F; hypergeometric functions (and in fact classical modular forms)
corresponds to the fact that the intersection of these denominators with the hyperbola
p = xyzcorresponds to elliptic curves, one sees that these rational functions are essentially
classified by the possible n-parameters families P(x, y) = 0 of elliptic curves.

If one considers a polynomial

Px,y) = Y. Y amn- x"y", (A8)

with generic coefficients a,,, € C, then the genus of the algebraic curve defined by P is
determined by the support supp(P) = {(m,n) € N? : a, , # 0}. More precisely, the genus
equals the number of interior integer lattice points inside the convex hull of supp(P) [80]
(see also the discussion in [81]). For example, the support of the ten-parameters family (11)
consists of the following 10 points in N2

(0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)

which form a right triangle of side length 3. Only one of these points is an interior point,
namely (1,2), hence the genus is 1.

Therefore we may ask: which integer lattice polytopes exist which have exactly one
interior point and what is the largest such polytope? Not surprisingly, the answer is
known: there are (up to transformations like translation, rotation, shearing) exactly 16
different polytopes with a single interior point [82] (see also Figure 5, page 548 in [83]),
the above-mentioned right triangle being the one with the highest total number of lattice
points.

This shows that there cannot be a family of elliptic curves with more than ten parameters.

49 For a detailed introduction to creative telescoping [36] see for instance [34].
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Appendix C Monomial transformations preserving pullbacked hypergeometric results

More generally, recalling subsection 4.2 in [2] and subsection 4.2 page 17 in [1], let us
consider the monomial transformation

(xyz) — Mxyz) = (XM ym zm)
= (xAl . yAz . ZA3, xB1 . sz . zBs, +C1 . ycz . ZC3), (A9)
where the A;’s, Bi’s and C;’s are positive integers such that A = Ay = Ajz is excluded

(aswellas B = B, = Bzaswellas C; = C; = C3), and that the determinant™ of the
3 x 3 matrix [1,2]

A1 B G
Ay By G |, (A10)
Az Bz Cj
is not equal to zero®!, and that:
A1 +B1+C = Ay +By+C = Az + B3 +GCs. (A11)

We will denoteby n = A; + B; + C; the integer in these three equal sums (A11). Condition
(A11) is introduced in order to impose that the product™ of xp; Yy zu is an integer power of
the product of xyz: xpymzm = (xyz)™

If we take a rational function R(x, y, z) in three variables and perform such a mono-
mial transformation (A9) (x, y, z) — M(x, y, z), on this rational function R(x, y, z), we
get another rational function that we denote by R = R(M(x, y, z)). Now the diagonal
of R is the diagonal of R(x, y, z) where we have changed x into x":

D(x) = Diag(’R(x, Y, z)), Diag(ﬁ(x, v, z)) = o(x"). (A12)

Appendix D Weierstrass and Legendre forms

The telescoper of the rational function in three variables

Xy
A+y)? —x- (1-%)- (x —xyz)’ (A13)

associated”® with the elliptic curve in a Weierstrass form:
1+y? —x-(1-x)-(x—-p) = 0 (A14)
is the order-two linear differential operator

Ip = =1 +4-(1-2x)-Dy +4-x-(1—x)-D? (A15)

50" Note a typo in the footnote 28 page 17 of [1] as well as in the second footnote page 18 in [2]. The sentence has

been truncated. One should read: For n = 1, the 3 x 3 matrix (A10) is stochastic and transformation (A9) is a
birational transformation if the determinant of the matrix (A10) is £ 1.

We want the rational function R = R(M(x, y, z)) deduced from the monomial transformation (A9) to
remain a rational function of three variables and not of two, or one, variables.

Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor expansion,
only the terms that are n-th power of the product xyz.

The diagonal extracts the terms function of the product p = xyz in the multi-Taylor series.
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which has the hypergeometric solution:

oA ([ 5) [ %) (A6
1 5 27 x2-(1—x)2)

= (1 — X +x2)71/4. 2F1<[ﬁ’ ﬁ]' [ }’ 4 (1 —x +X2)3

The elliptic curve (A14) has the Hauptmodul

27 p*- (1 —p)?
_ 27 Lo P Al17
" 4 (1-p+p?)? (A17)

in agreement with the pullback in (A16).

Appendix D.1 K3 surfaces as products or foliations of two elliptic curves.

The examples of section 4 correspond to denominators which are algebraic varieties

that can be seen as Weierstrass elliptic curves for fixed values of all the variables except two.

Let us show other simple telescopers for rational functions with denominators which are
algebraic varieties with some foliation in elliptic curves™.

The telescoper of the rational function in four variables

THF w7y o9 ey e
associated with the Kj surface written in a Legendre form>
(142 —x-(1=x)-y - (x=y)-y=p) = 0O (A19)
is an order-three self-adjoint™® linear differential operator L3
Ly = x-(20+1)° —8-6° (A20)

which has the following 3F, solution (which is also, because of Clausen’s formula, the
square of a F; function):

B30 5 5 1) %) = oA (1 gl 1 %) (a21)

The Kj surface (A19) can be seen as associated with the product of two Weierstrass elliptic
curves”’ of Hauptmoduls respectively:

27 p*- (1-p) 27y (1-y)?
g = —. P = 2. L= A22
" 4 (1-p+p?)? My 4 (1-y+y?)? (A2

This order-three linear differential operator L3 is the symmetric square of the order-two
linear differential operator

My= -1 +8-(2-3x)-Dy +16-x- (1 —x)- D2, (A23)

54
55
56

Like K3 surfaces, or three-fold Calabi-Yau manifolds.

Along this line see the first equation page 19 of [84].

The order-three linear differential operator is thus the symmetric square of an order-two linear differential
operator.

K3 surfaces are not abelian varieties, but they are “close” to abelian varieties: from a creative telescoping
viewpoint they can be seen as essentially products of two elliptic curves.
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which has the hypergeometric solutions:

AP ) = (-3 A ol - ) e

Appendix D.2 Calabi-Yau three-fold manifolds as foliation in three elliptic curves.

The telescoper of the rational function in five variables x, y, z, vand w

XYyzov

Ql+w)3? —x- 1—x)-y-(x—y)-z-(y—2) (z—xyzow)’ (A29)
associated® with the Calabi-Yau three-fold written in a Legendre form
1+w? —x-(1-x)y (x=y) 2z (y-2) (z-p) =0 (A26)
is an order-four (self-adjoint) linear differential operator L,
Ly = 16-6* —x- (20 +1)%, (A27)
which is a Calabi-Yau operator®® with the 4F; solution:
4%([%, %, %, %], [,1,1], x). (A28)
For y and z fixed, the Calabi-Yau three-fold (A26) is foliated in genus-one curves
(1+w)? —A-x-(1—-x)-(x —y) = 0, (A29)
where A is the constant expression (p is fixed):
A=y oz (y-2)(z-p) (A30)
The Hauptmodul of these genus-one curves is independent of p and z, reading:
Hyo = 2. (A=y) (A31)

4 Q-y+)*
Similarly for x and z fixed, the Calabi-Yau three-fold (A26) is foliated in genus-one curves
(T+w? —py-(x-y)-y-2 =0 (A32)
where y is the constant expression (p is fixed):
p= xz-(1-x) (z—p). (A33)

The genus-one curves (A32) can be written in a simpler Weierstrass form:

(1 +w)? —p-Y-(l—Y)~(Y—§) = 0, (A34)

where the constant p reads p = - x%, and the variable y has been rescaled into Y = y/x.

The Hauptmodul of these genus-one curves (A32) is the same as the Hauptmodul of the

% The diagonal extracts the terms function of the product p = xyzovw in the multi-Taylor series.
5 This linear differential operator is self-adjoint, its exterior square is of order five, it is MUM (maximum
unipotent monodromy [27,66,67]), ...
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genus-one curves (A29), and corresponds to expression (A31) where y has been changed
into z/x (see the canonical form (A34)), namely:

27 x%- 22 (x —z)?

Pz = 4 (22 —xz 4223

(A35)

Similarly for x and y fixed, the Calabi-Yau three-fold (A26) is foliated in genus-one curves,
1+w)? —v-z-(y—2)-(z—p) = 0, (A36)

where v reads:
v=x-(1-x)-y- (x —y). (A37)

A reduction to a canonical Weierstrass form similar to (A34) gives immediately the Haupt-
modul of the genus-one curve (A36) which reads:

27 y*-p*- (v —p)?
= = . A38
Py 4 (P —yp+r>)’ (A38)

The Calabi-Yau three-fold (A26) thus has a foliation in a triple of elliptic curves &;, & and
&s.

Appendix E Rational functions with tri-quadratic and N-quadratic denominators.
Appendix E.1 Rational functions with tri-quadratic denominators.

Let us consider the most general tri-quadratic surface

Yo g XY 2 =0, (A39)
m=0,12 n=0,1,2 1=0,1,2

depending on 27 = 3% parameters a,, ;. It can be rewritten as:
Alx,y)- 22 +B(x,y)-z +C(x,y) = 0. (A40)
It is straightforward to see that condition (A40) is preserved by the birational involution I,

I : (x, Y, z) — (x, v, flg’, ]y/i 1), (A41)

z

and we have of course two other similar birational involutions I, and I, that single out x
and y respectively. The (generically) infinite-order birational transformations Ky = I - I,
Ky = L+ Iy and K; = Iy - I, are birational symmetries of the surface (A39) or (A40).
They are related by Ky - K, - K; = identity. Note that the birational transformation Ky
preserves x. The iteration of the (generically) infinite-order birational transformation Ky
gives elliptic curves. Since equation (A39) or (A40) is preserved by Ky, which also preserves x,
the equation of the elliptic curves corresponding to the iteration® of K, is actually (A39) for
fixed values of x. Equation (A39), for fixed values of x, is a (general) biquadratic curve in y
and z and is thus an elliptic curve depending on x. Therefore one has a canonical foliation of
the algebraic surface (A39) in elliptic curves. Of course the iteration of K, (resp. K) also
yields elliptic curves, and similarly yields two other foliations in elliptic curves.

We have a foliation in two families of elliptic curves € and £’ of the surface. Conse-
quently, this tri-quadratic surface (A39), having an infinite set of birational automorphisms, an

60 The birational transformation Ky maps the elliptic curve onto itself (self-map). One can use the iteration of the

birational transformation Ky to actually visualise the elliptic curve [45,85].
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infinite set of birational symmetries, cannot be of the “general type” (it has Kodaira dimension
less than 2).

Appendix E.2 Rational functions with N-quadratic denominators.

The calculations of E.1 can straightforwardly be generalised to N-quadratic equations,
writing the N-quadratic (72) as

A(xy, xp, -+, xN-1) - ¥y +B(xy, X, 0, xno1) - Ay
+C(x1, x2, - -+, xNy—1) = O, (A42)

and introducing the birational involution Iy

IN : (xl, X2, ", XN) (A43)

Clxy, x2, -+, xn—1) 1
— (x1, x2/ oy xN*l/ ‘ : : N 7)
A(xy, X2, - XN—1) XN

Similarly to E.1, we can introduce N involutive birational transformations I, and consider
the products of two such involutive birational transformations Ky, = Iy - I;,. These
Kin,n's are (generically) infinite order birational transformations preserving the N — 2 variables
that are not x,,; and x;,.

Using such remarkable N variables algebraic varieties, with an infinite set of birational
automorphisms, one can build rational functions of N + 1 variables, any of the parameter
of the algebraic variety, becoming an arbitrary rational®' function of the product p =
X1 X2 - -+ xN in order to build the denominator of the rational function. The telescopers
of such rational functions are seen (experimentally using creative telescoping) to be of
substantially smaller order than the ones for rational functions where their denominators are,
after reduction by p = x7x -+ xy, associated with algebraic varieties of the “general

type”.
Appendix F Telescopers of rational functions of several variables: some examples

Let us consider here the following family of rational functions in four variables

R(x,y,z,u) = (A44)
1
1 43y +z +9yz +1122y +3ux +x-P(x,y,z)’

where P(x, y, z) is an arbitrary polynomial of the three variables x, y and z.

Appendix F.1 Telescopers of rational functions of several variables: a second example with four
variables

Let us now consider the rational function in four variables x, vy, z, u:

R(x,y,z,u) = (A45)
1
1 +3y +z +9yz 41122y +3ux +9x +2xy +5xz +7x%y

which corresponds to P(x, y,z) = 9 +2y +5z +7xy. The telescoper of this rational
function of four variables is the same order-two linear differential operator Lj as for the
telescoper of (91). It has the same pullbacked hypergeometric solution (92). The diagonal
of the rational function (A45) is the expansion of (92), namely (93).

61 QOr even an arbitrary algebraic function of the product p = x; x - - - xy, with a Taylor series expansion at

p = 0, the diagonal of rational functions becoming diagonal of algebraic functions.
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Performing the intersection of the codimension-one algebraic variety
143y +z +9yz +112%y +3ux  +9x +2xy +5xz +7x%y = 0,

corresponding to the denominator of (A45), with the hyperbola p = xyzu amounts to

eliminating, for instance u (writing u = x’;, -). This gives P, = 0 where P, reads:

Py = 7x%%z +2xy%z +5xyz> +9xyz +11y%2°  +9y?2?
+3y%z +yz* +yz +3p. (A46)

Assuming x to be constant the previous condition P,(y, z) = 0 is an algebraic curve.
Calculating its genus, one finds immediately that it is genus-one. Calculating its j-invariant,
one deduces the expression of the Hauptmodul Hy, = % as a rational expression of p

and x:

1728 46656 p3 - (7x% +2x +3)%-N
px — T - D3 7

(A47)

where N is a polynomial expression of degree eight in w and three in p, and D is a

polynomial expression of degree four in w and two in p. In the x — 0 limit of the

Hauptmodul Hy, = @, one finds:

3. _ _ 2 3
H — - 419904 p°- (5 —12p — 19440 + 2665872 p°) (A45)
(1 — 2592 p2)3

which is actually the Hauptmodul in (92). In other words, the exact expression of the diagonal
of the rational function (A45), which is (92), and is essentially encapsulated in the Haupt-
modul in (92), could have been obtained from the x = 0 selection of the Hauptmoduls
Hp x.

Appendix F.2 Telescopers of rational functions of several variables: a third example with four
variables

Let us consider the rational function in four variables x, y, z, u:

R(x,y,z,u) = (A49)
1
1 +3y +z +9yz +1122y +3ux +x- (222 + xy3)’

which corresponds to P(x,y,z) = y?>z% + xy° in the family (A44). Again, the telescoper of
this rational function of four variables is the same order-two linear differential operator L; as for
the telescoper of (91). It has the same pullbacked hypergeometric solution (92). Actually the
diagonal of the rational function (91) is the expansion (93) of the pullbacked hypergeometric
function (92). In this case (A49), the elimination of u = Tzz in the vanishing condition of
the denominator (A49) gives the algebraic curve:

Pytz +xyP? 11228 499222 +3y%z +yz® +yz +3p = 0. (A50)

For x fixed (and of course p fixed) this algebraic curve (A50) is a genus-five curve, but, of
course, in the x = 0 case it reduces to the same genus-one curve as for the first example (91),
namely:

11y22% +9y°2% +3y%z +yz® +yz +3p = 0. (A51)

which corresponds to the Hauptmodul (A48).
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The generalisation of this result is straightforward. Let us consider the rational function
in four variables x, y, z and u

R(x,y, 2 1) = (A5
1
1 +3y +z +9yz +1122y +3ux +x-P(x,y,2)

where P(x, y, z) is an arbitrary polynomial of the three variables x, y and z. On a large
set of examples one verifies that the diagonal of (A52) is actually the expansion (93) of the
pullbacked hypergeometric function (92):

1 +648x% —72900x% + 1224720 x* — 330674400 x> + 23370413220 x° (A53)
—1276733858400 x” + 180019474034400 x® — 12013427240614800 x° +

However, as far as creative telescoping calculations are concerned®, the telescoper corre-
sponding to different polynomials P(x, y, z) becomes quickly a quite large non-minimal lin-
ear differential operator. For instance, even for the simple polynomial P(x, y, z) = x +y,
one obtains a quite large order-ten telescoper. Of course, since this telescoper has the pull-
backed hypergeometric function (92) as a solution, it is not minimal, it is rightdivisible
by the order-two linear differential operator having (92) as a solution. It is straightfor-

ward to see that the previous elimination of u = XL;Z in the vanishing condition of the
denominator (A52) gives an algebraic curve®
11y?2° +9y*2% +3y%z +yz* +yz +3p +yz- P(x,y,z) = 0. (A54)

which reduces again, in the x = 0 case, to the same genus-one curve (A51).

With that general example (A52) we see that there is an infinite set of rational functions
depending on an arbitrary polynomial P(x, y, z) of three variables whose diagonals are actually
a pullbacked ;F; hypergeometric solution, namely (92).
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