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Abstract: We show that the results we had obtained on diagonals of nine and ten parameters families 1

of rational functions using creative telescoping, yielding modular forms expressed as pullbacked 2F1 2

hypergeometric functions, can be obtained, much more efficiently, by calculating the j-invariant of an 3

elliptic curve canonically associated with the denominator of the rational functions. This result can be 4

drastically generalised changing the parameters into arbitrary rational functions. In the case where 5

creative telescoping yields pullbacked 2F1 hypergeometric functions, we generalise this algebraic 6

geometry approach to other families of rational functions in three, and even more than three, variables. 7

In particular, we generalise this approach to rational functions in more than three variables when the 8

denominator can be associated to an algebraic variety corresponding to products of elliptic curves, 9

or foliation in elliptic curves. We also extend this approach to rational functions in three variables 10

when the denominator is associated with a genus-two curve such that its Jacobian is a split Jacobian 11

corresponding to the product of two elliptic curves. We sketch the situation where the denominator 12

of the rational function is associated with algebraic varieties that are not of the general type, having 13

an infinite set of birational automorphisms. We finally provide some examples of rational functions 14

in more than three variables, where the telescopers have pullbacked 2F1 hypergeometric solutions, 15

the denominator corresponding to an algebraic variety having a selected elliptic curve in the variety 16

explaining the pullbacked 2F1 hypergeometric solution. 17

Keywords: Diagonals of rational functions, pullbacked hypergeometric functions, modular forms, 18

Hauptmoduls, creative telescoping, telescopers, elliptic curves, j-invariant, Hauptmodul, K3 surfaces, 19

split Jacobian, extremal rational surfaces, birational automorphisms, algebraic varieties of the general 20

type. 21

PACS: 05.50.+q, 05.10.-a, 02.30.Hq, 02.30.Gp, 02.40.Xx 22

MSC: 34M55, 47E05, 81Qxx, 32G34, 34Lxx, 34Mxx, 14Kxx 23

1. Introduction 24

In a previous paper [1,2], using creative telescoping [3], we have obtained diagonals1
25

of nine and ten parameters families of rational functions, given by (classical) modular 26

1 For the introduction of the concept of diagonals of rational functions, see [4–11].
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forms expressed as pullbacked 2F1 hypergeometric functions [12]. The natural emergence 27

of diagonals of rational functions2 in lattice statistical mechanics is explained in [19,20]. 28

This can be seen as the reason of the frequent occurrence of modular forms, Calabi-Yau 29

operators in lattice statistical mechanics [21–27]. In another previous paper [17,18], dedicated 30

to Heun functions that are diagonals of simple rational functions, or only solutions of 31

telescopers [28,29] of simple rational functions of three variables, but most of the time four 32

variables, we have obtained many solutions of order-three telescopers having squares of 33

Heun functions as solutions that turn out to be squares of pullbacked 2F1 hypergeometric 34

solutions corresponding to classical modular forms and even Shimura automorphic forms [30,31], 35

strongly reminiscent of periods of extremal rational surfaces [32,33], and other foliation 36

of K3 surfaces in elliptic curves. In other words one finds experimentally that the 2F1 37

hypergeometric functions emerging in the calculation of diagonal of rational functions, or 38

of solutions of the telescopers of rational functions, seem to be only special 2F1([a, b], [c], x) 39

hypergeometric functions with a selected set of parameters [a, b], [c] (see the list (B.1) in 40

Appendix B of [17], corresponding to classical modular forms3, together with a finite set of 41

parameters, like [7/24, 11/24], [5/4], corresponding to Shimura automorphic forms [30,31]), 42

pullbacked by selected pullbacks. This last paper [17] also underlined the difference 43

between the diagonal of a rational function Diag(R), and the solutions of the telescoper of 44

the same rational function. 45

These results strongly suggested to find an algebraic geometry interpretation for all these 46

exact results, and, more generally, suggested to provide an alternative algebraic geometry 47

approach of the results emerging from creative telescoping4. 48

This is the purpose of the present paper. In particular, we are going to show that 49

most of these pullbacked 2F1 hypergeometric functions can be obtained efficiently through 50

algebraic geometry calculations, thus providing a more intrinsic algebraic geometry inter- 51

pretation of the creative telescoping calculations which are typically differential algebra 52

calculations [28,29,34,35]. 53

Creative telescoping [28,29,34,36] is a methodology to deal with parametrized symbolic 54

sums and integrals that yields differential/recurrence equations for such expressions. This 55

methodology became popular in computer algebra in the past twenty five years. By “tele- 56

scoper” of a rational function, say R(x, y, z), we here refer to the output of the creative tele- 57

scoping program [3], applied to the transformed rational function R̃ = R(x/y, y/z, z)/(yz). 58

Such a telescoper is a linear differential operator T in x and ∂
∂x , such that T + ∂U

∂y + ∂V
∂z 59

annihilates R̃, where the so-called “certificates” U, V are rational functions in x, y, z. In 60

other words, the telescoper T represents a linear ODE that is satisfied by Diag(R). 61

The paper is essentially dedicated to solutions of telescopers of rational functions which 62

are not necessarily diagonals of rational functions. These solutions correspond to periods [37] 63

of algebraic varieties over some cycles which are not necessarily vanishing [38] cycles5
64

like in the case of diagonals of rational functions. The reader interested in the connection 65

between the process of taking diagonals, calculating telescopers, and the notion of Periods, 66

deRham cohomology (i.e. differential forms) and other Picard-Fuchs equations can read in 67

detail the thesis of Pierre Lairez [35] (see also [41]). We just sketch some of these ideas in A. 68

The purpose of this paper is not to give an introduction on creative telescoping [28,29], 69

but to provide many pedagogical (non-trivial) examples of telescopers using6 extensively 70

the “HolonomicFunctions” Mathematica package [3]. 71

The paper is organised as follows. We first recall in section 2 the exact results of [1, 72

2] for nine and ten parameters families of rational functions using creative telescoping, 73

2 The lattice Green functions are the simplest examples of such diagonals of rational functions [13–18].
3 See Felix Klein’s connection of the 2F1([1/12, 5/12], [1], x) Gauss hypergeometric function with modular forms,

for instance in the very pedagogical and heuristic paper [12].
4 The reader may refer to [34] for an extensive survey of “creative telescoping” approaches.
5 In french “cycles évanescents” [39,40].
6 One can obtain these telescopers using Chyzak’s algorithm [42] or Koutschan’s semi-algorithm [3,43] (the

termination is not proven). Fo the examples displayed in this paper, Koutschan’s package [3] is more efficient.
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yielding modular forms expressed as pullbacked 2F1 hypergeometric functions. We show 74

in section 3 that these exact results can be obtained, much more efficiently, by calculating 75

the j-invariant of an elliptic curve canonically associated with the denominator of the 76

rational functions, and we underline the fact that one can drastically generalise these 77

results, the parameters becoming quite arbitrary rational functions. Section 4 generalises the 78

previous calculations to denominators of the rational functions of more than three variables, 79

corresponding to products (or foliations) of elliptic curves. In section 5 we show how 80

modular forms expressed as pullbacked 2F1 hypergeometric functions occur for rational 81

functions in three variables when the denominator is associated with a genus-two curve 82

such that its Jacobian is a split Jacobian corresponding to the product of two elliptic curves. 83

In section (6) we sketch the situation where the denominator of the rational function 84

is associated with algebraic varieties of low Kodaira dimension, having an infinite set of 85

birational automorphisms. We finally provide some examples of rational functions in more 86

than three variables, where the telescopers have pullbacked 2F1 hypergeometric solutions, 87

the denominator corresponding to an algebraic variety having a selected elliptic curve in 88

the variety explaining these pullbacked 2F1 solutions. 89

2. Classical modular forms and diagonals of nine and ten parameters family of rational 90

functions 91

In a previous paper [1,2], using creative telescoping [3], we have obtained diagonals of 92

nine and ten parameters families of rational functions, given by (classical) modular forms 93

expressed as pullbacked 2F1 hypergeometric functions. Let us recall these results. 94

2.1. Nine-parameters rational functions giving pullbacked 2F1 hypergeometric functions for their 95

diagonals 96

Let us recall the nine-parameters rational function in three variables x, y and z: 97

1
a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d y2 z + e z x2 . (1)

Calculating7 the telescoper of this rational function (1), one gets an order-two linear differ- 98

ential operator annihilating the diagonal of the rational function (1). The diagonal of the 99

rational function (1) can be written [1,2] as a pullbacked hypergeometric function 100

1
P4(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 − P6(x)2

P4(x)3

)
, (2)

where P4(x) and P6(x) are two polynomials of degree four and six in x, respectively. The 101

Hauptmodul pullback in (2) has the form 102

H =
1728

j
= 1 − P6(x)2

P4(x)3 =
1728 · x3 · P8(x)

P4(x)3 , (3)

where P8(x) is a polynomial of degree eight in x. Such a pullbacked 2F1 hypergeometric 103

function (2) corresponds to a classical modular form [1,2]. 104

2.2. Ten-parameters rational functions giving pullbacked 2F1 hypergeometric functions for their 105

diagonals. 106

Let us recall the ten-parameters rational function in three variables x, y and z: 107

R(x, y, z) = (4)
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d1 x2 y + d2 y2 z + d3 z2 x
.

7 Using the “HolonomicFunctions” Mathematica package [3].
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Calculating the telescoper of this rational function (4), one gets an order-two linear differ- 108

ential operator annihilating the diagonal of the rational function (4). The diagonal of the 109

rational function (4) can be written [1,2] as a pullbacked hypergeometric function 110

1
P3(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 − P6(x)2

P3(x)3

)
, (5)

where P3(x) and P6(x) are two polynomials of degree three and six in x, respectively. 111

Furthermore, the Hauptmodul pullback in (5) is seen to be of the form: 112

H =
1728

j
= 1 − P6(x)2

P3(x)3 =
1728 · x3 · P9(x)

P3(x)3 . (6)

where P9(x) is a polynomial of degree nine in x. Again, (5) corresponds to a classical 113

modular form [1,2]. 114

3. Deducing creative telescoping results from effective algebraic geometry 115

Obtaining the previous pullbacked hypergeometric results (2) and (5) required [1,2] 116

an accumulation of creative telescoping calculations, and a lot of “guessing” using all the 117

symmetries of the diagonals of these rational functions (1) and (4). We are looking for a 118

more efficient and intrinsic way of obtaining these exact results. These two pullbacked 119

hypergeometric results (2) and (5), are essentially “encoded” by their Hauptmodul pullbacks 120

(3) and (6), or, equivalently, their corresponding j-invariants. The interesting question, 121

which will be addressed in this paper, is whether it is possible to canonically associate 122

elliptic curves whose j-invariants correspond precisely to these Hauptmoduls H = 1728
j . 123

3.1. Revisiting the pullbacked hypergeometric results in an algebraic geometry perspective. 124

One expects such an elliptic curve to correspond to the singular part of the rational 125

function, namely the denominator of the rational function. Let us recall that the diagonal 126

of a rational function in (for example) three variables is obtained through its multi-Taylor 127

expansion [19,20] 128

R(x, y, z) = ∑
m

∑
n

∑
l

am, n, l · xm yn zl , (7)

by extracting the "diagonal" terms, i.e. the powers of the product p = xyz: 129

Diag
(

R(x, y, z)
)

= ∑
m

am, m, m · xm. (8)

Consequently, it is natural to consider the algebraic curve corresponding to the intersection 130

of the surface defined by the vanishing condition D(x, y, z) = 0 of the denominator 131

D(x, y, z) of these rational functions (1) and (4), with the hyperbola p = x y z (where 132

p is seen, here, as a constant). This amounts, for instance, to eliminating the variable z, 133

substituting z = p
x y in D(x, y, z) = 0. 134

3.1.1. Nine-parameters case: 135

In the case of the rational functions (1) this corresponds to the (planar) algebraic curve 136

a + b1 x + b2 y + b3
p

x y
+ c1 y

p
x y

+ c2 x
p

x y
+ c3 x y

+d y2 p
x y

+ e
p

x y
x2 = 0, (9)
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which can be rewritten as a (general, nine-parameters) biquadratic: 137

a x y + b1 x2 y + b2 x y2 + b3 p + c1 p y + c2 p x + c3 x2 y2

+d p y2 + e p x2 = 0. (10)

Using formal calculations8 one can easily calculate the genus of the planar algebraic curve 138

(10), and find that it is actually an elliptic curve (genus-one). Furthermore, one can (almost 139

instantaneously) find the exact expression of the j-invariant of this elliptic curve as a 140

rational function of the nine parameters a, b1, b2, · · · , e in (1). One actually finds that this 141

j-invariant is precisely the j such that the Hauptmodul H = 1728
j is the exact expression 142

(3). In other words, the classical modular form result (2) could have been obtained, almost 143

instantaneously, by calculating the j-invariant of an elliptic curve canonically associated 144

with the denominator of the rational function (1). The algebraic planar curve (10) corre- 145

sponds to the most general biquadratic of two variables, which depends on nine homogeneous 146

parameters. Such general biquadratic is well-known to be an elliptic curve for generic values 147

of the nine parameters9. 148

Thus, the nine-parameters exact result (2) can be seen as a simple consequence of the fact 149

that the most general nine-parameters biquadratic is an elliptic curve. 150

3.1.2. Ten-parameters case: 151

In the case of the rational function (4), substituting z = p
x y in D(x, y, z) = 0, one 152

obtains the ten-parameters bicubic: 153

a x y2 + b1 x2 y2 + b2 x y3 + b3 p y + c1 p y2 + c2 px y + c3 x2 y3

+ d1 x3 y3 + d2 y3 + d3 p2 = 0. (11)

As before, we find that this planar algebraic curve is actually an elliptic curve10 and 154

that the exact expression of its j-invariant is precisely the j of the Hauptmodul H = 1728/j 155

in (6). 156

Thus, this ten-parameters result (5) can again be seen as a simple consequence of the 157

fact that there exists a family of ten-parameters bicubics (see (11)) which are elliptic curves for 158

generic values of the ten parameters. 159

These preliminary calculations are a strong incentive to try to replace the differential 160

algebra calculations of the creative telescoping, by more intrinsic algebraic geometry calcula- 161

tions, or, at least, perform effective algebraic geometry calculations to provide an algebraic 162

geometry interpretation of the exact results obtained from creative telescoping. 163

3.2. Finding creative telescoping results from j-invariant calculations. 164

One might think that these results are a consequence of the simplicity of the denom- 165

inators of the rational functions (1) or (4), being associated with biquadratics or selected 166

bicubics. In fact, these results are very general. Let us, for instance, consider a nine- 167

parameters family of planar algebraic curves that are not biquadratics or (selected) bicubics: 168

a1 x4 + a2 x3 + a3 x2 + a4 x + a5 + a6 x2 y + a7 y2 + a8 y + a9 x y = 0. (12)

One can easily calculate the genus of this planar curve and see that this genus is actually 169

one for arbitrary values of the an’s. Thus the planar curve (12) is an elliptic curve for generic 170

8 Namely using with(algcurves) in Maple, and, in particular, the command j_invariant.
9 So many results in integrable models correspond to this most general biquadratic: the Bethe ansatz of the Baxter

model [44,45], the elliptic curve foliating the sixteen-vertex model [45], so many QRT birational maps [46], ...
10 Generically, the most general planar bicubic is not a genus-one algebraic curve. It is a genus-four curve.
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values of the nine parameters a1, · · · , a9. It is straightforward to see that the algebraic surface 171

S(x, y, z) = 0, corresponding to 172

z · (a1 x4 + a2 x3 + a3 x2 + a4 x + a5 + a6 x2 y + a7 y2 + a8 y) + a9 p = 0, (13)

will automatically be such that its intersection with the hyperbola p = x y z gives back 173

the elliptic curve (12). 174

Using this kind of “reverse engineering” yields to consider the rational function in 175

three variables x, y and z 176

R(x, y, z) =

1
1 + z · (a1 x4 + a2 x3 + a3 x2 + a4 x + a5 + a6 x2 y + a7 y2 + a8 y)

, (14)

which will be such that its denominator is canonically associated with an elliptic curve. Again 177

we can immediately calculate the j-invariant of that elliptic curve. If one calculates the 178

telescoper of this eight-parameters family of rational functions (14), one finds that this 179

telescoper is an order-two linear differential operator with pullbacked hypergeometric 180

solutions of the form 181

A(x) · 2F1

(
[

1
12

,
5

12
], [1], H

)
, (15)

where A(x) is an algebraic function and, where again, the pullback-Hauptmodul H = 182

1728/j, precisely corresponds to the j-invariant of the elliptic curve. 183

More generally, seeking for planar elliptic curves, one can, for given values of two 184

integers M and N, look for planar algebraic curves 185

n=N

∑
n=0

m=M

∑
m=0

am, n · xn ym = 0, (16)

defined by the set of am, n’s which are equal to zero, apart of N homogeneous parameters 186

am, n being, as in (10) or (11) or (13), independent parameters. Finding such an N -parameters 187

family of (planar) elliptic curves automatically provides an N -parameters family of rational 188

functions such that their telescopers have a pullbacked 2F1 hypergeometric solution we 189

can simply deduce from the j-invariant of that elliptic curve. 190

Recalling the results of section 2.2, the quite natural question to ask now is whether 191

it is possible to find families of such (planar) elliptic curves which depend on more than ten 192

independent parameters? 193

Before addressing this question, let us recall the concept of birationally equivalent elliptic 194

curves. Let us consider the monomial transformation: 195

(x, y) −→ (xM yN , xP yQ), (17)

where M, N, P, Q are integers such that M · Q − P · N = 1, then its compositional 196

inverse is the monomial transformation: 197

(x, y) −→
( xQ

yN ,
yM

xP

)
. (18)

This monomial transformation (17) is thus a birational11 transformation. A birational 198

transformation transforms an elliptic curve, like (12), into another elliptic curve with the 199

11 This transformation is rational and its compositional inverse is also rational (here monomial).
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same j-invariant: these two elliptic curves are called birationally equivalent. In the case of the 200

birational and monomial transformation (17), the elliptic curve (12) is changed into12: 201

a1 · x4 M y4 N + a2 · x3 M y3 N + a3 · x2 M y2 N + a4 · xM yN + a5 (19)

+a6 · x2 M +P y2 N +Q + a7 · x2 P y2 Q + a8 · xP yQ + a9 · xM +P yN +Q = 0.

With this kind of birational monomial transformation (17), we see that one can obtain 202

families of elliptic curves (19) of arbitrary large degrees in x and y. Consequently one can 203

find nine or ten parameters families of rational functions of arbitrary large degrees yielding 204

pullbacked 2F1 hypergeometric functions. There is no constraint on the degree of the 205

planar algebraic curves (19): the only relevant question is the question of the maximum number 206

of (linearly) independent parameters of families of planar elliptic curves which is shown to be ten. 207

The demonstration13 is sketched in B. 208

3.3. Pullbacked 2F1 functions for higher genus curves: monomial transformations. 209

Let us recall another important point. We have already remarked in [1,2] that once we 210

have an exact result for a diagonal of a rational function of three variables R(x, y, z), we 211

immediately get another exact result for the diagonal of the rational function R(xn, yn, zn) 212

for any positive integer n. As a result we obtain a new expression for the diagonal changing 213

x into xn. In fact, this is also a result on the telescoper of the rational function R(x, y, z): the 214

telescoper of the rational function R(xn, yn, zn) is the x → xn pullback of the telescoper 215

of the rational function R(x, y, z). Having a pullbacked 2F1 solution for the telescoper 216

of the rational function R(x, y, z) (resp. the diagonal of the rational function R(x, y, z)), 217

we will immediately deduce a pullbacked 2F1 solution for the telescoper of the rational 218

function R(xn, yn, zn) (resp. the diagonal of the rational function R(xn, yn, zn)). 219

Along this line, let us change in the rational function (1), (x, y, z) into (x2, y2, z2): 220

R2(x, y, z) = (20)
1

a + b1 x2 + b2 y2 + b3 z2 + c1 y2 z2 + c2 x2 z2 + c3 x2 y2 + d y4 z2 + e z2 x4 .

The diagonal of this new rational function (20) will be the pullbacked 2F1 exact expression 221

(2) where we change x → x2. The intersection of the algebraic surface corresponding 222

to the vanishing condition of the denominator of the new rational function (20), with 223

the hyperbola p = x y z (i.e. z = p
x y ), is nothing but the equation (10) where we have 224

changed (x, y; p) into (x2, y2; p2) 225

a x2 y2 + b1 x4 y2 + b2 x2 y4 + b3 p2 + c1 p2 y2 + c2 p2 x2 + c3 x4 y4

+ d p2 y4 + e p2 x4 = 0, (21)

which is no longer14 an elliptic curve but a curve of genus 9. 226

With that example we see that classical modular form results, or pullbacked 2F1 exact 227

expressions like (2), can actually emerge from higher genus curves like (21). As far as these 228

diagonals, or telescopers, of rational function calculations are concerned, higher genus 229

curves like (21) must in fact be seen as “almost” elliptic curves up to an x → xn covering. 230

Such results for monomial transformations like (x, y, z) → (xn, yn, zn) can, in fact, 231

be generalised to more general (non birational15) monomial transformations. This is 232

sketched in C. 233

12 One can easily verify for particular values of the M, N, P, Q and ak’s, using with(algcurves) in Maple, that
the j-invariants of (12) and (19) are actually equal.

13 We thank Josef Schicho for providing this demonstration.
14 If we perform the same calculations with the ten-parameters rational function (4) we get an algebraic curve of

genus 10 instead of 9.
15 In contrast with transformations like (17).
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3.4. Changing the parameters into functions of the product p = x y z. 234

All these results for many parameters families of rational functions can be drastically 235

generalised when one remarks that allowing any of these parameters to be a rational function 236

of the product p = x y z also yields to the previous pullbacked 2F1 exact expression, like 237

(2), where the parameter is changed into that rational function of x (see [1]). Let us consider a 238

simple (two-parameters) illustration of this general result. Let us consider a subcase of the 239

previous nine or ten parameters families, introducing, for example, the two parameters 240

rational function: 241

1
1 + 2 x + b2 · y + 5 y z + x z + c3 · x y

. (22)

The diagonal of this rational function (22) is the pullbacked hypergeometric function: 242

1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 43200 · x4 · P4(x)

P2(x)3

)
, (23)

where 243

P2(x) = 1 − 8 · (b2 + 10) · x + 8 · (2 b2
2 − 20 b2 + 15 c3 + 200) · x2, (24)

and 244

P4(x) = −675 c4
3 · x4 + 4 c2

3 · (b2 + 10) · (4 b2
2 − 100 b2 + 45 c3 + 400) · x3

+(64 b4
2 − 32 b3

2 c3 − 8 b2
2 c2

3 − 1280 b3
2 + 1280 b2

2 c3

−460 b2 c2
3 − 5 c3

3 + 6400 b2
2 − 3200 b2 c3 − 800 c2

3) · x2 (25)

−(b2 + 10) · (32 b2
2 − 16 b2 c3 − c2

3) · x + 2 b2 · (2 b2 − c3),

Let us now consider the previous rational function (22) where the two parameters b2 245

and c3 become some rational functions of the product p = x y z, for instance: 246

b2(p) =
1 + 3 p
1 + 7 p2 , c3(p) =

1 + p2

1 + 2 p
where: p = x y z. (26)

The new corresponding rational function becomes more involved but one can easily calcu- 247

late the telescoper of this new rational function of three variables x, y and z, and find that 248

it is, again, an order-two linear differential operator having the pullbacked hypergeometric 249

solution (23) where b2 and c3 are, now, replaced by ( p is now x) the functions: 250

b2(x) =
1 + 3 x
1 + 7 x2 , c3(x) =

1 + x2

1 + 2 x
. (27)

In that case (22) with (26), one gets a diagonal which is the pullbacked hypergeometric 251

solution 252

(1 + 2 x)1/4 · (1 + 7 x2)1/4 · q−1/4
8

× 2F1

(
[

1
12

,
5
12

], [1],
43200 · x4 · (1 + 7 x2)2 · q20

(1 + 2 x) · q3
8

)
, (28)

where q8 and q20 are two polynomials with integer coefficients of degree eight and twenty 253

in x. The exact expression (28) is nothing but (23) (with (24) and (25)) where b2 and c3 254

have been replaced by the rational functions (27). Similar calculations can be performed 255

for more general rational functions (1) or (4), when all the (nine or ten) parameters are more 256

involved rational functions. 257

When performing our creative telescoping symbolic calculations using the Holonomic- 258

Functions package [3], such results may look quite impressive. From the algebraic geometry 259
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viewpoint, it is almost tautological16, if one takes for granted the result of our previous 260

subsections 3.1 and 3.2, namely that the pullbacked hypergeometric solution of the tele- 261

scoper corresponds to the Hauptmodul 1728/j, where j is the j-invariant of the elliptic 262

curve corresponding to the intersection of the algebraic surface corresponding to the van- 263

ishing condition of the denominator, with the hyperbola p = x y z: this calculation of 264

the j-invariant is performed for p fixed, and arbitrary (nine or ten) parameters a, b1, · · · . 265

It is clearly possible to force the parameters to be functions17 of p, the j-invariant being 266

changed accordingly. Of course, in that case, the parameters in the rational function are the 267

same functions but of the product p = x y z. 268

One thus gets pullbacked hypergeometric solutions (classical modular forms) for an (unreason- 269

ably ...) large set of rational functions in three variables, namely the families of rational functions 270

(1) or (4), but where, now, the nine or ten parameters are nine, or ten, totally arbitrary rational 271

functions (with Taylor series expansions) of the product p = x y z. 272

We see experimentally that changing the parameters of the rational function into 273

functions, actually works for diagonals of rational functions, as well as for solutions of 274

telescopers of rational functions depending on parameters. 275

4. Creative telescoping on rational functions of more than three variables associated 276

with products or foliations of elliptic curves 277

Let us show that such an algebraic geometry approach to creative telescoping can be 278

generalised to rational functions of more than three variables, when the vanishing condition 279

of the denominator can be associated with products of elliptic curves, or more generally, 280

algebraic varieties with foliations in elliptic curves. 281

• The telescoper of the rational function in the four variables x, y, z and w 282

x y z
(1 + z)2 − x · (1 − x) · (x − x y z w) · y · (1 − y) · (y − x y z w)

, (29)

gives an order-three self-adjoint linear differential operator which is, thus, the symmetric 283

square of an order-two linear differential operator. The latter has the pullbacked hypergeo- 284

metric solution: 285

S1(x) = (1 − x + x2)−1/4 · 2F1

(
[

1
12

,
5

12
], [1],

27
4

· x2 · (1 − x)2

(x2 − x + 1)3

)
(30)

= 2F1

(
[
1
2

,
1
2
], [1], x

)
.

In [18] we underlined the difference between the diagonal of a rational function and solutions 286

of the telescoper of the same rational function. In this case, the diagonal of the rational 287

function (29) is zero18 and is thus different from the pullbacked hypergeometric solution 288

(30), which is a “Period” [37] of the algebraic variety corresponding to the denominator 289

over some (non-vanishing19) cycle. From now, we will have a similar situation in most of the 290

following examples of this paper. 291

16 An algebraic geometer will probably see this as a trivial remark: diagonalization is an algebraic procedure and
nothing really happens to the coefficients. Therefore if one replaces the coefficients by anything else, one will
find those replaced coefficients in the end result.

17 The functions should be rational functions if one wants to stick with diagonals and telescopers of rational
functions, but the result remains valid for algebraic functions, or even transcendental functions with reasonable
Taylor series expansions at x = 0: for instance, for 2F1 hypergeometric functions, one gets a differentially
algebraic function corresponding to the composition of 2F1 hypergeometric functions.

18 The reason is that the integration takes place over a cycle homologically equivalent to the trivial cycle. The
cycle becomes trivial after taking the limit p → 0. Integrals over non vanishing cycles usually give logarithms
of p, like the second solution to the hypergeometric function 2F1([1/2, 1/2], [1], , x).

19 Diagonals of the rational functions correspond to periods over vanishing cycles [38,40].
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This example is a simple illustration of what we expect for products of elliptic curves, 292

or algebraic varieties with foliations in elliptic curves. Introducing the product p = xyzw, 293

the vanishing condition of the denominator of the rational function (29) reads the surface 294

S(x, y, z) = 0: 295

(1 + z)2 − x · (1 − x) · (x − p) · y · (1 − y) · (y − p) = 0. (31)

For fixed p and fixed y, equation (31) can be seen as an algebraic curve 296

(1 + z)2 − λ · x · (1 − x) · (x − p) = 0 (32)

with: λ = y · (1 − y) · (y − p).

For fixed p and fixed y, λ can be considered as a constant, the algebraic curve (32) being 297

an elliptic curve with an obvious Weierstrass form: 298

Z2 − x · (1 − x) · (x − p) = 0 where: Z =
1 + z√

λ
. (33)

The j-invariant of (32), or20 (33), is well-known and yields the Hauptmodul H: 299

H =
1728

j
=

27
4

· p2 · (1 − p)2

(p2 − p + 1)3 (34)

For fixed p and fixed x, equation (31) can be seen as an algebraic curve 300

(1 + z)2 − µ · y · (1 − y) · (y − p) = 0 (35)

for: µ = x · (1 − x) · (x − p),

which is also an elliptic curve with an obvious Weierstrass form and the same Hauptmodul 301

(34). This Hauptmodul is precisely the one occurring in the pullbacked hypergeometric 302

solution (30). 303

More generally, the rational function of the four variables x, y, z and w 304

x y z
(1 + z)2 − x · (1 − x) · (x − R1(p)) · y · (1 − y) · (y − R2(p))

, (36)

where p = x y z w, and where R1(p) and R2(p) are two arbitrary rational functions (with 305

Taylor series expansions) of the product p = x y z w, yields a telescoper which has an 306

order-four linear differential operator which is the symmetric product21 of two order-two 307

linear differential operators having respectively the pullbacked hypergeometric solutions 308

(30) where x is replaced by R1(x) and R2(x). These two hypergeometric solutions thus 309

have the two Hauptmodul pullbacks 310

H1 =
1728

j1
=

27
4

· R1(p)2 · (1 − R1(p))2

(R1(p)2 − R1(p) + 1)3 , (37)

H2 =
1728

j2
=

27
4

· R2(p)2 · (1 − R2(p))2

(R2(p)2 − R2(p) + 1)3 , (38)

obtained by calculations similar to the ones previously performed on (31) but, now, for the 311

Weierstrass form corresponding to the denominator (36). 312

20 A shift z → z + 1 or a rescaling z2 → z2

λ does not change the j-invariant of the Weierstrass elliptic form.
21 This paper belonging to the symbolic computation literature and not pure mathematics for algebraic geome-

ters, we use the standard Maple (DEtools) terminology of symmetric powers and symmetric products of
linear differential operators [47]. Note that "symmetric product" is not a proper mathematical name for this
construction on the solution space; it is a homomorphic image of the tensor product. The (Maple/DEtools)
reason for choosing the name symmetric_product is the resemblance with the function symmetric_power.
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A solution of the telescoper of (36) is thus the product of these two pullbacked hyper- 313

geometric functions. Let us give a simple illustration of this general result, with the next 314

example. 315

• The telescoper of the rational function in the four variables x, y, z and w 316

x y z
(1 + z)2 − x · (1 − x) · (x − x y z w) · y · (1 − y) · (y − 3 x y z w)

, (39)

corresponding to (36) with R1(p) = p and R1(p) = 3 p, gives an order-four linear differen- 317

tial operator which is the symmetric product of two order-two operators having respectively 318

the pullbacked hypergeometric solution (30) and the solution (30) where the variable x has 319

been changed into 3 x: 320

S2(x) = S1(3 x) (40)

= (1 − 3 x + 9 x2)−1/4 · 2F1

(
[

1
12

,
5
12

], [1],
243
4

· x2 · (1 − 3 x)2

(1 − 3 x + 9 x2)3

)
.

4.1. Creative telescoping on rational functions of five variables associated with products or foliations 321

of three elliptic curves 322

Let us, now, introduce the rational function in five variables x, y, z, v and w 323

x y z v
D(x, y, z, v, w)

, (41)

where the denominator D(x, y, z, v, w) reads: 324

Dp = (42)

(1 + v)2 − x · (1 − x) · (x − p) · y · (1 − y) · (y − 3 p) · z · (1 − z) · (z − 5 p),

where: p = x y z v w.

The telescoper of the rational function (41) of five variables gives22 an order-eight linear 325

differential operator which is the symmetric product of three order-two linear differential 326

operators having respectively the pullbacked hypergeometric solution (30), the solution 327

(30) where x has been changed into 3 x, namely (40), and the solution (30), where x has 328

been changed into 5 x: 329

S3(x) = S1(5 x) (43)

= (1 − 5 x + 25 x2)−1/4 · 2F1

(
[

1
12

,
5
12

], [1],
675
4

· x2 · (1 − 5 x)2

(1 − 5 x + 25 x2)3

)
.

In other words, the order-eight telescoper of the rational function (41) has the product 330

S = S1 · S2 · S3, of (30), (40) and (43) as a solution. From an algebraic geometry viewpoint, 331

this is a consequence of the fact that, for fixed p, the algebraic variety Dp = 0, where 332

Dp is given by (42), can be seen, for fixed y and z, as an elliptic curve E1 of equation 333

Dy,z,p(v, x) = 0, for fixed x and z as an elliptic curve E2 of equation Dx,z,p(v, y) = 0, 334

and for fixed x and y also as an elliptic curve E3 of equation Dx,y,p(v, z) = 0, the j- 335

invariants jk, k = 1, 2, 3 of these three elliptic curves Ek yielding (in terms of p), precisely, 336

the three Hauptmoduls Hk = 1728
jk

337

27
4

· x2 · (1 − x)2

(x2 − x + 1)3 ,
243

4
· x2 · (1 − 3 x)2

(1 − 3 x + 9 x2)3 ,
675
4

· x2 · (1 − 5 x)2

(1 − 5 x + 25 x2)3 , (44)

22 Such a creative telescoping calculation requires “some” computing time to achieve the result.
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occurring as pullbacks in the three Sk’s of the solution S = S1 · S2 · S3, of the telescoper 338

of (41). 339

Remark: Other examples of rational functions of three, four, five variables where 340

the denominators also correspond to Weierstrass (resp. Legendre) forms, are displayed 341

in D. They provide simple illustrations of rational functions where the denominator is 342

associated with K3 surfaces23, or Calabi-Yau three-folds. In these cases the algebraic varieties 343

have simple foliations in terms of two or three families of elliptic curves, and the solutions 344

of the corresponding telescopers can be selected 3F2 and 4F3 hypergeometric functions (see 345

(A28) in D), naturally associated with K3 surfaces and Calabi-Yau operators [27]. 346

5. Creative telescoping of rational functions in three variables associated with 347

genus-two curves with split Jacobians 348

In a paper [17,18], dedicated to Heun functions that are solutions of telescopers of 349

simple rational functions of three and four variables, we have obtained24 an order-four 350

telescoper of a rational function of three variables, which is the direct sum of two order-two 351

linear differential operators, each having classical modular forms solutions which can be written 352

as pullbacked 2F1 hypergeometric solutions. Unfortunately, the intersection of the algebraic 353

surface corresponding to the denominator of the rational function with the p = x y z 354

hyperbola, yields a genus-two algebraic curve. 355

Let us try to understand, in this section, how a genus-two curve can yield two classical 356

modular forms. Let us first recall the results in section 2.2 of [18]. 357

5.1. Periods of extremal rational surfaces 358

Let us recall the rational function in just three variables [18]: 359

R(x, y, z) =
1

1 + x + y + z + x y + y z − x3 y z
. (45)

Its telescoper is actually an order-four linear differential operator L4 which, not only factor- 360

izes into two order-two linear differential operators, but is actually the direct sum (LCLM) 361

of two25 order-two linear differential operators L4 = L2 ⊕ M2. These two (non homo- 362

morphic) order-two linear differential operators have, respectively, the two pullbacked 363

hypergeometric solutions: 364

S1 = (1 + 9 x)−1/4 · (1 + 3 x)−1/4 · (1 + 27 x2)−1/4 (46)

× 2F1

(
[

1
12

,
5

12
], [1],

1728 · x3 · (1 + 9 x + 27 x2)3

(1 + 3 x)3 · (1 + 9 x)3 · (1 + 27 x2)3

)
,

and: 365

S2 =
1

(1 + 4 x − 2 x2 − 36 x3 + 81 x4)1/4 (47)

× 2F1

(
[

1
12

,
5

12
], [1],

1728 · x5 · (1 + 9 x + 27 x2) · (1 − 2 x)2

(1 + 4 x − 2 x2 − 36 x3 + 81 x4)3

)
.

The diagonal of (45) is actually the half-sum of the two series (46) and (47): 366

Diag
(

R(x, y, z)
)

=
S1 + S2

2
. (48)

23 See the emergence of product of elliptic curves from Shioda-Inose structure on surfaces with Picard number 19
in [48]. In [48], Ling Long considers one-parameter families of K3 surfaces with generic Picard number 19. The
existence of a Shioda-Inose structure implies that there is a one-parameter family of elliptic curves.

24 See equation (83) in section 2.2 of [18].
25 These two order-two linear differential operators L2 and M2 are not homomorphic.
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As far as our algebraic geometry approach is concerned, the intersection of the al- 367

gebraic surface corresponding to the denominator of the rational function (45) with the 368

hyperbola p = x y z gives the planar algebraic curve (corresponding to the elimination of 369

the z variable by the substitution z = p
x y ): 370

1 + x + y +
p

x y
+ x y + y

p
x y

− x3 y
p

x y
= 0. (49)

One easily finds that this algebraic curve is (for p fixed) a genus-two curve, and that 371

this higher genus situation does not correspond to the "almost elliptic curves" described 372

in subsection 3.2 namely an elliptic curve transformed by a monomial transformation. 373

How can a “true” genus-two curve give two j-invariants, namely a telescoper with two 374

Hauptmodul pullbacked 2F1 solutions? We are going to see that the answer is that the 375

Jacobian of this genus-two curve26 is in fact isogenous to a product E × E ′ of two elliptic 376

curves (split Jacobian). 377

5.2. Split Jacobians 378

Let us first recall the concept of split Jacobian with a simple example. In [49], one has a 379

crystal-clear example of a genus-two curve C 380

y2 − (x3 + 420 x − 5600) · (x3 + 42 x2 + 1120) = 0, (50)

such that its Jacobian J(C) is isogenous to a product of elliptic curves with j-invariants j1 = 381

−27 · 72 = −6272 and j2 = −25 · 7 · 173 = −1100512, corresponding to the following 382

two values of the Hauptmodul H = 1728
j : H1 = −27/98 and H2 = −54/34391. Let us 383

consider the genus-one elliptic curve 384

v2 = u3 + 4900 u2 + 7031500 u + 2401000000, (51)

of j-invariant j = j2 = −25 · 7 · 173. We consider the following transformation27: 385

u = − 882000 · (x − 14)
x3 + 420 x − 5600

, v =
49000 · (x3 − 21 x2 − 140)

(x3 + 420 x − 5600)2 · y. (52)

This change of variable (52) actually transforms the elliptic curve (51) in u and v into the 386

genus-two curve (50) in x and y. This provides a simple example of a genus-two curve with split 387

Jacobian through K3 surfaces. 388

More generally, let us consider the Jacobian of a genus-two curve C. The Jacobian is 389

simple if it does not contain a proper abelian subvariety, otherwise the Jacobian is reducible, 390

or decomposable or “split”. For this latter case, the only possibility for a genus-two curve is 391

that its Jacobian is isogenous to a product E × E ′ of two elliptic curves28. Equivalently, there is 392

a degree n map C → E to some elliptic curves. Classically such pairs29 C, E arose in the 393

reduction of hyperelliptic integrals to elliptic ones [49]. The j-invariants correspond, here, to 394

the two elliptic subfields: see [49]. 395

26 An algebraic geometer will probably recall that it is very well-known that a genus two curve may have Jacobian
isogeneous to a product of elliptic curves. This is not the case in general. The genus two curves that have a
(nonconstant) map to an elliptic curve have this property. Our purpose in section (5.3) is to perform a creative
telescoping calculation in such a selected situation.

27 This transformation is rational but not birational. If it were birational, then it would preserve the genus. Here,
one goes from genus one to genus two.

28 Along these lines, see also the concepts of Igusa-Clebsch invariants and Hilbert modular surfaces [49–52].
29 One also has an anti-isometry Galois invariant E ′ ≃ E under Weil pairing. The decomposition corresponds

to real multiplication by quadratic ring of discriminant n2.
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5.3. Creative telescoping on rational functions in three variables associated with genus-two curves 396

with split Jacobians: a two-parameters example. 397

Let us now consider the example with two parameters, a and b, given in section 4.5 page 398

12 of [49]. Let us substitute the rational parametrisation30
399

u =
x2

x3 + a x2 + b x + 1
, v =

y · (x3 − b x − 2)
(x3 + a x2 + b x + 1)2 , (53)

in the elliptic curve 400

R · v2 = R · u3 + 2 · (ab2 − 6 a2 + 9 b) · u2 + (12 a − b2) · u − 4, (54)

where 401

R = 4 · (a3 + b3) − a2b2 − 18 ab + 27. (55)

This gives the genus-two curve Ca, b(x, y) = 0 with: 402

Ca, b(x, y) = R · y2 + (4 x3 + b2 x2 + 2 b x + 1) · (x3 + a x2 + b x + 1). (56)

The j-invariant of the elliptic curve (54) gives the following exact expression for the Haupt- 403

modul H = 1728
j : 404

H =
108 · (b − 3)3 · (4 a3 + 4 b3 − a2b2 − 18 ab + 27)2 · (b2 + 3 b + 9)3

(a2b4 + 12 b5 − 126 ab3 + 216 ba2 + 405 b2 − 972 a)3 . (57)

Let us consider the telescoper of the rational function of three variables x y/Da(x, y, z) 405

where the denominator Da(x, y, z) is Ca, b(x, y) given by (56), but for b = 3 + x y z: 406

Da(x, y, z) = Ca, 3+ xyz(x, y)

= x6y3z3 + x7y2z2 + 4 x3y5z3 + 9 x5y2z2 + 6 x6yz + 3 x4y2z2 + 36 y4x2z2

+6 x5yz + 4 x6 + 27 x4yz + 9 x5 + 18 x3yz + 108 xy3z + 18 x4 + 3 x2yz

+32 x3 + 27 x2 + 135 y2 + 9 x + 1

+ (x6y2z2 + 6 x5yz + 2 x4yz + 4 x5 − 18 xy3z + 9 x4 + 6 x3 + x2 − 54 y2) · a

−y2 · (xyz + 3)2 · a2 + 4 y2 · a3. (58)

This telescoper of the rational function 407

Ra(x, y, z) =
x y

Da(x, y, z)
, (59)

is an order-four linear differential operator L4 which is actually the direct-sum, L4 = 408

LCLM(L2, M2) = L2 ⊕ M2, of two order-two linear differential operators, having two 409

pullbacked hypergeometric solutions. One finds out that one of the two pullbacks precisely 410

corresponds to the Hauptmodul H given by (57) for b = 3 + x. 411

Let us consider the a = 3 subcase31. For a = 3, the Hauptmodul H = 1728
j , given 412

by (57) becomes for b = 3 + x: 413

H =
4 · x · (27 + 4 x)2 · (x2 + 9 x + 27)3

(9 + x)3 · (4 x2 + 27 x + 27)3 . (60)

30 See also [53] section 6 page 48.
31 The discriminant in b of 4 a3 + 4 b3 − a2b2 − 18 ab + 27 reads: (a − 3)3 · (a2 + 3 a + 9)3 , consequently the

exact expressions are simpler at a = 3.
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The telescoper of the rational function (59) with Da(x, y, z) given by (58) for a = 414

3, is an order-four linear differential operator which is the direct-sum of two order-two 415

linear differential operators L4 = LCLM(L2, M2) = L2 ⊕ M2, these two order-two linear 416

differential operators having the pullbacked hypergeometric solutions 417

(27 + 4 x)−1/2 · x−5/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 +

27
4 x

)
, (61)

for L2, and 418

3 + x
(9 + x)1/4 · (4 x2 + 27 x + 27)1/4 · x3/2 · (27 + 4 x)1/2

× 2F1

(
[

1
12

,
5

12
], [1],

4 · x · (27 + 4 x)2 · (x2 + 9 x + 27)3

(9 + x)3 · (4 x2 + 27 x + 27)3

)
, (62)

for M2, where we see clearly that the Hauptmodul in (62) is precisely the Hauptmodul (60). The 419

Jacobian of the genus-two curve is a split Jacobian corresponding to the product E1 × E2 of two 420

elliptic curves, the j-invariant of the second elliptic curve corresponds to the Hauptmodul 421

H = 1728
j given by (57) when the j-invariant of the first elliptic curve reads 422

j1 =
6912 x

27 + 4 x
, (63)

corresponding to the Hauptmodul 1728
j1

= 1 + 27
4 x in (61). This second invariant is, as it 423

should, exactly the j-invariant of the second elliptic curve E ′, given page 48 in [53]: 424

j(E ′) =
256 · (3 b − a2)3

4 a3c − a2b2 − 18 abc + 4 b3 + 27 c2 , (64)

for c = 1, a = 3 and b = 3 + x. 425

5.4. Creative telescoping on rational functions of three variables associated with genus-two curves 426

with split Jacobians: a simple example 427

Another simpler example of a genus-two curve with pullbacked 2F1 solution (not 428

product of pullbacked 2F1) of the telescoper can be given if one considers the genus-two 429

algebraic curve Cp(x, y) = 0 given in Lemma 7 of [54] (see also [55,56]) 430

Cp(x, y) = x5 + x3 + p · x − y2. (65)

Let us introduce the rational function x y/D(x, y, z) where the denominator D(x, y, z) 431

is given by: 432

D(x, y, z) = C(p= xyz)(x, y) = x5 + x3 + x2 y z − y2. (66)

The telescoper of this rational function is an order-two linear differential operator which 433

has the two hypergeometric solutions 434

x−1/4 · 2F1

(
[
1
8

,
5
8
], [

3
4
], 4 x

)
(67)

which is a Puiseux series at x = 0 and: 435

x−1/4 · 2F1

(
[
1
8

,
5
8
], [1], 1 − 4 x

)
. (68)
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These two hypergeometric solutions can be rewritten as32
436

A(x) · 2F1

(
[

1
12

,
5

12
], [1],

1728
J

)
, (69)

where the j-invariant J, in the Hauptmodul 1728
J in (69), corresponds exactly to the degree-two 437

elliptic subfields 438

J2 − 128 · (2000 x2 + 1440 x + 27)
(1 − 4 x)2 · J − 4096 · (100 x − 9)3

(1 − 4 x)3 = 0, (70)

given in the first equation of page 6 of [54]. 439

Remark: In contrast with the previous example of subsection 5.3 where we had two 440

j-invariants corresponding to the two order-two linear differential operators L2 and M2 of 441

the direct-sum decomposition of the order-four telescoper, we have, here, just one order-two 442

telescoper, which is enough to “encapsulate” the two j-invariants (70), since they are 443

Galois-conjugate. 444

6. Rational functions with tri-quadratic denominator and N-quadratic denominator. 445

We try to find telescopers of rational functions corresponding to (factors of) linear 446

differential operators of “small” orders, for instance order-two linear differential operators 447

with pullbacked 2F1 hypergeometric functions, classical modular forms, or their modular 448

generalisations (order-four Calabi-Yau linear differential operators [27], etc ...). As we 449

saw in the previous sections, this corresponds to the fact that the denominator of these 450

rational functions is associated with an elliptic curve, or products of elliptic curves, with K3 451

surfaces or with threefold Calabi-Yau manifolds corresponding to algebraic varieties with 452

foliations in elliptic curves33. Since this paper tries to reduce the differential algebra creative 453

telescoping calculations to effective algebraic geometry calculations34 and structures, we want 454

to focus on rational functions with denominators that correspond to selected algebraic 455

varieties [45,59], beyond algebraic varieties corresponding to products of elliptic curves or 456

foliations in elliptic curves35, namely algebraic varieties with an infinite number of birational 457

automorphisms36. This infinite number of birational symmetries, excludes algebraic varieties of 458

the “general type” (with finite numbers37 of birational symmetries). For algebraic surfaces, 459

this amounts to discarding the surfaces of the “general type” which have Kodaira dimension 460

2, focusing on Kodaira dimension one (elliptic surfaces), or Kodaira dimension zero (abelian 461

surfaces, hyperelliptic surfaces, K3 surfaces, Enriques surfaces), or even Kodaira dimension 462

−∞ (ruled surfaces, rational surfaces). 463

In contrast with algebraic curves where one can easily, and very efficiently, calculate 464

the genus of the curves to discard the algebraic curves of higher genus and, in the case 465

32 The fact that 2F1

(
[ 1

8 , 5
8 ], [1], z

)
can be rewritten as 2F1

(
[ 1

12 , 5
12 ], [1], H(z)

)
where the Hauptmodul H(z) is

solution of a quadratic equation is given in equation (H.14) of Appendix H of [18].
33 Even if K3 surfaces, or threefold Calabi-Yau manifolds, are not abelian varieties, the Weierstrass-Legendre

forms introduced in D, amounts to saying that K3 surfaces can be “essentially viewed” (as far as creative
telescoping is concerned) as foliations in two elliptic curves, and threefold Calabi-Yau manifolds as foliations
in three elliptic curves.

34 One has birational automorphisms in projective spaces [57,58], but since this paper is dedicated to (efficient)
formal calculations we work exclusively in affine coordinates (see for instance (A41), (A42), (A43) below). For
algebraic geometers an ellitic curve is a smooth complete genus 1 curve with a choice of a base point. Here
our elliptic curves are, in fact, an affine piece of a genus 1 curve with no base point, but this does not really
matter because the j-invariant which is all we care about in this kind of creative telescoping calculations, is
determined by that much information.

35 K3 surfaces, threefold Calabi-Yau manifolds, higher curves with split Jacobian corresponding to products of
elliptic curves, ...

36 The best explicit illustration of this situation emerges in integrable models [45,59–61]
37 There are even precise bounds for the number of automorphisms. The upper bound is 84 (g − 1) for curves of

genus g and these bounds have been extensively studied in higher dimensions [62–64].
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of genus-one, obtain the j-invariant using formal calculations38, it is, in practice, quite 466

difficult to see for higher dimensional algebraic varieties, that the algebraic variety is not of 467

the “general type”, because it has an infinite number of birational symmetries. For these (low 468

Kodaira dimension) “selected cases” we are interested in, calculating the generalisation of 469

the j-invariant (Igusa-Shiode invariants, etc ...) is quite hard. 470

Along this line we want to underline that there exists a remarkable set of algebraic 471

surfaces, namely the algebraic surfaces corresponding to tri-quadratic equations: 472

∑
m=0,1,2

∑
n=0,1,2

∑
l=0,1,2

am,n,l · xm yn zl = 0, (71)

depending on 27 = 33 parameters am,n,l . More generally, one can introduce algebraic 473

varieties corresponding to N-quadratic equations: 474

∑
m1=0,1,2

∑
m2=0,1,2

· · · ∑
mN=0,1,2

am1, m2,··· , mN · xm1
1 xm2

2 · · · xmN
N = 0. (72)

With these tri-quadratic (71), or N-quadratic (72) equations, we will see, in E.1 and E.2, 475

that we have automatically (selected) algebraic varieties that are not of the “general type” 476

having an infinite number of birational symmetries, which is precisely our requirement for the 477

denominator of rational functions with remarkable telescopers39. 478

Let us first, as a warm-up, consider, in the next subsection, a remarkable example of 479

tri-quadratic (71), where the underlying foliation in elliptic curves is crystal clear. 480

6.1. Rational functions with tri-quadratic denominator simply corresponding to elliptic curves. 481

Let us first recall the tri-quadratic equation in three variables x, y and z 482

x2y2z2 − 2 · M · xyz · (x + y + z) + 4 · M · (M + 1) · xyz

+M2 · (x2 + y2 + z2) − 2 M2 · (xy + xz + yz) = 0, (73)

already introduced in Appendix C of [65]. This algebraic surface, symmetric in x, y and z, 483

can be seen for z (resp. x or y) fixed, as an elliptic curve which j-invariant is independent of 484

z yielding the corresponding Hauptmodul: 485

H =
1728

j
=

27 · M2 · (M − 1)2

4 · (M2 − M + 1)3 . (74)

This corresponds to the fact that this algebraic surface (73) can be seen as a product of two 486

times the same elliptic curve with the Hauptmodul (74). This is a consequence of the fact 487

that, introducing x = sn(u)2, y = sn(v)2 and z = sn(u + v)2, and M = 1/k2, this 488

algebraic surface (73) corresponds to the well-known formula for the addition on elliptic 489

sine40: 490

sn(u + v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1 − k2 sn(u)2 sn(v)2 . (75)

38 Use with(algcurves) in Maple and the command “genus” and “j_invariant”.
39 Telescopers with factors of “small enough” order, possibly yielding classical modular forms, Calabi-Yau

operators, ... Rational functions with denominators of the “general type” will yield telescopers of very large
orders.

40 See equation (C.3) in Appendix C of [65].
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For M = x y z w, the LHS of the tri-quadratic equation (73) yields a polynomial of four 491

variables x, y, z and w, that we denote T(x, y, z, w): 492

T(x, y, z, w) = (76)

x2y2z2 − 2 · x2y2z2 w · (x + y + z) + 4 · (xyzw + 1) · x2y2z2 w

+x2y2z2w2 · (x2 + y2 + z2) − 2 x2y2z2w2 · (xy + xz + yz).

The telescoper of the rational function in four variables x, y, z and w, 493

x y z
T(x, y, z, w)

, (77)

is an order-three (self-adjoint) linear differential operator which is the symmetric square of the 494

order-two linear differential operator having the following pullbacked 2F1 hypergeometric 495

solution: 496

x−1/2 · (x2 − x + 1)−1/4

× 2F1

(
[

1
12

,
5
12

], [1],
27 · x2 · (x − 1)2

4 · (x2 − x + 1)3

)
. (78)

As it should the Hauptmodul in (78) is the same as the Hauptmodul (74). The algebraic sur- 497

face (73) can be seen as the product of two times the same elliptic curve with the Hauptmodul 498

(74): as expected the solution of the order-three telescoper is the square of the pullbacked 499

2F1 hypergeometric function (78) with that Hauptmodul. 500

More generally, we can also consider another tri-quadratic equation of three variables 501

x, y and z and two parameters M and N: 502

x2y2z2 − 2 M · xyz · (x + y + z) + N · xyz (79)

+M2 · (x2 + y2 + z2) − 2 M2 · (xy + xz + yz) = 0.

This surface, symmetric in x, y and z, can be seen for z (resp. x or y) fixed as an elliptic 503

curve which j-invariant is, again, independent of z yielding the corresponding Hauptmodul: 504

H =
1728

j
=

1728 · M6 · (64 M3 − N2)

(48 M3 − N2)3 . (80)

Let us consider the following change of variables M = m2 and N = 8 · m3 + p in (79). 505

For p = x y z w, the LHS of the tri-quadratic equation (79) yields a polynomial in four 506

variables x, y, z and w, that we denote Tm(x, y, z, w): 507

Tm(x, y, z, w) =

x2y2z2 − 2 m2 · xyz · (x + y + z) + (8 · m3 + x y z w) · xyz

+m4 · (x2 + y2 + z2) − 2 m4 · (xy + xz + yz). (81)

For z (resp. x or y) fixed the corresponding Hauptmodul (80) reads: 508

H =
1728 · m12 · p · (16 m3 + p)
(16 m6 + 16 m3 · p + p2)3 . (82)

The telescoper of the rational function in four variables x, y, z and w, 509

x y z
Tm(x, y, z, w)

, (83)
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is an order-three (self-adjoint) linear differential operator which is the symmetric square of an 510

order-two linear differential operator having the following pullbacked 2F1 hypergeometric 511

solution: 512

(16 m6 + 16 m3 · x + x2)−1/4 ·

× 2F1

(
[

1
12

,
5
12

], [1],
1728 · m12 · x · (16 m3 + x)
(16 m6 + 16 m3 · x + x2)3

)
. (84)

As it should the Hauptmodul in (84) is the same as the Hauptmodul (82). The algebraic 513

surface (79) can be seen as the product of two times the same elliptic curve with the Haupt- 514

modul (80) (or (82)). As expected the solution of the order-three telescoper is the square of 515

the pullbacked 2F1 hypergeometric function (84) with the Hauptmodul (82). 516

Remark: Let us perform some (slight) deformation of the rational function (77), 517

changing the first −2 coefficient in (76) into a −3 coefficient. One thus considers the 518

polynomial T(x, y, z, w): 519

T(x, y, z, w) = (85)

x2y2z2 − 3 · x2y2z2 w · (x + y + z) + 4 · (xyzw + 1) · x2y2z2 w

+x2y2z2w2 · (x2 + y2 + z2) − 2 · x2y2z2w2 · (xy + xz + yz).

The telescoper of the rational function in four variables, 520

x y z
T(x, y, z, w)

, (86)

is an (irreducible) linear differential operator of (only) order-four L4 which is non-trivially 521

homomorphic to its adjoint41. A priori, we cannot exclude the fact that L4 could be 522

homomorphic to the symmetric cube of a second-order linear differential operator, or to 523

a symmetric product of two second-order operators. Furthermore, it could also be, in 524

principle, that these second-order operators admit classical modular forms as solutions 525

(pullbacks of special 2F1 hypergeometric functions). However, these options can both be 526

excluded by using some results from differential Galois theory [68], specifically from [69, 527

Prop. 7, p. 50] for the symmetric cube case, and from [69, Prop. 10, p. 69] for the symmetric 528

product case, see also [70, §3]. Indeed, if L4 were either a symmetric cube or a symmetric 529

product of order-two operators, then its symmetric square would contain a (direct) factor of 530

order 3 or 1. This is ruled out by a factorization procedure which shows that the symmetric 531

square of L4 is (LCLM-)irreducible. 532

This example does not correspond to an addition formula like (75), but the polynomial 533

T(x, y, z, w) still corresponds to a tri-quadratic. Consequently it is an algebraic variety 534

with an infinite number of birational automorphisms, as shown in E.1. 535

6.2. Rational functions with tri-quadratic denominator: Fricke cubics examples associated with 536

Painlevé VI equations 537

Let us consider other simple examples of tri-quadratic surfaces that occur in different 538

domains of mathematics and physics. 539

Among the Fricke families of cubic surfaces, the family [71–73] 540

x y z + x2 + y2 + z2 + b1 x + b2 y + b3 z + c = 0, (87)

of affine cubic surfaces parametrised by the four constants (b1, b2, b3, c) is known [72] 541

to be a deformation of a D4 singularity which occurs at the symmetric (Manin’s) case 542

b1 = b2 = b3 = −8, c = 28. 543

41 Its exterior square has a rational solution. However this order-four linear differential operator is not MUM
(maximum unipotent monodromy [27,66,67])
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Among the symmetric b1 = b2 = b3 cases some selected sets of the four constants 544

(b1, b2, b3, c) emerge: the Markov cubic b1 = b2 = b3 = c = 0, Cayley’s nodal cubic 545

b1 = b2 = b3 = 0, c = −4, Clebsch diagonal cubic b1 = b2 = b3 = 0, c = −20, and 546

Klein’s cubic b1 = b2 = b3 = −1, c = 0. 547

Some of these symmetric cubics can be seen as the monodromy manifold of the 548

Painlevé VI equation (see equation (1.7) in [74], see also equations (1.2) and (1.4) in [73]): 549

the Picard-Hitchin cases (0, 0, 0, 4), (0, 0, 0, −4), (0, 0, 0, −32), Kitaev’s cases (0, 0, 0, 0), 550

(−8,−8,−8, −64), and especially Manin’s case (−8,−8,−8, 28). 551

Let us consider the (symmetric) rational function in three variables x, y and z [72]: 552

R(x, y, z) =
1

x2 + y2 + z2 + x y z + c
, (88)

which takes into account the other Picard-Hitchin cases42 (0, 0, 0, 4), (0, 0, 0, −4), (0, 0, 0, 32). 553

The rational function (88) has an order-two telescoper which has a simple pullbacked hyper- 554

geometric solution: 555

1
x + c

· 2F1

(
[
1
3

,
2
3
], [1], − 27 x2

(x + c)3

)
(89)

= (x + c)−1/4 · q3(x)−1/4 · 2F1

(
[

1
12

,
5

12
], [1], − 1728 · x6 · p3(x)

(x + c)3 · q3(x)3

)
,

where43: 556

p3(x) = x3 + 3 · (c + 9) · x2 + 3 · c2 · x + c3,

q3(x) = x3 + 3 · (c + 8) · x2 + 3 · c2 · x + c3,

Eliminating z = p
x y in the denominator of (88) gives the genus-four algebraic curve: 557

x2y2 · (x2 + y2) + (p + c) · x2y2 + p2 = 0. (90)

Again, the question is to see whether the Jacobian of this genus-four algebraic curve (88) 558

could also correspond to a split Jacobian, with a j-invariant corresponding to the Haupt- 559

modul in (89). 560

7. Telescopers of rational functions of several variables 561

Let us consider the rational function in four variables x, y, z, u: 562

R(x, y, z, u) =
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x
. (91)

The telescoper of this rational function of four variables is an order-two linear differential 563

operator L2 which has the pullbacked hypergeometric solution: 564

(1 − 2592 x2)−1/4 (92)

× 2F1

(
[

1
12

,
5

12
], [1], − 419904 · x3 · (5 − 12 x − 19440 x2 + 2665872 x3)

(1 − 2592 x2)3

)
.

42 As well as the Markov cubic b1 = b2 = b3 = c = 0, Cayley’s nodal cubic b1 = b2 = b3 = 0, c = −4, and
Clebsch diagonal cubic b1 = b2 = b3 = 0, c = −20 cases.

43 The values c = 0 and c = −4 are the only values such that the discriminant in x of p3(x) can be zero.
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The diagonal of (91) is the expansion of this pullbacked hypergeometric function (92): 565

1 + 648 x2 − 72900 x3 + 1224720 x4 − 330674400 x5 + 23370413220 x6 (93)

−1276733858400 x7 + 180019474034400 x8 − 12013427240614800 x9 + · · ·

If one considers the intersection of the vanishing condition of the denominator of (91) with 566

the hyperbola p = x y z u, eliminating for instance u = p
x y z in the vanishing condition 567

of the denominator of (91), one gets a condition, independent of x, which corresponds to a 568

genus-one curve 569

11 y2z3 + 9 y2z2 + 3 y2z + yz2 + yz + 3 p = 0. (94)

The Hauptmodul of this elliptic curve (94) reads: 570

H = − 419904 · p3 · (5 − 12 p − 19440 p2 + 2665872 p3)

(1 − 2592 p2)3 , (95)

which corresponds precisely to the Hauptmodul pullback in (92). 571

Remark : The expansion (93) of (92) is not only the diagonal of the rational function 572

R(x, y, z, u) in four variables (91), it is also the diagonal of the rational function of three 573

variables R(x, y, z, 1). Actually, using section (3), one sees easily that eliminating x = p
y z 574

in the the vanishing condition of the denominator of R(x, y, z, 1) gives exactly the same 575

elliptic curve (94). 576

Let us, now, generalize the rational function (91) of four variables x, y, z, u, introducing 577

the rational function of N + 3 variables x, y, z, u1, u2, · · · , uN : 578

R(x, y, z, u1, u2, · · · , uN) (96)

=
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 x · u1 u2 · · · uN
.

The telescoper of this rational function of N + 3 variables is the same order-two telescoper 579

as for (91), which has the pullbacked hypergeometric solution (92). Again one can verify 580

that the diagonal of (96) is the expansion (93) of the pullbacked hypergeometric function44
581

(92). If one considers the intersection of the vanishing condition of the denominator of (96) 582

with the hyperbola p = x y z u1 u2 · · · uN , eliminating for instance uN = p
x y z u1 ··· uN−1

in 583

the vanishing condition of the denominator of (96), one gets again a condition, independent 584

of x but also of u1, · · · , uN , which corresponds to a genus-one curve (94): 585

11 y2z3 + 9 y2z2 + 3 y2z + yz2 + yz + 3 p = 0. (97)

The Hauptmodul of this elliptic curve (97), or (94) reads again the Hauptmodul (95) which 586

corresponds precisely to the Hauptmodul pullback in (92). 587

Other examples, corresponding to simple polynomial deformations of (91), such that 588

their diagonal is the pullbacked 2F1 hypergeometric function (92) are displayed in F. This 589

(infinite) family of rational functions correspond to a different algebraic geometry sce- 590

nario: the “canonical” algebraic surface corresponding to the intersection of the vanishing 591

condition of the denominator of the rational function with the hyperbola p = xyz, is 592

foliated in (generically high genus) algebraic curves depending on the variable x. One sees 593

(experimentally) that the Hauptmodul of the pullbacked 2F1 hypergeometric functions 594

corresponds to the Hauptmodul of the x = 0 algebraic curve, which is an elliptic curve45. 595

44 A pure algebraic geometer will probably consider this result as trivial from the computational point of view,
saying that the variety is a fiber bundle over a family of elliptic curves with constant fiber (see also below).

45 The algebraic curves for other values of x are not necessarily elliptic curves, they can be algebraic curves of
quite large genus.
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In contrast with the other examples and results of this paper, we have no algebraic geometry 596

interpretation of this experimental result yet. 597

8. Conclusion 598

Diagonals of rational functions emerge quite naturally in lattice statistical mechan- 599

ics [19,20]. This explains the frequent occurrence of modular forms, represented as pullbacked 600

2F1 hypergeometric functions [1,2] in lattice statistical mechanics [21–27]. 601

We have shown that the results we had obtained on diagonals of nine and ten param- 602

eters families of rational functions in three variables, using creative telescoping yielding 603

classical modular forms expressed as pullbacked 2F1 hypergeometric functions [1,2], can be 604

obtained much more efficiently calculating the j-invariant of an elliptic curve canonically 605

associated with the denominator of the rational functions. In the case where creative telescoping 606

yields pullbacked 2F1 hypergeometric functions, we generalize this result to other families 607

of rational functions of three, and even more than three, variables, when the denomi- 608

nator can be associated with products of elliptic curves or foliation in terms of elliptic 609

curves, or when the denominator is associated with a genus-two curve with a split Jacobian 610

corresponding to products of elliptic curves. 611

We have seen different scenarii. In the first cases, we have considered denominators 612

corresponding to products of elliptic curves: in these cases the solutions of the telescoper 613

were products of pullbacked 2F1 hypergeometric functions. We have also considered 614

denominators corresponding to genus-two curves with split Jacobians isogenous to products 615

of two elliptic curves, and in these cases the solutions of the telescoper were sums of two 616

pullbacked 2F1 hypergeometric functions, sometimes one pullbacked 2F1 hypergeometric 617

function being enough to describe the two Galois-conjugate j-invariants (see 5.4). We 618

also considered denominators corresponding to algebraic varieties where the Hauptmodul 619

pullback in the pullbacked 2F1 hypergeometric functions emerges from a selected (x = 0, 620

see F.1, F.2) elliptic curve of the algebraic variety. We also encountered denominators 621

corresponding to algebraic manifolds with an infinite set of birational automorphisms 622

and elliptic curves foliation yielding, no longer classical modular forms represented as 623

pullbacked 2F1 hypergeometric functions, but more general modular structures associated 624

with selected linear differential operators like Calabi-Yau linear differential operators [27,66] 625

and their generalisations. 626

The creative telescoping method on a rational function is an efficient way to find the 627

periods of an algebraic variety over all possible cycles46. The fact that the solution of the 628

telescoper corresponds to “periods" [37] over all possible cycles is a simple consequence of 629

the fact that creative telescoping corresponds to purely differential algebraic manipulations on 630

the integrand independently of the cycles, thus being blind to analytical details. In this paper, we 631

show that the final result emerging from such differential algebra procedures (which can be 632

cumbersome when the result depends on nine or ten parameters), can be obtained almost 633

instantaneously from a more fundamental intrinsic pure algebraic geometry approach, 634

calculating, for instance, the j-invariant of some canonical elliptic curve. This corresponds 635

to a shift Analysis → Differential Algebra → Algebraic Geometry. Algebraic geometry 636

studies of more involved algebraic varieties than product of elliptic curves, foliation in 637

elliptic curves (Calabi-Yau manifolds, ...) is often a tedious and/or difficult task (finding 638

Igusa-Shiode invariants, ...), and formal calculations tools are not always available or user- 639

friendly. Ironically, for such involved algebraic varieties the creative telescoping may then 640

become a simple and efficient tool to perform effective algebraic geometry studies. 641
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Appendix A Diagonals of rational functions and Picard-Fuchs equations 653

For simplicity let us consider rational functions of three variables, and double inte- 654

grals [86]. The diagonal of a rational function of three variables is obtained through its 655

multi-Taylor expansion [19,20] 656

R(x, y, z) = ∑
m

∑
n

∑
l

am, n, l · xm yn zl , (A1)

by extracting the "diagonal" terms, i.e. the powers of the product p = xyz: 657

Diag
(

R(x, y, z)
)

= ∑
m

am, m, m · pm. (A2)

Such diagonals are closely related to the integrals of rational functions. For example 658

Diag
(

R(x, y, z)
)

is the constant term (in y, z) in the infinite expansion 659

R
( p

y z
, y, z

)
= ∑

m, n, l ≥ 0
am, n, l · pm yn−m zl−m, (A3)

which can be represented by the integral [35] 660

1
(2 π i)2

∮ ∮
R
( p

y z
, y, z

) dy
y

∧ dz
z

. (A4)

The diagonal (A2) is also the constant term (in y, z) of 661

R
( p

y
,

y
z

, z
)

= ∑
m, n, l ≥ 0

am, n, l · pm yn−m zl−n, (A5)

wich is of the form 662

1
(2 π i)2

∮ ∮ Np(y, z)
Dp(y, z)

dy
y

∧ dz
z

, (A6)

where the numerator Np(y, z) and the denominator Dp(y, z) are polynomials. it is well- 663

known that such integrals satisfy a linear differential equation with respect to p having 664

rational functions in p as coefficients, called the Picard-Fuchs equation47. the problem of 665

determining such linear differential equations has been started by Griffiths [75] with the 666

assumption that the variety Dp(y, z) = 0 is smooth, but later techniques were developed 667

to include examples with singular points [35,41]. The linear differential equations (Gauss- 668

Manin systems, telescopers) occuring in integrable models [16,23,24] are of order much 669

larger than order two48 and almost never correspond to smooth varieties. Creative telescop- 670

47 The order of this linear differential equation is generally equal to the rank of the algebraic deRham cohomology
of Dp(y, z) = 0. For curves of genus g this rank is 2 g.

48 Since Felix Klein it is well-known that the Picard-Fuchs equation corresponding to the (Weierstrass) elliptic
curve corresponds to the hypergeometric function 2F1([1/12, 5/12], [1], 1/J).
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ing49 and more specifically the programs [3] corresponding to a fast approach to creative 671

telescoping [43], are a powerfull way to find these linear differential operators annihilating 672

these diagonal of rational functions in the cases emerging naturally in theoretical physics, 673

integrable models, enumerative combinatorics, for which the order of the linear differential 674

operators is quite large [16,23,24] and the variety Dp(y, z) = 0 is (most of the time) not a 675

smooth one. All the pedagogical (but non-trivial) examples of telescopers displayed in this 676

paper can be viewed by an algebraic geometer as a presentation of examples of families of 677

varieties and their Picard-Fuchs equations. 678

Appendix B Maximum number of parameters for families of planar elliptic curves. 679

We have seen, in section 3, that the previous results on diagonals of nine or ten param- 680

eters families of rational functions of three variables being pullbacked 2F1 hypergeometric 681

functions (and in fact classical modular forms) can actually be seen as corresponding to 682

the (well-known in integrable models and integrable mappings) fact that the most general 683

biquadratic corresponding to elliptic curves is a nine-parameters family and that the most 684

general ternary cubic corresponding to elliptic curves is a ten-parameters family. One can, 685

for instance recall page 238 of [76], which amounts to considering the collection of all cubic 686

curves in CP2 with the homogeneous equation 687

a x3 + b x2 y + c x y2 + d y3 + e x2 z + f x z2 + g y2 z

+h y z2 + i z3 + j x y z = 0, (A7)

and the associated problems of passing through nine given points. One can also recall the 688

ternary cubics in [77,78] and other problems of elliptic curves of high rank [79] (see the 689

concept of Neron-Severi rank). 690

Since the rational functions of three variables we consider are essentially encoded 691

by the denominator of these rational functions, and in the cases we have considered, the 692

emergence of pullbacked 2F1 hypergeometric functions (and in fact classical modular forms) 693

corresponds to the fact that the intersection of these denominators with the hyperbola 694

p = x y z corresponds to elliptic curves, one sees that these rational functions are essentially 695

classified by the possible n-parameters families P(x, y) = 0 of elliptic curves. 696

If one considers a polynomial 697

P(x, y) = ∑
m

∑
n

am,n · xm yn, (A8)

with generic coefficients am,n ∈ C, then the genus of the algebraic curve defined by P is
determined by the support supp(P) = {(m, n) ∈ N2 : am,n ̸= 0}. More precisely, the genus
equals the number of interior integer lattice points inside the convex hull of supp(P) [80]
(see also the discussion in [81]). For example, the support of the ten-parameters family (11)
consists of the following 10 points in N2:

(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)

which form a right triangle of side length 3. Only one of these points is an interior point, 698

namely (1, 2), hence the genus is 1. 699

Therefore we may ask: which integer lattice polytopes exist which have exactly one 700

interior point and what is the largest such polytope? Not surprisingly, the answer is 701

known: there are (up to transformations like translation, rotation, shearing) exactly 16 702

different polytopes with a single interior point [82] (see also Figure 5, page 548 in [83]), 703

the above-mentioned right triangle being the one with the highest total number of lattice 704

points. 705

This shows that there cannot be a family of elliptic curves with more than ten parameters. 706

49 For a detailed introduction to creative telescoping [36] see for instance [34].
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Appendix C Monomial transformations preserving pullbacked hypergeometric results 707

More generally, recalling subsection 4.2 in [2] and subsection 4.2 page 17 in [1], let us 708

consider the monomial transformation 709

(x, y, z) −→ M(x, y, z) = (xM, yM, zM)

=
(

xA1 · yA2 · zA3 , xB1 · yB2 · zB3 , xC1 · yC2 · zC3
)

, (A9)

where the Ai’s, Bi’s and Ci’s are positive integers such that A1 = A2 = A3 is excluded 710

(as well as B1 = B2 = B3 as well as C1 = C2 = C3), and that the determinant50 of the 711

3 × 3 matrix [1,2] 712
A1 B1 C1

A2 B2 C2

A3 B3 C3

, (A10)

is not equal to zero51, and that: 713

A1 + B1 + C1 = A2 + B2 + C2 = A3 + B3 + C3. (A11)

We will denote by n = Ai + Bi +Ci the integer in these three equal sums (A11). Condition 714

(A11) is introduced in order to impose that the product52 of xM yM zM is an integer power of 715

the product of x y z: xM yM zM = (x y z)n. 716

If we take a rational function R(x, y, z) in three variables and perform such a mono- 717

mial transformation (A9) (x, y, z) → M(x, y, z), on this rational function R(x, y, z), we 718

get another rational function that we denote by R̃ = R(M(x, y, z)). Now the diagonal 719

of R̃ is the diagonal of R(x, y, z) where we have changed x into xn: 720

Φ(x) = Diag
(
R
(

x, y, z
))

, Diag
(
R̃
(

x, y, z
))

= Φ(xn). (A12)

Appendix D Weierstrass and Legendre forms 721

The telescoper of the rational function in three variables 722

x y
(1 + y)2 − x · (1 − x) · (x − x y z)

, (A13)

associated53 with the elliptic curve in a Weierstrass form: 723

(1 + y)2 − x · (1 − x) · (x − p) = 0, (A14)

is the order-two linear differential operator 724

L2 = −1 + 4 · (1 − 2 x) · Dx + 4 · x · (1 − x) · D2
x, (A15)

50 Note a typo in the footnote 28 page 17 of [1] as well as in the second footnote page 18 in [2]. The sentence has
been truncated. One should read: For n = 1, the 3 × 3 matrix (A10) is stochastic and transformation (A9) is a
birational transformation if the determinant of the matrix (A10) is ± 1.

51 We want the rational function R̃ = R(M(x, y, z)) deduced from the monomial transformation (A9) to
remain a rational function of three variables and not of two, or one, variables.

52 Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor expansion,
only the terms that are n-th power of the product x y z.

53 The diagonal extracts the terms function of the product p = x y z in the multi-Taylor series.
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which has the hypergeometric solution: 725

2F1

(
[
1
2

,
1
2
], [1], x

)
(A16)

= (1 − x + x2)−1/4 · 2F1

(
[

1
12

,
5

12
], [1],

27
4

· x2 · (1 − x)2

(1 − x + x2)3

)
.

The elliptic curve (A14) has the Hauptmodul 726

H =
27
4

· p2 · (1 − p)2

(1 − p + p2)3 . (A17)

in agreement with the pullback in (A16). 727

Appendix D.1 K3 surfaces as products or foliations of two elliptic curves. 728

The examples of section 4 correspond to denominators which are algebraic varieties 729

that can be seen as Weierstrass elliptic curves for fixed values of all the variables except two. 730

Let us show other simple telescopers for rational functions with denominators which are 731

algebraic varieties with some foliation in elliptic curves54. 732

The telescoper of the rational function in four variables 733

x y z
(1 + z)2 − x · (1 − x) · y · (x − y) · (y − x y z w)

, (A18)

associated with the K3 surface written in a Legendre form55
734

(1 + z)2 − x · (1 − x) · y · (x − y) · (y − p) = 0, (A19)

is an order-three self-adjoint56 linear differential operator L3 735

L3 = x · (2 θ + 1)3 − 8 · θ3, (A20)

which has the following 3F2 solution (which is also, because of Clausen’s formula, the 736

square of a 2F1 function): 737

3F2

(
[
1
2

,
1
2

,
1
2
], [1, 1], x

)
= 2F1

(
[
1
4

,
1
4
], [1], x

)2
. (A21)

The K3 surface (A19) can be seen as associated with the product of two Weierstrass elliptic 738

curves57 of Hauptmoduls respectively: 739

Hx =
27
4

· p2 · (1 − p)2

(1 − p + p2)3 , Hy =
27
4

· y2 · (1 − y)2

(1 − y + y2)3 . (A22)

This order-three linear differential operator L3 is the symmetric square of the order-two 740

linear differential operator 741

M2 = −1 + 8 · (2 − 3 x) · Dx + 16 · x · (1 − x) · D2
x, (A23)

54 Like K3 surfaces, or three-fold Calabi-Yau manifolds.
55 Along this line see the first equation page 19 of [84].
56 The order-three linear differential operator is thus the symmetric square of an order-two linear differential

operator.
57 K3 surfaces are not abelian varieties, but they are “close” to abelian varieties: from a creative telescoping

viewpoint they can be seen as essentially products of two elliptic curves.
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which has the hypergeometric solutions: 742

2F1

(
[
1
4

,
1
4
], [1], x

)
=

(
1 − x

4

)−1/4
· 2F1

(
[

1
12

,
5

12
], [1], − 27 · x2

(x − 4)3

)
. (A24)

Appendix D.2 Calabi-Yau three-fold manifolds as foliation in three elliptic curves. 743

The telescoper of the rational function in five variables x, y, z, v and w 744

x y z v
(1 + w)2 − x · (1 − x) · y · (x − y) · z · (y − z) · (z − x y z v w)

, (A25)

associated58 with the Calabi-Yau three-fold written in a Legendre form 745

(1 + w)2 − x · (1 − x) · y · (x − y) · z · (y − z) · (z − p) = 0, (A26)

is an order-four (self-adjoint) linear differential operator L4 746

L4 = 16 · θ4 − x · (2 θ + 1)4, (A27)

which is a Calabi-Yau operator59 with the 4F3 solution: 747

4F3

(
[
1
2

,
1
2

,
1
2

,
1
2
], [1, 1, 1], x

)
. (A28)

For y and z fixed, the Calabi-Yau three-fold (A26) is foliated in genus-one curves 748

(1 + w)2 − λ · x · (1 − x) · (x − y) = 0, (A29)

where λ is the constant expression (p is fixed): 749

λ = y · z · (y − z) · (z − p). (A30)

The Hauptmodul of these genus-one curves is independent of p and z, reading: 750

Hy,z =
27
4

· y2 · (1 − y)2

(1 − y + y2)3 . (A31)

Similarly for x and z fixed, the Calabi-Yau three-fold (A26) is foliated in genus-one curves 751

(1 + w)2 − µ · y · (x − y) · (y − z) = 0, (A32)

where µ is the constant expression (p is fixed): 752

µ = x · z · (1 − x) · (z − p). (A33)

The genus-one curves (A32) can be written in a simpler Weierstrass form: 753

(1 + w)2 − ρ · Y ·
(

1 − Y
)
·
(

Y − z
x

)
= 0, (A34)

where the constant ρ reads ρ = µ · x3, and the variable y has been rescaled into Y = y/x. 754

The Hauptmodul of these genus-one curves (A32) is the same as the Hauptmodul of the 755

58 The diagonal extracts the terms function of the product p = x y z v w in the multi-Taylor series.
59 This linear differential operator is self-adjoint, its exterior square is of order five, it is MUM (maximum

unipotent monodromy [27,66,67]), ...
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genus-one curves (A29), and corresponds to expression (A31) where y has been changed 756

into z/x (see the canonical form (A34)), namely: 757

Hx,z =
27
4

· x2 · z2 · (x − z)2

(x2 − x z + z2)3 . (A35)

Similarly for x and y fixed, the Calabi-Yau three-fold (A26) is foliated in genus-one curves, 758

(1 + w)2 − ν · z · (y − z) · (z − p) = 0, (A36)

where ν reads: 759

ν = x · (1 − x) · y · (x − y). (A37)

A reduction to a canonical Weierstrass form similar to (A34) gives immediately the Haupt- 760

modul of the genus-one curve (A36) which reads: 761

Hx,y =
27
4

· y2 · p2 · (y − p)2

(y2 − y p + p2)3 . (A38)

The Calabi-Yau three-fold (A26) thus has a foliation in a triple of elliptic curves E1, E2 and 762

E3. 763

Appendix E Rational functions with tri-quadratic and N-quadratic denominators. 764

Appendix E.1 Rational functions with tri-quadratic denominators. 765

Let us consider the most general tri-quadratic surface 766

∑
m=0,1,2

∑
n=0,1,2

∑
l=0,1,2

am,n,l · xm yn zl = 0, (A39)

depending on 27 = 33 parameters am,n,l . It can be rewritten as: 767

A(x, y) · z2 + B(x, y) · z + C(x, y) = 0. (A40)

It is straightforward to see that condition (A40) is preserved by the birational involution Iz 768

Iz :
(

x, y, z
)

−→
(

x, y,
C(x, y)
A(x, y)

· 1
z

)
, (A41)

and we have of course two other similar birational involutions Ix and Iy that single out x 769

and y respectively. The (generically) infinite-order birational transformations Kx = Iy · Iz, 770

Ky = Iz · Ix and Kz = Ix · Iy are birational symmetries of the surface (A39) or (A40). 771

They are related by Kx · Ky · Kz = identity. Note that the birational transformation Kx 772

preserves x. The iteration of the (generically) infinite-order birational transformation Kx 773

gives elliptic curves. Since equation (A39) or (A40) is preserved by Kx, which also preserves x, 774

the equation of the elliptic curves corresponding to the iteration60 of Kx is actually (A39) for 775

fixed values of x. Equation (A39), for fixed values of x, is a (general) biquadratic curve in y 776

and z and is thus an elliptic curve depending on x. Therefore one has a canonical foliation of 777

the algebraic surface (A39) in elliptic curves. Of course the iteration of Ky (resp. Kz) also 778

yields elliptic curves, and similarly yields two other foliations in elliptic curves. 779

We have a foliation in two families of elliptic curves E and E ′ of the surface. Conse- 780

quently, this tri-quadratic surface (A39), having an infinite set of birational automorphisms, an 781

60 The birational transformation Kx maps the elliptic curve onto itself (self-map). One can use the iteration of the
birational transformation Kx to actually visualise the elliptic curve [45,85].
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infinite set of birational symmetries, cannot be of the “general type” (it has Kodaira dimension 782

less than 2). 783

Appendix E.2 Rational functions with N-quadratic denominators. 784

The calculations of E.1 can straightforwardly be generalised to N-quadratic equations, 785

writing the N-quadratic (72) as 786

A(x1, x2, · · · , xN−1) · x2
N + B(x1, x2, · · · , xN−1) · xN

+C(x1, x2, · · · , xN−1) = 0, (A42)

and introducing the birational involution IN 787

IN :
(

x1, x2, · · · , xN

)
(A43)

−→
(

x1, x2, · · · , xN−1,
C(x1, x2, · · · , xN−1)

A(x1, x2, · · · xN−1)
· 1

xN

)
.

Similarly to E.1, we can introduce N involutive birational transformations Im and consider 788

the products of two such involutive birational transformations Km,n = Im · In. These 789

Km,n’s are (generically) infinite order birational transformations preserving the N − 2 variables 790

that are not xm and xn. 791

Using such remarkable N variables algebraic varieties, with an infinite set of birational 792

automorphisms, one can build rational functions of N + 1 variables, any of the parameter 793

of the algebraic variety, becoming an arbitrary rational61 function of the product p = 794

x1 x2 · · · xN in order to build the denominator of the rational function. The telescopers 795

of such rational functions are seen (experimentally using creative telescoping) to be of 796

substantially smaller order than the ones for rational functions where their denominators are, 797

after reduction by p = x1 x2 · · · xN , associated with algebraic varieties of the “general 798

type”. 799

Appendix F Telescopers of rational functions of several variables: some examples 800

Let us consider here the following family of rational functions in four variables 801

R(x, y, z, u) = (A44)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + x · P(x, y, z)
,

where P(x, y, z) is an arbitrary polynomial of the three variables x, y and z. 802

Appendix F.1 Telescopers of rational functions of several variables: a second example with four 803

variables 804

Let us now consider the rational function in four variables x, y, z, u: 805

R(x, y, z, u) = (A45)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + 9 x + 2 x y + 5 x z + 7 x2 y
.

which corresponds to P(x, y, z) = 9 + 2 y + 5 z + 7 x y. The telescoper of this rational 806

function of four variables is the same order-two linear differential operator L2 as for the 807

telescoper of (91). It has the same pullbacked hypergeometric solution (92). The diagonal 808

of the rational function (A45) is the expansion of (92), namely (93). 809

61 Or even an arbitrary algebraic function of the product p = x1 x2 · · · xN , with a Taylor series expansion at
p = 0, the diagonal of rational functions becoming diagonal of algebraic functions.
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Performing the intersection of the codimension-one algebraic variety

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + 9 x + 2 x y + 5 x z + 7 x2 y = 0,

corresponding to the denominator of (A45), with the hyperbola p = x y z u amounts to 810

eliminating, for instance u (writing u = p
x y z ). This gives Pu = 0 where Pu reads: 811

Pu = 7 x2y2z + 2 xy2z + 5 xyz2 + 9 xyz + 11 y2z3 + 9 y2z2

+3 y2z + yz2 + yz + 3 p. (A46)

Assuming x to be constant the previous condition Pu(y, z) = 0 is an algebraic curve. 812

Calculating its genus, one finds immediately that it is genus-one. Calculating its j-invariant, 813

one deduces the expression of the Hauptmodul Hp,x = 1728
J as a rational expression of p 814

and x: 815

Hp,x =
1728

J
= − 46656 p3 · (7x2 + 2x + 3)2 · N

D3 , (A47)

where N is a polynomial expression of degree eight in w and three in p, and D is a 816

polynomial expression of degree four in w and two in p. In the x → 0 limit of the 817

Hauptmodul Hp,x = 1728
J , one finds: 818

Hp = − 419904 · p3 · (5 − 12 p − 19440 p2 + 2665872 p3)

(1 − 2592 p2)3 , (A48)

which is actually the Hauptmodul in (92). In other words, the exact expression of the diagonal 819

of the rational function (A45), which is (92), and is essentially encapsulated in the Haupt- 820

modul in (92), could have been obtained from the x = 0 selection of the Hauptmoduls 821

Hp,x. 822

Appendix F.2 Telescopers of rational functions of several variables: a third example with four 823

variables 824

Let us consider the rational function in four variables x, y, z, u: 825

R(x, y, z, u) = (A49)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + x · (y2 z2 + x y3)
,

which corresponds to P(x, y, z) = y2 z2 + x y3 in the family (A44). Again, the telescoper of 826

this rational function of four variables is the same order-two linear differential operator L2 as for 827

the telescoper of (91). It has the same pullbacked hypergeometric solution (92). Actually the 828

diagonal of the rational function (91) is the expansion (93) of the pullbacked hypergeometric 829

function (92). In this case (A49), the elimination of u = p
x y z in the vanishing condition of 830

the denominator (A49) gives the algebraic curve: 831

x2 y4 z + x y3 z3 + 11 y2 z3 + 9 y2 z2 + 3 y2 z + y z2 + y z + 3 p = 0. (A50)

For x fixed (and of course p fixed) this algebraic curve (A50) is a genus-five curve, but, of 832

course, in the x = 0 case it reduces to the same genus-one curve as for the first example (91), 833

namely: 834

11 y2 z3 + 9 y2 z2 + 3 y2 z + y z2 + y z + 3 p = 0. (A51)

which corresponds to the Hauptmodul (A48). 835
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The generalisation of this result is straightforward. Let us consider the rational function 836

in four variables x, y, z and u 837

R(x, y, z, u) = (A52)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + x · P(x, y, z)
,

where P(x, y, z) is an arbitrary polynomial of the three variables x, y and z. On a large 838

set of examples one verifies that the diagonal of (A52) is actually the expansion (93) of the 839

pullbacked hypergeometric function (92): 840

1 + 648 x2 − 72900 x3 + 1224720 x4 − 330674400 x5 + 23370413220 x6 (A53)

−1276733858400 x7 + 180019474034400 x8 − 12013427240614800 x9 + · · ·

However, as far as creative telescoping calculations are concerned62, the telescoper corre- 841

sponding to different polynomials P(x, y, z) becomes quickly a quite large non-minimal lin- 842

ear differential operator. For instance, even for the simple polynomial P(x, y, z) = x + y, 843

one obtains a quite large order-ten telescoper. Of course, since this telescoper has the pull- 844

backed hypergeometric function (92) as a solution, it is not minimal, it is rightdivisible 845

by the order-two linear differential operator having (92) as a solution. It is straightfor- 846

ward to see that the previous elimination of u = p
x y z in the vanishing condition of the 847

denominator (A52) gives an algebraic curve63
848

11 y2 z3 + 9 y2 z2 + 3 y2 z + y z2 + y z + 3 p + y z · P(x, y, z) = 0. (A54)

which reduces again, in the x = 0 case, to the same genus-one curve (A51). 849

With that general example (A52) we see that there is an infinite set of rational functions 850

depending on an arbitrary polynomial P(x, y, z) of three variables whose diagonals are actually 851

a pullbacked 2F1 hypergeometric solution, namely (92). 852
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