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Abstract

We study the factorizations of Ising low-temperature correlations C(M, N) for
v = —k and M + N odd, M < N, for both the cases M # 0 where there are
two factors, and M = O where there are four factors. We find that the two fac-
tors for M # 0 satisfy the same non-linear differential equation and, similarly,
for M = 0 the four factors each satisfy Okamoto sigma-form of Painlevé VI
equations with the same Okamoto parameters. Using a Landen transformation
we show, for M # 0, that the previous non-linear differential equation can actu-
ally be reduced to an Okamoto sigma-form of Painlevé VI equation. For both the
two and four factor case, we find that there is a one parameter family of bound-
ary conditions on the Okamoto sigma-form of Painlevé VI equations which
generalizes the factorization of the correlations C(M, N) to an additive decom-
position of the corresponding sigma’s solutions of the Okamoto sigma-form of
Painlevé VI equation which we call lambda extensions. At a special value of
the parameter, the lambda-extensions of the factors of C(M, N) reduce to homo-
geneous polynomials in the complete elliptic functions of the first and second
kind. We also generalize some Tracy—Widom (Painlevé V) relations between
the sum and difference of sigma’s to this Painlevé VI framework.
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1. Introduction

In a previous paper [1] we considered the two-point correlation C(M, N) of spins at sites (0, 0)
and (M, N) of the anisotropic Ising model defined by the interaction energy

E= —Z {Evo k0 js1k + En0 k0 jjt1}s (1
ik
where o, = *£1 is the spin at row j and column k, and where the sum is over all lattice sites.

Defining
- sinh ZEh/kB T

k = (sinh 2E, /kgT sinh 2E;,/kgT)"'  and = Sinh 2E, JkeT" )
we found [1] that in the special case’
v=—k, 3)
the correlation® C(M, N) satisfies an Okamoto sigma-form of the Painlevé VI equation.
ForT<T.,,M <Nandv = —kwitht = k> and
dln C(M,N) t
a:t-(:—1)~%—z, (4)
we have [1]:
£ot—17-0"+4.-0 (td'—0) (-1 0 —0)
M (to' — o) —=N*- o”
+<M2+N2—;- (1+(—1)M+N)> o' (1o —0)=0. (5)

When M + N is odd, M < N, the previous Okamoto sigma-form of the Painlevé VI
equation (5) becomes:

Fot—17 0" +4-0 (@t —0) (k-1 0 —0)
—M* (to' —0)> = N*- "+ M*+N»- o' - (to' —0)=0. (6)

We noted [1], when M + N is odd, that the low-temperature correlation C(M, N) factors into
two factors. In the even more special case of M = 0 and N odd, the previous sigma-form of
Painlevé VI non-linear ODE (6) reads

5 The condition v = —k (as well as the isotropic case v = 1) is special because it is such that the complete elliptic
integrals of the third kind reduce to complete elliptic integrals of the second kind (see equation (30) in [1]).
© Which is the same as the Toeplitz determinants [2] of Forrester—Witte [3, 4] as given in [5].
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Fo@t=17-0"+4-0 - (toc'—0)- (t1—1)-0 —0)
—N*. 0?4 N ¢ (1o’ —0)=0, (7)

and the low-temperature correlation C(M, N) factors into four factors’, each of which were
shown to satisfy sigma-form Painlevé VI non-linear differential equations with the same
Okamoto parameters®.

In [1] we gave the four Okamoto parameters for Okamoto sigma-form of Painlevé VI
equations which are satisfied by each of the four factors. In this paper we continue the study of
[1] and find the second-order non-linear differential equation for the sigma’s of the two factors
of C(M, N) with M + N odd and M # 0. We study the necessary boundary conditions for both
the two and four factor decompositions and show that the factors of C(M, N) can be generalized
to a one-parameter family of solutions of the Okamoto sigma-form of Painlevé VI equation
analytic at t = k* = 0. In the remainder of this introduction we outline the methods and results
of this study.

1.1. Outline of the methods and the results

We begin by recalling that in [1] we showed, for M + N odd, M < N, that the representation of
C(M, N) for k = —v as a Toeplitz determinant is symmetric. In [6] it is shown, by elementary
row column operations, thatany N x N symmetric Toeplitz determinant det(a;_ ;) witha; = a_;
has a factorization for N even (N = 2m) into two m X m determinants:

=det(a; j— @iy j1)ij=t...m - det(@ij+ aiyj 1)ij=1...m- (8)

This can be extended to N odd (N = 2m + 1) as a factorization into an m X m determinant
and a (im + 1) X (m + 1) determinant:

€))

Thus the existence of factorizations of the C(M, N)’s into two factors is not surprising.
To obtain explicit expressions for the factors we use the method discussed in [1] expressing
C(M, N) as homogeneous polynomials in terms of the complete elliptic integrals of the first

and second kind
11
- K(k) = ,F, [ |z, =], [11, &),
(k) 21({2 2} [1] )

1 1
: E(k) - 2F1<|:§’_§:|’ [1]’ k2>,

7 Homogeneous polynomial in the complete elliptic integrals of the first and second kind.
8 But with different boundary conditions.

K(k) =
(10)
E(k) =

A 3w
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by first solving the quadratic difference® equations [8—11], the C(M, N)’s being then factored.
We will write the factorizations of C(M, N) as

(1—07"* C(M,N;1) = g.(M,N;1) - g_(M,N;1), (11)
with
=K, (12)

where the two factors g, are homogeneous polynomials of the complete elliptic integrals of
the first and second kind and have the expansion about t = 0

geMN;H) =1 + N2 0+ 2 o), (13)

where both f(7) and f,(f) are analytic at = 0. Thus from (11) we have:
CM,N:1) = (1 — p)l/* . (—rN“ S (LT fz)z). (14)

Examples of the factorizations (11), and of the expansions (13), are given in appendix A.
We consider the following logarithmic derivatives of the previous two factors:

dIn gi(M,N;1)

or(M,N;t) =t¢t- (t—1) 7

(15)
The sigma functions have additive decompositions which follow from the multiplicative
decompositions (11)

o(M,N;t) = 04(M,N;t) +0_(M,N;1), (16)
where o(M, N; t) is defined by (4) and
oM N;1) = £ (N2 o (M Ns 1)+ VT py(ML N5 1), (17)

where p, and p, (related to f; and f, by equation (14)) are power series'’ of ¢, analytic at t = 0.
Examples are given in appendix B.

In [1] we found in appendix D, 2.1, in the special case k = —v, that the sigma-form of
Painlevé VI for the sigma function of C(M, N) admits extensions"! to a one parameter family
of solutions which are analytic at r = 0. This one-parameter family of solutions analytic at
t = 0 extends to the additive decomposition (16) as

oM,N;t; \) = o4 (M,N;t; \p) + o_(M,N;t; ), (18)
where
M5 A = Y (Aes 402) " B N, (19)
n=1

9 See for instance equations (41) and (42) in [7]. Note that these quadratic difference equations [8—11] are actually
valid for the anisotropic Ising model. Do note that the lambda-extensions [12] of the C(M, N) correlation functions
also verify these quadratic difference equations.

10 From (16) it is clear that 2 - (V! . p>(M, N; 1) is the sigma function for C(M, N; 7).

! For an introduction of the concept of lambda extension of correlation functions see for instance equations (9) and
(10) in [12].
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where the B,(M,N; t)’s are power series'? analytic at = 0, and where we must choose
(see (52) below) A = —A_ = X in order to match with the lambda extension [12] solutions
of (6).

In [1] the second order non-linear differential equations (6) and (7) were found to be of the
‘master Painlevé equation’ form (see the so-called SD-I equation (4.9) with ¢; =0, ¢4 = 0,
c3 = —cp, in Cosgrove and Scoufis [13])

=17y 4y (Y =y (k= DY —y)
o5 ()Y =yt ¥ (Y —y) e ()
+eg (xy —y)+co- Y +ci0=0, (20)

which has the Painlevé property of fixed critical points [14, 15]. The non-linear differential
equation (20) preserves its form under the linear shift:

y—>y+A+B- x 1)

This shift may be used to eliminate ¢s and ¢ which reduces (20) to the canonical form of
the sigma-form of Painlevé VI equation obtained by Okamoto [16] with ¢s = ¢ = 0 which is
birationally equivalent to the original Gambier form of Painlevé VI:

dy 1oL LN (o

a2 \y y—-1 y—t dt t t—1 y—t) dt

y-(y—1)~(y—t). t—1 +5~t'(t_1)
2 (= 1) y—17 oG-0* )

In section 2 we will obtain non-linear differential equations for o4 (M, N; t) by using the
method of [1] of expanding the factors as power series in k (or f = k%), and then using Jay
Pantone’s program guessfunc [17] to produce a non-linear differential equation quadratic in
the second derivative. These non-linear differential equations for o(M, N; t) are not of the
‘master Painlevé equation’ form (20). We will show that they can be (non-trivially) reduced
to the form (20), or to the Okamoto sigma-form of Painlevé VI, by introducing a Landen trans-
SJormation [24]. In section 2.3 we find the selected values of \ for which g, (M, N; t; \) reduce
to homogeneous polynomials in the complete elliptic integrals of the first and second kind
K(k) and E(k). In section 3, recalling the Tracy and Widom paper [25] we introduce, besides
the sum (16), the difference of the two o, and find the second order non-linear ODE satisfied
by this difference.

In section 4 we recall the Okamoto sigma form of Painlevé VI equations [1] (having the
same Okamoto parameters) satisfied by the four sigma’s corresponding to the four factors of
C(0, N; 1) with N odd. This allows us to write o(0, N; 1) as the sum of four sigma’s. We find
the boundary conditions needed to generalize this additivity relation to one-parameter lambda-
extensions of these sigma’s. We also find the selected values of the lambda parameters such
that the four factors of C(0, N; ¢) are (homogeneous) polynomial expressions of the complete

- <a+ﬂ~yiz+7- (22)

12 The B, (M, N; 1)’s are D-finite series and, in fact, polynomials in the complete elliptic integrals of the first and second
kind K and E (see (54) and (55) below).

I31f these non-linear differential equations for o4 (M, N; 1) were of the ‘master Painlevé equation’ form, their reduction
to the form (20), or to the Okamoto sigma-form of Painlevé VI would probably correspond to algebraic transformations
[18-22] called ‘folding transformations’ using the term coined by the Tokyo school [23]. Here we need some (slight)
generalization of the concept of ‘folding transformations’.

5
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elliptic integrals. In section 5 we also introduce the difference of two sigma’s among the four.
We find that the second order non-linear ODE, satisfied by this difference, is compatible with
the second order non-linear ODE satisfied by the sum of these two sigma’s. We also show that
the situation, where the four factors of C(0, N; f) are actually homogeneous polynomial expres-
sions of the complete elliptic integrals K(k) and E(k), associated with the previous selected
values of the lambda parameters, corresponds, in fact, to the existence of a polynomial rela-
tion, Py(o, o', f) = 0, compatible with the second order non-linear ODE. We finally present,
in section 6, a discussion of the Forrester—Witte determinants of [3, 5] and of the boundary con-
ditions on the Okamoto non-linear differential equation needed to specify these determinants
for the factors of C(M, N) when (M + N) is odd.

2. Non-linear equation for the two factors of C(M, N) with M + N odd, M < N

The earliest study of factorizations of Painlevé 7-functions [26] was made by Tracy and
Widom [25] in the context of random matrix theory and Painlevé V representation of Fredholm
determinants.

Here we begin with the factorizations (11) of C(M, N)’s with M + N odd, M < N, for mis-
cellaneous values of M and N, and, by use of the methods described in [1] and of the program
guessfunc of Jay Pantone [17], we find that both (M, N; t) and o_(M, N; t) in (16) satisfy
the same second-order non-linear differential equation

27 -1 0" +47 -1 8- 0-8-@t+1): 0 +M —N*)- 0"
~(80—16- 10"+ Mt =N +1—1)-(8-1- (t—1)- 0"
—16t-0- 0 +8- 0> +(M*—N*)- o) =0, (23)

where the prime indicates a derivative with respect to #, and where o reads:

1
o=i-a-n 0E 24)

The two solutions of (23), o+ (M, N; t) and o_(M, N; t), have different boundary conditions.
Note that 04 = 0 is a selected solution of (23).

Similar to [1], these non-linear differential equations are obtained for particular values of
M and N, when restricted to order three derivatives and, then, finding a first integral to obtain a
non-linear differential equation quadratic in the second derivative. For small values of M and N
one may get several (compatible) non-linear differential equations, however with larger values
of M and N one gets a cleaner situation with a unique and stable form corresponding to the
previous pattern (23). Note that this form (23) is actually valid for the very small values of M
and N when other compatible non-linear differential equations also occur.

The second order non-linear differential equation (23) is not of the SD-1 ‘master Painlevé
equation’ form (20) given in [13]. On the contrary (23) is, at first sight, of the general form
studied by Bureau [27, 28]

V2 =E(,y, Y)Y +Fx,y,Y), (25)

having the interesting feature that movable essential singularities and movable natural bound-
aries are known to be possible. Consequently, it is not guaranteed that the non-linear differential

6
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equation (23) can be simply reduced to a sigma-form of Painlevé VI or the SD-1 ‘master
Painlevé equation’ form'*.
In the present case (23) this reduction can actually be carried out by making the (Landen

[24]) substitution

2
1—+1—
R=r=——2), (26)
1++v1—x
which is the (compositional) inverse of
4k ‘ 2Vk
X = m, where: x = kﬁ with: kL = m, 27
together with o(f) = (x) given by:
o(f) = o(x)
2 1—+1—x M?>—-3N>+1 M?>-N>+1
== ——— | h(x) — + - X
x 1++v1—x 16 16
M?* — N? 1 —+1-—
P (1)), (28)
16 1++v1—x

With the previous change of variable (27) and function transformation (28), h(x) satisfies
the Okamoto non-linear differential equation

=D WA W —h) - (k=1 - K —h)
+er- WP 4cg (xh —h)+c¢o- h +c19=0, (29)

where the prime now indicates a derivative with respect to x and where the ¢,,’s read

c7 = —(n% + n% + n% + nﬁ),

cg = —4 ninynsng,

co = —(nin3 + n%n% + ning + n%n% + ning + n%nﬁ — 2 nimpnsng),

cio = —(min3n3 + nin3ng 4+ niming + nining), (30)

the four Okamoto parameters being (unique up to permutations and sign changes of any pair
of ny):
_ M+N+1 _ M+N-1 _N-M+1 _N-M-—1

i e . M= =" (31)

ni >
4 4

The previous Okamoto non-linear differential equation (29) can be rewritten:
=12 W44 W K —h)- (x=1)- K —h)

<JW+W+n%ij+W+W.

!/
4 64 h

14 And if this is the case, one expects quite unpleasant Biicklund correspondences, like (5.19) in [13], to take place.

7
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 MAN+D-MEN-D-M-N+1)- (M-N-1)
64

(M® — M*N* — M*>N*+ N° —M* + 10M> N> — N* —M*> — N>+ 1)

1024 N

(xh —h)

0.

(32)

Such a reduction of the non-linear differential equation (23) to the Okamoto sigma-form of
Painlevé VI (32), is illustrated in appendix C on their respective solutions in 7 and x, associated
with the two factors of the low-temperature correlation function C(2, 3).

2.1. A few remarks on the previous substitutions (26) and (28)

Even if the sum (16) (see also (11), (15) and (33))
o(M,N;1) = 0 (M,N;1) + o_(M,N;1), (33)

satisfies the Okamoto sigma form of Painlevé VI equation (6), and the two o (M, N; t), in the
right-hand-side of (33), verify another non-linear differential equation (23), this is far from
sufficient to show that (23) has the Painlevé property, namely having fixed critical points
[14, 15]. To prove that a non-linear differential equation like (23) actually has fixed critical
points remains a quite technical proof. We have actually achieved such a demonstration, but it
is too cumbersome to be given here. Clearly the simplest way to show that (23) has the Painlevé
property amounts to reducing (23) to a sigma form of Painlevé VI equation, finding the change
of variables (26) and (28) to perform this reduction. The non-linear differential equation (23)
is clearly different of an Okamoto form (29) because of the presence of a term in ¢" next to
the term in o”’?: in contrast the Okamoto forms (29) have no ferm in h" next to the term in 4"
Finding the well-suited transformations (26) and (28) is, however, far from being obvious.
Recalling transformation (28) let us first note that transformations of the general form

o(1) = () - h(t) + B(0), (34)

where a(f) and ((¢) are some functions to be found, are not sufficient to reduce (23) into an
Okamoto form (29), and not even sufficient to get rid of the term in h" next to the term in 4%

The (Landen [24]) change of variable (26) is in fact crucial to achieve that goal. Once one
has discovered this key change of variable (26) one can, for instance, seek for transformations
of the form

o(1) = alx) - (h(x) + B(x)), (35)

where a(x) and (3(x) are arbitrary functions, such that one gets no term in h" next to the term
in /"2, which is a first necessary condition to be an Okamoto sigma form of Painlevé VI. One
first finds that a/(x) must necessarily be a solution of the following linear differential equation

(m+1—x)-a(x)+(x—l)-(2-m+2—x)-d(;ix):0, (36)

which has the following solution

P _p 1=Vl-x p
v R v el R GRS @7

a(x) =



J. Phys. A: Math. Theor. 55 (2022) 405204 S Boukraa et al

where p is an arbitrary constant. One finds another second order linear ODE which also has
(37) as a solution, and another linear ODE, in «(x) and 5(x), of the form (the a,,’s are simple
algebraic expressions of x with /1 — x):

d d?
ap(x) + (al(x)- a(x) + ax(x) - Zix) +asz(x) - a(x)> B(x)
2
+ (a4<x>- a(x) + as(x) - dff”) WO 4 o) at- 9D _o )
x dx dx
Taking into account (37), equation (38) reduces to
t6-p- (1 -2y D ey, (39)
yielding the following expression for 3(x)
2 _ A2
B = — e VTR 4o x4
M- N? 1—v1—x 1 1
=8, Yaivioal (a” p)'”@_w)’ o

where ag and 3, are arbitrary constants. This yields to the following form!

2 1-V1- M? — N? 1—+v1-—
U(t):f~7x~ v-h(x)+a+ 8 -x+ al SX- *
x 14++v1—x 16 1+v1—x

where v = p/2 and where « and 3 are arbitrary constants. This form is such that one reduces to
an Okamoto form (29) up to the usual 2(x) — ~ - h(x) + a + (3 - x transformations. To sum-up
(28) can be deduced from (26).

The main question is how to discover the key (Landen) change of variable (26)? Assum-
ing that the non-linear differential equation (23) has the Painlevé property, one can probably
assume, because of the explicit form of (23), that its critical points are the three points 0, 1, co.
Consequently, a change of variable to reduce (23) to an Okamoto form (29), must map the
three critical points 0, 1, oo of (23) onto the three critical points 0, 1, oo of an Okamoto form
(29). Unfortunately this condition, reminiscent of Belyi maps [29], is not sufficient enough to
actually discover the well-suited change of variable (26). At this step it is worth recalling that
Painlevé VI functions can be seen as deformations of elliptic functions [19] (see also appendix
D). A lattice of periods is canonically attached to elliptic functions. If a change of variable
maps a non-linear differential equation of the Painlevé type onto another non-linear differential
equation of the Painlevé type, namely (23) onto an Okamoto form (29), it must map the two
lattice of periods of the underlying elliptic functions. In other words the change of variable
must correspond to a quite selected and rigid set of transformations: it has to be a modu-
lar correspondence [30]. These are algebraic transformations given by the so-called modular
equations'® [30, 32]. The Landen (or inverse Landen) transformation is the simplest example
of modular correspondence. In appendix D we recall Manin’s viewpoint showing explicitely

(41)

15To be compared with (28).
16'We must consider modular curves associated with modular forms. One excludes Shimura curves associated with
automorphic forms [31].
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that Painlevé VI functions can be seen as deformations of elliptic functions, and also under-
lying the Landen transformation as a symmetry in the family of Painlevé VI equations. The
crucial role of other modular correspondences for Painlevé VI equations is also underlined in
appendix D.2.

2.2. Completing the characterization of the factors g,

Both of the sigma functions o, satisfy the same Painlevé-type non-linear differential
equation (23). To complete the characterization of the factors g, we need to obtain the bound-
ary conditions on the equations for o which allow (homogeneous) polynomial in K(k) and
E(k) factors to occur. By direct substitution in (28) we see that

M?—3N*+1 M?—-N?*+1
— .x

h =
0x) 16 16
M? — N? 1—vV1—x
- SN e (Y ), (42)
16 1+V1—x

is an exact solution of (29) with Okamoto parameters (31). This exact algebraic solution of
(29) precisely corresponds to the exact solution ¢ = 0 of (23). This algebraic function is in
fact of the form

~d In(Ho(x))

ho(x)=x- (x—1) I

(43)

where Ho(x) is an algebraic function:

Ho(r) — (1 B m) —(M2-3N*41)/16 . ( N m)(?:Mz—Nz—l)/lé - x)—(M2+N2)/16.
(44)
Thus we may write:
h(x) = H(x) + ho(x). (45)
We need only the power series solutions of (29) which are analytic at x = 0:
h(x) = a, x". (46)
n=0

We found, in appendix D of [ 1], that there are, in general, four classes of these analytic solutions
which are related by changing the signs of any pair of n. For the present purpose, we need the
class 4 solutions given by (D.7), (D.11) and (D.15)

e B U (n1 +n2) - (n3 + ny)
0 5 ;

ab_ (n1 +n2) - n3ng + (n3 +ng) - o
! ny+ny+n3+ny

b — (m +n2)- (np +n3)- (m +ng)- (n2+n3)- (n2+ng)- (n3+ ny)
2 (m +n+n3+m)- (m+n+ns+n+ D +n+n3+ny— 1)

) 47)

10
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which, with the Okamoto parameters (31), read:

1 1
a) = e M =3N +1), a4 =~ (M =N +1),

1
4) 2 2
= — . (M*—=N"). 48
a, 64 ( ) (48)

These agree with the expansion at x = 0 of (42). Because

ny+ny+n3+ng =N, (49)

we see, from (D.23) of [1], that aﬁ(}l \» the coefficient of xN*1, is an arbitrary constant. To
proceed further we extend the recursive analysis of [1] (see appendix D in [1]) beyond the
term xV*!. We find that the coefficients of x" for (N + 1) < n < (2N + 1) depend only on
cn+1, the coefficient of V! but that starting with cyv41) the coefficients depend on ¢, as
well as ¢y ;. Continuing in this fashion we obtain the form (19)

M5 A = Y (Aes 402) " B N, (50)

n=1

where the B,(M, N; t)’s are power series of ¢, analytic at t = 0, such that:

N 1 n—1
(;) - Bo(M,N:;t) =1+ o(p). (51)
‘We must choose
Ay = —A_ =\, (52)

in order to match with the lambda extension solutions of (6):

oM,N;t; ) =2- (A2 )" By (M N5 ). (53)

n=1

Howeyver, these lambda extensions~ of Ji(~M, N; t; A1) do not in general have a representation
as homogeneous polynomials in K and E for the corresponding g, (M, N; t; A+). We note in
particular that B; reads

N+M N-M
31:2F1<{_§, 5 }[N‘Fl],l), (54)

which may be conjectured from the expansions in appendix B, and proven by the recursive
procedure outlined in section 3. A step further one can find that:
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N+1 N2 — M? N+M+2 N—-M~+2 2
- B, = -t (t—1 F s JIN+2],0t
> ) I N+ ( ) X 2 1({ > > } [N +2] )

2
+(N+1)~2F1<{N;M,N;M},[N+l],t>

+N-@t—1)- 2F1<{M U],[N+1], ,)

2 72

N+M+2 N-M+2
X zqu 5 5 } [N +2], t). (55)

2.3. Selected values of \ for which g, (M, N; t, \) reduce to polynomials in K(k) and E(k)

To complete the illustration of the factorization of the Toeplitz determinant for C(M, N; 1),
we need to determine the value of \ for which the (differentially algebraic) lambda extension
g+ (M, N; t; A1) reduces to a determinant of finite-dimensional matrices'”. Intable 1, we list the
coefficients of the terms =kt and &>+ in o (M, N) for some low values of M and N.From
this table we see that the coefficients of £k"*!, and the coefficients of &>V *V (or £/V+1/2 and
1 in (19)), have respectively the form

N+1 N+1
= s = ad (56)
where '8
A (N + M) (N — M)! 5
MN TN N+ DL (N+M = 1)/ (N =M — 1)/2)1°
The selected values of A = A\ read:
N+1
Ay = A= T+ - apn- (58)

3. Tracy—Widom viewpoint

Recalling the Tracy—Widom paper [25] we introduce, besides the sum (16), the difference:
O(M,N;t) = o4+ (M,N;t) — o_(M,N;1). (59)

In this section we simply denote the difference (M, N; 1) by 4, and the sum o(M,N; t) =
o+(M,N; ) + o_(M,N; 1) by o. One has the following non-trivial relation'® between the sum
(16) and this difference (59)

’+t-t—1)-0 —t-0=0. (60)

171n contrast with Fredholm determinants. For generic values of A the lambda extensions of C(M, N; t; \) are Fredholm
determinants.

18 A demonstration of this result which requires the introduction of Schlesinger’s transformations will not be given
here.

19 One can easily verify this relation for the two factors of C(2, 3) (see (C.1) below).

12
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Table 1. Coefficients of =AY and NtV in o (M, N).

M,N +iVH! coefficient KENED coefficient
|2 3 _3(1 5 _3(1)
> 25 T 2\ A 29 T 2\ A
L4 35 _5(3 25 _s5(3)
’ 29 T 2\ 8 27 T 2\ %
2
34 57 _5(1 572 _5(1
’ 29 2 28 217 2 28
2
L6 57 _1(5 271 _1(s
’ 212 2\ oIl 223 2\ oIl
36 79 _7( 9 292 _1(9 Y’
’ 212 = 2\ oI 225 = 2\ a1
2
5.6 3711 _ 7(311 327112 _ 7 (311
’ 217 2\ oIl 273 — 2\ oIl
2
5 _ 5 52 5
o gy Fo)
2
37 _ 7 372 7
23 3 =3(:0)  =3(:h)
2
327 _ o 37 372 _ 437
4,5 % =3(3%) o =3(3%
. 2
59 _ 4(59 3452 (59
2,7 53 _4(2T> v —4(2T)
2
911 _ 4( 119 11292 119
v wes(l) )

This relation, independent of M and N, can easily be obtained?® by guessing from the series

expansions of § and o for various values of M and N.
Relation (60) also yields

o L. 07

T2 -1 t-(t—1)

"

(61)

or:
t 52
=—(t—-1)- — - dt. 62
s=—-1 [ (62)
Relation (60) is the generalization?! to Painlevé VI of the Tracy and Widom relation (82) in
[25] associated with Painlevé V, which reads:

S’ +t-0 —0=0. (63)

Using (60) and (61) one can eliminate ¢’ and ¢” in the Okamoto relation (6), and deduce??:

£o@—1% & 52 t—1)- (M*>—1)-t—(N*—1
B G VP N Gt VN (/e DR R WGt )}

t+1 0 t+1 4-(1+1)
Furthermore, using Pantone’s program one can first find that the difference (59) actually satis-
fies an order-three non-linear differential equation:

(64)

201n fact this relation was obtained as the first of the two equations of a Bicklund transformation, but for the simplicity
of the presentation we will not give such transformations and other Schlesinger transformations.

21 We have carried out the limiting contraction of relation (60) for Painlevé VI to relation (63) for Painlevé V, but we
will not give these calculations here.

22 Again one can easily verify this relation for the two factors of C(2,3) (see (C.1) below).

13
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4.7 (=17 @+1D)-6-8"+4-7- -1 2-(F+1-1)-0
—t-(F=1)-08)- 8" =16-t-(t+1)-8-5+4-CBt+1)- 5
—M*+N*—2)-t-(t—1)- 6*=0. (65)

Injecting the expression (64) of ¢ in terms of § and §” in the Okamoto relation (6), one
finds a non-linear ODE on 6 of order four. One can use the order three non-linear ODE (65) to
express 6"’ in terms of &, &', 8, but also the fourth derivative §* in terms of 8, &', §”. Injecting
these expressions of 8 and 8" in the previous order four non-linear ODE, one finally finds??
the order-two non-linear ODE (quite similar to (23))

16-£ =1 6"+4-7 - ¢t—1)> (4- &M +N-2)-1)-6- 0"
—16-t-(t+ 17> (t-0 —68)- 6% 5 —16-6°+8-t- (M*+N*—2)- &
+t (M =1 t—N*=D)- (N =1 t—M* —1) & =0, (66)

which is not of the SD-I ‘master of Painlevé form’ (20).
Let us denote the lhs of the order-three non-linear ODE (65) by 7R3, and the lhs of the
order-two non-linear ODE (66) by R,. We have the following relation:

8- 7 -8"+(4F—M+N—-2)-1)-5) Rs

=it 5 T ) BN ) R (6]

Similar to what has been performed in section 2, one would like to find the change of vari-
able, and function transformation, enabling the reduction of the order-two non-linear ODE (66)
to an Okamoto sigma-form of Painlevé VI. Again one notes (see (35)) that a transformation of
the form 5(f) = a(t) - h(t) + B(1) is not sufficient to get rid of the 4" term next to the /"2 term.
One does need to find a change of variable like the Landen transformation (26).

Another (simpler) route amounts to saying that the Tracy—Widom-like transformation (60)
will change the second order non-linear ODE (66) into a third-order non-linear ODE in o,
S3 = 0, that will eventually reduce to (6) because of the compatibility of all these equations.
Let us write (6) as S, = 0, we actually have the following compatibility relation®*:

s,

2
dt) +o" (=17 8

o S =r- ((l—l)~ J'—0)2-<

to" P+ (-1 —0)

as,

. 2_ 2_ . . ,_ .
(M>=N>—4- (t+1)- o' —0)) 7

—o" P (=10 —0)- (2-(1—1). %Jra/ﬂ(z—l). (t=1)- 0" —0)

x 8- t-0-8 -1 +@-1- (Mz—Nz))> - Ss. (68)

23 Note that this order-two non-linear ODE (66) could have been obtained directly using Pantone’s program, but this
requires many more coefficients of the power series of 0 to be found (1600 coefficients in k).

241n fact, strict sense, stating S3; = 0 does not imply S, = 0 by relation (68). We have, here with (68), just a
compatibility relation not a reduction of S; =0to S, = 0.

14
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4. Boundary conditions for the four factors of C(0, N) with N odd

In [1], we discovered that C(0, N) with N odd and k = —v, in the low-temperature regime,
factors into four factors instead of two. The four factors for C(0, N) were presented as

C(0,N) = constant - (1 — £)!/2. (N4 £ 6, £, (69)

where the factors f;all vanishat 7 = 0in such a way to cancel the factor #1-V"/*_ Here again we
change the factors f; in (69) in such a way to extract a factor of (1 — £)!/* which is the limiting
behavior of C(0, N) as N — 0o, and we impose the condition that the four new factors satisfy
the same non-linear differential equation. The previous factorization (69) in four factors® now
reads:

(1 =0 * C(0,N) = g1(0,N) - g2(0,N)- g3(0,N) - ga(0,N). (70)

If one defines

dIn g;(?)

oj =1 (=1 —

(711)
the previous factorization (70) in four factors becomes an additivity property of the correspond-
ing o;’s:

0(0, N) = 01(0, N) + 02(0, N) + 03(0, N) 4 04(0, N). (72)

In [1], we showed that the sigma’s, associated with the four factors f; in (69), satisfy Okamoto
sigma-form of Painlevé VI equation (29) with the same Okamoto parameters n; (unique up to
permutations and sign changes of any pair)

_ N+1 N -1 1

ny Ta ny = T3 n3 = _Ea ng = 03 (73)

which specializes to

Fo—=17 W +4n - - h —h)- (t—=1)- h —h)
1
210

1
—g WA= e (NP3 W — o (V- 1) =0, (74)

O | —

where four functions ; are solutions of (74), and are related to #(r — 1)df;/dt by (153)—(156)
of [1]:

dln fi N>+3 N2 +3
— St

hy=t-@t—1)- w7 16 TR (75)
dln f, N*—1 N?+3

=t-(t—=1)- _ .

hy=1t-(—1) b T (76)
dln f3 N?*—1 N2 -5

hy=t-(t—1)- — -t , 77

3 =D =5 16 T3 a7
d1 N2 -5 N2 -5

ha=t1-(1—1)- ;‘f“— it . (78)

t 16 32

25 Examples of £,(0,N)’s for C(0,5) and C(0, 7) are given in appendix E.

15
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From (69), (75)—(78), one gets:

(79)

(N> -1
16 2 )

t
00, N) = hy + ha + hy + hy + 4 <_+7

The o;’s in the additive relation (72) such that they satisfy the same non-linear differential
equation, are, thus, simply related to the previous 4;’s:

t (N*—1
oi(O,N;0) =hi + — + g

16 32 (50

These o;’s are solutions of the same non-linear differential equation obtained from (74) by
(80), which reads:

£ot—17 0" +40 - (t-0'—0) (t—1)- 0 —0)

L oM aD. e p). o2 L
+1 (N°+D-t—-D—7r)-0o 56

- (16- (N> +1-20-0+N"-1)- 0
1 N2 N*- (N?—3)

_,.0-2_|_7.0-_

i 5 510 0. 81)

This non-linear differential equation of the Painlevé type (81) is of course of the
Cosgrove—Scoufis form (20), being reducible to an Okamoto sigma-form of Painlevé VI
equation (74) up to a simple shift (see (80)).

Do note that the four #;’s are solutions of the same Okamoto sigma-form of Painlevé VI
(74). The boundary conditions for each h; were not discussed in [1], and must be properly
chosen for additivity (72) to occur.

To do this we recall that in [1], we found that there are in general four different possible
boundary conditions for the expansion of solutions analytic at t = 0 of any Okamoto sigma
form of Painlevé VI equation

WO =" al 1", (82)
n=0

where we denote by 4” the solution of (74) with boundary conditions of class (i) of appendix
D of [1].

The first few @ were determined analytically in [1]. For the present case with parameters
(73) we only need cases 1 and 4 of appendix D of [1] where we find for case 1 that

N*>+4N — 1 N-1 N N
I _ 1 _ I _ 1 _
with asv) +3)2 arbitrary and for case 4 that
N? —4N — 1 N+1 N N
@ _ 4) _ @ _ @ _
ay,’ = — D , ay’ =— 6 a, =% ay =7 (84)
with agv) D)2 arbitrary.

16
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The four A;’s solutions of (74) can be written

d In H;(0,N; 1)

hi=t-(@t—1)- , 85
j (=1 & (85)
where the (0, N; 1)’s read”® for instance for N = 5:
H1(0,5; 1) = 5 A—078 7B (2-1)- E—(@—1)-K), (86)
2 - -
Ha0,5:0 =3 (1 — 7B B (e+ ) E+@—1)- K), (87)
8 - -
Hy(0,5 0= =3 (1 0B (-2 E-2- (t—1)- K), (88)
8 - -~ ~
Ha0,5 )= =2+ (1 — BB BE 42 1-2) EK—(t—1)- KY). (89
Let us display some expansions of ¢;’s for example for C(0, 5):
5 5 5, 511, 5, 32.5.43 . 5.4817
01(0,5):g Rt—?t X t —?t — 216 r— 720 t
5-241-509 , 5-397811 ¢ 3-5-13-134401 ,
T A S £+ (90)
5 5 5, 5, 5, 56l 5.23
02(0,5):§—Et—¥t—ﬁt—?t— 216 r — 220
5.10099 , 52-71-73 4 5-281321
R L AL e 1)
5 5 5 55,3513, 5.5
03(0,5) = —§+Et+—t tatt g+ St
5-11-449  5-19-397 , 3-5-15907 4 5-77527 4
t e oy T !
L (92)
5 5 5 5 541, 5.59, 5-.5813 ¢
04(0,5) = —§+Et+—t +?t o O S Tt o !
5-47-199 , 5-13-97-197 ¢ 5-13-97-197 ,
+ En t+ ¥ 1+ 78 r+ (93)
to be compared?’ with the expansion of o (0, 5) solution of (23):
3-5 4 5, 5.7 5 3.5.313
O'_t,_(O,S):—W' _ﬁ't_ 216 .t—T't+ (94)
The corresponding expansions for C(0, 7) are given in appendix E.
26 Note that the H;(0,N; 1)’s are Puiseux series: H;(0,5; £) = 1'/8 + -+, H(0,5; 1) = £'/3 + - -, H3(0,5; 1) =
M H0,5 ) =

27 One verifies easily that 0. (0,5) = (0, 5) + 03(0, 5).

17
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4.1. Algebraic solutions of (74) and (81)

Let us now define
N t N 1 I
A(t’N):23'(1_2_V1_t):_23'z<_2>n'n!’ ©3)

where (a), =a(a+ 1) ... (a+n— 1) is the Pochhammer symbol. We have the remarkable
(algebraic) result that (for case 1)

N-1 N?+4N —1
hy = A(tN) + (16 ) 1= <32 )

N t (N*-1
Y4 I S
8 ! 16 32 96)
and (for case 4)
N+1 N? —4N — 1
@ _ _Ar N P o
h,’ = —A(t;N) ( 6 ) t ( 7 )
N t (N>*—=1)
— — .1 —-ft— =
8 ! 16 32 7 7

are actually exact (algebraic) solutions of (74). Using (80) these algebraic results correspond,
in fact, and more simply, to the fact that the corresponding algebraic sigma’s

N N
N == Vi—L e = VT (98)
are, actually, (algebraic) solutions of (81).

The introduction of A(#; N) corresponds to the remarkable existence of algebraic solutions
for the g;’s. Actually A(7; N) reads

N Gt oA -, ¢y, AIn(A®)
AN = 53 (1 -1 t) —t(—1) — (99)
where A(f) is the algebraic function®®:
a2 —N/4
Aty = (1 — M6 . (1—!—(121‘)> . (100)

4.2. Lambda extension of the four factors of C(0, N) with N odd

Using the exact algebraic solutions (96) and (97), as well as the relations (80) between the
o;’s and the A;’s, the recursive expansions29 of [1] can be extended to an arbitrary order and
generalized with the arbitrary boundary condition constant, to find the pattern of the lambda
extensions of the o;’s.

28 A function A(f) which is the exponential of the integral of an algebraic function (here A(t; N)/t/(t — 1)) is called
a Liouvillian function. Here we see that .A(7) is not only Liouvillian, it is algebraic.

29 By recursive we mean using the non-linear differential equation to get order by order a power series analytic at f = 0
solution of that equation.

18
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For j = 1,2 (case 4) we found experimentally for N = 5

5 163 1 67
0/0,50) = 3 VI—t+ X0+ N1+ NP+ < <A§+—A,»> .

3.26 3 25
1 5 ,  5-11257 an 173 2 7-29-229 g
1 5 7-199 , 7-347-1021 9
(2)\]4— )\]+ 3.0 >\j>-t + ..., (101)
where
A= —Aq, (102)

with A; for j = 1,2, the arbitrary constant ay.)/» of class 4 solutions.
For j = 3,4 (case 1) we found experimentally for N = 5

19-23 5-181

5 3
Uj(0,5;)\j):_§' Vl—f+>\jt4+—)\jt5+ 28 )\jt6+ 29 )\jl‘7
1., 7-8219 ,, 7-17-941 .
+<Z)\j+T)\j>- <8>\j TAJ»>~z+..., (103)
where
Ay = — Az, (104)

with A; for j = 3, 4 the arbitrary constant a3/, for class 1 solutions.
When

3.5
A=A = 510 (105)
the lambda expansions (101) actually reduce to (90) and (91), and for
5
Ap=—A3 = e (106)

the lambda expansions (103) actually reduce to (92) and (93).
More generally, for arbitrary N for j = 1,2 (case 4), one has the following general form for
the lambda extension of the o ;(0, N)’s

a,(O,N;t;Aj)—— Vi—t +Z( MOR) BN, 07

and for j = 3,4 (case 1)

N - n
ojONit ) == V=143 (A,.twwz) - BO(O,N ), (108)

19
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where BY(0, N; 1) and B(D(0, N; 1) are power series®, in 7, and where we have the following
normalization for both i = 1 and 4 and all N:

BY(O,N;0)=1, i=1,4. (109)

In other words the two one-parameter solutions o(0,N; #; A;) and 0,(0,N; #; ;) can be
seen as a deformation of the same algebraic function N - /1 — 1/8, when the other two one-
parameter solutions o3(0,N; ; A3) and 04(0,N; ; A\4) can be seen as a deformation of the
same algebraic function —N - /1 — ¢/8. We illustrate this for the series expansions of the
lambda-extensions of ¢ (0, 7) in appendix E.1 (see also (101) and (103) for N = 5).

When M = 0 with N odd, the additivity property (16) of the o’s becomes the additivity
property (72) as a consequence of the additional factorization of the g, (0, N) in (11), yielding
the factorization in four factors (70). Similarly the lambda extension (18) of the additivity
property (16) becomes a lambda extension of the additivity property (72). One thus has

o0, N; A) =04 (0,N;t; \y)+0_(0,N; 1, A), (110)
and also
a(0, N; A) = 01(0, N5 t; A1) + 0200, N3 15 Ap)
+ 0300, N; t; A3) + 04(0, N; t; A\4), (111)
where A\ = —A_ = A (see (52)) and where the well-suited \;’s and A.’s remain to be found.

4.3. Constraints on the \;’s

One has the two following relations:

0+ (0,N;t; M) = 01(0,N; 1; A1) + 03(0, N; 15 A3), (112)
and

o_(0,N;t; A\_) = 02(0,N; t; \o) + 04(0,N; 15 Ay), (113)

where 0(0, N; t; A1) are the sigma functions (19) for the factors g, (0, N; ) and where Ay =
—A_ = X (see (52)). These two relations (112) and (113) will only hold if there is a relation
between A\; and A3, as well as a similar relation between A\, and \4.

For different values of N let us recall the form for the o;’s (see (107) and (108)) such that
the ;s satisfy their respective non-linear differential ODE’s. Imposing that the rhs of (111)
is solution the non-linear differential ODE (7) for o(0,N; ), one finds experimentally, for
different values of N, that

)\2 = —)\1, and: )\4 = —>\3. (114)

Similarly imposing that o (0, N; t; Ay) and 0_(0,N; t; A_), given respectively by (112)
and (113), both verify the same non-linear ODE (23), one finds that:
Ay

A=
T4 N+

(115)

30 They are in fact D-finite series (see appendix F).
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To determine this relation (115) it is, for instance, sufficient to consider the term n = 1 in
(107) and (108). From (112) and (19) we obtain the condition

A - BPGN)+ -1 BP(6N) = Ay - Bi(0,N; 1), (116)

where we recall from (54) that By reads:

31:2F1<Bj ﬁ [N + 1], t) (117

To proceed further, we require explicit forms for B(14)(t; N) and B(ll)(t; N) which are com-
puted in appendix F as solutions (normalized to unity at # = 0) of linear differential equations:

1 dB,(t
BY@N) = N <z-r-\/1— dl()+N A+V1—1)- Bl(t)> (118)
2 1 B
Bl m =20 (z- (Vi B0y <1—¢1—r)~Bl(r>)
N+1 N3 +8N?+20N + 12 ,
=14+ (). : 11
+< 4 ) ( 32- (N +3) ) e (119)
Thus we find:
A - B(ﬁ)(t; N)+ s~ t- B(t;N)
dB (1)
— V1 —4-(N+1) -\ —7
=N N+1D- Ay i
+ ( CAHVT=D 4 X 4 N+ D (1= VT=D) - B, (120)
By setting
A1
=L 121
T AN+ ) (12D
the coefficient of dB(f)/dr vanishes. We find
BPt;N) + X3 - t- BV(t,N) = A1 - Bi(0), (122)
which setting
A=Ap = AL (123)

verifies (116) as desired.

To sum-up: there is a one-parameter family of o (0, N; t; A)’s solutions of Okamoto sigma
form of Painlevé VI for which the lambda extension of the additive decomposition (111) holds,
namely, taken into account (121) and (123)
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A
G(OaN,)\) - 01(0,N,)\)+02(0,N,_)\)+03 (OaN, 4.(]\]_’_1)>

A

ON,— ). 124

Fo(0N ) (12

Selected values of the A;’s: the selected values of the \;’s, such that the g;’s are homoge-

neous polynomial expressions of the elliptic integrals of the first and second kind K and E,
read

N+1 N!
A= —A = Ty N = e (125)
2N ((BFHY)
and
N!
A= —Ag = 20N (126)

8 22N+ . (N4 1) ((1%1)!)2’

where ay y is given by (57) for M = 0.

5. Tracy—Widom viewpoint on the four o;’s

Recalling section 3 one can try to see if, instead of the sums (112) and (113), the differ-
ence’! § = 0,(0,N; 1) — o5(0,N; 1) verifies a simple enough non-linear ODE. In that case
the equivalent of the Tracy—Widom-like relation (60) becomes*?

2

PR Sl NS\ SR T
FAt (=) o' = o4 (=D =0, (127)

where o denotes, here, the sum (see (112)) o+ = 01(0,N; 1) + 03(0,N; t). In contrast with
relation (60), relation (127) depends on N. Again, using Pantone’s program one first finds that
this difference ¢ verifies an order-three non-linear ODE

8- (t—1> -~ -@+1)-6-6"
+8- 1 (=1 2- (P Hr—1-6—1t-F—1)-8)- &
—-32-FP-1-8-8=2-¢-1-@+1D* @Bt—1-6-¢
44t =17 +32-1- 6
+ 2P+ 45 t—N*—D)-(t—1- 6 =0, (128)

which is similar to (65). In fact, with more coefficients, one can find a second-order non-linear
ODE like (66):

31 Note that the difference § = 02(0,N; 1) — 04(0, N; 1) yields the same results (128)—(130).

32 Similarly to (60) relation (127) can also be simply obtained by guessing from the series expansion of § and & for
different values of N.
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16-7- =D 6-6"=8-(—1> 7 2-¢=17-@+1D- ¢
+(t—17 (NP —2t—1)-6-32- &) 4"
—4-t-@=1-(16- 8 -1 —-17)- 87
+4-0- -1 (32-1-8+A -0 (N =Qt+1))-5-¢
+ (=D N =1 +16- %) - ((t—1)

X -(N*t—Q2t+ 1)) —16-6)- 6> =0. (129)

Again, similar to what has been achieved in section 3, we can say that the Tracy—Widom-
like transformation (127) will change the second order non-linear ODE (129) into a third-order
non-linear ODE in ¢. Using some differential algebra elimination, one can check that this last
order-three non-linear ODE is actually compatible with®* (23).

Let us denote, again, the lhs of the order-three non-linear ODE (128) by R3, and the lhs of
the order-two non-linear ODE (129) by R,, we have the following relation similar to (67):

4t @¢-D" -2+ - @t—1°> ¢

— (=17 N*=2t—1)-6+32-0)- Rs

aR;

—2_ . .
=@ =18 —

2- (P -1D-8+2-0) R (130)

Let us remark that for small values of N, for instance N = 9, we get also another second-
order non-linear ODE in §. Combined with the previous second order non-linear ODE (129)
one eventually finds, eliminating §”, a polynomial relation®* Py(d, &', 1) = 0 which, for N = 9,
is of the form

(16- & +35)- (16- & —15)- (16- &' +3)- (16- &' —63)- £+ ...
+@4-6—1)-4-6-9)-4-6-52- A -6+7)> - 4-5+372=0, (131)

this relation being compatible with the two previous second-order non-linear ODEs in . In fact
we have the following situation. Recalling the definition of the o;’s in terms of log-derivatives
of factors of the C(0, N)’s, expressed in terms of the complete elliptic integrals K(k) and E(k),
one verifies easily that § is a solution of (129) as well as (131). The power-series solutions of
second-order non-linear ODE (129) are actually one-parameter families of solutions of (129),
which correspond to lambda extension of the previous & expressed in terms of K and E. By
contrast, the power-series solutions of relation (131), valid for N = 9, correspond to power
series solutions of the form

0= i Oy - 1", (132)

n=0

33 And we have seen that (23) actually reduces to an Okamoto sigma-form of Painlevé VI using a Landen change of
variable (26) together with transformation (28).
34 For fixed value of ¢ and for N = 9, the genus of the curve Py(x, y; ) = 0 is zero (rational curve).
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where the first coefficient ¢y can only take the following values 1/4, —3/4,5/4-7/4,9 /4. For
0o = 9/4 one finds easily, that the power series solution of (131) is unique, and can be obtained
order by order:

5.9 9 9 o, 9 5 45, 16443
178 ' Tm

I e P —

64 st Toias T

(133)

This series (133) is nothing else but the expansion of the § expressed in terms of the com-
plete elliptic integrals K(k) and E(k) corresponding to the factors of C(0,9). In other words
the polynomial relation (131), which is compatible with the order-two non-linear ODE (129),
actually selects in the one-parameter (lambda-extension) family of solutions of (129), the one
corresponding to the ‘physical’ C(0,9) (i.e. Toeplitz determinants and no longer Fredholm
determinants).

Remark 1: let us also note that the order-two non-linear ODE (129) can, also be obtained
performing some differential algebra eliminations using relations (127) and (23) (for M = 0)
foroy =0+ 03.

Remark 2: let us also note that performing some differential algebra eliminations using
relations (127), (131) and (23) for M = 0, one also finds a polynomial relation Py(c, o', t) =
0, for o = o, which, for N = 9, is of the form:

(64 - ' +225)- (64- ¢’ +3969)- (64- ¢ +1225)- (64- o' +9)- 5+ ...
+2% . - (6—=4)? (=T (6—9% (6 —10)=0. (134)

The power-series solutions of relation (134), valid for N = 9, correspond to power series
solutions of the form

U:Zan-t", (135)
n=0

where the first coefficient o can only take the following values 0, 4, 7, 9, 10. For 0y = 0 one
finds easily, that the power series solution of (134) is unique, and can be obtained order by
order:

=315 5 5103 6 56133 a_ 1054053
7+ T 262144 2097152 16777216 268435456

B+ (136)

This series (136) is nothing else but the expansion of the 0. corresponding to the factors of
C(0,9), expressed in terms of the complete elliptic integrals K and E.
Remark 3: let us recall that

dlIn(g;- g3)

i (137)

oy =01+o3=t-(t—1):

where the product g,; = g, - g3 is D-finite: it is solution of a linear differential equation of
order five. Denoting X the log-derivative of the product g5, one gets:

&_ o+ ) izz’_‘_zﬂ %

- - =Y 430 + 93, ... (138)
gin - (-1 g3 gn

This order-five linear differential equation can thus be rewritten in an order-four Ricatti poly-
nomial form:

R(o, o', d", 0P, c™; 1 =0. (139)
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We underline that the polynomial relation (134) can also be obtained performing some dif-
ferential algebra elimination between (23) and (139). This is a general result: the existence
of polynomial relations®, like Py(c, o', f) = 0, which selects the D-finite (homogeneous
polynomials of K and E) factors scenario in the one-parameter families of solutions of a non-
linear second order differential equation (like (23)), is precisely a consequence of this D-finite
character (combined with the non-linear second order differential equation).

Remark 4: one should note that the differences of any of two o;’s give similar results. Sim-
ilarly, the sum of any of two o;’s give results similar to (23). However the sums of three among
the four o;’s yield much more involved non-linear ODEs as well as the linear combinations
o + p - oj when p is no longer equal to £1.

6. The determinants of Forrester—Witte

We began this paper with examples of factorizations of Toeplitz determinants (see (8) and (9))

and proceeded to show that this leads to a one parameter family of sigma forms of Painlevé

VI which have additive decompositions. To complete the discussion we need to determine the

determinants of the factors from the sigma functions which satisfy the Painlevé equations.
The N x N Toeplitz determinants of Forrester—Witte [3] as given in [5] are

, , N-1
DY) = det (AP0 (140)
k=
where
Asrzl),p’;rl,ﬁ)(t) = AV + £ AP(p), (141)

where in [1] AV(r) and A® () may be written as

(1 + p)- fo=m/2

Myry — o FT—p _

A= Sy —namt ) PP tn—ml g =ml.0, (142)
. fm=m)/2

A = — 1A E D) Fo(—Fs—p—nml [ —n+ml, 0, (143)

(L —n+mT(1+n—m+p)

where each A(D and A separately gives a Toeplitz matrix. For the purposes of this paper it is
sufficient to consider & = 0 and see that after taking suitable limits (see equations (128)—(130)
of [1])
, AV form <
A%”p ’”)(t) — (144)
{Aff)(t) form > n

In [5] it was shown that the sigma equations of these determinants satisfy Painlevé VI sigma
equations with the Okamoto parameters:

m=WN+n+p—p)2. m=N-n-p+p)/2

) ) (145)
ns=m—-N-p-p)/2, ng=mn+N+p+p)/2.

35 Reminiscent of the ‘invariants’ one obtains for linear differential operators with selected differential Galois groups
(see the relation Q(f, f', ") = Constant given in the introduction of [33]).
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In [1] we have computed the Okamoto parameters for the sigma non-linear differential
equations for the two factors of C(M, N) for v = —k with M + N odd, M < N, and for the
four factors of C(0, N) with N odd. From (145) we see that the parameters of the associated
Forrester—Witte determinants are:

N = ny + ny, 1 = n3 + n4, p = —ny — ns, P =—n+ns. (146)

The non-linear differential equation is invariant under permutations of the parameters »n; and
the change of sign of any pair. However, the parameters of the determinants (146) do not share
this symmetry which means that several different determinants have the same sigma equation.
We must, of course select those choices for n; which make N, the size of the Toeplitz matrix,
an integer.

We must, therefore consider all possible N x N determinants which can be obtained from
a given set of Okamoto parameters. This is done in appendices G.1, G.3 and G.5, where we
see that for both the two and four factor cases, the determinants can be grouped in sets of
four, and it can be shown, by direct computation that the ratios of these four determinants are
up to constants, powers of # and (1 — #). These powers of # and (1 — #) up to constants do not
contribute to the sigma equations and must be studied independently to obtain the associated
factorization of the Forrester—Witte determinants.

7. Conclusion

The factorization of the low temperature correlation functions C(M, N) forv = —kwithM + N
odd, M < N considered in this paper, corresponds to a factorization of Toeplitz determinants
that has been seen in many papers, in particular miscellaneous contexts (random matrices, see
[25, 34, 35]). Here we address a much more rigid and strong property than a simple factoriza-
tion property. We try to understand how a sigma function, solution of an Okamoto sigma form
of Painlevé VI non-linear differential equation, can actually be the sum of several sigma func-
tions each being also solution of non-linear ODEs with a Painlevé property that can be reduced
to Okamoto sigma form of Painlevé VI. This is some kind of addition formula of Painlevé tran-
scendental functions, similar to formulae of addition of elliptic functions®®. The case of the
factorization of C(0, N), for v = —k with N odd, in four factors corresponds to a quite remark-
able situation of four sigma functions solutions of Okamoto sigma form of Painlevé VI, their
sum being also solution of an Okamoto sigma form of Painlevé V1. In that case we do not have
a change of the variable . The more general case of the factorization of the low-temperature
C(M,N), forv = —kwith M + Nodd, M < N, in two factors is more illuminating, since it actu-
ally introduces selected (Landen) changes of variables and functions, enabling to understand
what kind of mathematical structures have to be introduced. With this last example, we pro-
vide the simplest example of such kind of sum of two sigma Painlevé transcendental functions
being sigma Painlevé transcendental. This paper showed that these factorization properties for
the correlation functions, or the additivity properties on the corresponding sigma’s, can actu-
ally be lambda-extended to one-parameter family of solutions of the corresponding Okamoto
sigma form of Painlevé VI and non-linear ODE’s reducible to Okamoto sigma form of Painlevé
VL

36 There is, in fact, a clear precedent for the phenomenon of multiplicative identities for Painlevé 7-functions and
additive identities for the sigma-forms observed here in the case of Painlevé VI, that was actually proven in the case
of Painlevé II and Painlevé III in as general setting as possible, see equations (42)—(44) in proposition 3 of [36]. Let
us note that paper [36] shows in that particular case that the factorisation and additive relations directly follow from
these (canonical/folding) transformations (see proposition 3 of [36]).
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The Painlevé transcendentals can be seen as deformations of elliptic functions as very well
illustrated in [19]. If one assumes that a non-linear ODE with the Painlevé property, namely
having fixed critical points, can be reduced to Painlevé VI, more precisely to an Okamoto sigma
form of Painlevé VI equations, these algebraic changes of variables cannot be arbitrary: they
have to be ‘compatible’ with the underlying elliptic curve structure. These algebraic change of
variables must not only preserve’’ the set of critical points 0, 1 and oo, they must be compati-
ble® with the lattice of periods: in fact these transformations are highly selected, they must be
isogenies, modular correspondences associated with modular curves [24, 30, 37]. Other non-
linear differential equations with the Painlevé property of having fixed critical points, have
been found to reduce to Painlevé transcendentals®® up to change of variables and functions
[13, 39, 40]. It would be interesting to see if more involved non-linear ODEs for other Ising
correlations C(M, N) (v # —k), can also be reduced to Painlevé VI transcendentals, possibly
up to changes of variables corresponding to selected modular correspondences.
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Appendix A. Examples of factorizations of C(M,N), M + N odd, M < N

We give here examples of factors g (M, N) of (11) for C(M, N) with k = —v and M + N odd.
We use the previous notation (10)

- 2 - 2
E(k) = o E(k), K(k) = . K(k), (A.1)

with K(k) and E(k) the complete elliptic integrals of the first and second kind.
We note that the first N + 4 terms in the term £"! = +/N*+D/2 i the form (13) are fitted

by a constant times

(A.2)

N+1 N+M+2 N—M+2 (N3]
352 2 > 2 > 2 > > ) 5 .

This holds until large primes appear in the coefficients.

37 Each of the critical points 0, 1 and oo do not have to be preserved individually.
38 The new lattice of periods must be included in the original lattice, or conversely the original lattice of periods must
be included in the new lattice of periods.

3 1In particular it turns out that there are two second-order (but fourth-degree) Painlevé-type equations, labelled as
BP-IX and BP-X (see (1.10) with m = 4 in [38]). BP-IX and BP-X were solved in terms of elliptic functions or the
special case of the second Painlevé transcendent [38].
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A.1. Factors for C(M, N) with M + N odd and N even

In all the examples shown the expansions are carried out to the point that large primes appear
in both the terms with even and odd powers of k.

A.1.1. Factors for C(1,2). The two factors of C(1,2) read:

(1- k2)71/8

p (1 £ (E~(1 Fh-K)

g+(1,2) =

3.52 5.72 3¥.5.72
k* + kS +

8
211 213 218 k

1 3
3 2

3.7.112 ,,  661-1949 )
3 3.5

3 3-5-11 3.5-7-7321
+k8'<ﬁ+ﬁ"z+zls Kt —n B+ = "“"')'

(A3)

A.1.2. Factors for C(1,4). The two factors of C(1,4) read:

_12y-1/8 _
g=(1,4) = —g- %- (1 £ (K F3k+ 1) E

+2-(LFh- (K £k-1) EK+ (1 Fh(1-k) K?)

+33.52-273.112k8+3.7.212152.132k10+32,5.72.2:12,132](12
N 32'5-1;113”172 W 5~10872$7267637 k‘6+...)
L2 (%4-32;205/(24—3'5'2; 139k4_|_5.72227.23k6
+32'7'2i49'827k8+...>_
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A.1.3. Factors for C(3,4). The two factors of C(3,4) read:

4 (1—kH18 12 (o4 3 ) =
gi(3,4):E~T~(1ﬂ:k) ((k* £ 15K — 16k* £ 15k + 1) - E

—2-(1 Fk)- Gk* £k —2k> +13k+ 1) EK
—(1—K)- (1 Fhb- Gk F10k—1)- K?)

ey <l+3—3k2+5'7'11k‘*+3'5'7'13

6
78 210 14 716 K

3*.52.7-11 o 3-7-112-13-17 ,, 3-7-11>-132-19
+ 5% k® + o= K'Y+ e k
3%.5.7-11-13%-17 33.5.73 113457
+ k' 4 k'6+~-~>
231 237
3.7 5-11 3*.5.7-17 3-5-7-163
12 2 4 6
+k -(220+ o K+ K 57 k
32.7-11-4051 4
ek +> (A4

A.2. Factors of C(M, N) with M + N odd, N odd, M # 0
A.2.1. Factors for C(2,3; t). The two factors of C(2, 3) read

2 (1-K)'8 201/2 (4 72 2 oy 2 )
g+(2,3):—§~T~(1—k) (3E>+ (k> —5)- EK—2- (K = 1)- K?),

_12y-1/8 5 B
g-(2,3) = % % (F+1) E4+ & —1)-K), (A.5)

which expand in the form (13) as:

7 357, 3.5.7
gi(2,3):1+k10-<+ o K+ Tk

217
+34.5.221512-13km+3~5-7-121;~132'17k12
+Wkl4+"')' (A.6)

Remark: recalling the previous variable x (see (27)) corresponding to the square of the
Landen modulus &, (see (27)), one can actually also rewrite C(2, 3; f) as the product of two
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other factors:
C(2,3;t):1—64- (4- =1 (x—2)+ (% —8x+8)- \/l—x)l/2
9x
x ((x=2)- EL—2- (x—1)- Ky)
x 3-EL—(x—1-Kf+2- (x—2) ELKL), (A7)
where

l
3w

2k 11
K<1—~t—1<> :2F1<{§,§], [1],36),

2k 11
EL = - . E(m) :2F1 (E,—E], [1],x>,

The corresponding o’s for these two factors also verify Okamoto sigma forms of the
Painlevé VI equation. We have similar results for all the (low-temperature) correlations C(M, N)
when v = —k.

(A.8)

2
| 8o

A.2.2. Factors for C(2,5). The two factors of C(2,5) read

16 (1—k%)~1/8

_ 4 2 3 2\3 3
O T 8 (T =222 +T7)- =5 (1-K) - K7)
— (1 =17)- (1 —k* - EK* = (1 — K5 - 2k* —33k* +19) - E’K, (A.9)
16 (1—k)"'78 - .
2= (1= (@K 13K2 +2) - E?
§-(2,5) 15 6 (1 —kH"2 (K + 1367 +2)
+(Tk* = 15K* —4)- EK +2- (1+2K) - (1 — k) - K?), (A.10)

which expand in the form (13) as:

32.5 32.72.11 , 3.52.7%.11
225 + 230 K+ 232
32.7-11-13-239 , 32.5.7-13-12289 .
- 237 K+ 241 Kt
6 (7 357, 3.7-11 , 3.5.7-11-13
K St o K+ o K+ 5% k
32.52.112-13 3%.7-11%2-132-17
+ 225 K+ 231
5.7-11-132-17-19 , 3*-7-11-132-17*-19 ,
+ >3 k' + 536 k
32.5.7-13-17%-192-23 ,  3-:5-7%>-11-9284039
+ 240 k> + 243

g+(2,5) =1+k". ( K

klO

k' 4+
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A.2.3. Factors for C(4,5). The two factors of C(4,5) read

16 (1—k)1/8

_ . . 8 6 4 2 B2
g+(4.5) = o 5 (k% + 111K° — 34k* + 111K* +2) - E
— (1 — k%) - (43k° — 34k* + 179k* + 4) - KE
—2- (1=K (11k* = 34k* — 1) - K7), (A.11)
16 (1—k»)>*® 6 4 2 i
(4,5 = : - (25K — 825k* — 82 25)- E
§-45) = -z 6 ((25Kk° — 825k* — 825k° + 25)

+3 - (2k® —219k° + 121k* 4+ 631k* — 23) - E’K

+3- (1 =k @7k® — 121k* — 459K% + 21) - EK?

+ (1= k) - (69k* +334k* — 19) - K7), (A.12)
which expand in the form of (13) as:

311 32.7-11-13
=+ K
2 230

7-11-13-197 3371113349
+ K+ k"+~-~>

gi(,5) =1 +k". (

732 737
3-7 32.7-11 32.11-13 3.52.7-11-13
6 2 4 6
+ k- <W+ o1 k 516 k' + pE8 k
32-52.11-13-17 s 3%-7-112-13-17-19 ,,
+ 3 k° + 5 k
7711-132-17-19 , 3%2.7-11-132-17-19-23 ,,
+ 5 k' + 36 k
32.5%.7-13-17-19-23 » 3-11-13-29-7757221 ¢
+ 240 k™ + I8 k4.
(A.13)
Appendix B. Sum decompositions of sigma functions
We give here examples of factors o+(M, N; f) of (16).
B.1. Decomposition of o(M, N) with M + N odd and N even
B.1.1. Decomposition for (1, 2).
3 3 32.5 3.37
3 2 4 6
O'i(l,Z)—:tk . <2S+27k + 212 k + 214 k
3-11-19 ¢ 325217
+ 17 k® + 220 K
3 3.7 3.5 3.73 3.7741
6 2 4 6 8
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B.1.2. Decomposition for o(1, 4).

3.5 3.5, 3.52.7 , 32.52.7
+ K+

ox(l, ) = £k (29+ 211 K 15 717 ke
+34.5;~47.11k8+32.5~2§63.479k10+'”>
0. (3;75 N ;;23 PR ;; 72 e 32. 5;-67~43 6
33'522'317'491k8+33'5'21312'3209k‘°+~-~>. (B.2)
B.1.3. Decomposition for o (3, 4).

0:(3,4) = £k - (52'97+27121k2+322;572k4 ) 52'13'“ 6
+3'5'7222;‘11'13k8+5'7;61301“0*“)
0. (52132 N 522-1972 e 32 ~;~2157 L 72~22129 6
+3'5'7;1“'547k8+5'72'12932'37'47k1°+...>. (B.3)

B.2. Decomposition of (M, N) with M + N odd, N odd, M # 0

B.2.1. Decomposition for o (2, 3).

0:(2,3) = +k*- (256+25120k2+3'2513.7k4+3.25126'7k6
N 522.1859 L 2;;579 oy )
e (25123+52'1}‘1k2+3.52.270'31](4“‘3.522.217.11/(6
+wk8+"'>- (B4)

B.2.2. Decomposition for o (2, 5).
3-7 3-7? 33.5.7 32.5.77- 11
K+ K+ k")

g6
01(2,5) = £k (210+ 213 216 221

32.5.72.11-13 3.72.112.13 |, 3-72-94823
+ 55 K® + 238 KO+ = r ik
3.7 3.7-31 , 3.5.7.131 , 3%.5.7%.47
12 2 4 6
K2 ( o T K Ty K Tk

32



J. Phys. A: Math. Theor. 55 (2022) 405204 S Boukraa et al

33.5.72.11-157 o 33-72-11-1709
+ 5 K+ % k
3.72-131-293-1187
+ > k24 ) (B.5)

B.2.3. Decomposition for o(4,5).

P73, , 301, 351113

6
I YE 716 721 k

0. (4,5) = +k5 - (

32.52.7-11-13

N 7 k8+34-7-12128- 1317 40

N 33-7-22331-43-47 k‘2+...> e (332-2072 NES -2721- 19 0
N 34-72-2181-79k4+ 32-7-21219- 1409 4

N 32-5-112;413-4651](84_ 3411 -2;3.4871](10
+33.7.372431932439 k12+...). 5.6

Continuing in this fashion we obtain the form (19).

Note that the first N+ 1 terms of the k"' terms are proportional to
2F1([wa 1%], [N+ 1], kz).

The series following k" ! developes large primes at order &***1 and the series following
K*N+D developes much larger primes at order k*™+1_ This is expected from the result (28) by
making a recursive expansion of the sigma form of Painlevé VI function /(x) which satisfies

(29) with parameters (31).

Appendix C. Reduction to Okamoto form: the C(2, 3) example

Let us illustrate the reduction of section 2 of the non-linear differential equation (23) to
the Okamoto sigma-form of Painlevé VI (32), using the (Landen) substitution (26) together
with transformation (28), on a simple example associated with the two factors of the low-
temperature correlation function C(2, 3). The two factors g, (2, 3) and g_(2, 3) have been given
previously (see (A.5)):

2 (11—t
8+2.3)= -5 ———

_ )-8 . ~
g-(2,3)=§~ % (t+1D-E+@—1)- K.

-(B3-E*+(@—5-EK—-2-(t—1)- K%,

(C.1)

It is straightforward to see that the corresponding o4 (2, 3), deduced from formula (15), ver-
ify the non-linear equation (23) for M = 2 and N = 3. The expansion of g (2,3) and 01(2, 3)
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are given previously (see (A.6) and (B.4)). One can rewrite (28):

1+ V1= IMP-N*+3  M2P-N*+41
O P Rk R R (C.2)
2 1-VI—x 16 8- (1—vI—xn

The exact expressions of 01(2,3) are rational expressions in terms of the complete elliptic
integrals £ and K (see (10)):

- 11 ~ 1 1
K(t) = ,F, ({2 2}, (1], t>,E(t) =.F (2, =51 1, t>~ (C3)

Performing the (Landen) substitution (26) in these exact expressions of o1 (2,3) and using
(C.2) for M = 2 and N = 3, it is straightforward to verify (in Maple) that the corresponding
function h(x) actually verifies the Okamoto sigma-form of Painlevé VI (32) for M = 2 and
N = 3. The expansions in x of the corresponding /(x) read respectively

11 1 5 5 205 295 29065

po— W L5 5,5 3 4 64 ... (C4
+ s T4 e TsY Tsiot Tiessat Ta2007152 T €4
and:

1m 1 5 5 195 265 24 695
ho=——+-—x+—x"+—x + *+ i . (€.5)

8 4" 64 128 5192 T 16384 T 2007152 "

to be compared with the expansion of the algebraic solution (42) of (32) for M =2 and N = 3:

11 1 5 5
hy=——+-—x+ x>+ ——x+

25, 35 4 105
8 "4 64 128 1024~

6
+2048x +8192x + ... (C.6)

Appendix D. Painlevé VI transcendentals as deformations of elliptic functions
and the crucial role of modular correspondences

Let us first recall (Fuchs [41], 1907) that the Painlevé VI equation (22) can be written (see (1.1)
in [19], here X = y in (22)):

®7) dx
t'(l_”'Lz'/@o G D GoD

¢ r—1 t-—1)
—Y. L . . D.1
(O‘+B e x oy (X—t)2>’ @®-D
where Y2 = X - (X — 1) - (X — £), and where:
&? d 1
Ly=t-(1—-1 - — 1-2)- — ——. D.2
=t U =20 S (D.2)

Equation (D.1) provides a clear illustration of the fact that the Painlevé VI transcendentals can
be seen as a deformation of elliptic functions. The crucial role played by the second derivative
with respect to 7 (the ratio of periods) displayed below in the equations (D.7), (D.8) and (D.11)
of appendix D.1, is illustrated by the relation (see (1.18) in [19])
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d2
(e —e)) . =t (=0 Ly (e - e, (D.3)

Il j(ei — e))’
9 (e1€y—ere))?

where the order-two linear differential operator L, is given by (D.2), and where the ¢;’s read:

T;
e = P(z, T) where: (Ty, Ty, T», T3) = (0, 1, 7, 1 + 1), (D.4)
where, P denotes the, P-Weierstrass function.

This means that, up to some dressing, the second derivative with respect to T is essentially
the second order linear differential operator L, which annihilates the simplest elliptic function,
namely the complete elliptic integral of the first kind »F([1/2, 1/2],[1], 7).

D.1. Modular correspondences and Painlevé VI transcendentals: the crucial role of the
Landen transformations

Along a modular correspondence-line it is worth recalling Manin’s idea [19] that the Painlevé
VI equation for a particular choice of the four Okamoto parameters, can be written extremely
simply in terms of the ratio of periods 7. Let us denote P(z, 7) the P-Weierstrass function
and

0Pz, 7)
9z

The fundamental role of the Landen transformation [24] is illustrated by the following
identity*® on the P-Weierstrass function:

P.(z, T) (D.5)

P. (z, %) — Pz 1)+ Pulz+ % . (D.6)

Manin’s result means that the Painlevé VI equation can be written in a form (see equation
(1.16) in [19]):

”) 2 3
ddZT(zT) = (ﬁ) : ;ar Pz + % 7). (D.7)
Switching from the ¢ variable to the 7 variable, which is a (differentially algebraic) transcen-
dental change of variable, changes the non-linear Painlevé VI equation into another equation
superficially simpler but where all the nonlinearity is encapsulated in the Weiertrass function
‘P.. Recalling [19], we see that if z(7) is solution of the Painlevé VI equation with parameters
(v, a1, (g, avp) one has

d2
dig—) = Qo - (PZ(Z, 7)+ Pz + %, T))

1 1
+ar- (Pz(z t5 D+ Pt JZFT, T)>, (D.8)

which can be rewritten using the identity (D.6), as:

Par) 1 &) T LT
i = Z . d(7/2)2 = Qg (Pz(z, E)) + oy - (Pz(z+ E’ 2))’ (D9)

40 See the first equation without a number in section 1.6 of [19].
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or

d?z(27)

T =4 a (Pa, ) 4 an s (Pz(H- % r)>, (D.10)

which means that z(27) is also solution of the Painlevé VI equation but with parameters
(4ap,40,0,0). We thus see that we have a representation of the isogeny 7 — 27 on the
Painlevé VI equations with a price to pay, namely that the parameters are changed. For a; = 0
one gets the remarkable Hitchin’s equation:

d?*z 1 OP(z, )

L _ " . D.11
dr? 8 72 0z ( )

In that simple heuristic case («v, o, ap, 1), the Landen transformation preserves the Gambier
form (22) of Painlevé VI or the ‘master Painlevé equation’ sigma-form of Painlevé VI: we are in
the framework of the so-called [23] ‘folding transformations’. In general the Landen (or inverse
Landen) transformation matches an Okamoto sigma-form of Painlevé VI onto a second order
non-linear ODE like (23) with the Painlevé property which is nor of the Okamoto sigma-form
of Painlevé VI.

D.2. More modular correspondences and Painlevé VI transcendentals

Let us recall Mazzocco and Vidunas paper on cubic and quartic transformations on Painlevé
VI equation [20] (and also Vidunas and Kitaev paper [42]). In*! equation (1.11) of [20], one
has the following transformation (for the Tsuda, Okamoto, Sakai case [23]):

A+Vi? 1 2vk
4vi 0 Tk 1+

which makes crystal clear that this transformation is, up to a Kramers—Wannier duality, again
a Landen transformation.
In contrast, in the Picard’s case, one has the algebraic transformation (see proposition 1.4

in [20])
(A

which can be rewritten in a more symmetric way

1= where: 7=k, t=Kk, (D.12)

P-4 P2 P+ 1) 3£ —376-1- 143 1)
4T+ D (P 6451 T+ 1)
+A P —T752 1 (PP + 13348 P —4- 1+ +1=0. (D.14)
In order to have a relation between Hauptmoduls, let us perform the change of variables:

272 (1 -1 2P (10

_ = PG SRS (D.15)
4. —t+1) 4. (2 —i+1)

41 0r in proposition 3.1 of [20].
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The transformation (D.14) becomes the modular equation*> which corresponds to 7 — 4 - 7,
or 7 — 7 /4 (see section 5.1.1 of [30]). This modular equation can be obtained from the com-
position of the fundamental modular curve (corresponding to the Landen transformation) with
itself (see section 5.1.1 of [30]).

Appendix E. Factorization of C(0,5) and C(0,7)

From [1] we can deduce the four factors g;(0, 5) for C(0, 5). We display here the g;(0, N) related
to the g;(0, N) by

g0, Ny= (1 — V1. 7 N8 o (ON), i=1,2,

gi(O,N) = (1 — ) M16. N g (0,N), i=3,4. (D

These g,(0,N)’s read* for N = 5:
2100,5) = % 1-—p3F. ' (21D E-@t-1- K), (E.2)
22(0,5) = % 1=t (¢t+ D E+@—1- K), (E.3)
23(0,5) = —? 1= 2 (-2 E-2-(t—1)- K) (E4)

8 - -~ -
24(0,5) = -3 -0 r? 3E*+2-(t-2)- EK —(t—1)- K?). (ES)
For N =5, these g;(0,N)’s have the following expansions near = 0:

5 3.5 3-52.19 5479 5-11-3041
210,5=1+=7+ £+ 4 £+ 1

27 210 215 217 222
32.5.7-11-23 3*.5.7-112-227 5-7-11%2-17581
+ 221 t7 + 231 tg + 231 tg + (E.0)
- 5 5:7 33.5.7 7 -463 3.5-7-863
205 =1+ 50+ 550+ e
33.5-149 32.5.7-11-19-563 3.-5-17-132199
+ 1+ > £+ > £+ (ET)
N 5, 5, 5113, 575 5.7-3119
g3(0,5):1—?t —?t o - PIE r— m t
5-19163 , 5-7-11-56443 ¢ 52-11-17657 4
T o2 r= 230 = 723 r= (E.8)

#21t also corresponds to an isogeny of degree 3 of the underlying Legendre elliptic curve w? =¢q- (g — 1) - (¢ — ©)
(see page 5 of [20]).
43 This normalization is chosen to have (0, N) series normalised as follows: Z;(0,N) = 1 + o(#).
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5. 3 .
05y 1S S 3519, 55 522541

27 27 713 2" 922
3*.5.13-19 , 5%.47-1951 ¢ 5-517129
- 722 r= 729 = 927 r= (E.9)
The four factors g,;(0, 7) for C(0, 7) read respectively
8 . N
21(0,7) = Tk =" 2 F-t+1)- E-@-2)-(t—1) K), (E.10)
2,(0,7) = 8 (1= "2 (@ + 11t —11)- E?
’ 4572
+8-(t—2)-(t—1)- EK—-5-(1—1" K?), (E.11)
2307 = 21— (4 =191+ 4)- E?
5 4574
—2- 8 —15t+4)- EK +(7t—4)- (t—1)- K?), (E.12)
24(0,7) = LIPS (117 — 11t —4)- E?
’ 45¢4
+2- (1) 3P —=Tt—4)- EK —(t— 1> Bt+4)- K?), (E.13)
which have the following expansions at t = 0:
~ 7, 7, 3.7-13, 7-53 3*.5.7.61
g10,7)=1+ ?t+?t+ o t 1B r+ m t
3.72-13-83 , 3-5-7-357293 ¢ 5-7-13-19-1009 ,
+ 5% '+ 530 £+ o5 f
33.7.13-17-29-3449 ,
+ o5 04 (E.14)
_ 7 7 7-61 7-29 52.7.11-103
20D =145+ 50+ ot — = £
7-47-577 ;  7-13-41-6257 o 7-803461 ,
+ 222 r+ 229 r+ 227 !
7-23-17281729
+ % 10+ (E.15)
7, 75 3%.5%.7, 7-1553
g3(0,7)—1—?t —?t — 515 - o18 t
5.7-13-331 ,  32-11-10631 , 7-13-652831 4
B 222 = 225 r- 231 !
5-7-11-13-42257 4 32-7-11-13-389-1733 ,,
— XS r — 3% = (E.16)
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7 7 32.52.7 3.7-11-47
240, )=1—-=7F~— =7 - 9

77 L 218
3.5.7-1429 ( 32116131 , 32.7-11-89-953

N 222 r- 225 r- 231 !
5-7-11-283-1913 4 37-7>-11-13-389

- % r— % = (E.17)

Using the definition of sigma (71) we find from (E.14)—(E.16) that:

TR A TE
7-3251 ( 7-41-103 ,
T o2l U= 222 !

7 7 7 7 5.72 741
01(0,7)=§——r £— P — 4

_ 5
214

7-22853 ¢ 7-32027 4 7-11848691 |,
— pE5 - 226 tr — e t (E.18)

707 7, 7T, 357, 1715 7-13-577,
0'2(0,7) :g_gt—gt _7t - 213 r— 214 r— 221 t
7-19-23-29 5 3-7-115908 ¢ 7-211-2857 4
- 722 r= 227 r= 728 d
7-13-89-58321 ,,
- e LI (E.19)
77 7, T, 57, 7-17-53 ¢ 7-11:31
0’3(0,7):—§+Rl+?l +§l +Wt + 18 r + 217 t
7-34679 ; T7-28517 o 7-673-915 4, 7-163-520129 ,,
+ 224 "+ 224 1° + 23 r+ 236 r+-
(E.20)
707 7T, 1.4 57, 37115 7331,
0’4(0,7):—§+Rl+§l+§l+wl+ 218 r + 17 t
5-7-6381 , 5-7-5279 ¢ 3-7-53-83-421 ,
+ 224 "+ 224 "+ 23 t
7-61-311-392
+T99t10+-~- (E.21)

E.1. Lambda extensions for C(0,7)

The recursion procedure on the solution for the sigma function defined by (71) are expressed
in the forms (107) and (108) for j = 1,2 as

39



J. Phys. A: Math. Theor. 55 (2022) 405204 S Boukraa et al

17 5- 132
a,~(0,7;>\j)— V1 —t —|—)\t+—t)\+ PN+ —— 5 DY
197 - 1301 N s [(T-73-929 7L\
+<W)\J+Z)\j>t +<W)\J+§)\f>t
3-7-61-21713 29-41 , 10
+< T — Nt T )\j>~t T (E22)
and for j = 3,4
1061
aj(o,7;Aj):— NI =14+ M0 +260) it 5! 8 DY
743049 3:7-37-103. 1 5,\ 0

The algebraic functions o' (z;7) and o' (t;7) (see (98))

7 7
o 7) = gVi-t ot;7) = - gVI—t (E24)
are two solutions of the sigma form of Painlevé VI (81) for N = 7. Setting
5-7 5-7
No=-A=TEm M= -h= (E.25)

we see that (E.22) and (E.23) reproduce (E.18)—(E.20).

Appendix F. Computation of B!"(0,N;t) and B{"(0,N;1)

To compute B{"(0,N;7) and B{"(0, N;1) in the expansion (107) and (108) we put 05(0, N; )
and 04(0, N; 1) into the Okamoto equation (74) using the relations (80) and set the coefficient
of each power of \ separately to zero. This gives the following linear differential equations for
B(ll)(O, N;t)and B(14)(0, N t). The D-finite function B(14)(0, N; 1) is solution of the second-order
linear differential operator:

d2 d
=472 0=t 5+2t-t—1-(QN+1)- t—2N)~$

+N~((r—l)-((N—l)-t+2)—(t—2)-\/ﬁ). (E1)

The D-finite function B(ll)(O, N; 1) is solution of the second-order linear differential operator:
M =47 (1-0°- d =421 (=1 (QN+5)- z—2N-4)-di

+ ((:— D-((N+1)- (N+2)- t—2N)+N- (t—2)- m) (F2)

In order to get rid of the /1 — 7 terms we do the following trick: we introduce the compan-
ion operators of Lg”) (resp. of M§+)) which amount to changing the sign of /1 — . We denote
LS (resp. of M5 ) these linear differential operators. We calculate the LCLM (direct sum)
of these two linear differential operators: L; = LCLM(LS" @ L) = LS @ LY, which is
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an order-four linear differential operator with polynomial coefficients (no square roots any-
more). Using the LCLM-D factorisation of Maple we find another LCLM (direct sum) for the
order-four linear differential operator Ly

Ly = L5 @ £8 = LCLM(L3, £5), (E.3)

where the two order-two linear differential operators £/2‘ and [,123 are, now, linear differential
operators with rational coefficients, reading respectively:

d N+1 d N?
Ly=— iy S a—— F4
A S S ) 4
& N+1 d N-@¢—-1D—-@1-2)
L= - E5
2T ar ¢ dr 4.1 (1—1)2 (E3)
The solution f;(¢) of (F.4), which is analytic at t = 0, reads:
N N
The solution f,(f) of (F.5), which is analytic at t = 0, reads:
N N
f2:\/1—t-2F1<{3,E+1},[N+1],t>. (E7)
The solution of (F.1) is a linear combination of f; and f>
ci- fiter fa, (E.8)

which is determined using (F.8) in (F.1). This way we find that the solution B(14)(0, N, t), which
is normalized to unity at r = 0, has ¢; = ¢, = 1/2 and reads:

Bﬁ‘”(o,N;r)—l- <2F1 ([N N], [N+1],t> +V1—1

2 272
ALY vt 1
21 2,2 b b
N-1 N*4+2N*—2N -2\ ,
=1+ ().t A F.
+<4> +< 2. (D) ) - =

An alternative form for B(14)(0, N; 1) is obtained by use of the identities (64) on page 64 and
(38) on page 103 of [43] to write

N N N N
oF <[§’5]’ [N + 1], t) =1 -1 -F ([3 + 1,5 + 1], [N + 1], t>

N-t

N N
=2F1<[§,§+1], [N+1],f>—m

<o F) ([Zﬁ-l,Zﬁ—l], [N+ 2], t), (F.10)
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where using

d N N N? N N
EZFIQE,E},[NH], z) ST 2F1<{5+1,5+1}, [N + 2], t), (F.11)

we obtain the alternative expression (118):
1 d N N
BW Ch) — 2t N1=t- — F —, = 1
1 (OaN,t) 2N ( t t d[z ]<|:25 2:|5[N+ ]a t)
N N
+N- 1+V1—-1)- 2F1<[3,5],[N+1],t>>.

This representation can be used to find a direct verification of (F.1) which does not require
the use of Maple.

F1. Computation of B{"(0, N;?)

The derivation of the exact expression (119) of B(ll)(O,N ;1) from (F.2) is done in a simi-
lar manner. The LCLM-DFactorisation of the LCLM (direct-sum) of M{" and M}~ gives
two order-two linear differential operators M’z‘ and le which are, now, linear differential
operators with rational coefficients, reading respectively:

P N+3 d N-t+4-(N+1)-@G—1)
A 4 E12
2=t ar , (E12)

s A2 N+3 d N 1+@E—1)- (N*t+@N+3)- (t—1)

M

- 2 - F.13
M, a2 dt 4.2 (t—1)? (E13)
We find in analogy with (F.9)
2-(N+1 N N
BNy =2 NED e (1Y v
t 2°2
2-(N+1 N N
_¥.\/1—;.2F1<[5,5+1],[N+1],z), (F.14)

and using (F.11) the alternative expression (119):

Nt

_N. (1— 1—z)-2F1<B,ﬁ,[N+1],z)) (F.15)

B(ll)(O,N,t):_w (2 t-Vv1—t- ddtzFl<|:];,,];]:|,[N+1],t>

2
2 N4 lt_’- 2F1<[%,§+1},[N+1],t> (F.16)
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Table G1. Determinant parameters for C(M, N).

ny n N n3 ny n p p
N/2 N/2 N -M/2 M/2 0 MMT*IN MMT*IN
N/2 N/2 N -M/2 M/2 0 —MEN —MEN
N+1 N>+ 8N*+20N + 12\ ,
=l+|—" S+
32- (N+3)

Appendix G. Forrester—Witte determinants

In this appendix we display the parameters of the Forrester—Witte determinants for the two
factors of C(M, N) with M + N odd and the four factors of C(0, N) with N odd, and give quite
remarkable identities between Toeplitz determinants related directly to the factorizations of
C(M, N) analysed in this paper.

G.1. Determinant parameters for C(M, N) with M + N odd

Let us first recall form equation (125) of [1] that the low-temperature correlations C(M, N) with
M + N odd can also be written in terms of Forrester—Witte determinants with the Okamoto
parameters given in table G1 as

M—-N M—-N
C(M,N) = (1 — k)N M+ p (N, 0, =5 =5 k), (G.1)
where we use the notation D(N NN k) to mean the Toeplitz determinant obtained from
the N x N matrix with elements AP7 (see equations (140) and (144)).
One can verify that the other choice of parameters in table G1 gives a similar expression

since:

D<N,O,M_N M_N,k>

2 72

(G.2)

_ (1 _kZ)MN . D(N’O,_M+N _M,k>

2 7 2

G.2. Determinant parameters for the two factors of C(M, N) with M + N odd

For the two factors of C(M,N) with M 4+ N odd the Okamoto parameters are chosen from
the set in (31). For N even both factors must have N = N /2 and for N odd we must have
N = (N + 1)/2 for one factor and N = (N — 1)/2 for the other. There are many choices for
n; from the set (31) which are given in table G2 for N even and table G3 for N odd.

However, one can make the following remarks

(a) The FW-determinants associated to the first (resp. last) four rows of table G2, when N is
even, are all related. For example, one has
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Table G2. Determinant parameters for N even, N = N/2 and 7 > 0.

m no N ns3 N4 n 4 P
M4N+1 _ M-N+1 M+N—1 _ M-N-1 _N-1 M
== — N/2 — 1 N/2 2 2
M+iv+1 - M—iV-H N/2 - M—iV—l M+iV—1 N/2 M;N _%
_M7f+l M+iv+1 N2 M+£V—l _M—i\/—l N/2 _M;»N %
_M—iv-«—l M+iv+1 N/2 _M—iV—l M+iV—1 N/2 _N;—] %
M+i\/—l _M—i\l—l N/2 M+iv+l _M—i\lJrl N/2 _N;rl _%
M+iV—1 _ M757] N/2 _ M—iv+l M+i\/+l N/2 M;N %
_ M—iV—l M+i\/—l N/2 M+i\/+l _ M—iv+l N/2 _ M;—N _ %
_ M-N-1 MAN—1 _ M-N+1 MA4N+1 _N-1 M
1 7 N/2 ) 4 N/2 2 2

Table G3. Determinant parameters for N odd, N = (N = 1)/2 and > 0.

n no N n3 14 n p p
M+iV+1 _M*i\/*] (N_,’_ 1)/2 M+i\/71 _M*QH-] (N— 1)/2 _% _M;—l
M+i\/+l _Mfi\lfl (N-‘r 1)/2 _M*i\/«kl M+‘1‘Vfl (N— 1)/2 @ _%
_M74771 M+iV+1 (N+ 1)/2 M+i\/71 _M*QH-] (N— 1)/2 _w _%
_M*i\/*l M+i\/+l (N-‘r 1)/2 _M*i\/«kl M+‘1‘Vfl (N— 1)/2 _% %
M+41‘Vfl _M*Q\H’l (N — 1)/2 M+iV+1 _M757] (N + 1)/2 _% _%
M+i\/71 _M*QH»I (N— 1)/2 _Mfi\lfl M+i\/+l (N-‘r 1)/2 @ %
_M*QH-] M+i\/71 (N— 1)/2 M+iV+1 _M*i\/*] (N+ 1)/2 _w %
_M*i\/«kl M+‘1‘Vfl (N— 1)/2 _Mfi\lfl M+i\/+l (N-‘r 1)/2 _% %
M — 1
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and:
N N M-N 1
D N A 2~ k
<2 272 2 )
NN M+N 1
— (V2 gy s p (XN TR T ). G4
(=D ( ) 2 > 5 (G4)

So we can use any one of them to represent the two factors appearing in C(M, N) when
(M + N) is odd. We have choosen in the following to use the Okamoto parameters of row
2 and 6 in table G2.
(b) Similarly, the FW-determinants associated to the first (resp. last) four rows of table G3,
when N is odd, are also all related. For example, one has
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—1 1 M—N 1
D(N ,N+’ Nk>

2 2 2 2

N—1N+1 M+N 1

— (1 _ 2\ (N=1)/4 _ :
(1—k%) D( IR 5 ,2,k>, (G.5)

and
p(N+1N—1 M-N lk
2 b 2 b 2 b 2’
N+1N—-1 M+N 1

= —KHMWEV/4 p , - = k], G.6
( ) 2 2 2 2 (G-6)

So we can use any one of them to represent the two factors appearing in C(M, N) when
(M + N)is odd, M < N. We have choosen in the following to use the Okamoto parameters
of row 2 and 6 in table G3.
(c) We can now summarize the factorisations in two factors seen on C(M, N) when (M +
N) is odd by the following two identities on Toeplitz determinants (we denote by k. =
2v/k/(1 + k) the Landen tranform of k)

e When M is odd and N is even

M—-N M—-N
D Na0773 ak

= (N2 . NN-D/2 VA (1 4 kNCM-N)/2

N N M—N 1 NN M-N 1
XD<2, ,2,kL>'D< - = kL)

27 2 2°20 2 2
(G.7)
e When M is even and N is odd

D(N,(),U,M_N,k)

2 2
—pN=1?/2  p=(NP-D/4 (1 + k)(ZMNszfl)/Z

N—-1N+1 M-N 1 N+1 N-1 M-N 1
(NS Y (M NN )

2 T2 T2 2 2 2 2 2
(G.8)

Replacing these relations in equation (G.1), we obtain the factorisation of C(M, N), with
(M + N) even, in two factors.

These factorisation relations can be seen as a consequence of the symmetry of the N x N
Toeplitz matrix associated to n = 0 and p = p/ = (M — N)/2 and Wilf relations (8) when N is
even and (9) when N is odd [6].
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G.3. Expressions of g (M, N, t) in C(M, N, t) with (M + N) odd, in terms of Toeplitz
determinants

e When M is odd and N is even, the factors g (M, N, 1) of C(M, N, 1) (see (11)) are given by:

(N-M)/4
(-D)N?.D NNM-N1 k) - 1+k Y
2’27 2 72 1—k ’

NNM-N 1 1 4k M-M/4
D AN A s T A kL : + ° Sl,
2°2° 2 2 1—k

with
(1— k)(M—N)z/S

S = (_1)E((N+2)/4) . pNN=-2)/4 T

- +k)(2MN+M27N2)/8

where E(x) denotes the integer part of x.
e When M is even and N is odd, one has

N—1N+1M—-N 1 14k V-M/4
(TR (12

2 72 2 72 1 —k

N+1 N—1 M-N 1 1 &\ M-/
D( + a_§3 k]_.) : ( + > : SZ?

2 7 2 7 2 1—k
with

(- k)(MfN)2/8

(L N\EWA ) - TR T
Sr=(=1) 2 K1)/

S+ k)(zMNJrMLNLz)/s.

All these expressions are compatible with the series expansions of appendix A. From the
above relations, we can also obtain closed expressions for f(¢) and f>(f) appearing in
appendix A.

G.4. Determinant parameters for the four factors of C(0, N) with N odd

For the four factors of C(0, N) with N odd the Okamoto parameters are chosen from the set
(73). The two cases must be considered separately N = 4m =+ 1. For N = 4m + 1 the values of
N for the factors are

N=m m, m, m+1l, (G.9)
and for n = 4m — 1 the values of N are:
N=m m, m m-—1. (G.10)

The choices of n; which give integer N for N = 4m + 1 are given in table G4 and for N =

4m — 1 in table GS.
One can make similar remarks as in the previous section:

(a) The Okamoto parameters of the FW-determinants are displayed in tables G4 and G5 in
four groups of four rows. We can use any row in each group to represent the four factors
appearing in C(0, N) when N is odd.
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Table G4. Determinant parameters for C(0, N) with N = 4m + 1.

ny ny N n3 ny n P 4
mrt b B 0 B aet m-d

1 1 N—1 N—1 1 1

m+ 3 2 T 0 m T 2 2

1 1 N—1 N—1 1 1
I S BT Dm e 51
3 m+ 3 e 0 m . —m= 3 m+ 3
1 1 N3 N-1 1 1
m+ 5 5 T m 0 7 m-—z m-—3

1 1 N43 N-1 1 1

m+ 3 2 7 0 m 3 2 2

1 1 N+3 N-1 Com— L _1

2 m+ 3 1 m 0 3 2m — 3 2
1 1 N3 N-1 1 1
2 m+2 N4l 0 1 ml N4l " % " 21
m 0 e m+ 3 2 e —m-3 —m-3

N—1 1 1 N—1 1 1

0 m T m+ 5 2 T 2m =3 2

N—1 1 1 N—1 1 1

m 0 e —3 m+ 3 . 2 3
0 L T eSS
N-1 1 1 N+3 1 1
m 0 1 m+ 3 2 1 m=—; m+ 3

N-1 1 1 N+3 Com— L 1

0 m 7 m+ 3 2 1 2m — 5 2

N-1 1 1 N+3 _1 1

m 0 3 2 m+ ; 1 2 2
N-1 1 1 N+3 —m— 1 1
0 m 7 2 m+ 3 1 m m+ 3

Table G5. Determinant parameters for C(0, N) with N = 4m— 1.

ny ny N ns ny n p r
m—% % xTi: m 0 xTi: —ml—l —ml—l—%
(AR U P 5 d
1 "3 v rg v T 12
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0 e
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(b) As in the previous section, we can summarize the factorisations in four factors seen on
C(0, N) when N is odd by the following identities on Toeplitz determinants

e When N = 1mod4,ie.N=1,5,9,13,...

p(NUNHL N LN e (LR
2 0 2 0 22t 1—k
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XD(N—IN—ll_l k)-D(N_l,N+3 11k>,
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e When N =3mod4,ie.N=3,7,11,15,...

N+1 N-1 N 1
D<2,2,—2,—2, kL)

2
= (_1)(N+1)/4 . 71 + k e /8
1 -k

N+1 N+1 11 N+1 N-31 1
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(G.13)

and:
N—-1N+1 N1
pl—— — - "~ _
( 2 b 2 b 2,2,kL>
1 +k><N+1>(N—3)/8

=(1+k- (m

% D N+1,N+1,_l,_1,k D N-3 N+1,l,l,k .
4 4 27 2 2°2
(G.14)
Replacing these relations in equation (G.1) and using (G.7) and (G.8), we
obtain the factorisation of C(0, N), with N even, in four factors.

G.5. Expressions of g;(M, N, t) in C(0, N, t) with N odd, in terms of Toeplitz determinants

If we denote S = (—1)HW+4/8) then the factors appearing in equation (70), solutions of the
nonlinear equation (81), with the coefficient of their leading term normalised to one, are given

by
e For N=1mod4,ie. N=1,5,9,13,...

2\—1/16
D<N—1 N-11 1 ) SR haveys g
2 9

4 0 4 2 2 KNT12/16
2N\3/16
- p(N=I N L LN ARy s
4 5 4 ,2, 25 k(N+1)2/16 N
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All these expressions are compatible with the series expansions of appendix E.
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