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FORMAL CONSTRAINTS ON SERIES ANALYSIS

I. Introduction
ON THE POTTS MODEL e

It has been shown in a previous paper1 ( denoted hereafter paper I} that the low

temperature expansions of the partition function, spontaneous magnetization and nearest

HANSELD. neighbour correlation functions of the checkerboard Potts model in zero magnetic field
Cente de Physique Théorique de {Ecole Polytechnique (1) drastically simplify on the duz! of the disorder variety of the model ( for a review on
%Iﬂ@gz Ecole Polytechnique, 91128 Palaisean Cédex. disorder solutions see for instance Ritjar 2.3 ), As this variety lies in the non physical
domain of the parameter space , these results must be considered as exact_formal
constraints bearing on the low anisotropic temperature expansion of the model. In paper
MAILLARD I.M.

I these exact constraints have been verified on the low temperature expansions of the
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checkerboard Potts mode! obtained up to order twelve. In this work it is shown that
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these results can actually be generalized even in 2 non zero magnetic field, Jeading to new

constraints .
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In the first part of this paper, it is shown that, restricted to some algebraic varieties,
the four quantities previously mentioned simplify to give rational expressions in the low
ternperature variables.An heuristic but simple argument is also given in order to

understand these results These formal exact results are checked up to order twelve on the
Abstract: 1t is shown that the low temperature expansion of the partition function, low temperature expansion of the model obiained in paper I, They are also checked on
magnetization and nearest neighbour correlation functions of the q-state checkerboard the resummed low temperature expansions and on the large q expansions. Finally, one
Fotts model in a magneric field drastically simplify on 2 very simple algebraic shows that these results can be generalized straightforwardly to the Poits models on
variety. These four formal constraints on the expansions are also anclyzed in the higher dimensional hypercubic lattices and also to some random field Potts models.
framework of the resummed low temperature expansions and the large q expansions.

These exact results are generalized straightforwardly 1o higher dimensional hypercubic

I1, Formal constraints on the low temperature expansion of the checkerboard Potts model

lattices and also to some random problems. 0 2 masmetic field
in gnetic field.

The partition function per site Z of the g-state checkerbodrd scalar Potts model in a

magnetic field is given by:
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a,b,c,d denote the exponential of the four coupling constants of the model (see figure 1)
and h is the exponential of the magnetic field. The spins ¢ belong to Zq .One defines

the normalized low temperature partition function per site by:

Z(a,b,c.d:h)= {abedh2) 12 Afab,cd:h)

The parameters of the low temperature expansion of the model will be denoted by:

A=1/z, B=1/b,C=1fc,D=1/d and z=1/h. The expansion of In /A was established up to

order twelve in paper I. Let us recall its first terms:

InA(A,B,C,D;z) = (a- DABCDz+(g-1)(A2B2C2+ A2B2D2+ A2C2D2+ B2C2D2 ) 7272
+1/2(q-1){q-2)(AB2C2D2+AZBC2D 2+ A2B2CD2 + A2B2C2D ) 22 + ..
@
As a generalization of the variety studied in paper 1 (the dua! of the disorder variety}
we claim here that restricted 1o the algebraic variety :

D+ABCz+(g-2) ABCD 2=0 3

the following results hold:

n A (3y=1/2 In (1+(q-DABCD z )=1/2 In (1-(g-1) D2/ (1+(g-2) D) )
@

A@ERAYIn A (ABCD:2) [3=0 (5)

D @RD)In A (ABCD: 2) |(3) = D/2{d/dD)in (1- (g-1) D2 /(1+(g-2)D) )
6}

z(@R2) In A (AB,CD; 7) |3y = (1-M)a-1/g =0 7

where M denotes the magnetization of the model. One thus has four exact results bearing

on the low temperature expansion of In A and on its different derivatives, Using
formal calculation program REDUCE 4 and the expansion of paper I we have actually
verified, up to order twelve, equations (4),{5),(6),(7) .

These properties can be understood in an heuristic way with a decimation procedure
very similar to the one inroduced by Jaekel and Maillard3 or Dhar and MaillardS.
Indeed, let us consider the following local condition on the elementary cell of the model
(see fig 2).
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This amounts to say that, when the three spins o, oy, O are fixed in the same state 0
the sumn over the spin G constrains the remaining spin o, to be in the same state 0.

Analytically, this condition is expressed as {3). When it is met, A is given by:
L = abcdh (14(g-1) ABCDz) )]

It is a straightforward matter to see that, using this local condition on the lattice with

r
the boundary conditions depicted on figure 3, one can decimate the whole lattice. Indeed
, this condition allows to"cat” the lattice from the top (or from the bottom) so that the

partition function per site reduces to the one of an elementary cell (see figure 2) . Itis
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also possible to argue in a similar way, eating the lattice from the top and the bottom, to
show that the nearest neighbour correlation functions reduce also to the one of some one
dimensional model 6. The exact expressions thus obtained are acually in agreement with
(4,(5).(6),(D).

This decimation procedure can be seen as the "dual” of the one described in Jaekel

5 and Dhar and Maillard 6 In these decimation procedures well suited for

and Maillard
the disorder solutions, the pure disordered state plays a special role, which is played here
by the pure ordered state. These very simple and exact results are reminiscent of the one
concerning the KDP model which can be solved in_any dimension for T < T, 7 This
last solution also corresponds to a pure ordered state. However in the case of the KDP
model ( for T < T, ) the pure ordered state is the ground state of the model . In the
transfer matrix formalism the pure ordered state is an eigenvector , the eigenvalue of
which is the largest of the whole spectrum, For T > T, it is stil} an eigenvector but its
eigenvalue is no longer the largest one. In the case of this paper, (3) is not a physical
condition and (4) wilk in general no longer be the logarithm of the { physical ) normalized
partition function of the model but the analytical continuation to non physical values of
the parameters of the low temperature expansion. Equations (3) to (7) are formal but
exact conditions that are indeed satisfied by the (analytical continuation of the ) low

ternperature expansion of the model.

ITL. Resumimed tow temperature expansions.

The resummed low {or high) temperature expansion is well suited for the analysis of
the inversion relation on the checkerboard Potts model 8. The two expansion parameters
are for instance B and D while A , C and z are not necessarily small.

This expansion has already been established for the model with zero magnetic field up to
order four in B and D 8, This result can be generalized when the magnetic field is non

zero. This expansion reads:
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On this resummed expansion one easily verifies the inversion relation of the model®,
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Note that the exact formal results (4),(5),(6) and (7} cadi also be verified on the
resummed expansion . Indeed, (3) is acmally compatible with B and D both small.
Equations {4},(5),(6),(7) lead to much more severe constraints on the resummed
expansions than on the classic low temperature expansions. Indeed they have to be
verified for B and D small whatever A,C and z are. One actually verifies these equations
up to order four in B and D, Conversely one can use equations (4),(53,(6),(7) together

with the inversion relation (1) and the low temperature expansion of paper I up to order

2

)
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twelve in order to determine the resummed expansion up to order five (and eventually to
higher orders ). However, this reqnires the detailed analysis of some specific classes of

diagrams which is pretty tedious, Work is in progress to get the fifth order that way.

IV. Large q expansions on the checkerboard Potts model.

Large g expansions have already been obtained on the checkerboard Ports model 9
even in a magnetic field 10, They are useful to analyze the vicinity of the critical variety
of the model where a great number of exact results are available for zero magnetic field
{partition function, internal energy, spontaneous magnetization, latent heat, critical
exponents... see for a review the paper by Wu 11 ). Equations (4),(5},(6}, and (7} can
also be checked on the large q expansion in a magnetic field. In this expansion A,B,C
have to be considered as order g-1/2 while D when satisfying (3) must be considered as
order three in ¢-1/2. Indeed , we have verified all this set of equattons up to order six in
9-1/2 using the expansion given by Maillard and Rammal 10, Work is in progress to

derive order seven in g-1/2 from these constraints.

The results of the previous sections can be extended to a generalized cubic Potts
model (depending on six coupling constants) in a magnetic field. The elementary cell of
the model is depicted in figure 4.

The generalization of condition (3) for this model reads:

KOWE KT KT Xu T e oo
T.oe et % E,Hce,s“g“ea-n"'e_“o»
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= g S, (14)
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This condition means that when the five spins ; , ... .G, . arcin the same state
(say 0) the summation over the central spin ¢ constrains the remaining spin to be also in
the state (0. The suitable boundary conditions for that cubic lattice are depicted in figure
5. Introducing the low temperature variables A = ¢X1,B=e-X2 ,C=e-K3 , D=e-K4

,E=¢-Ks  F=e-K6 and z=eh one gets, as a generalization of equations (1) to {5},

on the algebraic variety:
F+ABCDEz+(q-2YABCDEFz = 0 (15)
IMAABCDEF 2) = 1/21n (1-(g-)F2{1+(q-2)F) ) {16)

A (3/84) InAi(IS} =0 {17

F@oRIn A [ 1) = F/2 et In (1- (- DF2/( 1+ (¢-2)P) ) (18)

2 (3/02) In Ak”) =0 19

One can easily verify these equations on the lowest orders of the low temperature
expansion of this cubic model.

Note that, in the subcase of the six parameters cubic Ising model with zero magnetic

. field, equation (15) reads :

5
eKg +e'§.K1‘ =0 (20)

This condition leads to non physical values of the coupling constants. However it is
worth noticing that, if one considers the dua! of the cubic Ising model which is a pure
gauge model , condition (20) becomes a physical condition bearing on the six coupling

constants associated to each plaquette of the cubic elementary cell :

k3
hKg+ ] thK; =0 @21

[}
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One recovers that way a disorder condition obtained by Neuberger on this pure gauge
model 12 | This result is one of the few exact results on a three dimensional gauge

medel.
Vi ndom maode!

These exact formal results can also be generalized to some random models . Let us for
instance consider the previous checkerboard Potts model. Let us suppose also that a
random magnetic field is located on half of the spins corresponding to a sublattice of the
square lattice (see figure 6).The decimation procedure introduced in section IT holds
provided the appropriate boundary conditions depicted on figure 6.

One thus has the following formal results for the quenched partition function restricted to
the varety :

D+ ABC+(q-2) ABCD =0 22)

One can actually verify this result at the lowest orders :

< ln A (ABCD; (21> |(22) = (g-1) ABCD (1+<z>)2 + 1/2 (q-
D(1+<z>}BIC2D2 + )
+ 172 (@-1{q-2)(14+<z>)(AB2CZD2 + ) + ... + {-5/2) (q-1)2 <z2> AZB2C2D2 4

=12t (1 - @- DD/ (1+(g-2)D) )
(23)

Also note that condition (22) and the exact forma!l constraints (23) on the quenched

partition function are independent of the distribution of the random field.

j5| nclusion

It has been shown that new stringent exact constraints bearing on the low
temperature expansions of two and three (or higher ) dimensional Potts models in a

magnetic field ( even random ficlds) can be derived when one restricts the parameter

10

space to some algebraic varicties. Let us stress that these constraints are format .
Nevertheless , they constitute surprisingly simple but new results on the analytical
structure of the Potts model. In particular, these results are helpful to check (or even to

get ) different expansions of this modet.

Acknowledgments: We would like to thank prof. R.J.Baxter for many helptful comments

on the results of this paper.
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Figure captions.

figure 1: The checkerboard lattice,

figure 2: The elementary cell of the checkerboard Potts model.

figure 3: Appropriate boundary conditions for the decimation procedure on the
checkerboard lattice . The spins with a cross are fixed to be in the same state

Zero.

figure 4: The elementary cell of the generalized cubic Fatts model.

figure 5:Appropriate boundary conditions for the decimation procedure on the
generalized cubic lattice . The spins with a cross are fixed to be in the same

state zero,

figure 6: The random: field is located on spins with 2 cross.
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