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Abstract.

We show that the results we had obtained on diagonals of nine and ten
parameters families of rational functions using creative telescoping, yielding
modular forms expressed as pullbacked 2F)] hypergeometric functions, can be
obtained, much more efficiently, by calculating the j-invariant of an elliptic
curve canonically associated with the denominator of the rational functions.
This result can be drastically generalised changing the parameters into arbitrary
rational functions. In the case where creative telescoping yields pullbacked oF}
hypergeometric functions, we generalise this algebraic geometry approach to other
families of rational functions in three, and even more than three, variables.
In particular, we generalise this approach to rational functions in more than
three variables when the denominator can be associated to an algebraic variety
corresponding to products of elliptic curves, or foliation in elliptic curves. We also
extend this approach to rational functions in three variables when the denominator
is associated with a genus-two curve such that its Jacobian is a split Jacobian
corresponding to the product of two elliptic curves. We sketch the situation where
the denominator of the rational function is associated with algebraic varieties that
are not of the general type, having an infinite set of birational automorphisms.
We finally provide some examples of rational functions in more than three
variables, where the telescopers have pullbacked 2F; hypergeometric solutions,
the denominator corresponding to an algebraic variety having a selected elliptic
curve in the variety explaining the pullbacked 2 F; hypergeometric solution.
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1. Introduction

In a previous paper [1, 2], using creative telescoping [3], we have obtained diagonalsi
of nine and ten parameters families of rational functions, given by (classical) modular
forms expressed as pullbacked 2F; hypergeometric functions [12]. The natural
emergence of diagonals of rational functions| in lattice statistical mechanics is
explained in [19, 20]. This can be seen as the reason of the frequent occurrence
of modular forms, Calabi-Yau operators in lattice statistical mechanics [21, 22, 23,
24, 25, 26, 27]. In another previous paper [17, 18], dedicated to Heun functions that
are diagonals of simple rational functions, or only solutions of telescopers [28, 29]
of simple rational functions of three variables, but most of the time four variables,
we have obtained many solutions of order-three telescopers having squares of Heun
functions as solutions that turn out to be squares of pullbacked oF; hypergeometric
solutions corresponding to classical modular forms and even Shimura automorphic
forms [30, 31], strongly reminiscent of periods of extremal rational surfaces [32, 33],
and other foliation of K3 surfaces in elliptic curves. In other words one finds
experimentally that the oF) hypergeometric functions emerging in the calculation
of diagonal of rational functions, or of solutions of the telescopers of rational
functions, seem to be only special 2Fi([a,b],[c],x) hypergeometric functions with
a selected set of parameters [a,b],[c] (see the list (B.1) in Appendix B of [17],
corresponding to classical modular formst, together with a finite set of parameters, like
[7/24,11/24],[5/4], corresponding to Shimura automorphic forms [30, 31]), pullbacked
by selected pullbacks. This last paper [17] also underlined the difference between the
diagonal of a rational function Diag(R), and the solutions of the telescoper of the
same rational function.

These results strongly suggested to find an algebraic geometry interpretation for all
these exact results, and, more generally, suggested to provide an alternative algebraic
geometry approach of the results emerging from creative telescopingq.

This is the purpose of the present paper. In particular, we are going to show that
most of these pullbacked oF; hypergeometric functions can be obtained efficiently
through algebraic geometry calculations, thus providing a more intrinsic algebraic
geometry interpretation of the creative telescoping calculations which are typically
differential algebra calculations [28, 29, 34, 35].

Creative telescoping [28, 29, 34, 36] is a methodology to deal with parametrized
symbolic sums and integrals that yields differential/recurrence equations for such
expressions. This methodology became popular in computer algebra in the past twenty
five years. By “telescoper” of a rational function, say R(z,y, z), we here refer to the
output of the creative telescoping program [3], applied to the transformed rational
function R = R(x/y,y/z,2)/(yz). Such a telescoper is a linear differential operator T
in x and a%v such that T + % + %—‘z/ annihilates R, where the so-called “certificates”
U, V are rational functions in x,y, z. In other words, the telescoper T' represents a
linear ODE that is satisfied by Diag(R).

The paper is essentially dedicated to solutions of telescopers of rational functions
which are not necessarily diagonals of rational functions. These solutions correspond

1 For the introduction of the concept of diagonals of rational functions, see [4, 5, 6, 7, 8, 9, 10, 11].
|| The lattice Green functions are the simplest examples of such diagonals of rational functions [13,
14, 15, 16, 17, 18).

1 See Felix Klein’s connection of the oFi([1/12,5/12],[1],2) Gauss hypergeometric function with
modular forms, for instance in the very pedagogical and heuristic paper [12].

9 The reader may refer to [34] for an extensive survey of “creative telescoping” approaches.
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to periods [37] of algebraic varieties over some cycles which are not necessarily
vanishing [38] cyclest like in the case of diagonals of rational functions. The reader
interested in the connection between the process of taking diagonals, calculating
telescopers, and the notion of Periods, deRham cohomology (i.e. differential forms)
and other Picard-Fuchs equations can read in detail the thesis of Pierre Lairez [35]
(see also [41]). We just sketch some of these ideas in Appendix A.

The purpose of this paper is not to give an introduction on creative telescoping [28,
29], but to provide many pedagogical (non-trivial) examples of telescopers usingtf
extensively the “HolonomicFunctions” Mathematica package [3].

The paper is organised as follows. We first recall in section 2 the exact results
of [1, 2] for nine and ten parameters families of rational functions using creative
telescoping, yielding modular forms expressed as pullbacked F; hypergeometric
functions. We show in section 3 that these exact results can be obtained, much more
efficiently, by calculating the j-invariant of an elliptic curve canonically associated
with the denominator of the rational functions, and we underline the fact that
one can drastically generalise these results, the parameters becoming quite arbitrary
rational functions. Section 4 generalises the previous calculations to denominators
of the rational functions of more than three variables, corresponding to products (or
foliations) of elliptic curves. In section 5 we show how modular forms expressed as
pullbacked ¢ F; hypergeometric functions occur for rational functions in three variables
when the denominator is associated with a genus-two curve such that its Jacobian is
a split Jacobian corresponding to the product of two elliptic curves. In section (6)
we sketch the situation where the denominator of the rational function is associated
with algebraic varieties of low Kodaira dimension, having an infinite set of birational
automorphisms. We finally provide some examples of rational functions in more than
three variables, where the telescopers have pullbacked 5F; hypergeometric solutions,
the denominator corresponding to an algebraic variety having a selected elliptic curve
in the variety explaining these pullbacked oF} solutions.

2. Classical modular forms and diagonals of nine and ten parameters
family of rational functions

In a previous paper [1, 2|, using creative telescoping [3], we have obtained diagonals
of nine and ten parameters families of rational functions, given by (classical) modular
forms expressed as pullbacked 5F; hypergeometric functions. Let us recall these
results.

2.1. Nine-parameters rational functions giving pullbacked oFy hypergeometric
functions for their diagonals
Let us recall the nine-parameters rational function in three variables x, y and z:
1
a +bix+byy+b3z +cayz+cxz+ezzry + dy?z + eza?’

(1)

t In french “cycles évanescents” [39, 40].

11 One can obtain these telescopers using Chyzak’s algorithm [42] or Koutschan’s semi-algorithm [3,
43] (the termination is not proven). Fo the examples displayed in this paper, Koutschan’s package [3]
is more efficient.



Algebraic Geometry approach of Diagonals 4

Calculatingt the telescoper of this rational function (1), one gets an order-two
linear differential operator annihilating the diagonal of the rational function (1).
The diagonal of the rational function (1) can be written [1, 2] as a pullbacked
hypergeometric function

1 1 5 Ps(z)?
LR, 21 - 2
Py(z)1 /42 1([12’ ) 11 P4(x)3)’ @)
where Py(z) and Ps(z) are two polynomials of degree four and six in x, respectively.
The Hauptmodul pullback in (2) has the form

1728 i Ps(x)? 1728 x% - Py(x) 3)
J Py(x)? Py(x)® 7

where Pg(x) is a polynomial of degree eight in z. Such a pullbacked oF;

hypergeometric function (2) corresponds to a classical modular form [1, 2].

7—[:

2.2. Ten-parameters rational functions giving pullbacked oF hypergeometric
functions for their diagonals.

Let us recall the ten-parameters rational function in three variables z, y and z:
Rz, y, z) = (4)
1
a +bix+byy+b3z +cyztcrz+cezxy + dixly + doy?z 4+ dzlax
Calculating the telescoper of this rational function (4), one gets an order-two
linear differential operator annihilating the diagonal of the rational function (4).

The diagonal of the rational function (4) can be written [1, 2] as a pullbacked
hypergeometric function

1 1 5 Ps(z)?
=77 2F ( T0° 10 ) - E )a 5
Py(z)/4 2! 55 1) [ P3(z)3 (5)
where Ps(z) and Ps(z) are two polynomials of degree three and six in x, respectively.
Furthermore, the Hauptmodul pullback in (5) is seen to be of the form:

1728 Be(@)? _ 17284 Po(x) ©)
j Py(x)? Py(x)®

where Py(x) is a polynomial of degree nine in z. Again, (5) corresponds to a classical

modular form [1, 2].

H:

3. Deducing creative telescoping results from effective algebraic geometry

Obtaining the previous pullbacked hypergeometric results (2) and (5) required [1, 2]
an accumulation of creative telescoping calculations, and a lot of “guessing” using
all the symmetries of the diagonals of these rational functions (1) and (4). We are
looking for a more efficient and intrinsic way of obtaining these exact results. These
two pullbacked hypergeometric results (2) and (5), are essentially “encoded” by their
Hauptmodul pullbacks (3) and (6), or, equivalently, their corresponding j-invariants.
The interesting question, which will be addressed in this paper, is whether it is possible
to canonically associate elliptic curves whose j-invariants correspond precisely to these

Hauptmoduls H = %.

1 Using the “HolonomicFunctions” Mathematica package [3].



Algebraic Geometry approach of Diagonals 5

3.1. Revisiting the pullbacked hypergeometric results in an algebraic geometry
perspective.

One expects such an elliptic curve to correspond to the singular part of the rational
function, namely the denominator of the rational function. Let us recall that the
diagonal of a rational function in (for example) three variables is obtained through its
multi-Taylor expansion [19, 20]

R(I’, Y, Z) = ZZZ am,n,l'xmynzla (7)
m n l

by extracting the ”diagonal” terms, i.e. the powers of the product p = zyz:
Diag(R(x, Y, z)) = Z Umym,m - T (8)
m

Consequently, it is natural to consider the algebraic curve corresponding to the

intersection of the surface defined by the vanishing condition D(z, y, z) = 0 of the

denominator D(z, y, z) of these rational functions (1) and (4), with the hyperbola

p = xzyz (where p is seen, here, as a constant). This amounts, for instance, to
p

eliminating the variable z, substituting z = £ in D(z,y,z) = 0.

3.1.1. Nine-parameters case: In the case of the rational functions (1) this corresponds
to the (planar) algebraic curve

a +bix +byy +b3£ +cly£ —|—czx£ +c3xy
Ty Ty Ty

+dy2£ rel g2 = 0, (9)
ry Ty

which can be rewritten as a (general, nine-parameters) biquadratic:

azy + b2’y + by’ + bsp +capy + copr + cza’y?
+dpy® +epx® = 0. (10)

Using formal calculationsq one can easily calculate the genus of the planar algebraic
curve (10), and find that it s actually an elliptic curve (genus-one). Furthermore,
one can (almost instantaneously) find the exact expression of the j-invariant of this
elliptic curve as a rational function of the nine parameters a, by, ba, ---, e in (1).
One actually finds that this j-invariant is precisely the j such that the Hauptmodul
H = % is the exact expression (3). In other words, the classical modular form
result (2) could have been obtained, almost instantaneously, by calculating the j-
invariant of an elliptic curve canonically associated with the denominator of the
rational function (1). The algebraic planar curve (10) corresponds to the most general
biquadratic of two variables, which depends on nine homogeneous parameters. Such
general biquadratic is well-known to be an elliptic curve for generic values of the nine
parametersy.

Thus, the nine-parameters exact result (2) can be seen as a simple consequence
of the fact that the most general nine-parameters biquadratic is an elliptic curve.

9 Namely using with(algcurves) in Maple, and, in particular, the command j-invariant.

1 So many results in integrable models correspond to this most general biquadratic: the Bethe ansatz
of the Baxter model [44, 45], the elliptic curve foliating the sixteen-vertex model [45], so many QRT
birational maps [46], etc ...
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3.1.2. Ten-parameters case: In the case of the rational function (4), substituting
P

z = L in D(x,y, z) = 0, one obtains the ten-parameters bicubic:
y
ary’ +bia’y? + beay’ + bypy + apy’ + 2 pry + cza’y’
+ 2y + dyy® + d3p® = 0. (11)

As before, we find that this planar algebraic curve is actually an elliptic curvef
and that the exact expression of its j-invariant is precisely the j of the Hauptmodul
H = 1728/ in (6).

Thus, this ten-parameters result (5) can again be seen as a simple consequence
of the fact that there exists a family of ten-parameters bicubics (see (11)) which are
elliptic curves for generic values of the ten parameters.

These preliminary calculations are a strong incentive to try to replace the
differential algebra calculations of the creative telescoping, by more intrinsic algebraic
geometry calculations, or, at least, perform effective algebraic geometry calculations
to provide an algebraic geometry interpretation of the exact results obtained from
creative telescoping.

3.2. Finding creative telescoping results from j-invariant calculations.

One might think that these results are a consequence of the simplicity of the
denominators of the rational functions (1) or (4), being associated with biquadratics
or selected bicubics. In fact, these results are very general. Let us, for instance,
consider a nine-parameters family of planar algebraic curves that are not biquadratics
or (selected) bicubics:

3

a1zt +asx® +azaz? +asx +as+asx’y +ary? +asy +agxry = O. (12)

One can easily calculate the genus of this planar curve and see that this genus is
actually one for arbitrary values of the a,’s. Thus the planar curve (12) is an elliptic
curve for genmeric values of the nine parameters ai, --- ,a9. It is straightforward to
see that the algebraic surface S(z, y, z) = 0, corresponding to

Z- (a1x4 +asz® +asa® +asx + a5 +agx’y + ary? +asy) + agp = 0, (13)

will automatically be such that its intersection with the hyperbola p = zyz gives
back the elliptic curve (12).

Using this kind of “reverse engineering” yields to consider the rational function
in three variables x, y and z

R(z,y, z) =
1

14
1+ 2 (a12* + agx® + azz? + aaw + a5 + ag 22y + ary® + agy)’ (14)

which will be such that its denominator is canonically associated with an elliptic curve.
Again we can immediately calculate the j-invariant of that elliptic curve. If one
calculates the telescoper of this eight-parameters family of rational functions (14), one
finds that this telescoper is an order-two linear differential operator with pullbacked
hypergeometric solutions of the form

A(z) - 2F1([ LoD

Ea EL [1]7 H)v (15)

1 Generically, the most general planar bicubic is not a genus-one algebraic curve. It is a genus-four
curve.
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where A(x) is an algebraic function and, where again, the pullback-Hauptmodul
H = 1728/j, precisely corresponds to the j-invariant of the elliptic curve.

More generally, seeking for planar elliptic curves, one can, for given values of two

integers M and N, look for planar algebraic curves

n=N m=M

Z Z U, n - 2" y™ = 0, (16)

n=0 m=0
defined by the set of a, ,’s which are equal to zero, apart of A homogeneous
parameters a,, , being, as in (10) or (11) or (13), independent parameters. Finding
such an N -parameters family of (planar) elliptic curves automatically provides an N-
parameters family of rational functions such that their telescopers have a pullbacked
o F1 hypergeometric solution we can simply deduce from the j-invariant of that elliptic
curve.

Recalling the results of section 2.2, the quite natural question to ask now is
whether it is possible to find families of such (planar) elliptic curves which depend on
more than ten independent parameters?

Before addressing this question, let us recall the concept of birationally equivalent
elliptic curves. Let us consider the monomial transformation:

(z,y) — (@M yN, 2P y?), (17)

where M, N, P, Q are integers such that M- Q — P- N = 1, then its compositional
inverse is the monomial transformation:
Q M
z Y
(z, y) — (yW’ ?> (18)

This monomial transformation (17) is thus a birationalf transformation. A birational
transformation transforms an elliptic curve, like (12), into another elliptic curve with
the same j-invariant: these two elliptic curves are called birationally equivalent. In
the case of the birational and monomial transformation (17), the elliptic curve (12) is
changed intof{:

G- g MAN Ly gBM BN o g2M RN M N (19)
+ag - ?MAPPENFQ L gr 22 P 2@ pag - P Y@ fag - M YN TR = .

With this kind of birational monomial transformation (17), we see that one can obtain
families of elliptic curves (19) of arbitrary large degrees in z and y. Consequently
one can find nine or ten parameters families of rational functions of arbitrary large
degrees yielding pullbacked oF} hypergeometric functions. There is no constraint
on the degree of the planar algebraic curves (19): the only relevant question is the
question of the mazimum number of (linearly) independent parameters of families of
planar elliptic curves which is shown to be ten. The demonstrationq is sketched in
Appendix B.

3.8. Pullbacked oF; functions for higher genus curves: monomial transformations.

Let us recall another important point. We have already remarked in [1, 2] that once we
have an exact result for a diagonal of a rational function of three variables R(z, y, z),

t This transformation is rational and its compositional inverse is also rational (here monomial).

11 One can easily verify for particular values of the M, N, P, Q and ay’s, using with(algcurves) in
Maple, that the j-invariants of (12) and (19) are actually equal.

€ We thank Josef Schicho for providing this demonstration.
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we immediately get another exact result for the diagonal of the rational function
R(z™, y™, 2™) for any positive integer n. As a result we obtain a new expression for
the diagonal changing x into z™. In fact, this is also a result on the telescoper of the
rational function R(z, y, z): the telescoper of the rational function R(z", y™, 2™) is
the x — 2™ pullback of the telescoper of the rational function R(zx, y, z). Having a
pullbacked 3 F; solution for the telescoper of the rational function R(z, y, z) (resp. the
diagonal of the rational function R(z, y, z)), we will immediately deduce a pullbacked
oF1 solution for the telescoper of the rational function R(z™, y™, 2™) (resp. the
diagonal of the rational function R(z", y", z")).
Along this line, let us change in the rational function (1), (z,y, z) into
(22, 32, 22):
RQ(xa Y, Z) = (20)
1
a +bya? 4 boy? + b322 +ociy?2? 22?2 +ocza?y? + dyt2? 4+ ezat’
The diagonal of this new rational function (20) will be the pullbacked 2F; exact
expression (2) where we change x — z2. The intersection of the algebraic surface
corresponding to the vanishing condition of the denominator of the new rational

function (20), with the hyperbola p = zyz (ie. z = z%/)’ is nothing but the

equation (10) where we have changed (z, y; p) into (22, y?; p?)
0 22y® 4 biaty? 4 by atyt 4 bsp? 4 pPyE 4 oo PR + s 2ty
+dp?yt +epPat =0, (21)

which is no longert an elliptic curve but a curve of genus 9.

With that example we see that classical modular form results, or pullbacked oF}
exact expressions like (2), can actually emerge from higher genus curves like (21). As
far as these diagonals, or telescopers, of rational function calculations are concerned,
higher genus curves like (21) must in fact be seen as “almost” elliptic curves up to an
r — z™ covering.

Such results for monomial transformations like (z, y, z) — (a™, y™, 2™) can, in
fact, be generalised to more general (non birational{) monomial transformations. This
is sketched in Appendix C.

3.4. Changing the parameters into functions of the product p = zyz.

All these results for many parameters families of rational functions can be drastically
generalised when one remarks that allowing any of these parameters to be a rational
function of the product p = xyz also yields to the previous pullbacked 5F; exact
expression, like (2), where the parameter is changed into that rational function of x
(see [1]). Let us consider a simple (two-parameters) illustration of this general result.
Let us consider a subcase of the previous nine or ten parameters families, introducing,
for example, the two parameters rational function:

1
1 +2x +by-y +5yz +22 +c3-aY

(22)

1 If we perform the same calculations with the ten-parameters rational function (4) we get an
algebraic curve of genus 10 instead of 9.
t In contrast with transformations like (17).
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The diagonal of this rational function (22) is the pullbacked hypergeometric function:

7132(;)1/4 : zFl([%, 1—52]7 [1], 43200 - ;:4(%)3), (23)

where

Py(x) = 1 —8-(by +10)- = +8-(2b3 —20by + 15¢3 +200) - 22,  (24)

and
Py(x) = —675¢5- a* +4c5- (by+10) - (403 — 100by + 45 c3 + 400) - 23
+ (643 — 32D3 ¢35 — 83 2 — 12803 + 12803 c3
— 460 by 3 — 53 + 6400 b3 — 3200 by c3 — 800 ¢3) - (25)

— (by +10) - (3203 —16byc3 —c2) - & +2by - (2by — c3),

Let us now consider the previous rational function (22) where the two parameters
by and c3 become some rational functions of the product p = xy z, for instance:

1 1 2
ba(p) = %7 c3(p) = 1 igp
The new corresponding rational function becomes more involved but one can easily
calculate the telescoper of this new rational function of three variables x, y and z, and
find that it is, again, an order-two linear differential operator having the pullbacked
hypergeometric solution (23) where bs and cg are, now, replaced by (p is now x) the
functions:

where: p=zTyz. (26)

1+3z (@) = 1 +22
1+722 R Py
In that case (22) with (26), one gets a diagonal which is the pullbacked hypergeometric
solution

ba(w) = (27)

(1 + 21,)1/4 . (1 + 73’52)1/4 . qg1/4
4 22

ATENEINE - A e )
127 12 (1+2z)- ¢
where ¢g and ¢o¢ are two polynomials with integer coefficients of degree eight and
twenty in z. The exact expression (28) is nothing but (23) (with (24) and (25)) where
by and c3 have been replaced by the rational functions (27). Similar calculations can
be performed for more general rational functions (1) or (4), when all the (nine or ten)
parameters are more involved rational functions.

When performing our creative telescoping symbolic calculations using the
HolonomicFunctions package [3], such results may look quite impressive. From the
algebraic geometry viewpoint, it is almost tautologicali, if one takes for granted
the result of our previous subsections 3.1 and 3.2, namely that the pullbacked
hypergeometric solution of the telescoper corresponds to the Hauptmodul 1728/7,
where j is the j-invariant of the elliptic curve corresponding to the intersection of
the algebraic surface corresponding to the vanishing condition of the denominator,
with the hyperbola p = zyz: this calculation of the j-invariant is performed for p
fixed, and arbitrary (nine or ten) parameters a, by, --- . It is clearly possible to force

(28)

1 An algebraic geometer will probably see this as a trivial remark: diagonalization is an algebraic
procedure and nothing really happens to the coefficients. Therefore if one replaces the coefficients by
anything else, one will find those replaced coefficients in the end result.
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the parameters to be functionst of p, the j-invariant being changed accordingly. Of
course, in that case, the parameters in the rational function are the same functions
but of the product p = xy z.

One thus gets pullbacked hypergeometric solutions (classical modular forms) for
an (unreasonabdly ...) large set of rational functions in three variables, namely the
families of rational functions (1) or (4), but where, now, the nine or ten parameters
are nine, or ten, totally arbitrary rational functions (with Taylor series expansions) of
the product p = xyz.

We see experimentally that changing the parameters of the rational function into
functions, actually works for diagonals of rational functions, as well as for solutions of
telescopers of rational functions depending on parameters.

4. Creative telescoping on rational functions of more than three variables
associated with products or foliations of elliptic curves

Let us show that such an algebraic geometry approach to creative telescoping can
be generalised to rational functions of more than three variables, when the vanishing
condition of the denominator can be associated with products of elliptic curves, or
more generally, algebraic varieties with foliations in elliptic curves.

e The telescoper of the rational function in the four variables x, y, z and w
TYz
(1+2)? —2-(1-2) (@ —zyzw)-y- (1-y) (y —zyzw)’
gives an order-three self-adjoint linear differential operator which is, thus, the
symmetric square of an order-two linear differential operator. The latter has the
pullbacked hypergeometric solution:

(29)

1 E] ] 27 3:2-(1—3:)2)
12012050 4T @y 1)3

Si(z) = (1 -z +a2)" 4. 2F1([ (30)

= 2h (15 50 [, @),

In [18] we underlined the difference between the diagonal of a rational function and
solutions of the telescoper of the same rational function. In this case, the diagonal
of the rational function (29) is zero§ and is thus different from the pullbacked
hypergeometric solution (30), which is a “Period” [37] of the algebraic variety
corresponding to the denominator over some (non-vanishingf) cycle. From now, we
will have a similar situation in most of the following examples of this paper.

This example is a simple illustration of what we expect for products of elliptic
curves, or algebraic varieties with foliations in elliptic curves. Introducing the product

1 The functions should be rational functions if one wants to stick with diagonals and telescopers
of rational functions, but the result remains valid for algebraic functions, or even transcendental
functions with reasonable Taylor series expansions at = 0: for instance, for 2F; hypergeometric
functions, one gets a differentially algebraic function corresponding to the composition of 2Fj
hypergeometric functions.

€ The reason is that the integration takes place over a cycle homologically equivalent to the
trivial cycle. The cycle becomes trivial after taking the limit p — 0. Integrals over non
vanishing cycles usually give logarithms of p, like the second solution to the hypergeometric function
2P ([1/2,1/2),[1], ).

1 Diagonals of the rational functions correspond to periods over vanishing cycles [38, 40].
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p = wxyzw, the vanishing condition of the denominator of the rational function (29)
reads the surface S(z, y, z) = 0:

(1+2)? —z-(1-2)- (& —p)-y L-y) (y—p) = 0 (31)
For fixed p and fixed y, equation (31) can be seen as an algebraic curve
(1+2)? = X-z-(1-2)-(x—p) = 0 (32)
with: A=y - 1-y) (y —p).

For fixed p and fixed y, A can be considered as a constant, the algebraic curve (32)
being an elliptic curve with an obvious Weierstrass form:

142
72 —z-(1—-2) (z — =0 where: Z = . 33
(1-=z): (z —p) 7 (33)
The j-invariant of (32), orf (33), is well-known and yields the Hauptmodul #:
1728 27 p*- (1 —p)?
H=— = —F 55— 34
j 4 (P -p+1)3 (39
For fixed p and fixed z, equation (31) can be seen as an algebraic curve
(1+2° —p-y-(1-y)-(y-p = 0 (35)
for: w=zx-(1—2) (x —p),

which is also an elliptic curve with an obvious Weierstrass form and the same
Hauptmodul (34). This Hauptmodul is precisely the one occurring in the pullbacked
hypergeometric solution (30).

More generally, the rational function of the four variables xz, y, z and w

Yz
(1+2)? —z-(1-2)- (= —Rip) -y 1-y) (y — Ra(p))’

where p = xyzw, and where R;(p) and Ra(p) are two arbitrary rational functions
(with Taylor series expansions) of the product p = zyzw, yields a telescoper
which has an order-four linear differential operator which is the symmetric productf
of two order-two linear differential operators having respectively the pullbacked
hypergeometric solutions (30) where x is replaced by Rj(z) and Ra(z). These two
hypergeometric solutions thus have the two Hauptmodul pullbacks

1728 27 Ri(p)°- (1 — Ri(p))?

(36)

T T T RGP - R + ) (37)
_ 1728 _ 277 . Rg(p)Q- (1 - Rz(p))2
S T T T ) - Ralp) + )Y (38)

obtained by calculations similar to the ones previously performed on (31) but, now,
for the Weierstrass form corresponding to the denominator (36).

T A shift 2 - z+ 1 or a rescaling 22 — % does not change the j-invariant of the Weierstrass
elliptic form.

t This paper belonging to the symbolic computation literature and not pure mathematics for
algebraic geometers, we use the standard Maple (DEtools) terminology of symmetric powers and
symmetric products of linear differential operators [47]. Note that ”symmetric product” is not a
proper mathematical name for this construction on the solution space; it is a homomorphic image of
the tensor product. The (Maple/DEtools) reason for choosing the name symmetric_product is the
resemblance with the function symmetric_power.
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A solution of the telescoper of (36) is thus the product of these two pullbacked
hypergeometric functions. Let us give a simple illustration of this general result, with
the next example.

e The telescoper of the rational function in the four variables x, y, z and w

Tyz
(1422 —z-(1—-2) (x —zyzw)-y- (1—y) (y —3zyzw)’ (39)

corresponding to (36) with Ry(p) = p and R;(p) = 3p, gives an order-four linear
differential operator which is the symmetric product of two order-two operators having
respectively the pullbacked hypergeometric solution (30) and the solution (30) where
the variable x has been changed into 3 z:
Sa(x) = S1(3x) (40)
5 243 2% (1 —3x)?

1
_ . 2—1/4 .
(1 =32 +92%) 4 2 (g5 35 1 5 (1 -3z +91:2)3)'

4.1. Creative telescoping on rational functions of five variables associated with
products or foliations of three elliptic curves

Let us, now, introduce the rational function in five variables =, y, z, v and w

TYZV
D(x, y,yz, v, w)’ (41)
where the denominator D(z, y, z, v, w) reads:
D, = (42)
1+0)? —z-(1-2) (z-p -y (1-y) (y=3p) 2 (1-2) (z —5p),

where: p = TYzvw.

The telescoper of the rational function (41) of five variables givesi an order-eight
linear differential operator which is the symmetric product of three order-two linear
differential operators having respectively the pullbacked hypergeometric solution (30),
the solution (30) where x has been changed into 3z, namely (40), and the solution
(30), where z has been changed into 5 z:

S3(z) = Si1(5x) (43)
1 5 675 2. (1 —5x)2
0 12 (1 -6z +25x2)3)'
In other words, the order-eight telescoper of the rational function (41) has the product
S = & - 8- Ss, 0f (30), (40) and (43) as a solution. From an algebraic geometry
viewpoint, this is a consequence of the fact that, for fixed p, the algebraic variety
D, = 0, where D, is given by (42), can be seen, for fixed y and z, as an elliptic
curve & of equation D, . ,(v, x) = 0, for fixed =z and z as an elliptic curve &
of equation D, . ,(v, y) = 0, and for fixed x and y also as an elliptic curve &; of
equation Dy, (v, z) = 0, the j-invariants ji, k£ = 1, 2, 3 of these three elliptic

curves & yielding (in terms of p), precisely, the three Hauptmoduls Hy = %

= (1 -5z +2522)"1/4. 2Fl([

27 22 (1 —x2)? 243 22 (1 —3z)? 675 2?2 (1 —5x)? (44)
4 (22—x+1)¥ 4 (1 =3z +922)3% 4 (1 -5z +2522)3’

1 Such a creative telescoping calculation requires “some” computing time to achieve the result.
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occurring as pullbacks in the three Sp’s of the solution § = &; - 83 - Ss, of the
telescoper of (41).

Remark: Other examples of rational functions of three, four, five variables where
the denominators also correspond to Weierstrass (resp. Legendre) forms, are displayed
in Appendix D. They provide simple illustrations of rational functions where the
denominator is associated with K3 surfacesY, or Calabi-Yau three-folds. In these
cases the algebraic varieties have simple foliations in terms of two or three families of
elliptic curves, and the solutions of the corresponding telescopers can be selected 3F5
and 4F5 hypergeometric functions (see (D.16) in Appendix D), naturally associated
with K3 surfaces and Calabi-Yau operators [27].

5. Creative telescoping of rational functions in three variables associated
with genus-two curves with split Jacobians

In a paper [17, 18], dedicated to Heun functions that are solutions of telescopers of
simple rational functions of three and four variables, we have obtainedf an order-four
telescoper of a rational function of three variables, which is the direct sum of two
order-two linear differential operators, each having classical modular forms solutions
which can be written as pullbacked F} hypergeometric solutions. Unfortunately, the
intersection of the algebraic surface corresponding to the denominator of the rational
function with the p = xy 2z hyperbola, yields a genus-two algebraic curve.

Let us try to understand, in this section, how a genus-two curve can yield two
classical modular forms. Let us first recall the results in section 2.2 of [18].

5.1. Periods of extremal rational surfaces

Let us recall the rational function in just three variables [18]:
1

1 vz +y+2z vty +yz —23yz
Its telescoper is actually an order-four linear differential operator L4 which, not only
factorizes into two order-two linear differential operators, but is actually the direct
sum (LCLM) of twol order-two linear differential operators Ly = Lo @ Ms. These
two (non homomorphic) order-two linear differential operators have, respectively, the
two pullbacked hypergeometric solutions:

R(z,y,z) =

(45)

S = (1+92)7 Y4 (1 432)7 V4 (1 4272274 (46)
1 5 1728 - 2% - (1 + 92 + 2722)3
X 2F1<[777]a[]7 3 3 23)7
12712 (I +3x)3- (1 4+92)3- (1 +2722)
and:
Sy = ! (47)
> 7 (1 44z —222 —36a3 +8la4)1/4
1 5 1728 - 2° - (14+ 9z +272%) - (1 —2x)?
X 2F1<[777]a [1]5 ( D) 3) ( N3 ) )
12712 (1442 —22% — 3623 +81a4)

9§ See the emergence of product of elliptic curves from Shioda-Inose structure on surfaces with Picard
number 19 in [48]. In [48], Ling Long considers one-parameter families of K3 surfaces with generic
Picard number 19. The existence of a Shioda-Inose structure implies that there is a one-parameter
family of elliptic curves.

1 See equation (83) in section 2.2 of [18].

1 These two order-two linear differential operators L2 and Ms are not homomorphic.
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The diagonal of (45) is actually the half-sum of the two series (46) and (47):

S+ S
Diag(R(az, Y, z)) = %
As far as our algebraic geometry approach is concerned, the intersection of the

algebraic surface corresponding to the denominator of the rational function (45) with

(48)

the hyperbola p = xyz gives the planar algebraic curve (corresponding to the
elimination of the z variable by the substitution z = £):
1 a4y +2 a2y +yL —fy L = o (49)
Y Ty ry

One easily finds that this algebraic curve is (for p fixed) a genus-two curve, and
that this higher genus situation does not correspond to the ”almost elliptic curves”
described in subsection 3.2 namely an elliptic curve transformed by a monomial
transformation. How can a “true” genus-two curve give two j-invariants, namely
a telescoper with two Hauptmodul pullbacked 5Fj solutions? We are going to see
that the answer is that the Jacobian of this genus-two curvet is in fact isogenous to a
product & x &’ of two elliptic curves (split Jacobian).

5.2. Split Jacobians

Let us first recall the concept of split Jacobian with a simple example. In [49], one has
a crystal-clear example of a genus-two curve C

y? — (2% +4202 — 5600) - (23 +422% +1120) = 0, (50)
such that its Jacobian J(C') is isogenous to a product of elliptic curves with j-
invariants j; = —27. 72 = _6272 and Jo = —25.7 .17 = —1100512,
corresponding to the following two values of the Hauptmodul H = %: H, =
—27/98 and Hy = —54/34391. Let us consider the genus-one elliptic curve
v? = u® 4+4900u* + 7031500 u + 2401000000, (51)
of j-invariant j = j, = —2°. 7 - 173. We consider the following transformation§:
_ 882000 (z —14) v — 49000 - (2% — 21 22 — 140) (52)
23 + 4202 — 5600 T T (@3 + 420z — 560002 7

This change of variable (52) actually transforms the elliptic curve (51) in u and v into
the genus-two curve (50) in x and y. This provides a simple example of a genus-two
curve with split Jacobian through K8 surfaces.

More generally, let us consider the Jacobian of a genus-two curve C. The Jacobian
is simple if it does not contain a proper abelian subvariety, otherwise the Jacobian is
reducible, or decomposable or “split”. For this latter case, the only possibility for a
genus-two curve is that its Jacobian is isogenous to a product £ x &' of two elliptic
curvesi. Equivalently, there is a degree n map C — & to some elliptic curves.

1 An algebraic geometer will probably recall that it is very well-known that a genus two curve may
have Jacobian isogeneous to a product of elliptic curves. This is not the case in general. The genus
two curves that have a (nonconstant) map to an elliptic curve have this property. Our purpose in
section (5.3) is to perform a creative telescoping calculation in such a selected situation.

& This transformation is rational but not birational. If it were birational, then it would preserve the
genus. Here, one goes from genus one to genus two.

1 Along these lines, see also the concepts of Igusa-Clebsch invariants and Hilbert modular
surfaces [49, 50, 51, 52].



Algebraic Geometry approach of Diagonals 15

Classically such pairsi C, £ arose in the reduction of hyperelliptic integrals to elliptic
ones [49]. The j-invariants correspond, here, to the two elliptic subfields: see [49].

5.8. Creative telescoping on rational functions in three variables associated with
genus-two curves with split Jacobians: a two-parameters example.

Let us now consider the example with two parameters, a and b, given in section 4.5
page 12 of [49]. Let us substitute the rational parametrisation§
2 (23 — bz —2
u = v 5 v = i <x ° ) ) (53)
23 +ax? +bx +1 (23 +ax? +bx +1)2
in the elliptic curve
R-v? = R-u® +2- (ab® —6a*> +9b)- u® +(12a— V%) - u —4, (54)

where

R = 4-(a® +0*) —a®b® —18ab +27. (55)
This gives the genus-two curve Cq p(z, y) = 0 with:
Cov(z,y) = R-y* +@2® +0%2% +2bx +1)- (2% +a2® +bx +1). (56)

The j-invariant of the elliptic curve (54) gives the following exact expression for the

Hauptmodul H = 13&:

Y = 108 - (b—3)%- (4a®+4b> —a?b®> —18ab+27)% - (B> +3b+9)3 (57)
(a?b* + 12b° — 126 ab3 4 216 ba® + 405 b2 — 972 a)3 '

Let us consider the telescoper of the rational function of three variables
xy/Do(z, y, z) where the denominator D,(x,y, z) is Cq p(x, y) given by (56),
but for b = 3 + zyz:

Dy(z,y, 2) = Ca,31ay(7,y)
= 299323 4 2Ty?2? +4239°2% + 9259227 + 6 2%yz + 32ty?2? + 3612?22
+62’yz +42° + 272 yz + 92° + 18 23yz + 108 zyz + 18 2t + 3 2°y2
+322% 42722 +1359% + 9z +1

+ (25222 + 6 2°yz + 22tyz + 425 — 18232 + 92 + 623 + 2% — 54y?) - a

— 9% (xyz +3)%- a® +4y*- dd. (58)
This telescoper of the rational function
Ty
R, s Y = N . .\ 59
@09 = G (59)

is an order-four linear differential operator L, which is actually the direct-sum,
Ly = LCLM(Lg, My) = Lo @ My, of two order-two linear differential operators,
having two pullbacked hypergeometric solutions. One finds out that one of the two
pullbacks precisely corresponds to the Hauptmodul H given by (57) for b = 3 + x.

Let us consider the a = 3 subcase}. For a = 3, the Hauptmodul H = %7
given by (57) becomes for b = 3 +x:

4-x- (27T4+42)% - (2? 27)3
4 - T (7+ z)?- (x +9x+(7) . (60)
(94 )3 (422 +27Tx +27)3

1 One also has an anti-isometry Galois invariant &' ~ &£ under Weil pairing. The decomposition
corresponds to real multiplication by quadratic ring of discriminant n2.

9 See also [53] section 6 page 48.

t The discriminant in b of 4a3 + 403 — a?b? — 18ab + 27 reads: (a — 3)3 - (a? + 3a + 9)3,

consequently the exact expressions are simpler at a = 3.
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The telescoper of the rational function (59) with D, (x, y, z) given by (58) for
a = 3, is an order-four linear differential operator which is the direct-sum of two
order-two linear differential operators Ly = LCLM (Lo, M3) = Lo@® Ms, these two
order-two linear differential operators having the pullbacked hypergeometric solutions

1 5 27
27 + 4z) V2. 275 LR (=, =], [1], 1 + — 1
(27 + 42) o 2 1([12’ b [ 1+ 49;)’ (61)

for Lo, and
3+x
(94 2)V/4. (422 + 272 +27)V/4. 23/2. (27 + 42)1/2

1 5 4-x- (27T +42)?- (22 +92 +27)3
F(l=, — 62
2 1([12’ ) 11 9+ )3 (422 + 272 +27)3 ) (62)

for Ms, where we see clearly that the Hauptmodul in (62) is precisely the Hauptmodul
(60). The Jacobian of the genus-two curve is a split Jacobian corresponding to the
product & X & of two elliptic curves, the j-invariant of the second elliptic curve

corresponds to the Hauptmodul H = 17]& given by (57) when the j-invariant of the
first elliptic curve reads
6912 x
h = — 63
T T (63)
corresponding to the Hauptmodul % = 1+ 2T in (61). This second invariant

is, as it should, exactly the j-invariant of the second elliptic curve &', given page 48
in [53]:
(&) = 256 - (3b —a?)3

J © 4a3c¢ —a2b? —18abc +4b3 +27¢2’
for ¢c=1,a= 3 and b= 3 + z.

(64)

5.4. Creative telescoping on rational functions of three variables associated with
genus-two curves with split Jacobians: a simple example

Another simpler example of a genus-two curve with pullbacked oF; solution (not
product of pullbacked 5F}) of the telescoper can be given if one considers the genus-
two algebraic curve Cp(x, y) = 0 given in Lemma 7 of [54] (see also [55, 56])

Cpla,y) = 2 +2° +p-z -y’ (65)
Let us introduce the rational function zy/D(z,y, z) where the denominator
D(z, y, z) is given by:
D($7 Y, Z) = C(p:xyz)($7 y) = 375 +$3 +m2yz - y2' (66)
The telescoper of this rational function is an order-two linear differential operator
which has the two hypergeometric solutions

1 5 3
—-1/4 - 212
- QFI([87 21 5, 495) (67)
which is a Puiseux series at = 0 and:
15
2 (5 2 [ 1 - 4a)). (68)
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These two hypergeometric solutions can be rewritten as

1 5 1728
<o F ( 197 1017 1 ) 7)7

A) o F (155 b (69)
where the j-invariant J, in the Hauptmodul Lfs in (69), corresponds exactly to the

degree-two elliptic subfields

200022 + 1440z + 27) (100 — 9)3

72 128 - J —4096- ——— " = 0 70
(1 —42)? (1 —42)3 ’ (70)

given in the first equation of page 6 of [54].

Remark: In contrast with the previous example of subsection 5.3 where we had
two j-invariants corresponding to the two order-two linear differential operators Lo
and Ms of the direct-sum decomposition of the order-four telescoper, we have, here,
just one order-two telescoper, which is enough to “encapsulate” the two j-invariants
(70), since they are Galois-conjugate.

6. Rational functions with tri-quadratic denominator and N-quadratic
denominator.

We try to find telescopers of rational functions corresponding to (factors of) linear
differential operators of “small” orders, for instance order-two linear differential
operators with pullbacked 5F; hypergeometric functions, classical modular forms, or
their modular generalisations (order-four Calabi-Yau linear differential operators [27],
etc ...). As we saw in the previous sections, this corresponds to the fact that
the denominator of these rational functions is associated with an elliptic curve, or
products of elliptic curves, with K3 surfaces or with threefold Calabi-Yau manifolds
corresponding to algebraic varieties with foliations in elliptic curves§. Since this
paper tries to reduce the differential algebra creative telescoping calculations to
effective algebraic geometry calculationsf and structures, we want to focus on rational
functions with denominators that correspond to selected algebraic varieties [45, 59],
beyond algebraic varieties corresponding to products of elliptic curves or foliations
in elliptic curvesi, namely algebraic varieties with an infinite number of birational
automorphismst. This infinite number of birational symmetries, excludes algebraic
varieties of the “general type” (with finite numbers{f of birational symmetries). For

|| The fact that 2F1<[§, g}, [1],2) can be rewritten as 2F) ([é, 15—2], [1],H(z)) where the

Hauptmodul H(z) is solution of a quadratic equation is given in equation (H.14) of Appendix H
of [18].

§ Even if K3 surfaces, or threefold Calabi-Yau manifolds, are not abelian varieties, the Weierstrass-
Legendre forms introduced in Appendix D, amounts to saying that K3 surfaces can be “essentially
viewed” (as far as creative telescoping is concerned) as foliations in two elliptic curves, and threefold
Calabi-Yau manifolds as foliations in three elliptic curves.

# One has birational automorphisms in projective spaces [57, 58], but since this paper is dedicated to
(efficient) formal calculations we work exclusively in affine coordinates (see for instance (E.3), (E.4),
(E.5) below). For algebraic geometers an ellitic curve is a smooth complete genus 1 curve with a
choice of a base point. Here our elliptic curves are, in fact, an affine piece of a genus 1 curve with no
base point, but this does not really matter because the j-invariant which is all we care about in this
kind of creative telescoping calculations, is determined by that much information.

1 K3 surfaces, threefold Calabi-Yau manifolds, higher curves with split Jacobian corresponding to
products of elliptic curves, ...

1 The best explicit illustration of this situation emerges in integrable models [45, 59, 60, 61]

11 There are even precise bounds for the number of automorphisms. The upper bound is 84 (g —1) for
curves of genus g and these bounds have been extensively studied in higher dimensions [62, 63, 64].
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algebraic surfaces, this amounts to discarding the surfaces of the “general type” which
have Kodaira dimension 2, focusing on Kodaira dimension one (elliptic surfaces), or
Kodaira dimension zero (abelian surfaces, hyperelliptic surfaces, K3 surfaces, Enriques
surfaces), or even Kodaira dimension —oo (ruled surfaces, rational surfaces).

In contrast with algebraic curves where one can easily, and very efliciently,
calculate the genus of the curves to discard the algebraic curves of higher genus
and, in the case of genus-one, obtain the j-invariant using formal calculationsY], it
is, in practice, quite difficult to see for higher dimensional algebraic varieties, that
the algebraic variety is not of the “general type”, because it has an infinite number
of birational symmetries. For these (low Kodaira dimension) “selected cases” we are
interested in, calculating the generalisation of the j-invariant (Igusa-Shiode invariants,
etc ...) is quite hard.

Along this line we want to underline that there exists a remarkable set of algebraic
surfaces, namely the algebraic surfaces corresponding to tri-quadratic equations:

Z Z Z - T Y" 2 =0, (71)

m=0,1,2 n=0,1,2 1=0,1,2

depending on 27 = 3% parameters a,, ;. More generally, one can introduce algebraic
varieties corresponding to N-quadratic equations:

Z Z Z Ay, e mn gc;nl :c;nz ce :c}’GN = 0. (72)

m1=0,1,2 m2=0,1,2 mn=0,1,2

With these tri-quadratic (71), or N-quadratic (72) equations, we will see, in Appendix
E.1 and Appendix E.2; that we have automnatically (selected) algebraic varieties that
are not of the “general type” having an infinite number of birational symmetries, which
is precisely our requirement for the denominator of rational functions with remarkable
telescoperst.

Let us first, as a warm-up, consider, in the next subsection, a remarkable example
of tri-quadratic (71), where the underlying foliation in elliptic curves is crystal clear.

6.1. Rational functions with tri-quadratic denominator simply corresponding to
elliptic curves.

Let us first recall the tri-quadratic equation in three variables z, y and =z

2?y?2? 2 M-ayz- (v 4+y+z) +4- M- (M +1) zyz

+ M2 (2P 4y %) —2M? - (zy +az +yz) = 0, (73)

already introduced in Appendix C of [65]. This algebraic surface, symmetric in x, y
and z, can be seen for z (resp. x or y) fixed, as an elliptic curve which j-invariant
is independent of z yielding the corresponding Hauptmodul:
1728 27 M? . (M —1)?
H = — = 5 ( ) . (74)
J 4 (M?2—-M+1)3
This corresponds to the fact that this algebraic surface (73) can be seen as a product
of two times the same elliptic curve with the Hauptmodul (74). This is a consequence
of the fact that, introducing r = sn(u)?, y = sn(v)? and z = sn(u + v)?, and

9 Use with(algcurves) in Maple and the command “genus” and “j_invariant”.

1 Telescopers with factors of “small enough” order, possibly yielding classical modular forms, Calabi-
Yau operators, ... Rational functions with denominators of the “general type” will yield telescopers
of very large orders.
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M = 1/k?, this algebraic surface (73) corresponds to the well-known formula for the
addition on elliptic sineq:

sn(u) en(v) dn(v) + sn(v) en(u) dn(u
i+ ) = MDD+ stvhnt) ot -
For M = zyzw, the LHS of the tri-quadratic equation (73) yields a polynomial of
four variables x, y, z and w, that we denote T'(z, y, z, w):
T(x,y, z, w) = (76)
22?2 -2 2P we (x fy 4+ 2) +4- (zyzw +1) - 22w

+ 2222202 (22 P+ 2% — 2272220 (ay + 3z +y2).

The telescoper of the rational function in four variables x, y, z and w,
Yz
—_ 77
(. y. = w) 7
is an order-three (self-adjoint) linear differential operator which is the symmetric
square of the order-two linear differential operator having the following pullbacked
o F} hypergeometric solution:

V2. (22 — g 1)V

2 2
X 2F1([T12a %]7 [ ]7 i7 J;Q (x 1) )
(22 —2x+41)3

As it should the Hauptmodul in (78) is the same as the Hauptmodul (74). The
algebraic surface (73) can be seen as the product of two times the same elliptic curve
with the Hauptmodul (74): as expected the solution of the order-three telescoper is
the square of the pullbacked oF; hypergeometric function (78) with that Hauptmodul.

More generally, we can also consider another tri-quadratic equation of three
variables z, y and z and two parameters M and N:

22y?2? —2M-ayz- (x +y +2) +N-ayz (79)

+M?* (224?422 —2M? (zy 4z +yz) = 0.

(78)

This surface, symmetric in z, y and z, can be seen for z (resp. z or y) fixed as an
elliptic curve which j-invariant is, again, independent of z yielding the corresponding
Hauptmodul:

1728 1728 - M6 . (64 M3 — N?) (80)

j (48 M3 — N2)3 '

Let us consider the following change of variables M = m? and N = 8- m? +pin
(79). For p = xyzw, the LHS of the tri-quadratic equation (79) yields a polynomial
in four variables x, y, z and w, that we denote T, (z, y, z, w):

H:

Tm(z, y, 2, w) =
2?y?2? —2m?wyz- (@ 4y +2) (8- mP + zyzw) - ayz
+mt (@42 + 22 —2mt - (xy + a2 +y2). (81)
For z (resp. x or y) fixed the corresponding Hauptmodul (80) reads:
1728 - m!2. p- (16 m3 + p)

"= (16mS +16m? - p +p?)3

(82)

9 See equation (C.3) in Appendix C of [65].
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The telescoper of the rational function in four variables x, y, z and w,
Ty z
- 83
Tm(z, y, 2, w) (83)
is an order-three (self-adjoint) linear differential operator which is the symmetric
square of an order-two linear differential operator having the following pullbacked
2 F1 hypergeometric solution:

(16m° +16m> - z 4+ 22)" /4.
1 1728 - m'?2 . z - (16m3
SN (S N N SR Gl 2
12 12 (16m6 + 16m® - z + 22)3

As it should the Hauptmodul in (84) is the same as the Hauptmodul (82). The
algebraic surface (79) can be seen as the product of two times the same elliptic curve
with the Hauptmodul (80) (or (82)). As expected the solution of the order-three
telescoper is the square of the pullbacked oF) hypergeometric function (84) with the
Hauptmodul (82).

Remark: Let us perform some (slight) deformation of the rational function (77),
changing the first —2 coefficient in (76) into a —3 coefficient. One thus considers the
polynomial T(z, y, z, w):

T(x,y, z, w) = (85)

2?y?2? =3 2?2 we (x +y +2) +4- (eyrw + 1) 22?22 w

+ 222 2w? - (22 P 2% =2 2w (wy 4 az +y2).

(84)

The telescoper of the rational function in four variables,
TYyz

T(x, y, z, w)’ (86)
is an (irreducible) linear differential operator of (only) order-four L, which is non-
trivially homomorphic to its adjointf. A priori, we cannot exclude the fact that Ly
could be homomorphic to the symmetric cube of a second-order linear differential
operator, or to a symmetric product of two second-order operators. Furthermore, it
could also be, in principle, that these second-order operators admit classical modular
forms as solutions (pullbacks of special oF} hypergeometric functions). However,
these options can both be excluded by using some results from differential Galois
theory [68], specifically from [69, Prop. 7, p. 50] for the symmetric cube case, and
from [69, Prop. 10, p. 69] for the symmetric product case, see also [70, §3]. Indeed,
if L4 were either a symmetric cube or a symmetric product of order-two operators,
then its symmetric square would contain a (direct) factor of order 3 or 1. This is
ruled out by a factorization procedure which shows that the symmetric square of Ly
is (LCLM-)irreducible.

This example does not correspond to an addition formula like (75), but the
polynomial T'(z, y, z, w) still corresponds to a tri-quadratic. Consequently it is an
algebraic variety with an infinite number of birational automorphisms, as shown in
Appendix E.1.

t Its exterior square has a rational solution. However this order-four linear differential operator is
not MUM (maximum unipotent monodromy [27, 66, 67])
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6.2. Rational functions with tri-quadratic denominator: Fricke cubics examples
associated with Painlevé VI equations

Let us consider other simple examples of tri-quadratic surfaces that occur in different
domains of mathematics and physics.
Among the Fricke families of cubic surfaces, the family [71, 72, 73]

ryz +a2 +y? +2° +bix +byy +b3z +c¢ = 0, (87)

of affine cubic surfaces parametrised by the four constants (b, ba, b3, ¢) is known [72]
to be a deformation of a D, singularity which occurs at the symmetric (Manin’s) case
b1:b2: b3: 78,02 28.

Among the symmetric by = by = b3 cases some selected sets of the four constants
(b1, ba, b3, ¢) emerge: the Markov cubic by = bs = by = ¢ = 0, Cayley’s nodal cubic
by = bp = by =0, ¢ = —4, Clebsch diagonal cubic by = by = b3 =0, ¢ = —20,
and Klein’s cubic by = by = b3 = —1, ¢ = 0.

Some of these symmetric cubics can be seen as the monodromy manifold of the
Painlevé VI equation (see equation (1.7) in [74], see also equations (1.2) and (1.4)
in [73]): the Picard-Hitchin cases (0,0,0,4), (0,0,0, —4), (0,0,0, —32), Kitaev’s
cases (0,0,0, 0), (—8,—8,—8, —64), and especially Manin’s case (—8, —8,—8, 28).

Let us consider the (symmetric) rational function in three variables z, y and
z [72]:

1
22+y?2 +22 +zyz +c’
which takes into account the other Picard-Hitchin casest (0,0,0, 4), (0,0,0, —4),

(0,0,0, 32). The rational function (88) has an order-two telescoper which has a simple
pullbacked hypergeometric solution:

1 1 2 27 x2
ey 2F1<[§7 g], (1], *m) (89)

AR T
= @@ R ) - g qi?i>3)’

R(z,y, z) (88)

wheref:
p3(z) = 2 +3-(c+9)-2* +3- 2 1 +c5,
) = 2% +3-(c+8)-2® +3- - x +

Eliminating z = wly in the denominator of (88) gives the genus-four algebraic curve:

22 (2 + y?) +(p 4o 2% +pE = 0. (90)

Again, the question is to see whether the Jacobian of this genus-four algebraic curve
(88) could also correspond to a split Jacobian, with a j-invariant corresponding to
the Hauptmodul in (89).

1 As well as the Markov cubic by = by = b3 = ¢ = 0, Cayley’s nodal cubic by = by = b3 =0, ¢ =
—4, and Clebsch diagonal cubic by = ba = b3 =0, ¢ = —20 cases.

1 The values ¢ =0 and ¢ = —4 are the only values such that the discriminant in z of ps(x) can be
Z€ero.
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7. Telescopers of rational functions of several variables

Let us consider the rational function in four variables z, y, z, u:

1
1 +3y +2 +9yz +1122y +3ux’
The telescoper of this rational function of four variables is an order-two linear
differential operator Lo which has the pullbacked hypergeometric solution:

R(z, y, z, u) (91)

(1 — 25922%)71/4 (92)
1 5 419904 - 2% - (5 — 12z — 19440 2% + 2665872 %)
X 2 1([57 ﬁ]? [1]7 - (1 — 9592 2\3 )
z?)

The diagonal of (91) is the expansion of this pullbacked hypergeometric function (92):
1 +6482% — 729002 + 1224720 2* — 330674400 2° + 23370413220 2° (93)
— 1276733858400 27 4 180019474034400 2% — 120134272406148002° +

If one considers the intersection of the vanishing condition of the denominator of (91)

with the hyperbola p = xy zu, eliminating for instance u = m’ﬁ in the vanishing

condition of the denominator of (91), one gets a condition, independent of x, which
corresponds to a genus-one curve

11y?2° +9y%2% +39y%*2 +y2* +yz +3p = 0. (94)
The Hauptmodul of this elliptic curve (94) reads:
419904 - p?- (5 —12p — 19440 p? + 2665872 p3)
(1 — 2592p2)3 ’
which corresponds precisely to the Hauptmodul pullback in (92).

H:

(95)

Remark : The expansion (93) of (92) is not only the diagonal of the rational
function R(z, y, z, u) in four variables (91), it is also the diagonal of the rational
function of three variables R(z, y, z, 1). Actually, using section (3), one sees easily
that eliminating =z = y% in the the vanishing condition of the denominator of
R(z, y, z, 1) gives exactly the same elliptic curve (94).

Let us, now, generalize the rational function (91) of four variables z, y, z, u,
introducing the rational function of N + 3 variables z, y, z, uy, ug, -+, un:

R(l’, Y, Z, Ur, U2, * - ,UN) (96)
1
1 +3y +2 +9yz +1122y +3z-ujus - uy

The telescoper of this rational function of N + 3 variables is the same order-two
telescoper as for (91), which has the pullbacked hypergeometric solution (92). Again
one can verify that the diagonal of (96) is the expansion (93) of the pullbacked
hypergeometric functionf (92). If one considers the intersection of the vanishing
condition of the denominator of (96) with the hyperbola p = zyzujus - up,
eliminating for instance wuy m in the vanishing condition of the
denominator of (96), one gets again a condition, independent of x but also of
u1, -+, un, which corresponds to a genus-one curve (94):

119223 +9y%2% +3y%2 +y22 +yz +3p = 0. (97)

1 A pure algebraic geometer will probably consider this result as trivial from the computational point
of view, saying that the variety is a fiber bundle over a family of elliptic curves with constant fiber
(see also below).
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The Hauptmodul of this elliptic curve (97), or (94) reads again the Hauptmodul (95)
which corresponds precisely to the Hauptmodul pullback in (92).

Other examples, corresponding to simple polynomial deformations of (91), such
that their diagonal is the pullbacked o F} hypergeometric function (92) are displayed
in Appendix F. This (infinite) family of rational functions correspond to a different
algebraic geometry scenario: the “canonical” algebraic surface corresponding to the
intersection of the vanishing condition of the denominator of the rational function
with the hyperbola p = zyz, is foliated in (generically high genus) algebraic curves
depending on the variable z. One sees (experimentally) that the Hauptmodul of
the pullbacked oF} hypergeometric functions corresponds to the Hauptmodul of the
x = 0 algebraic curve, which is an elliptic curvej. In contrast with the other
examples and results of this paper, we have no algebraic geometry interpretation
of this experimental result yet.

8. Conclusion

Diagonals of rational functions emerge quite naturally in lattice statistical
mechanics [19, 20]. This explains the frequent occurrence of modular forms,
represented as pullbacked oF; hypergeometric functions [1, 2] in lattice statistical
mechanics [21, 22, 23, 24, 25, 26, 27].

We have shown that the results we had obtained on diagonals of nine and ten
parameters families of rational functions in three variables, using creative telescoping
yielding classical modular forms expressed as pullbacked oF; hypergeometric
functions [1, 2], can be obtained much more efficiently calculating the j-invariant of an
elliptic curve canonically associated with the denominator of the rational functions. In
the case where creative telescoping yields pullbacked 5F; hypergeometric functions,
we generalize this result to other families of rational functions of three, and even
more than three, variables, when the denominator can be associated with products
of elliptic curves or foliation in terms of elliptic curves, or when the denominator is
associated with a genus-two curve with a split Jacobian corresponding to products of
elliptic curves.

We have seen different scenarii. In the first cases, we have considered
denominators corresponding to products of elliptic curves: in these cases the solutions
of the telescoper were products of pullbacked 5F; hypergeometric functions. We
have also considered denominators corresponding to genus-two curves with split
Jacobians isogenous to products of two elliptic curves, and in these cases the
solutions of the telescoper were sums of two pullbacked 5 F; hypergeometric functions,
sometimes one pullbacked oF} hypergeometric function being enough to describe
the two Galois-conjugate j-invariants (see 5.4). We also considered denominators
corresponding to algebraic varieties where the Hauptmodul pullback in the pullbacked
oF1 hypergeometric functions emerges from a selected (x = 0, see Appendix
F.1, Appendix F.2) elliptic curve of the algebraic variety. We also encountered
denominators corresponding to algebraic manifolds with an infinite set of birational
automorphisms and elliptic curves foliation yielding, no longer classical modular forms
represented as pullbacked 5F; hypergeometric functions, but more general modular

1 The algebraic curves for other values of x are not necessarily elliptic curves, they can be algebraic
curves of quite large genus.
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structures associated with selected linear differential operators like Calabi-Yau linear
differential operators [27, 66] and their generalisations.

The creative telescoping method on a rational function is an efficient way to find
the periods of an algebraic variety over all possible cyclesi. The fact that the solution
of the telescoper corresponds to “periods” [37] over all possible cycles is a simple
consequence of the fact that creative telescoping corresponds to purely differential
algebraic manipulations on the integrand independently of the cycles, thus being blind
to analytical details. In this paper, we show that the final result emerging from such
differential algebra procedures (which can be cumbersome when the result depends
on nine or ten parameters), can be obtained almost instantaneously from a more
fundamental intrinsic pure algebraic geometry approach, calculating, for instance, the
j-invariant of some canonical elliptic curve. This corresponds to a shift Analysis —
Differential Algebra — Algebraic Geometry. Algebraic geometry studies of more
involved algebraic varieties than product of elliptic curves, foliation in elliptic curves
(Calabi-Yau manifolds, ...) is often a tedious and/or difficult task (finding Igusa-
Shiode invariants, ...), and formal calculations tools are not always available or user-
friendly. Ironically, for such involved algebraic varieties the creative telescoping may
then become a simple and efficient tool to perform effective algebraic geometry studies.
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Appendix A. Diagonals of rational functions and Picard-Fuchs equations

For simplicity let us consider rational functions of three variables, and double
integrals [86]. The diagonal of a rational function of three variables is obtained through
its multi-Taylor expansion [19, 20]

R(z, y, z) = ZZZ Amym, 1o Y 2, (A1)
m n l

by extracting the ”diagonal” terms, i.e. the powers of the product p = zyz:
Diag(R(x, Y, Z)) = Z Am,m,m D" (A.2)
m

Such diagonals are closely related to the integrals of rational functions. For example
Diag (R(a:, Y, z)) is the constant term (in y, z) in the infinite expansion
R(£7 Y, Z) = Z Am,n,l _pm y"_m Zl_m, (A3)
Yz
m,n,l >0

1 Not only the vanishing cycles [38, 40] corresponding to diagonals of rational functions.
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which can be represented by the integral [35]

ﬁ 7[% R(y%’ Y, z) % /\%. (A.4)

The diagonal (A.2) is also the constant term (in y, z) of

R(B, g Z> = > amnpt YA (A5)
y z
m,n,l >0

wich is of the form

1 Noly, 2) dy  dz
(27i)2 %f{ Dyyz) vy 2 (A.6)

where the numerator N,(y, z) and the denominator D,(y, z) are polynomials. it is
well-known that such integrals satisfy a linear differential equation with respect to
p having rational functions in p as coefficients, called the Picard-Fuchs equationi.
the problem of determining such linear differential equations has been started by
Griffiths [75] with the assumption that the variety D,(y, z) = 0 is smooth, but
later techniques were developed to include examples with singular points [35, 41].
The linear differential equations (Gauss-Manin systems, telescopers) occuring in
integrable models [16, 23, 24] are of order much larger than order two¥ and almost
never correspond to smooth varieties. Creative telescopingt and more specifically
the programs [3] corresponding to a fast approach to creative telescoping [43], are a
powerfull way to find these linear differential operators annihilating these diagonal of
rational functions in the cases emerging naturally in theoretical physics, integrable
models, enumerative combinatorics, for which the order of the linear differential
operators is quite large [16, 23, 24] and the variety Dp(y, z) = 0 is (most of the
time) not a smooth one. All the pedagogical (but non-trivial) examples of telescopers
displayed in this paper can be viewed by an algebraic geometer as a presentation of
examples of families of varieties and their Picard-Fuchs equations.

Appendix B. Maximum number of parameters for families of planar
elliptic curves.

We have seen, in section 3, that the previous results on diagonals of nine or ten
parameters families of rational functions of three variables being pullbacked oF}
hypergeometric functions (and in fact classical modular forms) can actually be seen as
corresponding to the (well-known in integrable models and integrable mappings) fact
that the most general biquadratic corresponding to elliptic curves is a nine-parameters
family and that the most general ternary cubic corresponding to elliptic curves is a
ten-parameters family. One can, for instance recall page 238 of [76], which amounts to
considering the collection of all cubic curves in CP, with the homogeneous equation
az® +b2%y + cxy® +dy® +ex’z + fx2? +gyiz

+hy2? +iz® +jrzyz = 0, (B.1)
1 The order of this linear differential equation is generally equal to the rank of the algebraic deRham
cohomology of D, (y, z) = 0. For curves of genus g this rank is 2g.
9 Since Felix Klein it is well-known that the Picard-Fuchs equation corresponding to the (Weierstrass)

elliptic curve corresponds to the hypergeometric function 2F4([1/12,5/12],[1],1/J).
t For a detailed introduction to creative telescoping [36] see for instance [34].
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and the associated problems of passing through nine given points. One can also recall
the ternary cubics in [77, 78] and other problems of elliptic curves of high rank [79]
(see the concept of Neron-Severi rank).

Since the rational functions of three variables we consider are essentially encoded
by the denominator of these rational functions, and in the cases we have considered, the
emergence of pullbacked 5 F} hypergeometric functions (and in fact classical modular
forms) corresponds to the fact that the intersection of these denominators with the
hyperbola p = xyz corresponds to elliptic curves, one sees that these rational
functions are essentially classified by the possible n-parameters families P(z, y) = 0
of elliptic curves.

If one considers a polynomial

P(z,y) = Z Z A, - 7Y™ (B.2)

with generic coefficients a,,,, € C, then the genus of the algebraic curve defined by P
is determined by the support supp(P) = {(m,n) € N? : a,, , # 0}. More precisely,
the genus equals the number of interior integer lattice points inside the convex hull
of supp(P) [80] (see also the discussion in [81]). For example, the support of the
ten-parameters family (11) consists of the following 10 points in N2:

(0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)

which form a right triangle of side length 3. Only one of these points is an interior
point, namely (1,2), hence the genus is 1.

Therefore we may ask: which integer lattice polytopes exist which have exactly
one interior point and what is the largest such polytope? Not surprisingly, the answer
is known: there are (up to transformations like translation, rotation, shearing) exactly
16 different polytopes with a single interior point [82] (see also Figure 5, page 548
in [83]), the above-mentioned right triangle being the one with the highest total
number of lattice points.

This shows that there cannot be a family of elliptic curves with more than ten
parameters.

Appendix C. Monomial transformations preserving pullbacked
hypergeometric results

More generally, recalling subsection 4.2 in [2] and subsection 4.2 page 17 in [1], let us
consider the monomial transformation

(CC, Y, Z) — M(.’E, Y, Z) = (va YM ZM)
_ (xAl cyAz. s gBi B2 By n 01 4 Ca an), (C.1)
where the A;’s, B;’s and C;’s are positive integers such that A; = Ay = Ag is

excluded (as well as By = By = Bj as well as C; = Cy = (Cj3), and that the
determinant} of the 3 x 3 matrix [1, 2]

Ay By (O
Az By Oy |, (C.2)
As Bs (s

1 Note a typo in the footnote 28 page 17 of [1] as well as in the second footnote page 18 in [2]. The
sentence has been truncated. One should read: For n = 1, the 3 x 3 matrix (C.2) is stochastic and
transformation (C.1) is a birational transformation if the determinant of the matrix (C.2) is +1.
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is not equal to zeroft, and that:
AL +B1 +Cy = Ay + By +Cy = A3 + Bs +Cs. (C.3)

We will denote by n = A; + B; + C; the integer in these three equal sums (C.3).
Condition (C.3) is introduced in order to impose that the producty of xns yar zas is
an integer power of the product of zyz: xpyymzm = (xyz)™

If we take a rational function R(z, y, z) in three variables and perform such a
monomial transformation (C.1) (z,y, 2) — M/(x, y, z), on this rational function
R(z, y, z), we get another rational function that we denote by R = R(M(z, y, z)).
Now the diagonal of R is the diagonal of R(z, y, z) where we have changed z into

O(x) = Diag(R(m, Y, z)), Diag(?i(w, Y, z)) = P(z"). (C4)

Appendix D. Weierstrass and Legendre forms

The telescoper of the rational function in three variables
zy

(14+y)?2 —z-1—2) (z —zy2) (D-1)
associatedt with the elliptic curve in a Weierstrass form:
1+y)? —z-(1-2) (x-p) = 0 (D.2)
is the order-two linear differential operator
Ly = -1 +4-(1-22)-D, +4-z-(1 —x)- D2, (D.3)
which has the hypergeometric solution:
11
i (150 5) 1) @) (D)

22 (1 —x)?
= (1 -z +x2)71/4' 25([%, %]v 1], % (1_(%14_962))3)

The elliptic curve (D.2) has the Hauptmodul

21 p* (1 —p)?
H - Z * m- (D.5)

in agreement with the pullback in (D.4).

Appendiz D.1. K8 surfaces as products or foliations of two elliptic curves.

The examples of section 4 correspond to denominators which are algebraic varieties
that can be seen as Weierstrass elliptic curves for fixed values of all the variables except
two. Let us show other simple telescopers for rational functions with denominators
which are algebraic varieties with some foliation in elliptic curvesi.

1T We want the rational function R = R(M(z, y, z)) deduced from the monomial transformation
(C.1) to remain a rational function of three variables and not of two, or one, variables.

9 Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor
expansion, only the terms that are n-th power of the product xy z.

1 The diagonal extracts the terms function of the product p = zyz in the multi-Taylor series.

i Like K3 surfaces, or three-fold Calabi-Yau manifolds.
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The telescoper of the rational function in four variables
Yz

: D.6
(+F = (-0y @-9) O -syz0) (PO
associated with the K3 surface written in a Legendre form|
(1+2? —z-(1-2)-y (x-y)-(y-p = 0 (D.7)
is an order-three self-adjoint linear differential operator L3
Ly = z- (20 +1)® —8-6° (D.8)

which has the following 3F5 solution (which is also, because of Clausen’s formula, the
square of a oF} function):

1 11 11 2
s[5 50 50 1 @) = oRi(lg 7)1 @) (D.9)
The K3 surface (D.7) can be seen as associated with the product of two Weierstrass
elliptic curvest of Hauptmoduls respectively:
27 p?- (1 —p)? 27 2. (1 — )2
W, = 2o Qopl oy 2y o) (D.10)
4 (1 -p+p?) 4 1 -y+y)
This order-three linear differential operator L3 is the symmetric square of the order-
two linear differential operator

My = —1 +8-(2-32)-D, +16-2- (1 —z)- D (D.11)
which has the hypergeometric solutions:
11 x\—1/4 1 5 27 - 22
Fi(l-, -], 1 = (1 —-— o (| —=, =], 1], ——= ). D.12
2 1<[4’ 2 1 x) ( 4) 2 1([12’ o) [ (x —4)3) (D.12)

Appendiz D.2. Calabi-Yau three-fold manifolds as foliation in three elliptic curves.

The telescoper of the rational function in five variables =z, ¥y, z, v and w
TYzZv

. (D13
(e —2 (-9 9 @-9 2 0-2 ¢-sgom)y O
associatedtt with the Calabi- Yau three-fold written in a Legendre form
1+w)? —z-(1-2)-y (e-y) 2z (y—2) (z-p = 0 (D19
is an order-four (self-adjoint) linear differential operator Lg4
Ly = 16-60* —z- (20 +1)*, (D.15)
which is a Calabi- Yau operatorf with the ,F3 solution:
1111
F(7,7,7,7,1,1,1, ) D.1
(g 5050 5k L L1 (D.16)

|| Along this line see the first equation page 19 of [84].

€ The order-three linear differential operator is thus the symmetric square of an order-two linear
differential operator.

t K3 surfaces are not abelian varieties, but they are “close” to abelian varieties: from a creative
telescoping viewpoint they can be seen as essentially products of two elliptic curves.

11 The diagonal extracts the terms function of the product p = zyzvw in the multi-Taylor series.
§ This linear differential operator is self-adjoint, its exterior square is of order five, it is MUM
(maximum unipotent monodromy [27, 66, 67]), ...
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For y and z fixed, the Calabi-Yau three-fold (D.14) is foliated in genus-one curves
14+w)? —X-z-(1—2) (x —y) = 0, (D.17)

where \ is the constant expression (p is fixed):

A=y 2z (y—2)(z-p. (D.18)
The Hauptmodul of these genus-one curves is independent of p and z, reading:

2 2

H,. = % . m (D.19)
Similarly for = and z fixed, the Calabi-Yau three-fold (D.14) is foliated in genus-one
curves

L+w)? —p-y-(z-y-(y—2) =0 (D.20)
where p is the constant expression (p is fixed):
w= xz-(1—-2a)(z—p). (D.21)
The genus-one curves (D.20) can be written in a simpler Weierstrass form:
(1 +w)> —p~Y-(1—Y)-(Y—§) = 0, (D.22)
where the constant p reads p = - 23, and the variable y has been rescaled into

Y = y/x. The Hauptmodul of these genus-one curves (D.20) is the same as the
Hauptmodul of the genus-one curves (D.17), and corresponds to expression (D.19)
where y has been changed into z/x (see the canonical form (D.22)), namely:
27 2% 2% (2 —2)?

4 (22 —xz2 +22)8°

Similarly for = and y fixed, the Calabi-Yau three-fold (D.14) is foliated in genus-one
curves,

Hx,z = (D23)

A+w)? —v-z-(y—2)-(z—-p) = 0, (D.24)

where v reads:
v = z-(1—-2)-y- (x —y). (D.25)
A reduction to a canonical Weierstrass form similar to (D.22) gives immediately the

Hauptmodul of the genus-one curve (D.24) which reads:

27 y*-p - (y —p)?

4 (y2 —yp +p?)?
The Calabi-Yau three-fold (D.14) thus has a foliation in a triple of elliptic curves &,
52 and 53.

Hoy =

(D.26)

Appendix E. Rational functions with tri-quadratic and N-quadratic
denominators.

Appendiz E.1. Rational functions with tri-quadratic denominators.

Let us consider the most general tri-quadratic surface

Yoo DL Gmara"ytd =0, (E.1)

m=0,1,2 n=0,1,2 [=0,1,2
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depending on 27 = 33 parameters Gm.n,1- It can be rewritten as:
It is straightforward to see that condition (E.2) is preserved by the birational involution
L.

Clz,y) 1

I,: (33, Y, z) — (x, Y, A ) . ;), (E.3)

and we have of course two other similar birational involutions I, and I, that single
out x and y respectively. The (generically) infinite-order birational transformations
K, =1, -I,, Ky, = I, - I, and K, = I, - I, are birational symmetries of
the surface (E.1) or (E.2). They are related by K, - K, - K., = identity. Note
that the birational transformation K, preserves x. The iteration of the (generically)
infinite-order birational transformation K, gives elliptic curves. Since equation (E.1)
or (E.2) is preserved by K., which also preserves x, the equation of the elliptic curves
corresponding to the iteration} of K, is actually (E.1) for fized values of x. Equation
(E.1), for fixed values of z, is a (general) biquadratic curve in y and z and is thus an
elliptic curve depending on x. Therefore one has a canonical foliation of the algebraic
surface (E.1) in elliptic curves. Of course the iteration of K, (resp. K) also yields
elliptic curves, and similarly yields two other foliations in elliptic curves.

We have a foliation in two families of elliptic curves £ and &’ of the surface.
Consequently, this tri-quadratic surface (E.1), having an infinite set of birational
automorphisms, an infinite set of birational symmetries, cannot be of the “general
type” (it has Kodaira dimension less than 2).

Appendiz E.2. Rational functions with N -quadratic denominators.

The calculations of Appendix E.1 can straightforwardly be generalised to N-quadratic
equations, writing the N-quadratic (72) as

A(xlax27"'a$N*1)'x?\f +B(1’1,‘T2,"'71'N71)'5EN
+ 0(171, Tyt ", J?N_l) = 0, (E4)
and introducing the birational involution In
INZ (l‘l,xg, ,J)N> (E5)
( C(x1, o, -+, xn—1) 1 )
— L1, T2, "+ 3 TN—1, R
A(xl, T2, * fol) N

Similarly to Appendix E.1, we can introduce N involutive birational transformations
I, and consider the products of two such involutive birational transformations
Ky, = In - I, These K,,,’s are (generically) infinite order birational
transformations preserving the N — 2 variables that are not z,, and z,.

Using such remarkable N variables algebraic varieties, with an infinite set of
birational automorphisms, one can build rational functions of N + 1 variables, any of
the parameter of the algebraic variety, becoming an arbitrary rationali function of the
product p = x1 9 --- xy in order to build the denominator of the rational function.

1 The birational transformation K, maps the elliptic curve onto itself (self-map). One can use the
iteration of the birational transformation K, to actually visualise the elliptic curve [45, 85].

1 Or even an arbitrary algebraic function of the product p = z1z2 --- xn, with a Taylor series
expansion at p = 0, the diagonal of rational functions becoming diagonal of algebraic functions.
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The telescopers of such rational functions are seen (experimentally using creative
telescoping) to be of substantially smaller order than the ones for rational functions
where their denominators are, after reduction by p = xyxo - -+ x, associated with
algebraic varieties of the “general type”.

Appendix F. Telescopers of rational functions of several variables: some
examples

Let us consider here the following family of rational functions in four variables
R(z,y, z,u) = (F.1)
1
1 +3y +z +9yz +1122y +3ux +x- Pz, y, 2)’

where P(z, y, z) is an arbitrary polynomial of the three variables z, y and z.

Appendiz F.1. Telescopers of rational functions of several variables: a second
example with four variables

Let us now consider the rational function in four variables z, vy, z, u:

R(z, y, z,u) = (F.2)

1
1 +3y +2z +9y2z +1122y+3ux +9x +2zy +5x2 +72%2y

which corresponds to P(z,y,2z) = 9 +2y +5z + 7xy. The telescoper of this
rational function of four variables is the same order-two linear differential operator
Lo as for the telescoper of (91). It has the same pullbacked hypergeometric solution
(92). The diagonal of the rational function (F.2) is the expansion of (92), namely (93).

Performing the intersection of the codimension-one algebraic variety

143y +2z +9yz +112%2y +3uz  +9z +2zy +5zxz+72%y = 0,

corresponding to the denominator of (F.2), with the hyperbola p = xzyzwu amounts

to eliminating, for instance w (writing v = IZ —). This gives P, = 0 where P,
reads:
P, = 7T2%%2 +2xy%2 +5ay2® +9ayz 4+ 11y%2°  +9y°%2°
+3y%z +y22 +yz +3p. (F.3)

Assuming x to be constant the previous condition P,(y, z) = 0 is an algebraic curve.
Calculating its genus, one finds immediately that it is genus-one. Calculating its j-

invariant, one deduces the expression of the Hauptmodul H,, = % as a rational
expression of p and z:
1728 46656 p3 - (72?2 +2x+3)2- N
Hpo = T2 ( - N (F.4)

where N is a polynomial expression of degree eight in w and three in p, and D is a
polynomial expression of degree four in w and two in p. In the x — 0 limit of the

Hauptmodul H,, = %, one finds:
419904 - p3 - (5 — 12p — 19440 p? + 2665872 p3
Hy - - P ( P P’ + r) (F.5)

(1 — 2592p2%)3
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which is actually the Hauptmodul in (92). In other words, the exact expression of the
diagonal of the rational function (F.2), which is (92), and is essentially encapsulated
in the Hauptmodul in (92), could have been obtained from the z = 0 selection of
the Hauptmoduls H, ,.

Appendiz F.2. Telescopers of rational functions of several variables: a third example
with four variables

Let us consider the rational function in four variables x, y, z, u:
R(z, y, z, u) = (F.6)
1
1 +3y +2z +9yz +1122y +3ux +z- (y222 + zy?)’

which corresponds to P(z,y,2) = %%2? + xy® in the family (F.1). Again, the
telescoper of this rational function of four wvariables is the same order-two linear
differential operator Lo as for the telescoper of (91). It has the same pullbacked
hypergeometric solution (92). Actually the diagonal of the rational function (91) is
the expansion (93) of the pullbacked hypergeometric function (92). In this case (F.6),
the elimination of v = I in the vanishing condition of the denominator (F.6) gives
the algebraic curve:

2ytz by 4119228 99222 4372 vyt +yz +3p = 0. (F.7)

For z fixed (and of course p fixed) this algebraic curve (F.7) is a genus-five curve,
but, of course, in the & = 0 case it reduces to the same genus-one curve as for the
first example (91), namely:

11222 +99y*2% +3¢y%2 +y2%2 +yz +3p = 0. (F.8)

which corresponds to the Hauptmodul (F.5).

The generalisation of this result is straightforward. Let us consider the rational
function in four variables x, y, z and wu

R(ZL’, Y, 2, U) = (Fg)
1
1 +3y +2z +9yz +1122y +3ux +x- Plx,y, 2)’

where P(z, y, z) is an arbitrary polynomial of the three variables z, y and z. On a
large set of examples one verifies that the diagonal of (F.9) is actually the expansion
(93) of the pullbacked hypergeometric function (92):

1 +64822 — 7290023 + 1224720 2% — 330674400 2° + 233704132202°  (F.10)

— 1276733858400 27 4 180019474034400 2% — 12013427240614800 2° +

However, as far as creative telescoping calculations are concernedi, the telescoper
corresponding to different polynomials P(x, y, z) becomes quickly a quite large non-
minimal linear differential operator. For instance, even for the simple polynomial
P(x,y, z) = x +y, one obtains a quite large order-ten telescoper. Of course, since
this telescoper has the pullbacked hypergeometric function (92) as a solution, it is not
minimal, it is rightdivisible by the order-two linear differential operator having (92)

1 Using the HolonomicFunctions package [3].



Algebraic Geometry approach of Diagonals 33

as a solution. It is straightforward to see that the previous elimination of u = wZ ~
in the vanishing condition of the denominator (F.9) gives an algebraic curvef

119223 +99222 +39y%2 +y2%2 +yz +3p +yz- P(z,y, 2)= 0. (F.11)

which reduces again, in the = = 0 case, to the same genus-one curve (F.8).

With that general example (F.9) we see that there is an infinite set of rational
functions depending on an arbitrary polynomial P(x,y, z) of three variables whose
diagonals are actually a pullbacked oF; hypergeometric solution, namely (92).
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