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Abstract: It is shown that the low temperature expansion of the partition function, 

magnetization and nearest neighbour correlation functions of the q-state checkerboard 

Potts model in a magnetic field drastically simplify on a very simple algebraic 

variety.These four fonnal constraints on the expansions are also analyzed in the 

framework of the resummed low temperature expansions and the large q expansions. 

These exact results are generalized straightforwardly to higher dimensional hypercubic 

lattices and also to some random problems. 
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I Introduction. 

It has been shown in a previous paperl ( denoted hereafter paper I) that the low 

temperature expansions of the panition function, spontaneous magnetization and nearest 

neighbour correlation functions of the checkerboard Potts model in zero magnetic field 

drastically simplify on the dual of the disorder variety of the model ( for a review on 

disorder solutions see for instance RUjan 2,3 ). As this variety lies in the non physical 

domain of the parameter space , these results must be considered as exact formal 

constraints bearing on the low anisotropic temperature expansion of the model. In paper 

I these exact constraints have been verified on the low temperature expansions of the 

checkerboard Potts model obtained up to order twelve. In this work it is shown that 

these results can actually be generalized even in a non zero magnetic field, leading to new 

constraints . 

In the first part of this paper, it is shown that, restricted to some algebraic varieties, 

the four quantities previously mentioned simplify to give rational expressions in the low 

temperature variables.An heuristic but simple argument is also given in order to 

understand these results These formal exact results are checked up to order twelve on the 

low temperature expansion of the model obtained in paper I. They are also checked on 

the resummed low temperature expansions and on the large q expansions. Finally, one 

shows that these results can be generalized straightforwardly to the Potts models on 

higher dimensional hypercubic lattices and also to some random field Potts models. 

I1 Fonnal constraints on the low temperature expansion of the checkerboard Potts model 

in a magnetic field. 

The partition function per site Z of the q-state checkerbo.frd scalar Potts model in a 

magnetic field is given by: 

zN ca,b,c,ct;hJ = L IT .'• .. .-. IT b~~•·'•IT 
I•) <•&> q') <\t) 

~ ..... , rr c 
<tc) 

~ . 
d O"e,cr~ rr h 'b <;... 

"' (1) 
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a,b,c,d denote the exponential of the four coupling constants of the model (see figure 1) 

and h is the exponential of the magnetic field. The spins a belong to Zq .One defines 

the normalized low temperature partition function per site by: 

Z(a,b,c,d;h)= (abccth2) 1(2 A(a,b,c,d;h) 

The parameters of the low temperature expansion of the model will be denoted by: 

A=l/a, B=l/b,C=l/c,D=l/d and z=l/h. The expansion of In A was established up to 

order twelve in paper I. Let us recall its first tenns: 

lnA(A,B,C,D;z) = (q-I)ABCDz+(q-I)(A2B2C2+A2B2D2+A2CZD2+B'C2D2) z2/2 

+l/2(q-l)(q-2)(AB2C2D2+A2BC2D2+ A2B2CD2 + A2B2C2D) z2 + ... 

(2) 

As a generalization of the variety studied in paper I (the dual of the disorder variety) 

we claim here that restricted to the algebraic variety : 

D + ABCz+ (q-2) ABCD z =0 (3) 

the following results hold: 

In A j131 =1/2 In (l+(q-I)ABCD z )=1/2 In (1-(q-1) D2/ (l+(q-2) D) ) 

(4) 

A (afiJA) In A ( A,B,C,D; z) /13) = o (5) 

D (a(iJD) In A ( A,B,C,D; z) lo) = D!2( d/ctD)In (I- (q-1) D2/(l+(q-2)D)) 

(6) 

z (afiJz) In A ( A,B,C,D; z) lc3) = (1-M)(q-1)/q = 0 (7) 
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where M denotes the magnetization of the model. One thus has four exact results bearing 

on the low temperature expansion of In A and on its different derivatives. Using 

formal calculation program REDUCE 4 and the expansion of paper I we have actually 

verified, up to order twelve, equations (4),(5),(6),(7). 

These propenies can be understood in an heuristic way with a decimation procedure 

very similar to the one introduced by Jaekel and Maillarct5 or Dhar and Maillarct6. 

Indeed, let us consider the following local condition on the elementary cell of the model 

(see fig 2). 

cyo 

L o· =0 --' --crk =(] 

~ I I =A6crlo 

(Jl 

.._., I ~ 
=~a t;.,!J'b cr~cr c~IJ\.ff" d~focri•o 8crj'o 8crk'O 

( 8 ) 

This amounts to say that, when !he three spins Oj , crj , crk are fixed in the same state 0 

the sum over the spin cr constrains the remaining spin cri to be in the same state 0. 

Analytically, this condition is expressed as (3). When it is met, A is given by: 

A= abcdh (l+(q-1) ABCDz) (9) 

It is a straightforward matter to see that, using this local condition on the lattice with 
' the boundary conditions depicted on figure 3, one can decimate the whole lattice. Indeed 

, this condition allows to"eat" the lattice from the top (or from the bottom) so that the 

panition function per site reduces to the one of an elementary cell (see figure 2) , It is 
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also possible to argue in a similar way, eating the lattice from the top i!llil the bottom, to 

show that the nearest neighbour correlation functions reduce also to the one of some one 

dimensional model6. The exact expressions thus obtained are actually in agreement with 

( 4 ),(5),(6),(7). 

This decimation procedure can be seen as the "dual" of the one described in Jaekel 

and Maillard 5 and Dhar and Maillard 6 In these decimation procedures well suited for 

the disorder solutions, the pure disordered state plays a special role, which is played here 

by the pure ordered state. These very simple and exact results are reminiscent of the one 

concerning the KDP model which can be solved in any dimension forT< T c 7 .This 

last solution also corresponds to a pure ordered state. However in the case of the KDP 

model (forT< Tc) the pure ordered state is the ground state of the model . In the 

transfer matrix formalism the pure ordered state is an eigenvector , the eigenvalue of 

which is the largest of the whole spectrum. ForT> Tc, it is still an eigenvector but its 

eigenvalue is no longer the largest one. In the case of this paper, (3) is not a physical 

condition and (4) will in general no longer be the logarithm of the (physical) normalized 

partition function of the model but the analytical continuation to non physical values of 

the parameters of the low temperature expansion. Equations (3) to (7) are fonnal but 

exact conditions that are indeed satisfied by the (analytical continuation of the) low 

temperature expansion of the model. 

ID. Resummed low temperature expansions. 

The resummed low (or high) temperature expansion is well suited for the analysis of 

the inversion relation on the checkerboard Potts model 8. The two expansion parameters 

are for instance B and D while A, C and z are not necessarily small. 

This expansion has already been established for the mcxlel with zero magnetic field up to 

order four in B and D 8, This result can be generalized when the magnetic field is non 

zero. This expansion reads: 

6 

BX+DY BX2+DY2 A
2z2

+C
2z2+2 A2dz4 

l-n A (A,B,C,O ;z) = (q-1) -2~ + (q-1)(q-2) 
2 

+(q-1) . 2C'- 4 2 (1-A z ) 

ACi (A+ C +2A 
2
C

2z4
) 

(BO+BY+OX)2 +(q-1)(q-2) 
3 4 

(BO+BY+OX)
2

+ 
2CI-A3c z) 

(q-l)(q-2J' ACz 
2 

( 2BOXY + AC( B2X2 + 0 2Y2))+ 
2(!-A2C'-z) 

2 1 3 1 A C z 4 4 3ACz ACz (q-1) --- ~-- (B +0)/2+4 1-
{ 

( 222J2 2 

[ 2 (l-A2C2z2)ll- A2C2z2 [ 1-A2C2z2] C-A2C2z2) 

( B3D + BD3) + z[~- ; 2 2] ( 1 + 2 A2C2z2)( A2Cz2 2)2 B2D2} + ... 
1-ACz 1-ACz 

(10) 

where: 

ACz 
X 

2 2 2 
( D + ABCz) and 

1- A C z 

ACz 
Y -· 

2 2 
? (B + ADCz) 

1- A C z 

On this resummed expansion one easily verifies the inversion relation of the model8. 

1 -B 1 ~ . ..!._) = In A( A,B,C,O ;z) + Ln A( A' 1 + (q-2)B 'c' 1+(q-2)0' z 

1 (q-1)B2 1 (q-1) o2 

2 Ln ( 1 - 1+ (q-2)B) + 2 Ln (1 - 1+(q-2)0) 

(11) 

Note that the exact formal results (4),(5),(6) and (7) cut also be verified on the 

resummed expansion . Indeed, (3) is actually compatible with B and D both small. 

Equations (4),(5),(6),{7) lead to much more severe constraints on the resummed 

expansions than on the classic low temperature expansions. Indeed they have to be 

verified forB and D small whatever A,C and z are. One actually verifies these equations 

up to order four in Band _D. Conversely one can use equations (4),(5),(6),{7) together 

with the inversion relation (1) and the low temperature expansion of paper I up to order 
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twelve in order to detennine the resummed expansion up to order five (and eventually to 
higher orders). However, this requires the detailed analysis of some specific classes of 
diagrams which is pretty tedious. Work is in progress to get the fifth order that way. 

IV. Large g expansions on the checkerboard Potts model. 

Large q expansions have already been obtained on the checkerboard Ports model 9 
even in a magnetic field 10. They are useful to analyze the vicinity of the critical variety 
of the model where a great number of exact results are available for zero magnetic field 

(partition function, internal energy, spontaneous magnetization, latent hear, critical 
exponents ... see for a review the paper by Wu 11 ). Equations (4),(5),(6), and (7) can 
also be checked on the large q expansion in a magnetic field. In this expansion A,B,C 
have to be considered as order q-1/2 whileD when satisfying (3) must be considered as 

order three in q-I/2. Indeed, we have verified all this set of equations up to order six in 
q-1/2 using the expansion given by Maillard and Rammal 10. Work is in progress to 

derive order seven in q-1/2 from these constraints. 

y Exact results on a cybic Pons model 

The results of the previous sections can be extended to a generalized cubic Potts 
model (depending on six coupling constants) in a magnetic field. The elementary cell of 
the model is depicted in figure 4. 

The generalization of condition (3) for this model reads: 

L: 't(lO""I.o- II..~ o-~cr e. e. \<:~cl"'"'-o- x ... a-eo- '<s(J'"~tr"' \<;~Y\O"" "o-.._ e. e.. ~ e. 
a-

• S.-c,.li'.-, .• \'.-,.,. ~,,.,Sor~.• 

\'- ~a •.• (14) 
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This condition means that when the five spins Oj , .... ,crm , are in the same state 
(say 0) the summation over the central spin a constrains the remaining spin to be also in 
the state 0. The suitable boundary conditions for that cubic lattice are depicted in figure 
5. Introducing the low temperature variables A= e-Kt, B = e-K2 , C=e-K3 , D=e-l<.4 
, E=e-Ks , F=e-% and z=e-h one gets, as a generalization of equations (1) to (5), 

on the algebraic variety: 

F+ABCDEz+(q-2)ABCDEFz = 0 (15) 

lnJ\(A,B,C,D,E,F; z) = 1/21n (1-(q-l)F2/(l+(q-2)F)) (16) 

A (d/dA) In A I (l5) = 0 (17) 

F (d/dF) In A f (1
5
) = F/2 d/df In ( 1- (q-I)F2/( I+ (q-2)F) ) (18) 

z (d/dz) In -115) = 0 (19) 

One can easily verify these equations on the lowest orders of the low temperature 

expansion of this cubic model. 

Note that, in the subcase of the six parameters cubic Ising model with zero magnetic 

field, equation (15) reads : 
< 

e-K, ..,-~.K; =0 (20) 

This condition leads to non physical values of the coupling constants. However it is 

worth noticing that, if one considers the dual of the cubic Ising model which is a pure 
gauge model , condition (20) becomes a~ condition bearing on the six coupling 

constants associated to each plaquette of the cubic elementary cell : 

~ 

-<hK6+IT thKi=O 
'':.1 

(21) 



9 

One recovers that way a disorder condition obtained by Neuberger on this pure gauge 

model 12 . This result is one of the few exact results on a three dimensional gauge 

model. 

VI Random models. 

These exact formal results can also be generalized to some random models . Let us for 

instance consider the previous checkerboard Potts model. Let us suppose also that a 

random magnetic field is located on half of the spins corresponding to a sublattice of the 

square lattice (see figure 6).The decimation procedure introduced in section II holds 

provided the appropriate bounda..ry conditions depicted on figure 6. 

One thus has the following formal results for the quenched partition function restricted to 

the variety : 

D +ABC+ (q-2) ABCD =0 (22) 

One can actually verify this result at the lowest orders : 

< In A ( A,B,C,D; [z))> I (22 ) = (q-1) ABCD (l+<z>)/2 + 1/2 (q­

l)(l+<z>)(B2c2o2 + ... ) 

+ 1/2 (q-l)(q-2)(1+<z>)(AB2c2o2 + .... ) + .... + (-512) (q-1)2 <z2> A2s2c2o2 + 

= 1/2ln (1 - (q-l)D21(!+(q-2)D) ) 

(23) 

Also note that condition (22) and the exact formal constraints (23) on the quenched 

partition function are independent of the distribution of the random field. 

YTI Conclusion 

It has been shown that new stringent exact constraints bearing on the low 

temperature expansions of two and three (or higher ) dimensional Potts models in a 

magnetic field ( even random fields) can be derived when one restricts the parameter 
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space to some algebraic varieties. Let us stress that these constraints are formal . 

Nevertheless , they constitute surprisingly simple but new results on the analytical 

structure of the Potts model. In particular, these results are helpful to check (or even to 

get) different expansions of this model. 

Acknowledgments: We would like to thank prof. R.J.Baxter for many helpful comments 

on the results of this paper. 

.! 



11 

References. 

1. Hansel D. and Maillard J.M, (1987) Series analysis of the q state checkerboard 

Potts model, submitted to J.Phys A. 

2. Rujan P., J. Stat. Phys. 34 (1984), 315 

3. Rlljan P., (1987) KFA preprint Cellular automata and statistical mechanical 

models 

4. Hearn A.C., (1984) Reduce users manuel RAND Publ. CP 78 (Rev. 1984) 

5. Jaekel M.T. and Maillard J.M., J.Phys A 18 (1985), 1229 

6. Dhar D. and Maillard J.M , J. Phys A 1.8 (1985), L 383 

7. Nagle J.F., Comm. Math. Phys. 3 (1969) 62 

8. Jaekel M.T. and Maillard J.M., J.Phys A 17 (1984), 2079 

9. Rarnmal R. and Maillard J.M., J. Phys A 16 (1983) ,1073 

10. Maillard J.M and Rammal R., J.Phys A 18 (1985), 833 

11. Wu F.Y., Rev. Mod. Phys. 54 (1982), 235 

12. Neuberger H., Phys. Leu. 167 B (1986), 429 

12 

Figure captions. 

figure 1: The checkerboard lattice. 

figure 2: The elementary cell of the checkerboard Potts model. 

figure 3: Appropriate boundary conditions for the decimation procedure on the 

checkerboard Janice. The spins with a cross are fixed to be in the same state 

zero. 

figure 4: The elementary cell of the generalized cubic Fotts modeL 

figure 5:Appropriate boundary conditions for the decimation procednre on the 

generalized cubic lattice. The spins with a cross are fixed to be in the same 

state zero. 

figure 6: The random field is located on spins with a cross. 
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