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Abstract 

We analyse birational mappings generated by transformations on q x q matrices which corre- 
spond respectively to two kinds of transformations: the matrix inversion and a permutation of the 
entries of the q x q matrix. Remarkable factorization properties emerge for quite general involutive 
permutations. 

It is shown that factorization properties do exist, even for birational transformations associated 
with noninvolutive permutations of entries of q x q matrices, and even for more general transfor- 
mations which are rational transformations but no longer birational. The existence of factorization 
relations independent of q, the size of the matrices, is underlined. 

The relations between the polynomial growth of the complexity of the iterations, the existence 
of recursions in a single variable and the integrability of the mappings, are sketched for the 
permutations yielding these properties. 

All these results show that permutations of the entries of the matrix yielding factorization 
properties are not so rare. In contrast, the occurrence of recursions in a single variable, or of the 
polynomial growth of the complexity are, of course, less frequent but not completely exceptional. 
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1. Introduction 

In the last few years, integrable discrete dynamical systems have attracted growing 
attention ] 1-6]. The developments in this truly interdisciplinary field are impressive. 
The large recent literature on integrable maps is the consequence of the discoveries 
of many results, concepts, structures, and of an accumulation of many new interesting 
examples [7,8]. These developments come after, or in parallel to the developments of 
integrability in classical or quantum field theory, lattice statistical mechanics, and many 
other domains of mathematical physics (the list of these domains being quite large: 

quantum groups, knot theory, combinatorics, number theory...). 
Several concepts and structures crucial to understand integrability, like for instance 

the existence of Lax pair, or B~icklund transformations [9], can be seen to exist in a 

continuous framework as well as a discrete one. Paradoxically many structures of the 
discrete dynamical systems are, by no means, simpler than the corresponding struc- 
tures of their continuous counterparts. In this respect the "Deus ex Machina" of the 
integrability of the two-dimensional models of lattice statistical mechanics, namely the 
existence of Yang-Baxter equations [ 10,11 ], is intrinsiquely a discrete concept with no 
obvious natural counterpart. This intrinsiquely discrete concept enables, for instance, to 
see clearly why quantum integrability [ 12] on a lattice is, to some extend, "easier" to 
understand than classical integrability on a continuous space. 

Among these various exact properties and structures some are directly related to the 
integrability (existence of Lax pair, of  B~icklund transformations, of bi-Hamiltonian 

structure [13], of various kinds of symplectic structure [14] . . . .  ), and some are less 
obviously related to integrability, namely the reversibility of the mappings (which can 

be analysed in a continuous or discrete framework) and a property specific of  discrete 
problems, which has not yet deserved as much attention as the previously mentioned 
structures and properties, namely the occurrence of factorization properties for the 

iteration of the mappings. 
The connection between reversibility and integrability has been already been analyzed 

by Quispel et al. [ 15,16]. We will concentrate here on the analysis of the occurrence 
of factorization properties for the iteration of the mappings, integrable or not. Some 
analysis offactorization properties of mappings have even been performed by Veselov 
for large classes of mappings but in the context of (birational) transformations of two 

variables (Cremona transformations [ 17-19] ). 
In this very paper we will try to better understand the relation between the factoriza- 

tion properties which occur in the iteration of particular (birational) mappings of many 
variables (in fact an arbitrary number of variables) associated with transformations on 
matrices, and the reversibility of the mappings, as well as their possible integrability. 
We will provide a large number of new examples of such birational mappings associated 
with matrices and will try, from this accumulation of examples, to better understand the 
"natural framework" for the occurrence of (more or less remarkable) factorization prop- 
erties. Is the reversible character [20] of the mapping necessary to get factorizations? 
Is the existence of algebraic varieties preserved by the birational mappings necessary to 
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get factorizations? 
In previous papers birational mappings [21-23] generated by involutive transforma- 

tions on matrices have been studied. They have their origin in the theory of exactly 
solvable models in lattice statistical mechanics [24-29]. These involutions respectively 
correspond to two kinds of transformations on q x q matrices: the inversion of the q × q 
matrix and an (involutive) permutation of the entries of the matrix. In these papers, 
permutations of two entries [ 21-23 ], as well as permutations corresponding to discrete 
symmetries of lattice models of statistical mechanics [24-29] were first analysed. For 
these permutations, it has actually been shown that the iteration of the associated bira- 
tional transformations presents some remarkable factorization properties [ 21,22]. These 
factorization properties explain why the complexity of these iterations, instead of having 
the exponential growth one expects at first sight, may have a polynomial growth of the 
complexity [21,22,30]. It has also been shown that the polynomial factors occurring in 
these factorizations may satisfy noteworthy non-linear recursion relations and that some 
of these recursions were actually integrable, yielding elliptic curves [21,22]. 

We will consider here more general examples of permutations of the entries of a 
q x q matrix and we will analyse the iterations of the associated birational transforma- 
tions in the parameter space associated with the (homogeneous) entries of the matrix. 
Again, one will analyse the relations between these various structures and properties 
(polynomial growth of the calculations, existence of recursions [22], integrability of 
the mappings, nature of the algebraic varieties preserved by these mappings... ). It will 
be seen that factorization properties actually exist for quite general permutations of 
the entries. It will also be shown that some generating functions of the degree of the 
iterated transformations are often simple and satisfy remarkable functional equations in 
the quite general framework. Furthermore, it will be seen that, even for quite general 
permutations, polynomial growth, or the existence of (integrable) recursion relations, 
are not completely exceptional (see Sections 6.1.1 and 6.1.11 in the following). 

We will consider three different classes of mappings: birational mappings correspond- 
ing to more general, but still involutive, permutations of the entries, birational mappings 
corresponding to permutations which are no longer involutive, and, finally, rational 
mappings which are no longer invertible. 

Our aim is to provide tools and criterions to classify "chaotic" birational, or just 
rational, mappings of many variables. We want to identify structures that still "survive 
chaos". 

Through various examples one will try to understand how these remarkable factoriza- 
tion properties can occur in such a very general framework. 

2. General framework 

Generalizing the analysis performed in [21,22], we consider here the following prob- 
lem (which is interesting in itself for the theory of mappings of many variables disre- 
garding the relation with the theory of integrable lattice models [22,23] ): analyzing 
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the iteration of birational transformations generated by the matrix inversion and a per- 

mutation of the entries of  the matrix. One interesting problem one hopes to solve is to 

find permutations of the entries of the matrix for which the corresponding birational 

transformations yield integrable mappings or polynomial growth of the calculations. 

Let us consider the following q x q matrix:  mllm12m13m141!!l 
[m21 m22 m23 m24 

Rq = /m31 m32 m33 m34 . (2.1) 
Im4. I m42 m43 m 4 4 .  • . . 

We use the same notations as in [21,22], that is, we introduce the following transfor- 

mations, the matrix inverse I ,  the homogeneous matrix inverse I and, in the following, 

t will denote a permutation of the entries of the q x q matrix (in the next section t will 

be the permutation t12-21 which permutes m12 and m21): 

~i': Rq , Rq I or I : Rq , Rq I .  det(Rq).  (2.2) 

The homogeneous inverse I is a polynomial transformation on each of the entries mij 
of Rq, which associates to each m 0 its corresponding cofactor. Transformation I" is an 
involution, whereas 12 = (det(Rq))q--2 . 2 - ,  where 2- denotes the identity transformation 

and transformation t will often be, in the following, an involution. We also introduce 

the (generically infinite order) transformations, 

K = t . l  and F,=t .~i  ". (2.3) 

The transformation K is clearly a birational transformation on the entries m 0 since its 

inverse transformation is 1". t, which is obviously a rational transformation. Transforma- 

tion K is a homogeneous polynomial transformation on the entries mij. 

3. Recalls 

Let us recall the factorization properties and recursion relations associated with a set 
of simple permutations detailed in [21,22]. 

3.1. Iterations associated with permutation m12 - -  m21 

Let us first recall the factorization properties and recursion relations obtained for 
permutation of two entries 1 m12 and m21 [21-23].  We first recall some notable fac- 
torization properties of the iteration of the homogeneous transformation K, bearing on 

1 This permutation represents one among a set permutations which have been denoted class I in previous 
papers I22,23]. 
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q × q matrices. This transformation corresponds to integrable mappings and yields elliptic 
curves for  arbitrary q [21-23]. 

Let us consider a generic q x q matrix denoted Mo (see (2.1)) with q >_ 4. Let us 
consider the successive matrices obtained by the iteration of the homogeneous trans- 
formation K. The first of these matrices and the first determinant one encounters are 
denoted, respectively, 

MI = K ( M o ) ,  f l  = det(M0). (3.1) 

The determinant of matrix MI factorizes remarkably enabling the introduction of a 
homogeneous polynomial f2 (which is a polynomial of the q2 homogeneous entries of 

M0), 

det(Ml) 
f 2 -  f~l_ 3 (3.2) 

Also, notably, f~l-4factorizes in all the entries of the matrix K(MI ), leading to introduce 
a new matrix M2, 

K(M1) 
M2-- fq-4 (3.3) 

Again, det(M2) factorizes permitting the introduction of a new polynomial f3. Moreover, 
~ - 4  f~ '  2 factorizes in all the entries of this matrix K(M2). Such factorizations occur at 

each step of the iteration, yielding a polynomial growth of the calculations (polynomial 
growth of the degree of all the quantities one encounters [22]). One can actually 
introduce the following polynomials fn and matrices Mn corresponding to the "optimal" 
factorizations in the iterations: 

det(M2) K(M2) 
f 3 - -  M3 = 

det(M3) K(M3) 
f 4 =  f~--I .f23.f~3--3' M 4 =  f~ l -2 . fT . f~3 -4 '  " '"  , 

and generally, for n > 1 and q > 4, 

K (Mn+2) det( Mn+2 ) 
Mn+3 = -2 2 f ~ - 4 '  fn+3 = f~-3"  

f~n fnZ+l n+2 f~n-1 f3 n+l n+2 

A relation independent of the matrix size q pops out immediately, 

k'(Mn+2) = K ( M n + 2 )  = Mn+3 
det(Mn+2) fnfn+l fn+2fn+3 " 

Conversely relation (3.6) enables one to get Mn as the nth iteration of h', 

(3.4) 

(3.5) 

(3.6) 

M. = fn" fn-2"  F.n(MO) . (3.7) 
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Taking the determinant of the left-hand side and the right-hand side of (3.7) and 
recalling the second relation in (3.5), one can eliminate det(Mn) to get a relation 
which does not depend on q, 

de t (~n (Mo)  ) =  fn+l .  f~-3 " f~-13 .f-In_2 " (3.8) 

This defines the (left) action of transformation K on matrices Mn's and the set of 
polynomials fn's closely related to determinants of these successive matrices. For q = 3 
the factorization scheme is slightly different and simpler, 

K(Mn+2) det(Mn+2) 
M,+3 = fn , fn+3 - f~, (3.9) 

One can also introduce a right-action of K on matrices Mn's, on the entries of 
the M, 's  or on any polynomial expressions of these entries (such as the fn's  for 
instance), replacing the entries mij of M0 with the corresponding entries of K(Mo) ,  
i.e. ( K ( M o ) ) i j .  Amazingly, the "right action" of K on the fn's and the matrices M~'s 
reads a remarkablefactorization of f l  and only f l  [21,22], 

( f , ) r  = f .+l  " f ~ " ,  ( M n ) x  = Mn+l" f [" .  (3.10) 

Denoting or, the degree of the determinant of matrix Mn, and fin the degree of 
polynomial fn, one immediately gets from Eqs. (3.5), (3.6), (3.10) the following 
linear relations (with integer coefficients): 

a n + 2  = (q - 1)fin + 3 f i n + l  4- (q - 3 ) f i n + 2  4- f in+3 , 

(q -- 1)an+2 = an+3 + q (q  - 2)fin + 2qfin+l + q(q  -- 4)fin+2, 

(q -- 1)fin = fin+l + qlzn, (q -- 1)an = an+~ + q2vn. (3.11) 

Let us introduce a (x ) ,  f i ( x ) ,  t z (x )  and v(x) which are the generating functions of the 
a, 's ,  fin's, /zn's and vn's, 

oo 

Ol(X) ~-- E O l n .  X n,  f i (X )  -~ E f i n "  X n, 
n--O n=O 
oo o(3 

~(x) = y ~ , , .  x", ,,(x) -- y ~ , .  x" 
n=0 n--0 

(3.12) 

Linear relations between these various generating functions are obtained from (3.11). 
For instance, Eqs. (3.5) yield for the generating functions ~(x)  and f i ( x ) ,  

x a ( x )  = ( ( q -  1)x 3 + 3x 2 + ( q -  3)x 4- 1) .  f i ( x ) ,  

( ( q -  1 ) x -  1) • a (x )  4- q = ( q ( q -  2)x 3 + 2qx 2 4- q ( q -  4 ) x ) .  fi(x), (3.13) 
k / 

and Eq. (3.6) yields 
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( l + x ) . a ( x )  = q ( l + x ) . ( l + x  2 ) . f i ( x ) + q .  (3.14) 

The explicit expressions of  these generating functions read respectively 

q(1 + ( q -  3 ) x + 3 x  2 + ( q -  1)x 3) qx 
~ ( x ) =  , f i (x )  = 

(1 + x ) ( 1 - x )  3 (1 + x ) ( 1 - x )  3 ' 

x ( ( q  - 3) + 2x 2 - x 3) x ( ( q  - 4 )  + 2 x  + (q - 2)x  2) 
I ~ ( x )  = , v ( x )  = 

(1 + x) (1  - x) 3 (1 + x)(1 - x) 3 
(3.15) 

In the explicit expressions of exponents an'S, fin's, lXn'S and Vn'S, one sees that 
the iteration of transformation K yields, because of the above mentioned factorizations 

((3.5) . . . .  ), a polynomial growth of the complexity of the calculations: the degree of 

all the expressions one encounters in the iterations (the a , ' s ,  fin's, /zn's and vn's, the 

entries of the successive matrices M n . . . .  ) has a quadratic growth with n, for instance 

fin = ~ q ( 2 n ( n + 2 )  + 1 - ( - 1 ) n ) .  (3.16) 

In the generating functions a ( x ) ,  f l ( x ) ,  t z (x )  and v ( x ) ,  this corresponds to the fact 

that one only has x = ÷ 1 singularities. 
A similar analysis can be performed considering the factorization properties of K 2 

instead of K. For instance, one gets the following relations 2 : 

K 2 (Mn+2) det(Mn+2) 
Mn+4 = ~e(q -2 ) (q - l )  #3q-4 ¢q2-5q+6 ¢q-4  ' fn+3 = (3.17) 

Jn Jn+l Jn+2 Jn+3 f~n -1  fnJ+13 J~n+2-3 ' 

and 

K2 (Mn+2) ( fn+l  ,~2 (3.18) 
(det(Mn+2)) q-Z = Mn+4" \ fn+3 ] ' 

From these factorization relations (3.17) linear relations are deduced on the an's and 

fin's, or on the generating functions a ( x )  and f i (x) ,  equivalent to (3.11) or (3.13), 
enabling one to recover the exact expressions (3.15). Of course, a similar analysis can 

be performed on K 4 (or any power of K), but will not be detailed here. 

Similarly one can introduce the "right action" of transformation K 2, 

(fn)K 2 ---- fn+2" f~,,{=:2, . f~},=:l,. (3.19) 

It can be noticed that 1./,(2;2)(X) is actually equal to # ( x ) .  It is easy to prove, for 

arbitrary q, that 

/x(2;l)(x) = ( x ÷  ( q -  3))  • ( ( q -  1) - x )  
(1 - x)3(1 + x )  

tZ(2 ;Z)(x)  ----/t~(X) = X( (q -- 3) + 2X 2 -- X3) , (3.20) 
(1 + X ) ( 1  --X) 3 

2 These results concerning the factorization properties of K N are new and cannot be found in the previously 
mentioned series of papers [21,22], etc... 
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which is a consequence of 

/ z (x) .  (1 +/z l  .x)  = x .  (hi,1 + / - / , ( 2 ; 1 ) ( X ) )  
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together with #zl = q - 3. 
(3.21) 

Again, the "right action" of transformation K 3, K 4 . . . . .  K 8 can be introduced: more 
details are given in Appendix A. From now on we also denote/z(x) by/~(1;1)(x). 

Similar results are obtained for the right action of K s for arbitrary values of the 
integers q and N. The results read 

( : . ) ,<. :  s.+,. :,"?"'. sD"_:,; '>. :¢,;1,, (3.22) 
yielding 

X N-I " ( t l Z N - I  " 1 2 , ( I ; 1 ) ( X )  " # d , ( 2 l l ) ( x )  - I - / t , I , N - - 3  • / z ( a I I ) ( x )  -'t- • • • 

+ / Z l  . ] . / , (N-I ;1)  ( X ) )  

= (/&l " X "-}- ill 2 • X 2 Jr- " ' "  "q- /~N--1 " x N - - I )  q- xN--1 " / - L ( N ; I ) ( x ) )  - -  / . ,g(l ;1)(X) , 

(3.23) 

From relation (3.23) one deduces a remarkably simple expression for/z (N;1) (x) valid 
for N > 4, 

] / ( N ; I ) ( x  ) = q. (q - 2 )  3 .  (q - 1 )  ( N - 4 )  • x 

(1 - x)3(1 + x )  (3.24) 

To see that this exact expression of/z(N;1)(x) is a consequence of relation (3.23), for 
arbitrary q and for N _> 4, is a bit tedious: it is proved in Appendix A. One can however 
get this simple result directly from factorization (3.22), performing the right action of 
K (u+l) as the (right) action of K N on factorization (3.10), 

(fn)KN+, : ( ( fn)K)KN : (fn+l "f#~n)KN : (fn+l)KiV" (f~n)KN, ( 3 , 2 5 )  

which directly yields for the generating functions, 

(N;I) . ( N + I ; 1 ) ( X )  - -  p.(N;1) ( X )  -}- X "  (1 - #x(1;1)(x)) x .  

= X " ] . .~(N+I;1)(X) - -  /[/,(N;I) ( X )  

+ ( q ( q - - 1 ) ( N - 4 ) ( q - - 3 ) 3 ) ' ( l - - l z ( l ; 1 ) ( x ) ) ' x = O .  (3.26) 

These factorizations allow to introduce the (optimal) factorization polynomials f , .  
Remarkably, these polynomials do satisfy, independently of  q, a whole hierarchy o f  
non-linear recursion relations [21,22] as, for example, 

2 2 2 2 - fn-1 f~+z - fn+3 fn z fn/nz+3 f.+4f.%l (3.27) 
f n - l f n + 3 f n + 4  - -  f n f n + l  f n + 5  f n - 2 f n + 2 f n + 3  --  f n - l f n f n + 4  

or, among many other recursions [21,22], 
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2 2 2 2 
- -  f n + 3  f n z + 4 f n + 7  fn+2fL/.+6 f n + l f ~ + 4 f n + 5  - -  fn+2f~+3f,+6 = (3.28) 

f 2 + 2 f n + 3 f n + 7  2 f 2 + 3 f n + 4 f n + 8  2 " --  fn fn+4f~n+5 --  fn+l fn+SfZn+6 

These recursions have been shown to yield e l l i p t i c  c u r v e s  [ 21,23 ]. 
These recursions can also be analysed in terms of the inhomogeneous birational 

transformation R" instead of the homogeneous transformation K (see (2.3)).  Let us 

introduce the variables l~'s by 

1, = det(R'(K(.  • • ( M 0 ) . . . ) )  ) = det(~'n(M0) ) .  (3.29) 

Recursions (3.27) yield 

ln+3 In+2 --  1 ln+2 ln+l --  1 
= " In ln+l In+2 In+3.  (3.30) 2 2 

ln+l ln+221n+32 In+4 - -  1 In In+l In+2 In+3 --  1 

Noting that the variables l. 's always occur, in these recursions, through the product 

x .  = l . l . + l ,  the previous equation on the ln 's  (see (3.30)) becomes 

Xn+ 2 --  1 X n +  1 - -  1 
= • x~ Xn+2. (3.31 ) 

Xn+ 1 Xn+ 2 Xn+ 3 --  1 X n Xn+ 1 Xn+ 2 --  1 

Similarly to the f n ' s ,  there is a w h o l e  h i e r a r c h y  o f  r e c u r s i o n  r e l a t i o n s  satisfied by the 
l , 's  or the x, ' s  [21,22]. Let us just give here another example of a recursion bearing 

on the xn's, 

Xn+ 2 Xn+ 3 - -  1 Xn+ 1 Xn+ 2 - -  1 
= • Xn xn+2. (3.32) 

2 2 1 2 2 1 Xn+l Xn+2 Xn+3 Xn+4 - -  x n Xn+ 1 Xn+2 Xn+3 - 

The analysis of this hierarchy of c o m p a t i b l e  non-linear recursions has been performed 
in [21] and will not be detailed here. All these factorizations and recursions can  b e  

p r o v e d  even  f o r  a r b i t r a r y  q [21,22]. 
Of course relations between these various variables exist. The xn's can, for instance, 

be written [21,22] as simple expressions in terms of the f . ' s ,  

f 2 - 1  f n + 2  
X n -- 

f,,2+ 1 f n - 2  

Introducing (homogeneous) variables qn's, 

(3.33) 

xn = q n + l / q n ,  (3.34) 

recursions (3.31) (as well as all the recursions of the hierarchy [21] ) can be written 

in the following form: 

R (qn, qn+l . . . . .  qn+p)  = R (qn+s,  qn+s+l . . . . .  qn+s+p ) , (3.35) 

where R ( qn , qn+ l . . . . .  qn+ p ) denotes a rational expression of qn, qn+ l . . . . .  qn+ p . A re- 
cursion of the form (3.35) can easily be "integrated" to get a set of biquadratic relations. 
Examples of such integrations for the (integrable) recursions of the previously men- 
tioned hierarchy have been given in [21]. They typically read as follows [21]: 
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(Pnqn+l - 1) • (Pn+lqn  - 1) = A- qnqn+l • (lZ + qn + qn+l) • (3•36) 

It should be noted that one can also integrate these recursions in terms of the x, 's, 
using the integration performed with the appropriate variables qn's, but the results are 
more involved• Let us, for instance, consider the integration of one of our recursions in 

terms of two biquadratics [21], denoted as B1 (qn, qn+l ) and B2(q,+l, qn+2). Using the 
very relation between the xn's and the qn's, the system of these two biquadratic relations 
reads 

B l ( q n ,  qn "Xn)  =0, B 2 ( q n ' X n , q n ' X n ' X n + l )  = 0 .  (3.37) 

Eliminating the homogeneous variable qn, one immediately gets a relation between x~ 
and x~+l. Let us consider, for instance, the simplest example of integrable recursion, 

that is (3•31). For this example the two qn-biquadratics, B1 and B2, identify and the 
resultant between them yields a bicubic, 

13 (xn , xn+l )=A (1 3 3 3 2 2 . + XnXn+ 1 ) + B .  x~ + (2A + B)  • xn • ( 1 + XnXo+ l ) 

+C 2 2 ( l + xnx~+l ) • XnXn+ l + (A  + 2B) • x n" 

+ ( 3 B  - C )  "XnXn+l " (1 + XnXn+l) + Ox2Xn+l  = O. (3.38) 

Let us now consider recursion (3•32) which, in terms of the variables qn'S, can be 

integrated and yields two biquadratic relations. It also gives two bicubics of the form 

A . ( 1  3 3 . 3 ~ ( l + x n X n + l ) + ~ ) . X n  " + X n Xn+ 1 ) + n X n "J¢- " Xn " 2 2 2 ( 1 + XnXn+ 1 ) 

2 
X n Xn+ 1 "-~ F x n Xn+ 1 (1 + Xn Xn+l) + G" 2 • " XnXn+l = 0,  (3.39) 

with some involved relations between the coefficients of (3.39) that will not be written 
here. More details 3 are given in Appendix B. 

The relations between these various properties and structures (factorization proper- 
ties, existence of recursions on a single variable, integrability . . . .  ) have been detailed 
in [21,22]• The fact that products of afoced number of fn's occur in relation (3•27) 
is related to the fact that products of a fixed number of fn'S occur in the factorizations 
previously detailed (3.5). The polynomial growth of the complexity of these iterations is 
also related to the occurrence of products of fixed numbers of polynomials like (3•27). 
However, it is important to note that polynomial growth can actually occur even with 

more involved factorization properties where the number o f  fn 's  occurring in the factor- 

izations is not f ixed  but grows like n (see Section 4.2 in the following)• Of course the 
existence of factorization properties is a necessary condition for a polynomial growth of 
the calculations. 

3 These results are new and cannot be found in previous publications. 
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3.2. Iterations associated with elementary permutations: the six classes 
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In order to clarify the relation between all these various properties and structures, all 
the possible permutations of two entries of the q x q matrix have been considered [22] .  
It has been shown that all the permutations of two entries can actually be reduced to six 

different classes of transpositions [ 22 ], denoted as class I, class II .. . . .  class VI [ 22,23 ]. 
These classes are defined for q x q matrices (q > 4).  Class VI can be represented, for 

instance, as transposition mll +--+ ml2, class V can be represented as roll +-~ m23, class 

IV can be represented as ml2 ~ m13, class III  can be represented as ml2 ~-+ m23, class 

I can be represented as m12 ~ m21 and class II can be represented as ml2 ~ m34 (see 

[ 22,23 ] ). 
The analysis of  the iteration of  the homogeneous transformation K for the permuta- 

tions of  class III  (and class II but only for q = 4) yields the same factorizations as 

for class I [22] .  However, the corresponding polynomials fn'S do not satisfy recursion 
(3.27) or any other simple recursion in a single variable 4 . 

For all these various classes, as well as for the other birational transformations anal- 

ysed in this paper, one has no factorization of K(Mo) and one will denote 

MI = K ( M o ) ,  f l  = de t (M0) .  (3.40) 

Remark. For all these classes (and this is also true for all the examples analysed in this 

paper) the "right-action" of K on the fn'S or the Mn's factorizes f l  and only f l  (see 

relations (3 .10) ) ,  yielding the same linear relations for the exponents an 's ,  fin's, /zn's 
and Un'S as for class I (see relations (3 .11))  and thus the following linear relations for 

the corresponding generating functions: 

( ( q  - 1)x - 1) • f l ( x )  --- qxl.t(x) - qx,  

( ( q -  l ) x -  1) • oe(x) = q2xv(x) - q. (3.41) 

3.2.1. Class V 

The factorizations corresponding to the iterations of  the homogeneous transformation 

K (see Eq. (3.4) for class I ) ,  read for class V, 

---- . f ~ - 3  det(Mn+2) fq-1 fn+l " n+2 " fn+3, K(Mn+2) = fq -2  . f~-4n+2 " Mn+3. 
(3.42) 

As well as for classes I and III, two relations independent of q, are actually verified, 

namely Eq. (3.6) ,  and 

de t (h 'n (M0) )  = f .+l"  f n  3 " f n - l "  f n l -2  • (3.43) 

Again, a similar analysis can be performed considering the factorization properties of  
K 2 instead of  K. One gets 

4 Nevertheless, there actually exist recursions on a finite set of variables which enable, after elimination, to 
get an (involved) algebraic relation on the variables ln's or xn's (see [22] ). 



414 S. Boukraa, J-M. Maillard/Physica A 220 (1995) 403-470 

K2(M,+2) 
Mn+4 = ~¢(q-2)(q-l)  ¢q-2 ¢ ( q - l ) ( q - 2 )  cq-4  ' 

j n  Jn+l  Jn+2 Jn+3 

K 2 (Mn+2) Mn+4 
(det(Mn+2))q-2 = (fn+2 fn+3) 2 " (3.44) 

Of course, a similar analysis can be performed for K 4 but will not be detailed here. 

Factorizations (3.42) yield linear relations for the degrees of the polynomials det(Mn) 

and f ,  (the an's and fin's), for instance 

an+2 = (q - 1)fin + ~n+l  + (q - 3)fin+2 + ~n+3 .  (3.45) 

The generating functions a ( x )  and f l (x)  read 

q ( ( q -  1)x 3 + x  2 + ( q -  3)x + I) 

a ( x )  = (1 + x ) ( 1  - 3 x + x 2 - x  3) ' 

qx (3.46) 
f l ( x )  = (1 + x ) ( 1  - 3 x + x  2 - -X  3) 

In these generating functions, it is clear that one has an exponential growth of  the 

complexity of  the calculations, since the degree of all the polynomials one encounters 

grows exponentially. The exponents an's, fin'S, /Xn'S and ~n's grow exponentially like 
,~n where ~ ~ 2 .769. . .  This exponential growth seems to be incompatible with the 

existence of recursions: actually there is no simple recursion on a single variable like 

(3.27) on the fn's. 

3.2.2. class VI 
The iterations of transformation K for class VI yield, for arbitrary n, "string-like" 

factorizations: 

K(Mn)  = Mn+1 • ( fn  " fn-2"  fn-4"  fn-6"", f~: )q-3, (3.47) 

= . . f~n - 2  det(Mn) fn+l fq-2  f n - l  " n-2 " fn-3 " f~n - 2 " ' '  f ( " ,  (3.48) 

where ( ,  = 1 for n odd and (n = 2 for n even, and (n = 1 for n even and srn = q - 2 for 

n odd. 
Let us note that one has the following simple "string-like" relation independent of  q: 

F,(Mn) = K(Mn)  _ Mn+l (3.49) 
det(Mn) f l  " f 2 '  f 3 " ' "  fn" fn+l 

Relation (3.49) enable one to get Mn as the nth iteration of ~', 

Mn = fn • fn-2"  fn-4"  fn--6"'" Kn(MO)" (3.50) 

Taking the determinant of both sides of (3.50), and recalling relation in (3.48), one 
can eliminate det(Mn) to get a relation which does not depend on q, 

det(~-'n(M0)) f ,+l  (f~-2. fn- I  f - 2  . fn-3)  (fn-24 fn-5 -2 . . . . . .  fn-6" f n - 7 ) " "  n--2 
(3.51) 
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By introducing Yn the degree 5 of  det(~'n (M0)) ,  one gets from (3.51 ), 
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Tn = fin+l - -  ( 2 f i n  - -  f i n - I  "t- 2fin-2 - -  f i n - 3 )  

--(2f in-4 - -  f i n - - 5  -'~ 2 f i n - 6  -- f i n - 7 )  . . . .  , (3.52) 

and 

an = ?/ n -+- q . ( fin -F- f in_  2 -l- f in_4 --F- f in_6 -3r- . . . ) , (3.53) 

which yields 

q .  f i ( x )  q 
= - -  (3.54) or(x)  y ( x ) +  1 - x  2 ' where y ( x ) -  l + x  

Again, a similar analysis can be performed considering the factorization properties of  

K 2 instead of  K, 

K 2 ( M n )  
Mn+2 = , (3.55) 

( f n + l "  f~n -1"  f n - l "  J~n -1 - 1 .  n - 2 "  fn--3"  f~n-4 " ' f f " J ( q - 3 )  

where ( ,  = 1 for n even and ~'n --'-- q - 1 for n odd, and 

K 2 ( Mn ) Mn+2 

(de t (Mn) )q -2  = f l  " f2"  f 3 " ' "  fn"  fn+l " (3.56) 

Eqs. (3.48) and (3.49) yield linear relations for the an'S and fin'S, 

a ,  = fin+l + (q  - 2) f in  + fin-1 + (q  - 2)fin-2 + fin-3 

+ ( q -  2)fin-4 + " "  + (nfil ,  (3.57) 

and 

q ( f i l + f l 2 + " "  + f in+l)  = an + an+l,  (3.58) 

or for the generating functions a ( x )  and f i (x) ,  

1 

- - 1  - -  X 2 
x .  a ( x )  = • (1 + ( q -  2) . x )  • f i ( x )  (3.59) 

and from (3.58),  

q f i (  x ) 
= ( 1 + x )  • a ( x )  - q .  (3.60) 

(1 - x )  

The generating functions a ( x )  and f l ( x )  read 

q x (  1 -- x )  
- q + q Z x  , f l ( x )  = ( 3 . 6 1 )  

a ( x ) -  l + x  ( l + x ) ( 1 - - 2 x )  1 - 2 x  

The a . ' s  and fin'S grow exponentially like 2 n. 

5 It is clear that Yn = (--1) n . q, see also Appendix E 
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3.2.3. Class IV  

When q _> 3, the factorizations corresponding to the iterations of K for class IV read 

de t (Mn)=fn+l  (fq-2 fn-1 f~n-~" 2 f~-I  2 " " " fn-3)'(J~n:"-2"fn -5" n-6 " f~-7) ' "':" ' 

(3.62) 

. . f~/-2 K(Mn) =Mn+,  (f~-3 n-2" fn-3) " (J~n-34 • J~n-__26 • fn-7)"" ff", 
(3.63) 

where ~'n--" q - 3  for n = 1 (mod 4), ~'n = 0 for n = 2  (mod 4), ~'n = q - 2  for 
n = 3 (mod 4) and ~'n = 1 for n = 0 (rood 4) and 8n also depends on the truncation. 
As wel l  as f o r  class VI, factorizat ion relations (3.49) and (3.50) independent  o f  q, 

occur. Similarly to Section 3.2.2, one can eliminate det(Mn) between relation (3.50) 
and relation (3.62), to get a q-independent relation for K, 

det(Kn(Mo)) =fn+l  " (f~-2. f n - - 1  " f n l 2  " .]2-- 3) 

. ( f 2 2 4 .  f n _ 5 .  f - 1  2 n-6" f n - 7 ) ' ' '  " (3.64) 

The exact expressions for a (x)  and f i ( x )  read 

q q2x (1 + x 2) 
a ( x )  = ~ + 

1 + x  ( 1 - - x ) ( 1 W x ) ( 1 - x - - x  3) ' 

qx  (1 + x 2) 
f i ( x )  - 1 - x - x 3 " (3.65) 

Again relations (3.53) and (3.54) are still valid. It is clear that one has an exponential 
growth of exponents Otn'S, fin's, /Zn'S and vn's: these coefficients grow like A n where 
A ,-~ 1.465-... Therefore, there is no recursion involving products of  f ixed numbers of 
fn'S like (3.27). The fn 'S  do not satisfy simple recursions like (3.27), they do satisfy 

"pseudo-recurs ions"  where products  f r o m  f l  to fn  occur, 

(fn+2 -- fn - l fn+ l )  fn--6fn-- lOfn-14" '"  

( f n  -- fn-3fn--l) fn - -4 fn-8 fn- -12" '"  

f n ( f n - l f n - 5 f n - 9 " "  ") -- ( f n + l f n - 3 f n - 7 " '  ") (3.66) 
f n - 2 ( f n - 3 f n - 7 f n - l ~  "" ") -- ( f~ - l fn - s fn -9""  ") 

However, introducing again the "determinantal" variables In's (see Eq. (3.29)), class 
IV actually satisfies s imple recursion relations on these ln's, independent  o f  q, reading, 
for instance, 

In ln+l In+2 In+3 -- 1 ln+2 In+3 ln+4 ln+5 -- 1 
= " In ln+l In+3 In+4. (3.67) 

ln+l ln+2 -- 1 In+3 ln+4 -- 1 

Generically, these recursions are not integrable, except on codimension-one algebraic 
varieties [22,23]. For many different initial matrices M0, they can however be quite 
regular, corresponding to weak chaos, and have been called "almost integrable" [ 23 ]. 
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3.2.4. An integrable subcase for  class IV 

There does exist an algebraic condition bearing on the entries of the matrix for 
which the birational transformations associated with class IV correspond to integrable 
mappings [22,23]. This integrability condition has been written elsewhere [22]. The 
factorizations corresponding to the iterations of K for class IV, restricted to this inte- 
grable subcase, read for arbitrary n (denoting Min nt and fn the matrices and polynomials 
associated to this integrable subcase), 

det( Mint~---n , = fn+l • ]Xn • fn - I  " f~-23 " f~-3"2 f~-4,3 
int 8ztint 2 2 K(Mn ) = • fn" fn-3 f n - 2  " " f n - 4  ~t,,a n+ 1 

(3.68) 

(3.69) 

and 

~ ( M i n t  ) -- K(Minnt) ~t4int 
_ , , A  n +  1 

det(Mint) fn-4"  fn-3" fn-2" f n - l f n "  fn+l " (3.70) 

From these equations one gets linear relations on the degrees of polynomials det( Min nt) 's 
and fn's (the an's and fin's), and their generating functions a(x )  and f l (x ) ,  

4(1 + x--  x 2 + 3x 3) 4x 
a ( x )  = ( l + x ) ( 1 - x )  3 , f l ( x ) =  ( l + x ) ( l _ x ) 3 ( l + x + x 2 ) .  (3.71) 

These relations clearly show that the additional factorizations, occurring for this inte- 
grable subcase, yield factorizations, like (3.68) or (3.70), bearing on a fixed number 
of polynomials fn and even more, to a polynomial growth of the calculations instead of 
the exponential growth previously described (see Section 3,2.3), since all the poles are 
roots of unity. 

The new polynomials fn'S do satisfy, in this integrable subcase, some recursions 
bearing on a fixed number of polynomials, as, for example, 

fn+2 fn+7 fn+9 -- fn+3 fn+5 fn+10 -- f n + l  fn+6 fn+8 --  fn+2 fn+4 fn+9 

fn+3 fn+7 fn+8 -- fn+4 fn+5 fn+9 fn+2 fn+6 fn+7 -- fn+3 fn+4 fn+8" 
Introducing the well-suited variable qint, 

(3.72) 

4.~ _ f . f . + 5  

fn+2 fn+3 ' (3.73) 

recursion (3.72) can be integrated into a biquadratic relation [23], 

'nt "nt "nt 'nt Ant i n t  (1 + A~+t)"  (1 + a~+2) • + (~L, q'L2 p)= - -  /d, qn+l  qn+2 .  

- A n t  /An t  r e c u r s i o n  (3.72) r e a d s  Introducing the variable xn -'~n+l/'~n , 

(3.74) 

Xn+ 2 -- 1 Xn+ 1 -- 1 XnXn+ 2 

Xn+lXn+ 3 -- 1 XnXn+ 2 -- 1 Xn+ 1 

This recursion is integrable: it yields elliptic curves [22]. 

(3.75) 
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4. Birational transformations associated with vertex models 

Let us now consider permutations of entries of q x q matrices which are associated 
to symmetries of  vertex models. 

4.1. Iterations associated with the sixteen-vertex model 

In the case of  4 x 4 matrices, a particular permutation of the entries of the matrix, 

h ,  has been introduced in the framework of the symmetries of the sixteen-vertex model 

[ 29 ]. This permutation corresponds to 

tl : m13 e-~ m31, m14 ~ m32, m23 e-e m41, m24 e-+ m42, (4.1) 

which amounts to permuting the two 2 x 2 (off-diagonal) submatrices of the 4 x 4 

matrix M0. This transposition tl corresponds to a partial transposition of one direction 

(say the horizontal one denoted by "1", the other transposition t2 corresponding to the 

other direction denoted by "2") of a two-dimensional vertex model [26,27,29], 

Ii k 
(4.2) 

The action of tl and t2 on the R-matrix is given by [29] 

(t,R)ki~=R~l j, (t2R)ki~=R~j, t = t , ' t 2 .  (4.3) 

Remarkably, the symmetry group generated by the matrix inverse l 'and transformation 

h ,  or the infinite generator Ktl = tl • I, has been shown to yield elliptic curves [27,29] 
which foliate the whole parameter space of the sixteen vertex model. 

Let us consider a 4 x 4 matrix M0 and the successive matrices obtained by iteration of 

transformation Kt, = tl • I, where tl is defined by (4.1). Similarly to the factorizations 
described in (3.1), one has, for arbitrary n, the following factorizations for the iterations 

of Kt, : 

det ( Mn+ 1 ) Kt, (Mn+l) Fn+2 - , (4.4) 
Mn+2 - F 2 ' Fan 

K h (Mn+E) Mn+3 (4.5) 
~'t~(Mn+2) = det(Mn+2) - Fn+lFn+3 

From these factorizations, one can easily get linear relations on the exponents an, Êin, 
/Zn and ~',, on their generating functions, for instance 

(1 + x )  • a ( x )  = 4 ( 1 + x  2) - f i (x )  + 4 ,  (4.6) 

and exact expressions for their generating functions and for the exponents an's  and fin's, 
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4(1 + 3x 2) 4x 
a ( x ) -  ( l - x )  3 ' ~ ( x ) - ( l _ x )  3 '  

a n = 4 ( 2 n  2 + 1 ) ,  f l n = 2 n ( n + l ) .  (4.7) 

Amazingly, the F~'s, which correspond to Kt,, do satisfy recursions which are exactly 
the same as (3.27) where the fn's are replaced by the Fn's [23], 

2 -- Fn+3F2 FnF~+3 Fn+4F2+I 2 - F~_IF~+ 2 
= (4 .8)  

Fn_lFn+3Fn+4 - FnFn+lFn+ 5 Fn-2Fn+2Fn+3 - Fn_lFnFn+ 4 

4.2. "Self-similar" generalization of transposition tl for 2m x 2m matrices 

Let us now consider a more general vertex model where one direction, denoted as 
direction (1),  is singled out. Pictorially this can be represented as follows: 

(4.9) 

where i and k (corresponding to direction (1))  can take m values, while J and L take 
m values. 

The action of tl, the "partial" transposition on direction (1), is given by [29] 

( A  D B )  ( A  C )  (4.10) (t lR)if f  = Ri~JL, that is t l  : C ' D ' 

where A, B, C and D are m x m matrices. 
Denoting q = 2m the size of the matrices, the analysis of the corresponding factoriza- 

tions yields for arbitrary n "string-like" factorizations [ 31 ], 

K ( M , )  =Mn+l ' fq-5 "f~-15 . f2 (q-5)n_2  " f ~ n - 3  . . . .  Jn-4¢E(q-5) " f ~ n - 5  ' (4.11) 

det (Mn)=fn+l  • fq-4 " f~-17 . . . .  f2(q-4)n_2 f8n_3 an-4¢2(q-4) f~-58. J¢2(q-4)n-6 • • • , (4.12) 

and a relation independent of the matrix size q, 

~;(Mn) = K(M,______~_) _ Mn+l (4.13) 
det(Mn) ( f l '  f2""" fn--l) 2" fn" fn+l 

The equivalents of relations (3.50) and (3.51) read, respectively, two q-independent 
relations, 

Mn = fn" ( fn -2"  fn-4"  fn-6"" .)2. ~n(Mo) ' 

det(Kn(Mo)) = fn+l f ; 4  7 " fn-1  ( f~-82 8 " " " fn-3) 

( f~-._8 4 8 f~-5) ( fn-86 8 . . . .  f n - 7 ) ' ' "  " 

Eq. (4.13) gives a linear relation valid for arbitrary q, 

(4.14) 
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(1 + x) • a ( x )  - 

One gets 

1 - x  
- q = 0 .  ( 4 . 1 5 )  

a ( x ) = q ~  + q2 x(1 + x 2) fl ( x ) = q_____x___x 
l + x  (1 + x ) ( 1 - x )  4'  ( l - x )  3 '  

t~ n = ~ q ( 2 n +  l ) ( 2 n 2 + 2 n + 3 ) ,  fin = ½qn(n+ 1).  (4.16) 

The otn's and fin's are, respectively, cubic and quadratic functions of n. One notes that 
such a polynomial growth actually occurs with involved "string-like" factorizations, 
such as (4.11) and (4.13). 

Let us however note that this generalization of the discrete symmetries of the sixteen 

vertex model does not enable us to recover the results of Section 4.1 as particular 

subcases taking m = 2. 

This framework enables us to take into account the analysis of  N-site monodromy 
matrices [31] (take m = 2 N) of two-dimensional models, as well as the analysis of 

d-dimensional 2d-state vertex models (take m = 2d- l ) .  Let us just give here a pictorial 

representation of the two sites (N  = 2) monodromy matrix of a two-dimensional model 

i R k 

J 
(4.17) 

and of a three-dimensional vertex model: 

i [ l l 1 1 2  k 

jl j2 

One can introduce similar "partial" transposition tl for d-dimensional vertex models 

(d = 3,4 . . . .  ) [28], I f  one represents the R-matrix of  this vertex-model as a 2 d x 2 d 
matrix, symmetry tl amounts to permuting two off-diagonal 2 d-I  × 2 d-I  submatrices 

B and C of this 2 d × 2 d matrix (see [27,28] for d = 3) where A, B, C and D 
are 2 d- l  × 2 d-1 matrices. For d-dimensional vertex models, there are other "partial" 

transpositions t2, t3 ..... td-I [27,28] which can also be represented as (4.10) after some 

relabeling of rows and columns. 
For a three-dimensional cubic vertex model [27,28], a "partial" transposition tl as- 

sociated with one of the three directions of the cubic lattice has also been introduced 
[ 27,28 ] : the analysis of  the factorizations corresponding to the iterations of transforma- 
tion K for tl for a (general 6 ) three-dimensional model (8 × 8 matrix) [26,27] gives 

the previous "string-like" factorizations (4.11) and (4.13), and the same generating 

functions (4.16), but, of  course, for q =  8, i.e. m = 4  (see also [31]) .  
Particular subcases of this three-dimensional vertex model providing natural three- 

dimensional generalizations of the Baxter model, that is to say particular K-invariant 
patterns for the initial matrix M0 have been analysed in [31 ]. For a sixteen-parameter 

6 A general 8 x 8 matrix means 64 homogeneous entries. 
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model [28,32], the "string-like" factorizations are changed into factorizations with a 

fixed number of terms (see [ 31 ] ), 

K(Mn) = Mn+l . f3 " f~n-l, det(Mn) = fn+l " f~n " fn-l,7 

K,(Mn) = Mn+l 
f , - I  • f , '  fn+l " (4.18) 

The generating functions a(x ) ,  f l (x ) ,  and the an's and fin's read 

8 ( 1 + 4x + 7x 2) 8x 
a ( x )  = f i ( x )  - - -  

(1 - - X )  3 ' (1 - - X )  3 '  

a n = 8 ( 6 n  2 + 1 ) ,  fin = 4 n ( n + l ) .  (4.19) 

The an's and fi , 's  are both quadratic functions of n, 

a n = 8 ( 6 n 2 + l ) ,  f l , = 4 n ( n + l ) .  (4.20) 

One remarks that f i (x)  (and, therefore, /x(x)) is the same as for the general 8 × 8 
matrix (see (4.16)), the only difference being on the an's (or equivalently on the 
generating function a (x ) ) :  the cubic growth of the an's being replaced by a quadratic 
growth (see (4.20)). Let us note that relation (4.14) becomes 

fn-3"  fn-5"  fn-7""  "Mn = fn" fn-2"  fn-4" fn-6"" "Kn(MO). (4.21) 

It is also worth recalling that for a particular pattern of this three-dimensional gener- 
alization of the Baxter model (see [31] ), the iteration of K (or ~') actually yields 
elliptic curves (see [27,28]). In this remarkable subcase, the factorization relations 
(4.18) are again slightly modified. The new polynomials fn's defined in this restricted 
(integrable) subcase can actually be shown to verify a hierarchy of non-linear recur- 
sions in 7 f f ~  [31], which actually identify exactly with recursions of class I (3.27) 
and (3.28) [21] or with recursions (4.8). The factorizations are modified as follows 
for arbitrary n: 

K(Mn) Mn+l " J~n 2 = " f n - 1  f~n-2, det(Mn) fn+l f5 3 7 . . . . .  n f~-I f~-2,  (4.22) 

yielding 

K, ( Mn) -  K(Mn) Mn+l 
det(Mn) - fn-2" fn-1 • fn" fn+l (4.23) 

As a consequence of the identification with the factorizations detailed in Section 3.1, 
the generating functions a(x ) ,  f i (x ) ,  tz(x) and v(x)  are exactly the same as the ones 
given in (3.15) ..... but for q = 8. The integrability of this subcase is associated with 
the occurrence of one more singularity for a (x)  (compare (3.15) with (4.16)). 

7 For this model the fn's are perfect square. 



422 s. Boukraa, J-M. Maillard/Physica A 220 (1995) 403-470 

4.3. tl for  Q4-state vertex models 

Let us suppose here that the indices i, j, k, l (see Fig. 4.2) can take Q colors (Q4-state 
vertex model). The R-matrix is a q x q matrix (with q = Q2) which can be seen as Q2 
blocks A [ i, j ] ,  

/ (A[I'I]- A[I,2] A[1,3] ... A[1,Q]/ 
/ A [ 2 , 1 ]  A[2,2]  A[2,3]  . . .  A[2 ,Q]  

R =  ] a [ 3 , 1 ]  A[3,2]  A[3,3]  . . .  A[3,Q]  , (4.24) 
. . . , . .  • 

\ A [ Q ,  1] A[Q,2]  A[Q,3]  . . .  A[Q,Q] 

where the A [ i, j ]  's are Q x Q matrices. With these notations the partial transposition tl 
amounts to permuting matrices A[a,/3] and A[/3, ~]. 

Similarly to factorizations described in (4.1), one has, for arbitrary n, the following 

factorizations for the iterations of Ktl acting on q x q R-matrices like (4.24): 

Ktt(Mn+l) det(Mn+l) Kt,(Mn+2) Mn+3 
Mn+2 = F~_ 2 , Fn+2 = F~_ 1 ' det(Mn+2) Fn+lFn+3 

(4.25) 

It is clear that these factorizations generalize the one described in Section 4.1, namely 
(4.4) and (4.5). For instance, one recovers relation (4.5) of the sixteen vertex model, 
which is independent of q. From these factorizations, one can easily get linear relations 

on exponents an'S, fin's, ben's and un's, linear relations for their generating functions, 
for instance 

( l + x ) . a ( x )  = q . ( l + x  2 ) . f l ( x ) + q ,  (4.26) 

and exact expressions for their generating functions, 

q .  (1 + (q - 1 ) x  2) 
~ ( x )  = 

( 1 - x ) ( 1 - ( q - 2 ) x + x  2 ) '  

f l (x )  = qx 
(1 - x ) ( 1  - (q - 2 ) x + x  2) " (4.27) 

The ce,'s,/3,'s, ben's and un's have an exponential growth in terms o fn  when Q is no 
longer equal to 2 (or 0...). The Q4-state vertex models are, therefore, not generically 
good candidates for integrability when the number of colors Q is no longer 2. However, 
integrability cases when Q is different from 2 are not completely ruled out: the occur- 
rence of Yang-Baxter integrability together with polynomial growth for some subcases 
of this Q4-state vertex model has been analysed in [31] 

Section 4.3, together with Section 4.2, shows that there exist, at least, two kinds of  
generalizations of  transposition tl of the sixteen vertex model (4 x 4 matrices) and that 
these two generalizations yield drastically different results as far as the factorization 
properties are concerned (polynomial versus exponential growth). In contrast with 
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class I and class VI (or class IV),  the equivalent of relations (3.7), or (3.50), is more 

involved than the simple factorizations (4.25), 

f , - i  • ( fn -3"  fn-5 " fn-7"" .)2• Mn = fn " ( fn -2"  fn-4"  fn-6"" •)2• ~.n (M0) " 

(4.28) 

The equivalent of relations (3.51) or (4.14) are also complex• This yields a more 

intricate dependence of a ( x )  and f l (x )  in terms of q (see also Appendix C). 

5. "Straight" generalization of tl 

Another way to generalize transposition tl for q x q matrices, amounts to performing 

the following permutation of the entries: 

tl : m12 ~ m21, m32 ~ m41 , m23 ~ m14, m43 ~ m34, (5.1) 

the other entries of  the q x q matrix being unchanged• This is the way transposition 

ml2 ~ m21 has been generalized to q x q matrices in Section 3.1 (see also [21])• This 

corresponds to transformation tl of (4•1) in the upper left 4 x 4 submatrix and the 
identity transformation elsewhere• 

Before considering the general case of q x q matrices, let us first note that for q = 5, 

the analysis of  the factorizations does not yield any factorization on the determinants of 

the iterates of the initial matrix by K or any factorization on the corresponding matrices. 

However, in calculating Mn = Kn(MO), one sees that a subset of  the entries of this 

matrix actually factorizes, namely 

(Mn)ll  , (Mn)13 , (Mn)22 , (Mn)24, 

(Mn)31 , (Mn)33, (Mn)42, (Mn)44 (5•2) 

factorize f n - l .  It is clear that these entries are singled out by tl (see (5•1)). 
The analysis of the factorizations can actually be performed for q > 6, yielding the 

following "string-like" factorizations for arbitrary n: 

K(Mn)  = M n + l ' f  q-6 f~n_l'f~ -6 f~n_3"f~ -6 • n - - 2 "  n - - 4 " ' "  ' 

de t (Mn)=fn+l  fq-5  f5 f~n-5. 5 • • • f L 3 .  ( 5 . 3 )  

and 

K ( M . )  = K(M._____~) _ Mn+I (5.4) 
det(Mn) fn+l • fn" f n - l ' "  " f l  ' 

which gives for the generating functions a ( x )  and f l (x) ,  

q ~ ( x )  
(1 + x)  • a ( x )  q = 0. (5.5) 

1 - x  

These two generating functions read 
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(1 + 4x 2 + (q -- 5)x) qx 
a ( x )  = q ( 1 - - x ) ( l + x ) ( 1 - 4 x ) '  f l ( x ) =  1- -4X"  (5.6) 

These factorizations can actually be proved for arbitrary q in a similar way as the 
demonstration performed for transposition ml2 *-~ m21 for q × q matrices [21 ]. This will 
not be performed here. 

5.1. lntegrable subcase of  the "straight" generalization of tl 

The f , ' s  do not satisfy simple recursions (like (3.27) .... ). However, let us introduce 

an initial matrix M0 of a particular form, namely 

(a 0) 
Mo = C ' (5 .7)  

where A denotes a 4 x 4 submatrix, B a (q - 4) x 4 submatrix, C a (q - 4) x (q - 4) 

submatrix and "0" the 4 x ( q -  4) submatrix with zero entries. All the successive 

matrices occurring in the iteration of K are of the same form (5.7). It is clear that this 

"restricted factorization problem" [31] corresponding to the initial matrix M0 yields 
recursions which can be deduced from the ones associated with tl for a 4 x 4 matrix 

(see Section 4.1). For instance, relation 

(f33 f23 fl 4- f4)(f34- f4) f2S f33 f4 
= 1 ( 5 . 8 )  

(f43f33f24--fs) (f24--f3) 

is valid for q × q matrices of the form (5.7) but is not satisfied for generic q × q 

matrices. One easily gets from the "semi-direct product" form for M0 (see (5.7)), the 
following relations enabling one to write the polynomials f~A)'s corresponding to the 

action of Kt~ on the 4 x 4 submatrix A in (5.7) (see subsection (4.1)) in terms of the 

polynomials fn's given by (5.3), 

f (A)  f l  f (A)  = f2  
1 - det(C) ' f ~ a ) ( d e t ( C ) ) 4 '  

f3  ( 5 . 9 )  
f(3 a) = f ( a )  t ¢ (A) )  7 ( det(  C )  )16 " " , 2 ~ dl 

. . .  f(A) fn 
J n -- z-(A) : ~e(A) -~7{ ~¢(A) ~27(it'(A) ",108 . ( f~a) )27 .4 . -4 (de t (C)  )4 . - ,  " 

Jn- l~ ,Jn-2  ] ' ,Jn-3 / ~,dn-4) "" 
(5 .10)  

With relations (5.9), recursion (5.8) reads 

f (A)  (f~(A))3 ( f ~ A ) ) 3  f~A) f~A) f ~ A ) .  ( f~A) )2  ( f ( A ) ) 2  . ¢(A) 
" - -  " = " - -  J 2  ( 5 . 1 1 )  

¢ ( A ) ( f [ A ) )  3 __ (f2(A))3 f (A)  f (A)  -- Jl~C(A)[~e(A)'~2~'j3 J ' J3 

which is actually one of the recursions occurring in the analysis of the transformations 
Ktl (see [21]) .  Similarly, all the recursions on the f (a) ' s  (see (4.8) and [21]) can 
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be written in terms of the fn's.  Introducing flCnA) as the degree of the fCnA)'s, relations 

(5.9) yield when n > 3, 

~n ]~(m) ._[_ / ~ A )  - ~ ( a )  108/3~a~ 4 . . .  Zn_ll~Ia) = + Ipn_2 + 27flnCA) 3 + + + 

+4  n-1 • (q -- 4 ) ,  (5.12) 

where zn-l = 27 • 4 n-4. The generating function of the zn's reads 

(1 - x )  3 (5.13) 
z ( x ) =  1 - 4 x  

Relation (5.12) immediately yields simple relations between the generating functions 

z ( x ) , / 3 ( x )  and fl~A) (X) (where fl<A) (X) denotes the generating function of the fl~a)'s, 
which is known (see (4.7) in Section 4.1), 

q - 4 4x q - 4 qx 
f l (x)  - ~ --4-x + z ( x ) . f l ~ t ) ( x )  =Z(X) • (1 - -X)  3 "['- 1 - 4 - - - ~  - 1 - 4 x "  

(5.14) 

This relation allows us to understand how the (1 - x) singularity for fl(A)(X), which 

is closely related to the integrability of the recursions on the fn's (4.8), can actually 
be replaced by ( 1 - 4x) singularity for f l (x) .  

6. More general permutations 

In the previous examples it has been seen that notable factorizations occur for bira- 

tional transformations originating from involutive transformations on matrices. In par- 

ticular, it has been seen that the factorization schemes either involve a fixed number 

of polynomials, or are "periodic" (see, for instance, factorization (5.3)).  In both cases 

this yields rational expressions for the generating functions of the successive degrees 

of the calculations. Through these examples one can see clearly how the factorization 
schemes can be modified when one is restricted to particular (K-invariant) subcases. It 
is obvious that, for a subcase, the growth of the calculations can only be smaller than 

for the generic case: one can only expect additional factorizations. A polynomial growth 
can even occur for subcases, but this does not mean that the birational transformations 
are integrable 8. 

Several examples of polynomial growth of birational transformations yielding al- 
gebraic surfaces [31] exist (one can think of these transformations as "shifts on 

a torus" [31]) .  Furthermore the occurrence of recursions in a single variable (like 
(3.67)) does not mean that the orbits of these birational transformations are necessarily 
curves (see recursion (3.67) in Section 3.2.3). 

s The polynomial growth is related to the fact that transformation can be represented as a shift of some 
Abelian variety. At the present moment all the examples of iterations of birational transformations which 
exhibit polynomial growth correspond to transformations which can be represented as a shift of some Jacobian 
variety [ 31 ]. 
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There is a need to analyse more examples in order to see if the birational character 
of the transformations, or the fact that they originate from product of  two involutions, is 

crucial in order to get such factorizations where either a "fixed" number of polynomials, 
or "periodicity", occur. 

Many transformations corresponding to more general permutations are given in the 

following examples. Some of them are no longer involutions. In all the examples detailed 

from now on, two quite different kinds of permutations on q × q matrices will be 

encountered, which have already been illustrated in the previously detailed examples of 
Sections 4.2 and 4.3. 

"Straight" generalizations 

The first kind of permutations on q × q matrices simply generalizes any permutation 
introduced on, for instance, a 4 × 4 matrix. Let us write the q × q matrix in blocks, 

( A4,4 B4,q-4 ~ (6.1) 
MO = \ Cq-4,4 Dq-4 q-4 / " 

Submatrices A4,4, B4,q-4, Cq-4,4 and Dq-a.q-4 are respectively 4 x 4, 4 x (q - 4), 
(q - 4) x 4 and (q - 4) × (q - 4) matrices. 

A simple extension amounts to permuting the entries of the submatrix A4,4 according 

to the permutation introduced on the 4 × 4 matrix, and to leaving the others submatrices 

B4,q-4, Cq-4,4, Dq-4,q-4 unchanged. We will call such extensions "straight" generaliza- 

tions. 

In order to understand why the expression o f /3 (x )  depends so simply on the matrix 

size q in the case of  "straight" generalization, let us consider a particular limit of the 

initial matrix, namely B4,q-4 = 0. It is possible for these "straight" generalizations to 

understand, from this limit, that the q-dependence of the generating function fl(q, x) is 

simple and reads 

/3.(4) lSn(q) 
a, - - -  - , (6.2) 

4 q 

where the an's do not depend on q. More details are given in Appendix C. 

"Self-similar" generalizations 
The second kind of permutations on q x q matrices corresponds to permutations which 

extend the permutation introduced on, for instance, a 4 x 4 matrix in such a way that 
the number of  entries which are permuted on q × q matrices grows like q. Permutation 
(4.10), and the corresponding birational transformations K detailed in Section 4.2, 
illustrate such a situation. We will call such extensions "self-similar" generalizations. In 
the previous examples of  "self-similar" generalizations of transformation tl, it has been 
seen that there exist (at least ... ) two different kinds of "self-similad' generalizations, 
namely the generalization detailed in Section 4.3 on q2 x q2 matrices and the one 
detailed in Section 4.2 on 2m x 2m matrices. The expression o f / 3 ( x )  also depends 
very simply on the matrix size q for the "self-similar" generalizations introduced in 
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Section 4.2: f l (x )  is proportional to q like in (6.2). Note that this is not the case for 
the "self-similar" generalizations introduced in Section 4.3. In order to understand why 

the expression of f l (x )  depends so simply on the matrix size q for the "self-similar" 
generalizations introduced in Section 4.2, one can again consider a particular limit 9 of 

the initial matrix, 

(A 0) 
M0 = A2 ' (6.3) 

on which one has the action of the same transposition on each of the two m x m 

submatrices: AI and A2. One immediately gets 

/ ~2q (X)  = t~q(X) -4- •q(X) , yielding flq(X) = lqfl4(X) . (6.4) 

More details are given in Appendix C. 

Let us first give a list of  birational transformations corresponding to involutive per- 

mutations. 

6. I. Birational transformations corresponding to involutive permutations 

Let us first consider examples of birational transformations corresponding to involutive 
permutations which are slightly more involved than the one of Sections 3.1 or 3.2. 

6.1.1. Permutation [ 12-21,34-43] 

Let us now consider, for a 4 x 4 matrix, permutation t which amounts to permuting 

m12 and m21, and, at the same time, m34 and m43, 

t : m12 ~ m21 , m43 ~ m34. (6.5) 

Surprisingly enough, one has exactly the same factorizations and relations as the one 
detailed in the previous section for  transposition tl (see relations (4.4) and (4.5)).  

Introducing the following pattern of the 4 x 4 matrix, which depends on eight homo- 

geneous entries (this pattern is invariant under the action of the group generated by the 

matrix inverse I and permutation t (see (6.5)) [24,33]: 

( ) (rl i)  ri2) 
R1 R2 with Ri= - i =  1,2. (6.6) 

R A = R2 R1 ~k rt3 r~4 ' 

One can consider factorization analysis as the one detailed in Section 3 for initial 

matrices M0, corresponding to particular patterns such as (6.6), as soon as the form 
of the matrices obtained by iteration of K = t - 1 are of the "same form" as M0 [33] 
("restricted factorization problem" [ 23 ] ). 

It is important to note that, for  matrices Mn's of the form (6.6), polynomials Fn's 
defined by (4.4) and (4.5) actually satisfy the same recursions as (4.8) and, further- 
more, the same hierarchy described in [22]. However, for matrices Mn of the general 

9 This cannot  be done for the "self-similar" generalizations of Section 4.3. 
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form (sixteen homogeneous entries), one no longer has any recursion on the Fn's. The 

non-existence of recursions on the Fn's can be understood considering the image of the 
successive iterations of K (or equivalently K) corresponding to permutation (6.5) in 
the parameter space of all the entries of matrices Mn's (eight homogeneous parameters 
for pattern (6.6) and sixteen homogeneous parameters in the general case). 

Fig. 1 shows the projection of the orbits generated 10 by the iteration of K for 
pattern (6.6). It corresponds to the following initial values: rl 1) = 1, r~ 1) = - 4 ,  r~ l) = 
0.2, r4 (1' = 1.2, rl 2) = 1.3, r~ 2) = -0 .15,  r~ 2) = 0.3, r4 (2) = 0.9. It is clear in Fig. 1 

that the orbits lie on curves which are certainly elliptic curves [23]. This suites with 

the existence of  recursion relations in the Fn's. 

Figs. 2a, 2b, 2c and 2d correspond to the general case (sixteen homogeneous param- 
eters). These figures seem to indicate that the orbits lie on surfaces: it is shown in [23] 

that this is actually the case and that these surfaces are actually algebraic surfaces given, 
by intersection of  quadrics. This suites with the non-existence of recursions in the F, 's  
in the general case. 

One can consider the successive iterates gn (M,)  of an initial matrix of the form (6.6) 
seeking for the smallest affine space containing these successive points (see [21 ] ). It 

can actually be shown that 

K' (Mn)  = a~ ") " Mo + al n) . M2 + a (n) . M4 + a~ n) . Mr.  (6.7) 

Relation (6.7) shows that the orbits lie on a three-dimensional affine space (in the 
general case the dimension is larger). 

Note that for pattern (6.6), one has an obvious factorization of f l  as follows: f l  = 
det(M0) = ~ .  det(Rl + R2) • det(R1 - R2). The problem of the relations between such 
additional factorizations, consequence of the particular form of the matrix, and the fac- 
torizations, consequence of the specificity of the non-linear homogeneous transformation 
K, (see (3.4)) ,  will not be detailed here. 

One should note that the "straight" generalizations of this permutation to q × q (q _> 5) 
give exactly the same results as the one detailed in Section 5. 

Let us now give a list of other (increasingly complex) examples. Visualizations of 
the orbits (like Figs. 1, 2a, 2b, 2c and 2d) will not be performed under: in most of 
these examples one encounters an exponential growth of the calculations which yields 

quite "chaotic" orbits. 

6.1.2. A second example 
Let us consider t the following permutation of the entries of a 4 x 4 matrix: 

t : mll ~ m44, m24 ~ m31, m23 ~ m32. (6.8) 

The analysis of the factorizations of the iterations of transformation K = t • I yields, 
for arbitrary n, "string-like" factorizations, 

10 In the plane made of two (inhomogeneous) variables among all the (inhomogeneous) coordinates of the 
parameter space. 
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5.53 
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Projection: xl x6 
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-26.49 17.98 

Fig. 1. Projection of  the orbit corresponding to the iteration of  transformation ~" of an initial matrix of the 
form (6.6) .  
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Projection: x l  x2 

431 

-1.1, (b) 
-1.87 

Fig. 2--continued. 

2 2 2 
"~ " f ~ 7  " ° " • " f ~ - 5  K ( M n )  Mn+l  f ~ - 2  

• f n - 5  = " f ~ - 2  fn- -4  . . . .  , det(Mn) f , + l  " f n - I  3 3 

6.00 

(6.9) 

and 
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Projection: xl x2 

-1.1~ (c) 
-1.01 1.01 

Fig. 2 ~ continued. 

K(M.) M.+~ (6.10) 
K(mn) = de t (M, )  - ( f , + l f n - 1 )  • ( f n - 2 f n - 4 )  " (fn-5fn-7)"" 

Again, the "right action" o f  K on the fn's and the matrices Mn'S reads faetorizations 

o f  f l  like (3.10),  leading to functional E, qs. (3.41) on a(x), fl(x), IX(X) and v(x). 
Eqs. (6.9) and (6.10) give 
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Projection." xl x2 

433 

-1.1c (d) 

-1.01 

Fig. 2 - -  continued. 

1.00 

4 f l ( x )  4 x f l ( x )  
- - +  - -  4 = 0 ,  

(1  + x )  • a ( x )  1 - x 1 - x 3 

8/3(x)x a 
3 x a ( x )  - a ( x )  1 - x ~ + 4  = O,  ( 6 . 1 1 )  
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4 (1 + x2) • f i (x)  
(1 + x )  • a ( x )  - 1 - x 3 - 4 = 0 ,  (6.12) 

leading to 

a ( x ) =  4 ( l + x ) ( 1 - x + 2 x 2 )  f l ( x ) =  4 x ( l + x + x 2 )  
(1 - x )  (1 - 2x - x 2 - 2x 3) ' 1 - 2x - x 2 - 2x 3 ' 

x 2 (1 + x)  2x 3 

At(x)= 1 - 2 x - x  2 - 2 x  3 '  p ( x ) =  ( 1 - x ) . ( 1 - 2 x - x Z - 2 x  3)" (6.13) 

The an ' s ,  fin's, Atn's and ~'n's grow exponentially like ,~n with ,~ ,,~ 2 .658 . . . .  

6.1.3. A third example 
Let us consider  t the fol lowing permutation o f  the entries o f  a 4 x 4 matrix: 

t : m l l  +-4 m 4 4 ,  m12  *-+ m 4 3 ,  m14 ~ m 4 1 ,  m13 ~ m 4 2 .  (6.14) 

The iterations o f  the associated transformation K = t .  1 give, for arbitrary n, "string- 

l ike" factorizations, 

and 

K(Mn) = Mn+l ' fn" fn-3" fn-4" fn-7" fn-8"'" , 

det(Mn)= fn+l " (fn" fn-3" fn-4" fn-7" fn-8"") 2, 

(6.15) 

(6.16) 

K ( M n ) -  K(Mn) Mn+l 
de t (Mn)  - ( fn+l  " f n )  " ( f n - 3  ' f n - 4 )  " ( f n - 7  " fn--8)"" "" (6.17) 

Again,  the "right action" of  K on the fn'S and the matrices Mn's reads factorizations 

of  f l  l ike (3 .10) ,  leading to functional equations on a(x ) ,  f l (x) ,  At(x) and p ( x )  l ike 

(3 .41) .  

Eq. (6.16)  suggests 

(1 - 2x + x 4) • f l (x)  - 4x + 4x 2 - 4x 3 + 4x 4 = 0 ,  (6.18) 

which is actually verified, while one obtains f r o m ( 6 . 1 7 ) ,  

4(1 + x ) .  f i (x)  _ 4 = 0 .  (6.19) 
(1 + x ) . ~ ( x )  - 1 -- X 4 

From E q s . ( 6 . 1 8 )  and (6.19) one ge t s the  exactexpress ion o f these  generating functions, 

4(1 -q- X - -  X2 -~- X 3 ) 

a ( x )  = ( 1 - - x - - x  2 - x  3 ) ( l - x )  ' 

2x(1-x+x 2) ~(x)= 
A t ( x ) =  1 - x - x  2 - x  3 '  

4 (1 + x 2) x 
/ 3 ( x )  = 1 - x - x  2 - x  3 ' 

x ( 1 - x  + x 2) 
( 1  - x - x 2 - x 3 )  ( 1  - x )  

The an's, fin's, Atn's and l~'n'S grow exponential ly like A n with A N 1 .839 . . . .  

(6.20) 
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6.1.4. "Straight" generalizations of  the third example 

Let us consider a "straight" generalization of the same permutation of the entries as 

(6.14) for q x q matrices (q >__ 5), the other entries being unchanged. The iterations of 
transformation K yields, for arbitrary n, "string-like" factorizations, 

K ( M n )  = Mn+,  " f q - 4 .  f n - l  " f q : ~ "  f n - 3 "  f~n:34 " ' "  , 

det(Mn) = fn+l . f q - 3  " f n - l ' 2  fnq-2-2" f2n_3 . f~,_-2 • -. , (6.21) 

and the same relation as (3.49) or (5.4), 

K ( Mn) Mn+l (6.22) 
~'(Mn) - det(Mn) - f l  • f2"  f 3 " "  fn " f ,+l  ' 

from which one deduces again the linear relation (3.60) on o~(q,x) and 13(q,x).  The 
generating functions read 

a ( q , x )  = 

# ( q , x )  - 

q (1 + ( q -  3)x + x 2 + x 3) qx 

1-x)( l+x)  (1-2x-x 2 ) '  f l ( q , x )  - 1 -  2 x -  x 2 '  

x ( q -  3 - x )  x ( q - 4  + x + x 2) 

1 - 2 x - x  2 ' v ( q , x ) =  ( 1 - x ) ( l + x ) ( 1 - 2 x - x  2)" (6.23) 

The a , ' s ,  fin's, /z,'s and vn's grow exponentially like A n with A = 1 + x/2 ~ 2.414.--.  

6.1.5. A "self-similar" generalization of  the third example 

Let us consider t the following permutation of the entries for q × q matrices (q > 5): 

t : mll ~ m q q ,  m12 ~ mq(q-1)  . . . .  m l ( q - 1 )  ~ mq2,  mlq  ~ mql , (6.24) 

and the associated transformation K = t.I .  The iterations of the associated transformation 
K yield, for arbitrary n, "string-like" factorizations, 

K ( M , )  =Mn+l" f q -3"  f~-34" f~-_~, f q - ~ 2 . . ' ,  (6.25) 
. q-2  

det(Mn) = ( f n + l  • i f - e )  . ( f n - 3  fn~_4)  ' ( f n - - 7 "  f~n----82) " ' "  , ( 6 . 2 6 )  

and the same equation as (6.17), 

F . ( M . ) -  K ( M . )  _ Mn+l (6.27) 
det (M.)  ( f .+ l  • f . )  • ( fn-3"  fn-4)  • ( f n -7"  fn -8)""  "" 

One remarks that there is a shift o f f  our of the index n in the factorization scheme 
((6.25),  (6.26), (6.27)).  From relation (6.27), a linear relation on the generating 
functions ce(q, x) and f l ( q , x )  is deduced, 

q(1 + x ) f l ( q , x )  
( l + x )  . a ( q , x )  - 1 - x 4 - - q = 0 .  (6.28) 

The explicit expressions of the generating functions a ( q , x ) ,  f l ( q , x ) ,  I . t (q,x)  and 
v(q ,  x)  read 
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t~(q, X) = q ( 1 + (q -- 2 )x )  qx ( 1 -- x)  (1 + x 2) 
( l + x ) ( 1 - - 2 x ) '  f i ( q , x ) =  1 - - 2 x  ' 

l z ( q , x )  = ( (q  -- 2) -- qx + qx 2 -- (q -- 1)x 3) x (q -- 3) x 
l - - 2 x  , ~ ' ( q , x ) =  ( l + x ) ( 1 - - 2 x ) "  

(6.29) 

The t~n's, fin's, tZn'S and Z'n'S grow exponentially like 2 n. 

This self-similar generalization (see (6 .24))  gives different results compared to the 

one for q = 4. The relation independent of  q, namely (6.27) is actually valid for  q = 4 
(see (6 .17) ) .  However the q-dependent factorizations are different for q > 5 and q = 4 

(compare  Eq. (6.25) and (6.15) or (6.26) and (6 .16)) .  

6.1.6. The "self-similar" generalization of  the third example for  q = 3 
Let us examine the"self-similar" generalization introduced in the previous section, but 

for q = 3. This amounts to considering the involutive permutation t given by 

t :  mll  ~-~m33, m12~-+m32, m l 3 ~ m 3 1 .  (6.30) 

The factorizations of  the associated transformation K = t . I  are "string-like" factorizations 

as for q = 4 ,  

de t (Ml  ) det(M2) 
f 2 -  f l  , M 2 = K ( M 1 ) ,  f3 f l ' f a  ' 

det(M3) 
M a = K ( M 2 ) ,  f 4 - ~ . f z . f 3 ,  . . - ,  (6.31) 

and, for arbitrary n, the "string-like" factorizations, 

K ( M n )  = Mn+l • f n -2"  fn -3"  fn -6"  f n - 7 " ' "  , 

det(Mn)  = fn+l " f , "  f n - l  " f2n--2" f2n--3" fn--4 

" fn--5" fn2--6 ' f~--7" fn--8" fn--9" " " , (6.32) 

again yielding relation (3.49).  The linear relation (3.60) is deduced from relation 

(3.49),  and one obtains from (6.32),  

(2x - 1) • ot(q ,x)  -t-3 - 3x3(1 + x ) f i ( q , x )  = 0 ,  (6.33) 
1 - x 4 

and 

2x3( l  + x ) f i ( q , x )  f l ( q , x )  = 0 .  (6.34) 
x .  re(q, x) - 1 - -  X 4 1 -- X 

These equations give the expressions of  t~(q, x) and f i (q,  x ) ,  

3( 1 + x z + x 3) (6.35) 
tx (q ,x)  = (1 . . . .  x)  (1 x x 3 ) '  f l ( q , x ) =  3X.l_x(l+x 2 ) _ x  3 

These generating functions correspond to an exponential growth, like A n with A ,-~ 

1.465. • .. 
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6.1.7. Fourth example 

Let us look at t the fol lowing permutation of  the entries of  a 4 x 4 matrix and the 

associated transformation K = t .  I :  

t : r o l l  ~ m31 , m21  ~ m 4 1 ,  m 1 2  ~ m 3 2 ,  m 2 2  <--+ m 4 2 .  (6.36) 

The iterations o f  transformation K yield, for arbitrary n, "string-like" factorizations, 

and 

K ( M , )  = M#+I" fn" ( fn-5"  fn-6)  " ( fn - - l l "  fn-12) " ' " , 

det (M~)  = fn+l • fn" fn-5" f . - 6 '  fn - l l  • fn-12"'" , 

(6.37) 

(6.38) 

K(Mn) Mn+l 
K ( M , )  - det(Mn) - ( f ,+ l"  f , )  " ( f # - 5 "  f , - 6 )  " ( f n - l l "  f , - 1 2 ) ' ' "  (6.39) 

One notes that there is a shift of six of  the index n in the factorization scheme. Eq. (6.38) 

suggests some simple equation such as 

(1 - 2x + x 6 )  • ~ ( x )  - 4x + 4x 2 - 4x 3 + 4x 4 - 4x 5 + 4x 6 = 0 ,  (6.40) 

which is actually verified, while one gets from (6.39) 

4 (1 + x )  • f l (x)  
( l + x )  . a ( x )  - 1 - x  6 - 4 = 0 .  (6.41) 

Eqs. (6 .40)  and (6 .41) ,  as well as Eqs. (3.41) ,  yield 

4(1 + x -  x 2 + x 3 - x 4 + x 5) 
a ( x )  = 

(1 - x)  (1 - x - x 2 - x 3 - x 4 - x 5 )  ' 

4 x ( l -  x +  x 2) (1 + x  + x  a) 

f l ( X ) ' =  1 - -  X - -  X 2 - -  X 3 - -  X 4 -  X 5 ' 

2x (1 - x + x 2 - x 3 -'[- X 4 )  

/ t Z ( X )  = 1 - -  X - -  X 2 - -  X 3 - -  X 4 - -  X 5 ' 

x (1 - x + x 2 - x 3 + x 4 )  
v ( x )  = (6.42) 

( l - x )  ( l - x - x  2 - x  3 -x  4 -x  s)" 

The c~n's, fin's, /zn's and vn's grow exponentially like A n with A ~ 1 . 9 6 5 . . . .  

6.1.8. Fourth example for 5 x 5 matrices 

Let us consider the "straight" generalization of  the previous example to 5 x 5 matrices. 

For 5 x 5 matrices the analysis of  the factorizations becomes different from the previous 

one. It yields,  for arbitrary n, factorizations where a product of a fixed number of f#'s 
o c c u r s ,  

K ( M . )  Mn+1 fn f~n-z de t (Mn)  fn+l j3 f 3 1  , 5 js_~ . . . . . . . .  f~,-2,  (6.43) 

yielding 



438 S. Boukraa, J-M. Maillard/Physica A 220 (1995) 403-470 

~ ( M n  ) = K ( M n )  Mn+l 
det(Mn) - fn+l " (fn " f n - l )  2" fn-2 " 

From these relations one gets the linear relations 

Ofn+ 2 = 5~n + 5/~n+l --[- 3~n+2 --[- ~8n+3 , 

4Crn+2 = an+3 + 5(fin+2 + 3/3n+1 + 4fin) , 

an + an+l = 5(/3n+1 + 2fin + 2[~n-1 + 1~n-2), 

and the relations on the generating functions, 

x .  a ( x )  = (1 + 3x + 5X 2 "t- 5X 3) " /~(X) , 

( 4 x - 1 ) . a ( x ) + 5 = 5 ( x + 3 x  2 + 4 x  3 ) . / 3 ( x ) ,  

( l + x ) . o t ( x )  = 5 ( l + x ) . ( l + x + x  2 ) . / 3 ( x ) + 5 ,  

which give 

5( 1 + 3x + 5x 2 + 5x 3) 5x 
a ( x ) =  ( l + x ) . ( 1 - 2 x )  ' f l ( x ) =  ( l + x ) . ( 1 - 2 x ) '  

x . ( 3 - 2 x )  x ( l + 3 x + 4 x  2) 
/ x ( x ) = ( l + x ) . ( l _ 2 x ) ,  v ( x ) =  ( l + x ) . ( l _ 2 x )  

(6.44) 

(6.45) 

(6.46) 

(6.47) 

One can see that, for q = 5, f l (q , x )  and /z(q,x)  are identical to the expressions 
obtained for 5 x 5 matrices. Moreover, the expressions for a ( q , x )  and u(q ,x )  are 

q(1 + ( q -  2)x)  qx 
~ ( q , x ) = ( l + x ) . ( l _ 2 x ) ,  f l ( q , x ) =  ( l + x ) . ( 1 - 2 x ) '  

x ( ( q -  2) - 2x) (q - 3)x 
~ ( q , x ) =  ( l + x ) . ( 1 - 2 x ) '  u ( q , x ) =  ( l + x ) . ( l - 2 x ) "  (6.50) 

(6.49) 

a . = ( q - 2 ) ' ~ n + f l n + l ,  ( q - 1 ) ' a n = a n + l + q ( q - 3 ) ' f l n ,  

an + cen+l = q(/3.+l + /3 . )  , 

and 

x .  a ( x )  = (1 + ( q -  2)x)  • /3 (x) ,  

( ( q -  1 ) x -  1) .  or(x) + q =  q ( q - 3 ) x ,  f l ( x ) ,  

( l  + x) . a ( x )  = q ( l  + x) . f l (x)  + q,  

which give 

6.1.9. "Straight" generalization of  the fourth example for q > 6 
For q x q matrices (q > 6) the analysis of the factorizations is different from the two 

previous cases, q = 4 and q = 5. It yields, for arbitrary n, 

Mn+l (6.48) g ( M n )  = Mn+l • f q - 3 ,  det(Mn) = fn+l • f q -2 ,  K(Mn) = fn+l • fn " 

From these relations, the following linear relations are derived: 
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actually identical to the one given for  class VI (see (3.15)) .  They are also identical to 

the one given for  the "self-similar" third example of  section (6.1.5) (see (6 .29)) .  

6.1.10. Fifth example 

Let us consider a 4 × 4 matrix and the two following permutations of  the entries: 

t :  r o l l  +-'+ m44, m21 ~--+ m34, m24 +--+ m31, 

t : m23 ~ m32. 

The analysis of  the factorization of  the corresponding homogeneous transformation K 

yields exactly the same factorizations as for  the sixteen vertex model (permutation tl 

for a 4 x 4 matrix, see Section 4.1). However, one no longer gets recursions like (4.8). 

However, some polynomials like (F6 - F3F25), (F4 - F 2) .... do factorize. 

6.1.11. Towards most general permutations: from 3 x 3 to q × q matrices 

Of course, it is easy to accumulate examples of  involutive permutations and their 

associated birational transformations K, and to analyse the corresponding factorizations 

properties. We have seen that the previous examples are often organized in a family of  

transformations sharing the same, or similar, factorization properties (straight general- 

izations, self-similar generalizations...). The previous examples show that factorization 

properties are not so rare: however, most of  the previous examples yield exponen- 

tial growth of  the calculations. A set of  particularly interesting examples are the ones 

which yield polynomial growth since integrable mappings have this property: it would 

be interesting to get more examples of  this kind. 

A systematic search of  these examples with polynomial growth cannot be envisaged, 

however it has been seen that the factorization schemes of  these families depend very 

simply on q, the matrix size, while the recursion relations (when they exist) are inde- 

pendent of  q (see, for instance, (3 .27)) .  It is thus tempting to look systematically at 

all the possible permutations of  the entries of  a simple 3 × 3 matrix, seeking recursions 

on the fn ' s ,  the ln's or the Xn'S (see (3.30) and (3.31)) .  

We have obtained the following miscellaneous results: 

- The following permutations do satisfy the same integrable recursions on the l,'s, or 

the x~'s, (see Eq. (3 .30))  as the one for  class I (permutation m12 +-~ m21 for example): 

Pl : mll ~ m33, m13 ~-+ m31, P2 : m12 ~ m32, m21 ~ m23, 

P3 : m12 +--+ m21, m23 ~ m32, P4 : m12 +--> m21, m13 ~ m31, 

P5 : mll +--+ m22, m12 +---r m21, P6 : m12 ~ m21, m13 +-4 m23, 

P 7  : /7/12 ~-+ m 2 1 ,  mll ~ m33, m32 ~ m23. 

m31 ~ m32, 

Of course this list is far from being exhaustive... 

- The following permutation does satisfy the same recursions on the ln's, or the xn's, 

(see Eq. (3 .67))  as the one for  class IV (permutation m13 ~ m23 for example): 

p8 : mll ~ m22, m12 +-* m21, ml3 +--+ m23. (6.51) 
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The factorizations associated with these various permutations are exactly the same as 

for  class I, for 3 x 3 matrices for pl,  p2, p3, p4, Ps, P6 and p7 (see (3.9)) ,  and the 
same factorizations as for  class IV for 3 × 3 matrices for P8 (see (3.62) and (3.63) 
for q = 3). The fn 's  associated with permutations pi's (i = 1,-- .  7) and permutation 

P8 satisfy the same recursions as the fn'S associated respectively with class I (namely 

(3.27) or (3.28)) and class IV (namely (3.66) but for P8 only). 
Let us recall that, for class I, the factorization schemes for the 3 × 3 matrices are 

actually different from the ones for the q × q matrices for q _> 4 (see relation (3.9)).  

Therefore, we have reconsidered all these examples of  permutations considering their 

("straight") generalizations to q × q matrices for q _> 4. 

For q × q matrices, permutations Pl, P2 and P5 do satisfy the same factorization 
relations as the ones of  class I (see (3.5) and (3,6)) and also verify the same recursion 
relations on the fn'S as the ones of class I (see (3.27) and (3.28)).  Permutations Pl, 
P2 and Ps, therefore, provide new examples of (involutive) permutations associated with 
integrable recursion relations and yielding polynomial growth. 

Permutations P3 and P4 do satisfy the same factorization relations as the ones of  
class I, and, therefore, have a polynomial growth of the calculations. However they do 
not verify the same recursion relations on the fn 's  as the one for class I. The situation 

is similar to the ones described in Section 6.1.1 where polynomial growth occurs, the 
orbits being algebraic surfaces (see Figs. 2a, 2b, 2c and 2d, see also [31] ). 

Permutations P6 and P7 factorize less than class I. For P6, for 4 x 4 matrices, one has 

"string-like" factorizations, 

K(Mn)  = Mn+l . ( fn_ l  . fn_3 . f n - 5 .  f n - 7 . . . )  2, 

det(Mn) = fn+l fn fn--2 fn--4 "'" (6.52) in3 1 3 3 . . . . . .  f~--5 fnz_3 

and relation (3.49), 

Mn+l = (fn+l • fn " f ~ - l  "'" f2 " f l )  " F,(M~) . (6.53) 

From these factorizations it can easily be verified that one has an exponential growth 
like 2n: fin = 2 n+l. 

For P7, for 4 x 4 matrices, there are "string-like" factorizations, 

K(Mn)  = Mn+l" f~.-3" f~n-5" f~n-7" f~n-9"" ,  

det(Mn) fn+l f n - I  2 = " fn-4 f~n-5 2 . . . . .  fn-6"  f~n-7 

" f~,-10" " " , (6.54) 

and a new and "non standard" (note the absence f~ in (6.55)) "string-like" relation 11, 

Mn+I = fn+l " f n - 1  " f~-22 " fn-32 . fn-42 " fn-52 . fn-62 " f~-72 " f~-82 

II A similar but simpler relation for transformation ~" has already been seen in the analysis of the symmetries 
of a three-dimensional vertex model see relation (4.5) in [31 ]. 
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2 . "f~-9 '" F.(Mn). (6.55) 

In fact, we have not yet completely reached the stabilization of the "factorization 

scheme". It would be necessary to perform iterations beyond MI3 and f13 which become 
quite large formal calculations given that one has an exponential growth like A n with 

A ~., 2 .769-. . .  

At these orders of iteration a good approximation of the generating function a ( x )  

and/3(x)  reads 

4 .  ( 1 + 2x 3 + 5X 4) 

a ( x )  = ( l _ 3 x + x 2 _ x 3 ) . ( l _ x ) . ( l + x )  , f l ( x ) =  
4x 

1 - 3 x  + x 2 - x 3 ' 

(6.56) 

On the other hand, for 4 × 4 matrices, P8 does not satisfy the same factorizations and 

recursions on the fn ' s  as the one for class IV (see (3.62), (3.63) and (3.66)).  The 

factorizations are more involved and read 

and 

Mn+2 = 

f n+2 = 

Kq ( Mn+ 1 ) 
A 2 f4 4 

• " " f l - - 6 "  A - 8 '  A - I O "  fnz-2 n--4 " ' 
det(Mn+O 

s,,+, .A .~,,-, .A_2 A_3 .~-,-~I-5 .A_,.A_7.A_, .A_9.A°-,o A_,,... ' 
(6.57) 

K ( M n )  = M.+, (6.58) 
"" ~_.'(f.-Io'f.-9"f,,-s'f.-7)s'(f.-6"f.-s'f.-4"f.-s)z'f.-2"f,,-l"f. 'f.+l ' 

which yield the linear relations 

O~n+l = /3n+2 "~- /3n+l "t- 3fin + tin-1 + 4fin--2 -'F 2/3.-S + 6fin-4 -F 2/3n-5 

+ 7fin-6 + 3fin-7 + " "  , 

3an+l = ten+2 + 4 .  (2fin + 2fin-2 + 4fin-4 + 4fin-6 + 6fin-8 -k- 6fln-lO " " ") . 

ce. + an+l = 4 .  (/3.+1 + /3 .  + f l . - I  + / 3 . - 2 )  

-{'- 8" (/3n-3 "~- /3n--4 "t-/3n-5 q- /3n-6)  

+ 12. (/3.-7 + / 3 . -8  + fin-9 +/3n- lo)  + 16. ( f ln- l l  + ' ' ' )  + ' ' "  • 

(6.59) 

Again, we have not completely reached the value of n for which the factorization scheme 

is stabilized. Despite the fact that this stability regime is not completely reached, it 
seems, however, that there is a 2 n exponential growth of the calculations. A tentative 
exact expression for the generating functions (see Appendix F) is for instance 

4 x -  ( 1 - x 4 )  
f l ( x )  = , (6.60) 

1 - 2x 

and 
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4 4x ( 1 + 3x) 
a ( x )  = - -  + 

1 - 2 x  ( l + x ) . ( 1 - x ) . ( 1 - 2 x )  

4 (1 + x ÷ 2x 2) 

= (1 + x )  - (1 - x )  • (1 - 2 x )  (6.61) 

The birational transformations associated with permutations pi's show that, quite 

often, one encounters nice properties and structures for 3 x 3 matrices, and, to some 

extent, similarly with the birational transformations of  class I, that these properties can 

sometimes survive "straight" generalizations to q × q matrices. 

Let us note that there are several ways one can generalize to q × q matrices permuta- 

tions pi's introduced for 3 × 3 matrices. Let us consider, for instance, for 4 × 4 matrices, 

permutation p~, which is the product of  permutation P5 and of  permutation m34 ~-r m43. 

Permutation p~ (mll  ~ m22, ml2 +-~ m21, m34 ~ m43) yields the samefactorizations as 
tl for 4 × 4 matrices (sixteen vertex model see Section 4.1) and, therefore, also yields a 

polynomial growth of  the calculations, with the same generating functions as the one de- 

tailed in Section 4.1. However, the fn ' s  do not verify any recursion or "pseudo-recursion" 
(see (3 .66) ) :  the situation is again similar to the one detailed in Section 6.1.1 with 

the example of  permutation [ 12-21,34-43] .  The "straight" generalization of  p~ yields 
results similar to the "straight" generalization of  tl (see Section 5).  

- When the permutations of  the entries are no longer involutions it becomes difficult, 

for 3 × 3 matrices, to get any nice factorization properties: however, we have been able 

in the following to find many examples of  permutations which are not involutions, but 

exhibit factorization properties for q × q matrices with q > 4. 

6.2. Breaking the involutive framework 

Let us now examine birational transformations corresponding to permutations of  the 

entries which are no longer involutive permutations. 

6.2.1. A 3-cycle permutation and its "straight" generalization 
For all the previous examples, permutation t was an involutive permutation 12. Let 

us, however, note that even if t is a noninvolutive permutation, for instance a 3-cycle, 
transformation K = t .  I is still a birational transformation (in the case of  a 3-cycle, the 
inverse of  K corresponds to I -  t 2, which is also a homogeneous rational transformation). 
At first s;L~ ~..~ expects the corresponding transformations K to be more involved with 
less structure and properties (less factorization properties, no more polynomial growth 
of  the complexity, or integrability, ...). 

Let us consider the following 3-cycle permutation for q x q matrices: 

mll ------+ ml2 ~ m21 ~ mll . (6.62) 

12 This has many consequences: the group of birational transformations generated by t and 1 is isomorphic 
to the infinite dihedral group. 



S. Boukraa, J-M. Mai l lard /Phys ica  A 220 (1995) 403 -470  443 

The results given here are valid for q _> 4. Let us look at permutation (6.62) for 

q × q matrices. The factorizations now read 

de t (ml)  K(M1 ) det(m2) 
f 2 -  f~l_ 3 , M2= f~l_ 4 , f 3 - f 3  2 . f~9--3 

K(M2) det(M3) 
M3 - f~-4f2  ' f4 = f~l_3, f23. f~3_ 3 , "'" (6.63) 

and, for arbitrary n, "string-like" factorizations, 

g ( M n  ) M n + l  ( f q - 4  2 . j ~ / - 4  f2 . f~n~_4 . .) = " " f n - I  n - 2  " n - 3  " ' 

det(Mn) f,+l f~-3 3 .~-3 3 .~-3 ..yr. = ' " f n - 1  n- -2"  f n - 3  n--4" ' (6.64) 

where ( ,  = 2 for n even and (n = 3 for n odd, yielding again the simple "string-like" 
relation independent of q (3.49) and relation (3.60). Eqs. (3.49) and (6.64) yield 

linear relations for the an's and fin's, 

an =/3,+1 + (q - 3) •/3n + 3/3n-1 + (q - 3) •/3n-2 + 3/3,-3, 

+ ( q  - 3) • / 3 n - 4  + " "  "[- ~'n/31 

(q -- 1) • an = an+l + 2q(/3n-I +/3n-3 +/3n-5 + '"  ") 

+ q(q - 4) (fin +/3n-2 +/3n-4 -'[-"" "), 

and a ,  + an+l = q(/31 + 132 + " " + / 3 n + l ) ,  (6.65) 

and for the generating functions a(x)  and/3(x) ,  

q x . ( 2 x + q -  4) 
q + ( ( q - 1 ) . x - 1 ) . a ( x )  = l _ x 2  . f l ( x ) ,  

l + 2 x  2 + ( q - 3 ) x  
x a ( x )  = 1 - x 2 • / 3 ( x ) ,  

together with relation (3.49). These linear relations enable us to get 

q . ( 1  + ( q -  3)x + 2x 2) qx 
a ( x )  = ( 1 - 2 x ) - ( 1 - x  2) , /3(x)= 1-2---~' 

(q-3)x  x . ( 2 x +  ( q - 4 ) )  ~ ( x ) = - - ,  v(x)= 
1 - 2 x  ( 1  - x 2 ) . ( 1  - 2x) 

(6.66) 

(6.67) 

6.2.2. N-cycles 
Let us consider a permutation of order eight, namely the 8-cycle, 

m2,1 ~ m2,2  ~ m2,3  ~ m2,4  ) m2,5 ----+ m2,6  

----+ m2,7 ~ m2,8  ~ m2,1 • (6.68) 

The factorization properties read for an 8 x 8 matrix, 
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One 

This 

a n  = /~n+l "q- 6/3n +/~n--I 71- 6fin-2 + 1~n--3 + 6fin-4 + " "  , 

giving for a ( x )  and f l ( x ) ,  

(1 + 6x) • f l (x)  
x t r (x )  = 1 - x 2 together with (3.60).  

The generating functions a ( x )  and f l ( x )  read 

8 ( 1 + 6 x )  8x(1 - x )  
a(x)= ( 1 - 2 x ) ' ( l + x ) '  f l ( x ) =  1 - 2 x  ' 
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K ( M n )  = Mn+," ( f 5  n • f s _  2 • fSn_ 4 • fSn_6"" . ) ,  

det (M,)  = fn+~" f~" fn - I  " f~-2 " fn-3"  f~n--4 " fn--5 " "" • (6.69) 

has again the simple "string-like" relation independent o f  q (3.49), 

K , ( M n ) -  K ( M n )  Mn+l 
det(Mn) - f l  " f2"  f3"" " fn " fn+l " (6.70) 

yields linear recursions for the an 's  and fin'S, namely (6.65), but for q = 8 and 

(6.71) 

(6.72) 

(6.73) 

which is nothing but expressions a ( x )  and f l ( x )  given, for class VI, for q = 8. This 
corresponds again to a 2 n exponential growth. 

Let us now consider a permutation of order seven, namely the 7-cycle still acting on 

the entries of an 8 x 8 matrix, 

m2,1 -------+ m2,2 ~ m2,3 ~ m2,4 ~ m2,5 ~ m2,6 ~ m2,7 ~ m2,1 • (6.74) 

The fol lowing result is obtained: the factorization properties are exactly the same as 

the one described by (6.69) and (6.70) and, therefore, the generating functions are the 

same as the one given in (6.73). 

Amazingly, the factorization properties are also exactly the same for  the N-cycles of  
the form 

m2,1 , m2,2 , m2,3 "..  , m2,N ~ m2,1 , (6.75) 

where N = 6 ,5 ,4 ,  3, 2. For N = 2 one recovers exactly the elementary permutation 

m2,1 ~ m2,2 of class VI and its corresponding factorizations (see Section 3.2.2) : this is 

compatible with the fact that the results f o r  all these N-cycles are the same as the one 

given f o r  class VI  for q = 8. 
In fact, these results are not restricted to 8 x 8 matrices: considering N-cycles acting 

on q × q matrices, one does have the same factorizations as the one given by relations 

(3.47) and (3.49) which correspond to class VI (that is N = 2). In particular, these 

factorizations are independent o f  N. 

6.3. Summary o f  the "birational" results 

We have seen in the previous examples that the involutive character of the permu- 
tations is not a necessary condition for factorization properties of transformations K: 
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factorization properties do occur for permutations that are no longer involutions (N- 

cycles ...). Let us however note that transformations K are still birational. 

Among these various examples, some factorizations happen, unexpectedly, to be ex- 
actly the same as the ones for permutations of quite a different type (for instance, 
elementary permutations of two entries, like class VI and the N-cycle of the previous 

Section 6.2.2, or class I and some of the permutations pi's). 

It is also worth noting that one can have the same factorization schemes and not 
necessarily verify the same recursions (on the fn's,  see Section 6.1.10). 

There is a quite frequent occurrence of "string-like" factorizations: factorizations 

involving a fixed number of polynomials are more exceptional. Note however that this 

opposition is not very relevant: it has been seen in Sections 3.2.1 and 4.2 that these two 
types of factorizations, "string-like" versus "fixed number", do not yield systematically 

to drastically different factorization schemes: one can have "string-like" factorizations 

together with polynomial growth (see Section 4.2) or, on the contrary, factorizations 

with a fixed number of  polynomials and exponential growth (see Section 3.2.1 ). 

Section 6.1.11 shows that the set of integrable birational transformations, or of trans- 

formations associated with polynomial growth, or even of transformations associated 

with recursions on the fn's (or on the xn's) seems to be larger than one could expect 

at first sight for 3 × 3 matrices, and even for the "straight" generalizations of these 

examples to q × q matrices. 

7. Leaving the birational framework 

Considering permutations of the entries, which are no longer involutive (N-cycle 

...), does not break the birational character of transformations K and can even yield 

factorizations similar, or identical, to the one corresponding to elementary involutive 

permutations of two entries (for example class VI and the N-cycles). Let us now 

try to see the consequences of relaxing the birational character of the transformations, 

analyzing the factorizations properties of noninvertible, but still rational, transformations 

slightly different from the previous birational ones. 
Instead of a permutation of the entries, let us consider a transformation T which is 

the product of an involutive permutation of the entries t, for instance 

t :  roll ~-+m31, m12 ~-+m32, m21 +---~ m41, m22 ~--~ m42, (7.1) 

introduced in the fourth example (Section 6.1.7), together with a projection transforma- 
t i o n P  ( P 2 = P ) .  

We will consider various examples of such projections. For instance we will consider 
projection P1 defined by 

P1 : m ( i , j )  , m ( i , j )  when j 4 : 4  

and (m14, m24, m34,m44) ~ (m14, m24,m34,m34), (7.2) 
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projection P2 defined by 

P2 : m ( i , j )  , m ( i , j )  when 

and (mls, m25, m35, m45, m55) 

and projection P3 defined by 
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j ~ 5  

) (m15, m25, m35, m45, m35) , (7.3) 

P3 : m ( i , j )  , m ( i , j )  when i 4= 6 

and (m61,m62,m63,m64, m65,m66) , (msl ,m52,m53,m54,m55,m66).  (7.4) 

Let us now examine the iteration of  transformation K = T. I = P .  t. I ,  where P is one 

of  these projections Pi's. Transformation K is clearly not a birational transformation 

anymore but it is still rational. 

7.1. Projection P2 and 5 × 5 matrices 

Let us first consider transformation K = T.  I = P2" t .  I ,  where/)2 is projection (7.3) 

on 5 x 5 matrices, and t is the (straight generalization of  ) the permutation of  the fourth 

example namely (7.1). For arbitrary n one gets the factorizations 

g ( M n )  = Mn+l • fn"  f n - I  , det(Mn) = fn+l " f2n" f n - 1 ,  

K ( M n ) -  Mn+l (7.5) 
f . "  fn+l 

These factorizations give linear relations on the an's and the fin'S or on ~r(x) and f i (x ) ,  

an = f in- l  + 2fin + fin+l , 4 " Otn = Otn+l + 5 " (fin + f in-l  ) , 

X . O t ( X ) = f i ( X ) . ( I + x )  2, 5 + ( 4 X - - 1 ) . O t ( X ) = 5 X ( I + x ) f i ( X ) ,  

5(1 + X) • f i (X)  + 5  = (1 + X) " a ( X ) .  (7.6) 

The expressions of  the generating functions are 

5( 1 + x) 5x 
a ( x ) -  1 - 3 x + x  2 '  f l ( x ) =  ( l + x ) . ( l _ 3 x + x  2)" (7.7) 

The a , ' s  or fin's grow like ,~n with ,~ ~ 2 .618 . - .  These factorizations have to be 

compared with the one o f  transformation K = t • I ,  where t denotes the (involutive) 

permutation (7.1) of  the fourth example. 
One should note that relations (3.10),  corresponding to the "right action" o f  K, are 

still valid f o r  this transformation which is no longer birational. 
At first sight, one expects transformation K to be quite a "chaotic" transformation 

since K is not birational anymore. Remarkable factorization properties are not expected. 

In fact, one can see that many parts o f  the factorization analysis performed in [21] are 

still valid 13 f o r  transformations which are no longer birational. 

13 Such demonstrations are based on the fact that some matrix U = R. K(R) (see [21,22]) is, up to a finite 
number of entries, the identity matrix. 
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7.2. Projection P! and 4 x 4 matrices 

Let us now look at transformation K = T - I = Pl • t .  I, where PI is projection (7.2) 
on 4 x 4 matrices and t is the permutation of the fourth example namely (7.1). The 
following factorizations are obtained: 

det(Ml ) K(M2) 
f2 = - - ,  M 2 = K ( M ! ) ,  fl 

det ( M3 ) 
f 4 - f 2  f2 f 3 '  M4= 

det(Ms) 
S6=f2 f2 f~" f~, 

det(M6) 
f 7 =  f3 1 f2 2 f 3 .  f 2 

det ( M2 ) 
f3 = f12.f2 ' M3 = fl  

K(M3) det(M4) K(M4) 
f 2 f l  ' f5 = f l  " f22" f 2 .  f 4 '  M s -  f2~--F' 

K(Ms) 
f 5 '  M6 = f 4 f 3 f !  

K(M6) 
f~" f6 ' M 7 -  f s f 4 f 2 f l  ' 

fs  = f l  5 

S9= f~ 

f ,0 = f2 

f3 2 

f5 2 

f2 2 

det(M7) K(M7) 
f~" f4 f2 f 2 .  f7 ' M8 = f 6 f s f 3 f 2 f 3  , 5" 

det(M8) K(M8) 
f3.f42 fs.f62.f72.f8 ' M9=fTf6f4f3f3fI' 

det(M9) K( M9 ) 
f5. f4 3 

f l l  = f2 f22 f2.3 f5 

f l 2 =  fl2 f22 f2"f24 

and, for arbitrary n, 

f2 .  f6" f 2 .  f2 .  f 9 '  MIO = f 8 f T f 5 f 4 f 3 f 2 f l  , 

det (g lo)  K ( g l o )  

f 3 .  f2 6 . ST" f 2 .  J~99" f ,o  ' M, ,  = f 9 f s f 6 f s f 3 4 f 3 f  2 , 

det(ml l )  

./5. f63 , S72. f8" f~' f2o" S11 ..... 
(7.8) 

K(Mn)  = Mn+l " (fn-1 • fn-2"  fn-4"  fn-5"  f3n--6" fn--7" fn--8 

• fo-9" f . - , o"  fn-,l"" "), 
det(Mn) = fn+l " ( fn"  fZn-l " f2 - z"  fn-3"  f2-4"  f3-5"  fsn-6" f2n-7 

.f2 8 .f2_9 .fn2 i0 .f2 11. f2 12. ..), (7.9) 

and 

K ( M . )  = m,.+t (7.10) 
""fn--ll "fn--lo'fn--9"fn-8"fn--7"f2_6"f2_5"fn--4"fn--3"fn--2"fn-I "fn'fn+l 

Again, relations (3.10), corresponding to the "right action" of  K, are still valid. 
These factorizations are more involved than the other examples detailed in this paper. 

In fact it is not even clear that the generating functions corresponding to these factor- 
izations are rational functions, since no obvious "periodicity" occurs in the factorization 
scheme. Factorizations (7.10) yield a linear relation between the a , ' s  and the fin's, 
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O'n ÷ O~n+l = 4( /~1 ÷ B2 ÷ ' ' "  ÷ / ~ n + l )  ÷ /~n-5 ÷ ~ n - 6  ÷ ' ' "  , 

or on the generating functions, 

4 f l (x )  
(1 + x )  • a ( x )  - 4 = - -  + 4 f l ( x )  . p l ( x ) ,  

(1 - x )  

where Pl (x)  = x 6 + x 7 + . - - .  One also has 

and 

(7.11) 

(7.12) 

(3X -- 1) • a (X)  + 4 =4f l (X)  ' (X 2 + X 3 ÷ X 5 ÷ X 6 ÷ 3X 7 + X 8 + X 9 ÷ X 10 

+ x  11 + x 12 + . . . ) ,  (7.13) 

x .  a ( x )  = 4 f l ( x )  • (1 + x + 2x 2 + 2x 3 + X 4 ÷ 2X 5 + 3X 6 + 5X 7 ÷ 2X 8 + 2X 9 

+2X l° + 2X 11 + 2X ~2 + 2X 13 + "" "). (7.14) 

Let us give the first coefficients of the generating functions a ( x ) ,  f l (x ) ,  /z(x)  and 

v(x), 

a ( x )  =4 + 12x + 36x 2 + 92x 3 + 228x 4 + 572x 5 + 1428x 6 + 3564x 7 

+8852x 8 + 21996x 9 + 54660x l° + 135836x 11 + 337556x 12 

+838812x 13 + . . .  , 

f l ( x )  = 4 x  + 8X 2 ÷ 20X 3 ÷ 48X 4 ÷ 120X 5 + 300X 6 ÷ 744X 7 + 1848X s 

+4592X 9 + 11412X l° + 28360X ll + 70472X 12 

+175120X 13 + 435168X 14 + • .. , 

/Z(X) =X + X 2 + 3X 3 + 6X 4 + 15X 5 + 39X 6 + 96X 7 + 238X 8 + 591X 9 

+1469X l° + 3652X ll + • . . ,  

P(X) = 1 + X 2 + 3X 3 + 7X 4 + 18X 5 -{- 45X 6 + 115X 7 + 285X 8 + 708X 9 

+1759X I° + - . . .  (7.15) 

There is an exponential growth of the calculations like A n with A ,,~ 2 .484 . . . .  A 

good approximation for f l ( x ) ,  compatible with expansions (7.15) and yielding positive 

integer coefficients, is, for instance, 

4(1 - x ) ( 1  + x + x 2 ) ( 1  - x + x  3 - x 4 + x  5 - x  7 + x  8) 
f l ( x )  = 1 - 3x + x 2 + X 3 -- X 4 ÷ X 5 --  X 6 ÷ X 10 --  X 11 (7.16) 

If  factorizations (7.9) were "periodic" (like in the "string-like" factorizations previ- 

ously detailed where shifts of  four, six . . . .  occur) one could expect p l ( x )  to be in the 

following form: 

(1 + x) • x 6 
pl (x)  - 1 - x j" (7.17) 

where the integer P denotes the period of these factorizations ( P  > 7).  Some specula- 

tions concerning this very example are given in Appendix E 
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7.3. Non-birational deformation of class I 

Let us now consider transformation K = T • I = P1 • t • I, where P1 is a projection 
(7.2) on q × q matrices (q >_ 4), and t is a transposition of class I, namely ml2 ~ m21. 
The factorizations now read 

det(M1) K(M1 ) det(M2) K(M2) 
f2 - -  f~l_ 4 , M 2 - f ~ l _  5 , f 3 -  f 4" f~9-42 ' M3 f ~ "  f~2 -5  

det ( M3 ) 

f 4 =  f~l-4 f24 3 "'" • . f ~ - - 4  ~ ' 
(7.18) 

and, for arbitrary n, 

K ( M n )  Mn+l ( fq-5  3 f~n--5 3 . f~n--5 ) fn--' n--2 fn--3 f~n--54 3 3 . . . . . . .  f~-5 n-6" fn-7" '"  , 

det(Mn) = fn+l " ( f q - 4 .  f~n-l" f~-4n_2 ' f~n-3" f~n-44" f~n-5" f~-4.n_6 f~n-7 

. fq--4, f~n--9" ' ' ) ,  (7.19) 

and again relation (3.49), 

K , ( M n ) -  K(Mn) _ Mn+l 
det(Mn) f l  " f2  . . . .  fn--1 " f n "  fn+l " 

(7.20) 

Again one gets from (6.65) relation (3.60) and also the general relations between 

a ( x ) ,  f l ( x ) ,  Iz(x) and v (x ) ,  corresponding to the "right action" of K, namely (3.41). 
Eqs. (7.19) and (7.20) yield linear recursions for the an'S and fin's, namely (6.65), 

and 

an =fln+l + ( q -  4) • fin +4tin-1 + ( q -  4)" fln-2 

+4fl , -3 + ( q -  4) "fin_4 + " "  + ( , "  i l l ,  (7.21) 

and for the generating functions a (x )  and fl(x),  

1 ( ) 
x .  a ( x )  = f l (x )  + 1 - x 2 ( q -  4 )x f l ( x )  +4x2f l (x )  , 

1 ( ) 
q + ( ( q - 1 ) x - 1 ) . a ( x )  = l - x  ---- '-~" q ( q - 5 ) x + 3 q x  2 . f l ( x ) .  (7.22) 

The generating functions a (x ) ,  f l (x ) , / z (x )  and v(x )  read 

q(1 + ( q -  4)x + 3x 2) qx 
a (x )  = ( 1 - x 2 ) . ( 1 - 3 x )  ' f l ( x ) -  1 - 3 x '  

x ( ( q  - 5)  + 3 x )  
v ( x )  = 

( 1 - - x 2 ) - ( 1 - 3 x ) "  

u ( x )  - - -  
(q - 4)x 

1 - 3 x  

(7.23) 
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7.4. Non-birational deformation of  N-cycles 

Let us consider 6 x 6 matrices and the N-cycle defined in Section 6.2.2 (see (6.75)),  
combined with projection P3 (K = P3 • t • I ) .  One obtains the same factorizations 
independently of  N (N = 2, 3 ..... 6), namely for arbitrary n, "string-like"factorizations, 

K (Mn)  = Mn+l" ( f 2 .  f n - , "  f2-2"  fn-3"  f2n-4" fn-5"" "), 

det(Mn) = fn+l " fan" f2-1"  f3-2"  f2n-3" f3n-4" ' ' .  (7.24) 

Let us note that one has again the simple "string-like" relation (3.49), which is 
independent of  q, 

K ( M n ) -  g ( M n )  Mn+l 
det(Mn) - f l  • f 2 " ' "  f n '  fn+l " (7.25) 

This yields linear relations for the an'S and fin'S, namely (6.65) for q = 6, and 

an = fin+l + 3fin + 2fin--I + 3fin--2 + 2fin--3 "t- 3 f i n - - 4  + ' ' "  • ( 7 . 2 6 )  

and for the generating functions a ( x )  and f i ( x ) ,  

(3x + 2x 2) • f i ( x )  
x a ( x )  = f i ( x )  + 1 -- x 2 (7.27) 

The generating functions a ( x )  and f i ( x )  read 

6(1 + 3x + x 2) 6x(1 - x) 
a ( x )  = 1 -  3x + x 2 ' f i ( x )  - 1 - 3 x + x  2" (7.28) 

These generating functions correspond to an exponential growth A n with A = 3/2 + 

x/~/2 ~ 2.618. • .. 
The analysis of transformations, which are products of the matrix inversion I, of 

quite general (no longer involutive) permutations of the entries and of projection trans- 
formations (like P1 see (7.2)) ,  clearly opens a very large class of transformations. A 
systematic study seems hard to perform, but there is a need to accumulate far more 
examples in order to get some hint about this huge domain of investigation. 

8. More relations on a(x), fl(x), It(x) and ~,(x) 

For all the various birational, or just rational, transformations described here, one 
remarks that the factorization relations always take the following general form at the 
nth step of the iterations: 

det(Mn) fn+l f¢n ~ ¢2 (3 (4 . f(s = f~-2 "ff" (8.1) . . . .  fn~--3 n - - 4 "  " fn~ 1 

,7, . . . f ?n - ,  r/2 . f•3 "f~-4 (8.2) K(Mn)  = Mn+l " fin ° " f m  " f~-2 n-3 n--1 

K ( M n )  _ Mn+l 
~ ' ( M n ) - d e t ( M n )  fn+l J n  pl  f~-I  p3 p4 • f , ~ - 2  . . .  f f .  ( 8 . 3 )  

. . . f n ~ _ 3  
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the exponents 7in'S, srn's and pn'S being positive integers. Eq. (8.1) yields a bilinear 

relation between the an's, fin'S and (n'S, 

OLn = f i n+ l  "q- ~ ' l f in q- ~ '2 f in - I  q'- ~"3fin-2 q - ' ' "  "+- S/'nfil • ( 8 . 4 )  

Introducing a new generating function for the (n's, 

( ( x )  = 1 + sr lx+ &x 2 + sr3x 3 + . . .  , (8.5) 

relation (8.4) simply reads 

x a ( x )  = ( ( x )  • f l (x)  . (8.6) 

Similarly, if one introduces generating functions for the 71n'S and pn'S, 

71(X) = 7/0 + 711X "t- 712X 2 "l- 713 X3 "1- • • • , (8.7) 

p(x)  = 1 + p l x  q- p2 x2 q- p 3 x  3 -k- . . .  , ( 8 . 8 )  

a bilinear relation between the an'S, fin'S and 71n's is immediately obtained from relation 
(8.2), 

(q - 1)an = an+l + q(71Ofin + 711fin-I + 712fin-2 + 713fin-3 + ' ' "  + 71n-lfll) 
(8.9) 

leading to a relation between the three generating functions a(x ) ,  f i (x)  and 71(x), 

a(x )  + qx.  71(x) • f i (x)  = q + ( q -  1) • x a ( x ) .  (8.10) 

The absence of factorizations corresponds to 71(x) = 0, or ( ( x )  = 1, or p(x)  = 1, that 
is 

f l (x)  = x . a ( x )  = q . x  (8.11) 
1 - ( q  - 1 )  • x 

A relation between a(x ) ,  f l (x)  and p(x)  results from relation (8.3), 

q + q p ( x ) f i ( x )  = (1 + x )  • a ( x ) ,  (8.12) 

which generalizes Eqs. (4.15), (5.5), (6.19), (6.41)... It is seen in Appendix C that 
other relations relating these generating functions also exist. The three new generating 

functions ( ( x ) ,  71(x) and p(x)  are simply related, 

( ( x )  = x71(x) + p ( x ) .  (8.13) 

There is also 

qx~,(x) + 71(x) = 1 + ~7(x) • /x (x) .  (8.14) 

Relation (8.14) has been shown in [21]. Appendix D proves another relation between 
the three generating functions 71(x), ~,(x) and/z(x) ,  
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xr l (x) tz (X)  x ~ ( x )  
+ v ( x )  = (8.15) 

1 -- ( q - -  1 ) x  1 -- ( q - -  1 ) x "  

Taking into account relations (3.41), it is quite clear to see that Eq. (8.14) is actually 
compatible with relation (8.10). 

The generating functions a ( x ) ,  f l (x ) ,  ~(x)  and v(x) are related. From relations 
(8.10), (8.12), (8.13) one can get all these various generating functions from only two 
of  them. Among all the various generating functions corresponding to various permu- 
tations, it appears that two generating functions are particularly simple namely fl( x ) 
and especially p ( x ) .  However class VI and class IV share the same generating function 
p ( x ) ,  since Eq. (8.3) is satisfied for both classes, but sr(4,x), or ( ( q , x ) ,  are differ- 
ent for these two classes (see relation (8.1) ). Therefore, in a general framework, one 
should not seek for  any additional relation (for instance between p(x )  and ( ( 4 ,x )  or 
( ( q , x ) ) .  

Explicit expressions of p(  x ) and of the generating function ( ( q, x ) , for various 
permutations considered here are given in Appendix E The amazing simplicity of p(x )  

A 

may suggest to try to look directly at the factorization properties of K (see relation 
(E.4) in Appendix E). 

8.1. Comments on the explicit expressions of the generating functions 

From the examples of the previous sections it is remarkable to notice the following 
relations between a(q,  x) (or f l(q,  x) ), ~r(q, x) and another function ~(q,  x) (which 
often identifies with ~ ( 0, x) ): 

q~(q, x) qx 
a ( q , x )  = ( l  + x)o- (q ,x )  ' f l (q , x )  = ( l  + x ) t r (q , x )  " (8.16) 

These relations are actually proved in Appendix E. From Eq. (8.12) combined with 
Eq. (8.16), a relation between p ( q , x )  and ~(q ,x )  is obtained, 

qx • p ( q , x )  = ~ (q , x )  - o ( q , x ) .  (8.17) 
(1 + x )  

From relations (8.12) one can immediately calculate p(q, x) for various generalizations 
to q x q matrices, 

(1 + x) • t~(x) - q 
p ( q , x )  = (8.18) 

qfl( x ) 

Let us recall the various generalizations of transformations tl (namely, one "straight" 
generalization and two different self-similar generalizations), to better understand the 
relations between p ( x ) ,  ( ( q , x ) ,  ( (O ,x )  and t r (q ,x) .  One has 

p ( q , x )  = 1 + x  2 (8.19) 

for t~ (see Section 4.1) for 4 x 4 matrices and for the self-similar generalizations of tl 
detailed in Section 4.3 (corresponding to q4-state vertex models). In contrast, one has 
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1 + x  2 
(8.20) p ( q , x ) -  1 - x  

for the "self-similar" generalizations of tl for 2 d × 2 a or for 2m × 2m matrices (see 

Eq. (4.15)) .  In this last case, the generating function ( ( q ,  x) reads 

1 + 6 x  z + x 4 + ( q - 4 ) ( x  + x  3) 
( ( q , x )  = 

( l+x)  ( l - x )  
( 1  - x) 3 qx(1  + x  2) qx(1  + x 2) 

- - -  + = ~ ' ( 0 , x )  + ( 8 . 2 1 )  
( l + x )  (1 -- x)(1  + x )  ( l - - x ) ( 1  + x )  

There are two different kinds o f  "self-similar" generalizations o f  tl associated with 4 × 4 

matrices. The expressions of o-(q, x) for these two "self-similar" generating functions 

are also different, 

o-(q, x) Q'-state = o'(q,  X )  2 m × 2 m  - -  (q - 4) • x( 1 - x____~) (8.22) 
l + x  

For the "straight" generalizations of t~ of Section 5, one gets 

1 
p ( q , x )  = - -  (8.23) 

1 - x  

In this case, the generating function ( ( q ,  x) reads 

1 q- 4 x  2 + ( q  - 5 ) x  1 - 4x qx 
( ( q , x )  = - - -  + 

( l - x )  ( l + x )  ( l + x )  ( l - x ) ( 1  + x )  

= ( ( 0 ,  x) + qx . (8.24) 
( 1 - x ) ( l + x )  

It is interesting to compare these three generalizations of tl. Two, which do not 

contain q = 4 as a subcase, actually verify 

o ' ( q , x )  = ( ( 0 , x ) ,  (8.25) 

while the third one, which contains q = 4 as a subcase, does not satisfy relation (8.25) 

and, therefore, yields more involved expressions for a ( q ,  x )  and f l (q ,  x )  (in particular 
in terms of q, see relation (4.27)).  

Conversely, considering tl for q = 4, for which p ( x )  = 1 + x 2, one can see that 
relation (8.25), together with (8.17), would give 

qx qx(  1 + x 2) 
( (  q , x )  = ( ( O , x )  + - -  • p ( x )  = ( ( 0 , x )  + , (8.26) 

( l + x )  ( l + x )  

which yields negative coefficients ( , ' s  in the series expansion. A necessary condition in 
order to get a generalization to q × q matrices, such that ~r(q, x )  = ( ( 0 ,  x ) ,  is, therefore, 
that all the coefficients of the series expansion of 

x p ( x )  (8.27) 
l + x  

are actually positive. 
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One can actually verify relation (8.25) for all the the "straight" generalizations given 
here and for a great number of other ("self-similar") generalizations given here. 

It should be noted that in all the examples which can be generalized to q x q matrices, 
p(x )  is independent of  q. Moreover p(x)  is remarkably simple in all these examples 
since it has zeros or poles only on the unit circle. 

The generating functions corresponding to all these examples of permutations are 
actually rational functions. This is closely related to the simplicity of relation (8.3), 
more precisely to the "periodicity" occurring in these factorization relations (see fac- 
torizations (6.10) or (6.17)) and, more generally, to the occurrence of a "shift" in 
the factorization scheme (see for instance factorization (6.58) where a shift of four 

occurs). Where does this periodicity comes from? In fact, this can be understood if one 
assumes some regularity order by order in the factorizations of the iterations. However, 
it is not clear that these regularities should be verified for quite general permutations of 
the entries (see (6.55) and (7.10)).  

When leaving the birational framework it is not even clear that the generating functions 
are still rational functions (see Section 7.2). 

Remark. In the case of "straight" generalizations, and also of the "self-similar" general- 
izations satisfying relation (8.25), this very relation enables one to very quickly get the 
singularities of the generating functions. Relations (8.16) and (8.17), for q = 4 only, 
allow one to quickly get the singularities of the generating functions or(x), f l (x)  .... 
They are simply obtained from the numerator of 

4x 
( ( 0 ,  x) = ( ( 4 ,  x) - ~ • p ( x ) .  (8.28) 

(1 + x )  

For instance, for class IV one gets 

1 + 2 X + X  2 + 3 X  3 -~-x 4 1 
- - ,  (8.29) ( ( 4 , x ) =  1 - x  4 and p ( x ) =  1 - x  

and 

1 - 2 x  + x 2 - x 3 + x 4 1 - x - x 3 
( ( 0 ,  X) = 1 -- X 4 = (1 - x)(1 + X2) " (8.30) 

One gets for class I, II, II, 

( ( 0 ,  X) = (1 - - X )  3,  ( ( 4 ,  x ) = l + x + 6 x 2 + 3 x  3, p(x)  = 1 + x 2 , 
(8.31) 

for class V: 

( ( 0 , x )  = 1 - 3x + X 2 -- X 3 , 

and for class I, 

p(x)  = l + x  2, (8.32) 

1 - 2 x  l + 2 x  1 
- -  - -  . (8.33) ( ( 0 ,  x ) -  1 - - x  2 '  ( ( 4 ,  x ) -  1 - x  2 '  p ( x ) -  l + x  
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This provides a condition for the polynomial growth of the calculations, which can 

easily be checked, provided condition (8.25) is actually satisfied. 

9. Conclusion 

In previous papers [21,22], a classification of birational transformations associated 
with elementary permutations of two entries was performed. It led to six different 
classes [22]. The analysis of the factorizations corresponding to these six sets of 

permutations (see Section 3) has shed some light on the relations between different 
properties and structures related to integrable mappings such as the polynomial growth 
of the complexity of the iterations and the existence of nontrivial recursions bearing on 

the factorized polynomials fn's. 
For more general permutations, simple factorization schemes have been seen to exist: 

they can be seen as many (unexpected) regularities and structures in a framework which 
should, at first glance, be more related to the theory of chaos than to integrable mappings 
and their associated structures. Actually, a large number of structures and properties 
which emerge here, originate from the analysis of integrable mappings [21,22] and it 

is striking to see these structures survive in a much more general framework, that is, 
mappings which are far from being integrable. 

The occurrence of elliptic curves (i.e. integrable mappings), of polynomial growth of 
the calculations, or of recursion relations in a single variable such as (3.27), or even 

(3.66), is, of course, less frequent but not exceptional (see Section 6.1.11 ). This makes 
room for the analysis of  very large new classes of mappings presenting remarkable 
properties and structures. 

For all the examples of permutations which can be generalized to q x q matrices, re- 

markable factorization relations independent o fq  occur (see (6.27) (6.10) and (6.39)).  
Among the different types of generalizations that can be introduced, ("straight" gen- 

eralizations or various "self-similar" generalizations...), one has to distinguish the ones 
which verify relation (8.25) and the ones which do not verify relation (8.25) (see 
Section 4.3). 

In all the examples detailed here it has been seen that the generating functions 
are often quite simple expressions, satisfying remarkable functional relations. Some of 
these remarkable properties can actually be proved (see in particular Appendix E). 
However, in a more general framework, several questions need to be better understood. 
In particular: where does the rationality of the generating functions, and in particular 
p( x ), comes from? Where do the periodicity, and more generally, the regularities of the 
factorizations come from? 

A large number of open problems still remains. We have just sketched the analysis 
of the factorizations corresponding to transformations K associated with quite general 
permutations in Section 6, or even rational, but not birational, transformations (see 
Section 7). To some extent it is possible to understand, with some assumptions, the 
factorization properties of these various, quite general, transformations generalizing the 
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demonstrations of  factorizations performed in [21].  The analysis of  the iteration of  
transformations associated with quite general permutations, like the birational one de- 
scribed in Section 6, or even of  the ra t ional  bu t  no t  b i ra t iona l  transformations (see 
Section 7),  opens a very large domain of  research, which merits further investigations. 

Appendix A. Right action of K n and generating functions 

Let us introduce the "right action" of  transformation K 3, 

(:.),: = ::). (A.I) 

~(3;3)(x) is equal to ~(2;a)(x) or ~(x) and ~(3;2)(x) is equal to ~(2;l)(x) and it is 

easy to prove, for arbitrary q, that 

~(3;l)(x ) = x((q 3 -5q 2 +7q- I) - x) 
(I - x)3(l +x) (A.2) 

One remarks that ~(3'3)(x) is actually equal to ~(a;2)(x) =/~(x), which is a conse- 

quence of  

/z( 1: ) (x)  • ( 1 + / z2x  2 ) + /Zl  • x 2 •/x (2;1) (x)  - (/~1 "x + ~2 • x 2) = x 2 •/x (3;1) ( x ) )  

together with /zl = /z l  l;l) = q - 3 ,  ~2 =/x~ 1;1) = 2 ( q -  3 ) .  (A.3) 

Introducing the "right action" of  transformation K 4, the result is 

(4"2) /L/,~4;I ) 
( f n ) K  4 = fn+4"  f~,~4,4) . f~,~4,3) . ) ~  . . f ,  . (A.4) 

Again, one notes that/x{4;4)(x) is equal to ]Z(3;3)(X) or/ .~(2;2)(X) or /2 , (1 ;1)(x)  = / z ( x ) ,  
that/.Z(4;3) (X) is equal to//,(3;2) (X) or/./,(2;1) ( x )  and that/z (4;2) (x)  is equal to/~(3;l)(x).  

The only new generating function is 

1.~(4;1) (X) ---- q ( q  - 2)3x (A.5) 
( l - x ) 3 ( 1  q-x)  

One can easily show from (A. 1 ), (A.4) and from the right action of  K (see (3 .10)) ,  the 
following relation on the coefficients of  b~ (4;1) ( x ) , / x  (3;1) ( x ) , / x  (2;1) (x)  and /z  (l;I) (x) :  

t/'(4;I) ---- ]-/,n+3 -'1- 1"~3" ] 2'(1;1) +/-/ '2 . ]d'n (2;1) + 12"1 . ],~(3;1) , (m.6) 

or equivalently, 

/x(l;1)(x) • ( 1 + /~2x 2) +/Xl • x 2 •/z(2;l) (x)  - (/Zl • x +/~2 • x 2) = x 2 •/z(3;1)(x) ) 

together with /~l = /z l  1;1) = q -  3 ,  /x2 =/x~ l;1) = 2 ( q -  3 ) .  (A.7) 

The same calculations performed for the right action of  K 5, K 6, K 7 and K 8 yield similar 

results with 
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/z(5;1)(x ) q ( q -  1 ) ( q -  2)3x q ( q -  l ) 2 ( q -  2)3x 
= ( l _ x ) 3 ( l + x )  , /z(6;l)(x) = ( l _ x ) 3 ( l + x )  ' 

/ Z ( 7 ; l ) ( y  ) q(q  - 1)3(q - 2)3x q(q  - 1)4(q - 2)3x 
= ( l _ x ) 3 ( l + x )  , /z(8;1)(x)= ( l _ x ) 3 ( l + x )  .- .  (A.8) 

Let us now recall relation (3.23) and expression (3.24), given in Section 3.1 for 
transformation K N, 

X N - I  . ([.g,N_ 1 • /Lt(1;I ) (x)  --1-/[I,N_ 2 • / j (2 ;1) (X ) 

"q-~/'N--2 " / .£(3;1)(x)  + " ' '  + ]Z1 " ] z ( N - I ; 1 ) ( X ) )  

= x N - I  . ] / , ( N ; I ) ( X ) )  -'[- (/rid " X + /t£ 2 • X 2 + " ' "  -'~ ~ N - I  " x N - 1 )  --  ]-£(I;1)(X) , 

(A.9) 

and the remarkably simple expression for/z(M;I)(X), 

/.t(MA) (X) = q - ( q -  2) 3. ( q -  1) (M-4) • X (A.10) 
(1 - x)3(1 + x )  

Let us prove recursively that relation (A.9) has (A.10) for a solution for an arbitrary 

value of N. Let us assume that (A.10) is valid for N = 1 to N = M - 1. The left-hand 

side of (3.23) can be written as 

x N - I  " ( ~ N - I  " 1/ ' (1;1)(X) "1- ~ N - 2 "  f l ' ( 2 ; l ) (x )  "q- ]ZN--3" ~ ( 3 ; 1 ) ( X ) )  

--}-X N - I  • (/tZN_ 4 • /.t(4;1) (X)  q--/t/,N_ 5 • /[.t(5;l) (X)  -q- -1--. . .--~ ]Z 1 • p , ( N - l ; l ) ( x ) )  

= x N-~ • ( ~ N - 1  • l z ~ l : l ) ( x )  + ~ N - 2 "  tZ~2'~)(X) + tZN--3" ~3'I)(X)) 

+ x N - l ' (  ~ / Z r ' ( q - - 1 ) ( N - 4 - r ) )  " q ' ( q - - 2 )  3 " x  
( l ' - - x ~ l ~  x) " (A.11) 

r=l...N--4 

Expanding/z(x)  one can easily get the expression of the/zn's, 

( q -  2)n 2 ( q -  3)n ( q -  8) 
+ - -  + - -  + ( - 1 )  n+l • q (A.12) / z n -  4 2 8 8" 

The expression of the sum can also be calculated simply. One can, for instance, get 
it as the coefficient of x N-4 of the function 

/z (l;])(x) x .  ( ( q -  3) + 2x 2 -  x 3) 

1 - ( q -  l ) x  ( l + x ) ( 1 - x ) 3 ( 1 - ( q - 1 ) x )  ' 

which reads 

(A.13) 

5 (--1)  N N ( N - 3 )  ( N - 2 )  I)N_ 4 
WN -- + ( q -  . (A.14) 

8 8 4 4 

From (A.9) one obtains the expression of x N-1 • 12, (N;1) (X) as 
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X N - 1  . /t.L(N;1)(X ) ) = X N - I  . ([,ZN_ 1 • ~tZ(I;I)(x ) --~ ]2N_ 2 • /Z(2;1)(X ) 

q. (q - 2) 3 
+/ZN-3 • tz(3;l)(x)) + x N" WN" 

( 1 - - x ) 3 ( l + x )  

+ (~,"~l~(x) - ( ~ , ,  • x + ~2 .  x 2 + . . . +  ~ N - , - x N - ' ) ) .  

There is the equality 

/z~l:l)(x) - (lxl " x + Iz2" x 2 + . "  + IZN-1 " X N - l )  = x u • 

(A.15) 

R ( x )  

8(1 - x)3(1 + x t ; .16)  

where R ( x )  reads 

R ( x ) = ( - 1 )  N . q . ( 1 - x )  3 + q - ( x  3 - 3 x  2 - 5 x -  1 ) + 8 ( l + x )  

+ 2 .  ( ( 2 - q ) .  (1 - x -  x 2 + x  3) + q x ) .  N 2 

+ 4 .  ( (x  3 -  3x 2 -  x +  1 2 ) + q ( x  2 -  1 ) ) .  N.  

Remarkably, the terms 

xN_ 1 ( 5  (--1)N--4 N 8  4 ( N - 3 )  ( N - 2 ) 4  q- (q - 2) 3 • x 

• ) ~ 7 - - x y ? ~ : x )  

+(u<';"(x) - ( u , . x  + ~=. x 2 + . . + , = _ , .  x=-') ) 

(/~N-1" ~l; l~(X) + ~ZN-2" /Z~2;1)(X) +/ZN-3" ~Z~3:I)(X)) (A.17) _.~ X N - 1  . 

cancel out and one finally gets 

p(N;1)(X ) = q .  (q  -- 2) 3 • (q -- 1) (N-4) • X 
(l - x)3(1 + x )  (AAS) 

Let us finally mention that many more relations between the generating functions can 
be deduced from relation (3.23)• Let us, for instance, mention the following relation 
between the/.~(M;I)(x)'s and f l ( x ) ,  valid for any N: 

( 1 - -  ( q - - 1 ) N . x N )  . f l (X)  + x N .  ( Z f lr .  lz(N+I--r;1)(X)) 
r=l ,N 

= i l l  • x +  f12 " x z + f13 " x 3 + " " +  fiN" X N .  (A.19) 

Appendix B. Comments  on the integration of  the recursions on the x n ' s  

Recursion (3.31) has been integrated in [23] and yields biquadratic relations in 
terms of some new variables qn defined by xn = qn+l/qn, 

(P - qn - qn+l) " (qnqn+l + a) = /Z. (B.1) 
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The elliptic curve (B. I )  can be rewritten, after several transformations, in the canon- 

ical Weierstrass 's f o r m  [29,33], 

y2 = 4x 3 _ g2x - g3 where 12g2 = 16A. 2 + 8,~p 2 - 24p/z + p4 

and 216g3 = -48A2p 2 - 64,~ 3 + 144Ap/z - 216/z 2 - 12Ap 4 + 36p3/x - p6, 
(B.2) 

and the discriminant reads 

A = g3 _ 27g2 = _/x2( 16A3 _ p3/z + 8A2p2 _+_ Ap4 _ 36Ap/.t + 27/x 2) . (B.3) 

It should be noted that our recursions can also be integrated in terms of the x. 's ,  

using the integration performed with the well-suited variables qn's (see (3.34) in Sec- 

tion 3.1 ). Let us, for instance, consider the integration of one of our recursion relations 

in terms of two biquadratics [21] (see for instance (3.36)),  denoted B1 (q.,  q.+l ) and 

B2 (qn+l, qn+2) (in our  previous examples  it has been seen that one has B2(q.+l, qn+2) = 
B1 (q.+2, q.+l ) ) .  Using the very relation between the x . ' s  and the q. 's,  the system of 

these two biquadratic relations reads 

B l (qn, qn • xn)  = O, B2 (qn • xn, qn " xn " Xn+l ) = O. (B .4 )  

Eliminating the homogeneous variable qn, one immediately obtains a relation between 

x. and x.+]. Let us consider, for instance, the simplest example of integrable recursion, 

that is (3.31 ). In this example the two qn-biquadratics, B I and B2, identify (see (B. 1 )) 

and the resultant between them yields a bicubic,  

( ) 3 3 3 ( 2 A  B ) . +  ( l ~ x 2 x 2  ~ B ( x . , x . + l ) = a ' \ l + x n x . + l j + B ' x . +  x n .  - . n+,} 

• 

O + x o x o + , ) + O X : X n + , - - O ,  

where A, B, C and D read 

A = ( a p  - / z )  2 , B =/z2 - A/xp + A 3 , C--.A 3 , 

D = 4A 3 - 7/xpa + 6/z 2 - / z p  3 q- Ap 4 . (B,6) 

It is worth noting that this involved expression for D can in fact be simply related to the 

expression of the discriminant A given in (B.3) in terms of ,~, Iz and p. This relation 

comes from the following observation: the discriminant A is equal, up to a multiplicative 
factor - / z  2, to 13(x~,, xn+l ) for x. = 1 and x.+l = 1, 

A : - - / z 2 . / 3 ( 1 , 1 )  : - - / z  2. ( 8 A + l a B - C + D )  

(C -- B )2 ( BC2 +czA _ 11 CA 2-14CBA -2B2C+B 3-  3AB 2 - A 3 +3A2B ) 
- ( B . 7 )  

CA 2 

or, equivalently, D can be expressed in terms of A, B, C (using I.L 2 = ( C  - B ) 2 / A ) ,  
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B C  2 - 2 B 2 C  - C B A  - 3 C A  2 + B 3 + 3 A 2 B  - A 3 - 3 A B  2 
D = (B.8) 

A C  

The other recursions can be integrated similarly in terms of the variables Xn'S, and one 

also get b i c u b i c  relations• 

Let us, for instance, consider recursion (3.32) which, in terms of the variables qn'S, 

can be integrated and yields two b i q u a d r a t i c  relat ions.  It also gives two b icub ic s  in the 

following form: 

3 3  3 ~ . . ( l + x , x , + l ) + ~ . x ,  

• xnxn+l + F "  xnxn+l • 1 + x~x~+l + G .  XnX~+l = 0,  (B.9) 

with some involved relations between the coefficients of  (B.9) that will not be written 

here• 
It is interesting to see what kind of relations can be deduced from the previous 

procedure. The result is the following: the elimination of qn between B ( q n ,  qn " xn)  and 

n ( q n  "Xn " Xn+l, an " Xn) 14 for a general biquadratic B with its nine coefficients, yields 

a b i q u a r t i c  of a particular form, namely 

.,4 (1  4 4  3 3  . . . .  nt- XnXn+ 1 ) -~- XnXn+ 1 XnXn+l ) + X n X n + l ) + ( B  x n + C  Xn+l) (1 D• ( 1 +  2 2 
_~_~ 2 4  4 2  2 2 • x , ,x .+ l  + ~  • x .x , ,+ l  + ( ~ .  x . x . + l  +7"( • xnx .+  l )  • (1 + x . x , , + l )  

+2" 2 2 3 + /C  3 2 + A 4  2 0. (B.10) 
• XnXn+ 1 -~- ~ • X n X n +  1 • XnXn+ 1 n t- ~_~ • X n • X n +  1 = 

In the limit corresponding to recursion (3•31) one has .4 = 0,~3 = 0 , £  = 0, .M = 
0,C = 0,5 t" = 0 and one recovers (B.9) from (B.10). The bicubic (B.9) is obtained 

from (B.10) with the following correspondence: A = C,B = /C,C = D , D  = G , ~  r = 

Let us however note that the elimination x5 of qn between B ( q n ,  qn " Xn) and B ( q n  • 

x , ,  q ,  • x ,  • Xn+l ), for a general biquadratic B, yields much higher degree relations: 
A 8 8 + . . . .  0. • XnXn+ 1 

Appendix C. Comments  on the "straight" generalization 

Let us consider transformation K for a "straight" generalization and let us assume that 
the initial matrix M0 take the particular form (5.7). The successive "reduced" matrices 

M n ' s  then read 

t4 Note the permutation of the arguments for the second biquadratic: B ( q .  • Xn • Xn+l, qn " xn) instead of 
B(qn • Xn,qn • xn • Xn+l). 
15 This elimination procedure yields quite different results from a direct elimination of qn+l between 
B( qn, qn+l ) and B(  qn+2. qn+l ), which remarkably results in a symmetric biquadratic relation between qn 
and qn+2, while the elimination of  qn+l between B(qn, qn+l ) and B(qn+l, qn+2) yields a biquartic relation 
between qn and qn+2. 
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(a o) 
Mn = Bn Cn ' 

where An denotes a 4 x 4 submatrix, Bn a ( q - 4 )  x 4 submatrix and "0" the 4 x ( q - 4 )  
submatrix with zero entries. Cn is a (q - 4) x (q - 4) submatrix equal, up to some 
homogeneous polynomial, to matrix C (or C - l )  of relation (5.7), depending of the 
parity of n. The (q - 4) x 4 submatrix B, can be very complex, however it does not 
modify the factorization properties of the matrices M n ' s ,  n o r  the determinants det (M,)  's. 

Therefore we will represent matrices Mn's by (An, Cn), forgetting submatrix Bn. Let 
us study the successive action of K on the q x q matrices Mn's, on the corresponding 

factorized polynomials f , ' s  and the 4 × 4 matrices A,, and the corresponding factorized 
polynomials fn's. With obvious notations one has the relations 

K (  ( An, Cn) ) = (det( Cn) " K( An),det( Cn) " C7 l) 

or K ( ( A n , C n ) ) = ( K ( A n ) , C n l ) .  (c.2) 

Let us denote K(4) and ~'(4), transformations K and ~" restricted to 4 x 4 matrices. 
Let us also consider matrices mn'S, corresponding to the transformations K(4) and h'(4) 
acting on the initial 4 x 4 matrix A in (5.7) and the corresponding factorized polynomials 

fn's. The following relations which amount to replacing Mn by mn, fn by f ,  and q by 
4 are obtained: 

det(mn) . . . .  fn+l ( f 2 .  fn-1 " f~-2~ fn--3~ ) (fn-4-2 " f n - 5 "  f~6~3 " fn--772 ) .  . . f ~ l  n , 

(c.3) 

mn+l = fn+l " fn" fn-I  " fn-2" '"  f2" f l  ' K(mn) . (C.4) 

The A.'s are proportional to the mn'S up to homogeneous polynomial factors. From 

relation (C.2) one immediately gets 

Kn(Mo) = (~'~4)(A0),C(-I)") , (C.5) 

Recalling relation (3.50) for q × q and 4 × 4 matrices, one clearly gets from (C.5), 
relation 

M .  = f .  . I n - 2 "  I n - 4  . . . .  L "  " 

For the sake of simplicity, let us consider the example of class IV. Recalling (3.64), 
one immediately gets 

I n + , ' ( f  2 . f n _ l . f n l _ 2  " fn-3)'(f~---24" fn-5" fnl-6 " f n - 7 ) ' ' "  

= de t (C) , -1 )" ,  det(~'~4, (Ao))  • (C.7) 

From (3.64), for q = 4, one also has 
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? n + l "  ( ? ~ - 2 .  ? n - - l "  fn-12 " ? n - - 3 ) "  (fn-24 ' ?n- -5"  ?;26" ?n--7)  " " " 

= det (~'~4) ( ao ) )  • (C.8) 

Eliminating det (g~4)(a0) ) ,  one obtains 

fn= f n . d e t ( C o ) + l . ( ( f n - l ~ 2 . ( f n - 2 ~  ( fn--3) . ( fn-- l~2~ 
\ \ f ~ - I  ) \ f n - 2 ) "  \?n_3 ] \ f n - l }  } 

( ( f n - 5 )  2 (?n-6)  
(C.9) 

\kfn_5 / " \ f n _ 6 ] ' " l ' " '  

which yields recursively, 

f ,  = ? , .  det(C0) a" . (C.10) 

From relation (C.9) one gets a linear recursion on the degrees of det(Mn), det(mn), 
fn, fn, (namely Otn(q) , ten(4), fin(q), fin(4)), 

O~n (q) -- an(a)  = q(fin(q) + fin-2(q) + fin-4(q) "q-'" ") 

--4(fin(4) + fin-a(4) + fin-4(4) + ' "  ") + (--1) n" ( q -  4) .  (C.I1) 

This linear relation (C.11 ) yields the following relation between the generating functions 
a(q,x) ,  a(4,  x), f i(q,x),  fi(4, x): 

1-(  ) 
o~(q,x) - ot(4, x) = 1 x 2 qfi(q,x) - 4 f i ( 4 ,  x) + q-_._44 (C.12) 

- l + x  

The following is also obtained from relation (C.10): 

f i , (q)  = f i n ( 4 ) + ( q - 4 ) ' a n  or f i ( q , x ) = f i ( 4 , x ) + ( q - 4 ) . a ( x )  

yielding (6.2). (C.13) 

The fact that fin(q) is a linear function of q (see (6.2)) can be seen to be related to 
the homogeneity of the initial matrix, 

M0 > ~.  M0. (C.14) 

Let us now consider another example, namely, class V. The calculations are similar 
to the previous one. One now has for arbitrary n, 

Mn = fn" fn-2" (~ran ,C(-I)" ~ (C.15) 
\in?n-2 / ' 

yielding on the generating functions, 

a(q,x)  - a ( 4 , x )  = (1 + x2) • (qfi(q,x) - 4 f i (4 ,x) )  + 
q -......~4 
1 + x ' ( C . 1 6 )  

and from (3.43), 
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f , = f  . de t (Co)a : , . ( (n - , ]  3 (fn-2"~ ( f n - 3 ]  
\ A - ,  : ' kA-2: " ~'f7--7-3/' (C.17) 

Of course, one has again relations (C.13) from (C.I0). 

Let us now consider class I (or III). One recovers the same relation as for class V 
(namely (C.15)), and therefore (C.16). One also gets from (3.8), 

f , =  f .det(Co)~:l . ( fn- l ' }3  (fn-2"~3. ( f  "-3)  
\ f n _ l /  " \ f n_2]  \ f n _ 3 / ,  (C.18) 

which yields again relation (C.10) where 

n(n + 2) (n + 1) 2 
a, - for n even and an = - -  for n odd. 

4 4 

Recalling recursions (3.27) or (3.28), satisfied by polynomials fn's and also polynomi- 
als f , ' s ,  relation (C.10) can be seen to be closely related to symmetries of the recursion. 
Recursions (3.27) are invariant under (C.10) together with (C.19) and closely related 
to the (three parameters) symmetries previously described in [ 21 ], 

fn , a nz • b n • c.  fn .  (C.19) 

In fact, these calculations can be performed, quite generally, for "straight" generaliza- 
tions, giving Mn's in terms of the m,'s, the fn'S and fn's. Such calculations yield a 
relation between a(q,  x), a(4,  x), p(x) ,  fi(q, x) and/3(4, x), 

a(q ,x )  - a(4,  x) = p(x___~). (qf l(q,x)  - 4f i (4 ,x) )  + - -  q - 4 ,  (C.20) 
l + x  l + x  

which is nothing but relation (8.12). 

Appendix D. More relations on the generating functions 

Let us recall the general form (given in Section 8), for the successive factorizations 
of transformation K which define the (n'S, the r/n's and the pn's, namely (8.1), (8.2) 
and (8.3). 

Factorization (8.1) yields the following bilinear relation between the an'S, fin's and 
~'n'S: 

an = fin+l + ~'lfin + ~2fin-I + ff3fin-2 + ' ' "  + ~'nfil • (D.1)  

From relation (8.2) one directly gets the following bilinear relation between the an's, 
fin's and r/,'s: 

(q - 1) "an = an+l + q" (r/0ff, + r/lfin-I + r/2fin-2 + r/3fin-3 + " "  + r/n-,fi l)  , 

(D.2) 

leading to a relation between the three generating functions a (x) ,  fi(x) and r/(x), 
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or(x)  + q x r / ( x )  • f l ( x )  = q + ( q  - 1) • x o t ( x )  . (D.3) 

One can introduce the (non-factorized) matrices ,~n, which are related to the successive 
(homogeneous) matrices Mn's  as follows: 

~ I . =  K ( M n - 1 )  = Kn(  MO) =(Mo )1 c  . (D.4) 

The following relations on Mn's are obtained: 

/~1 =K(/~0)  = K ( M o )  = U l ,  M2 = K(h41) = f ~ - M 2 ,  

/ ~ 3  = K ( / ~ ¢ 2 )  = f~lo . f~l  . f~o(q-l)  . M3 2 

K(/~3) : :o.f~,. f~/,. (f~2 0 " f~T, f~To(q-l))'q-l>. M4, 

~'[n = U ( ~[n_l ) = un ( UO) = ( fTo'(q-l  ) ' - I+ 'v (q- l  )'-2+W2"(q-1)'-3+'" ] 
X - / 
. (f~o'(q--1)n-2+rll'(q--l)n-3+~12"(q--l)n-4+'") . . . f fnnO.M n 

After some calculations the following is reached from (D.5) :  

(r/0" ( q - 1 )  n-l + 971 " ( q - 1 )  n-2 + r / 2 " ( q - l )  n - 3  + ' ' ' + r / n - - l ) " / £ 1  + . . .  

+(rl0" (q--  1) 2 + r / , "  (q--  1) + r/2) "/Z.-2 

+(r/0" ( q - 1 ) + r / l ) "  ]£n-I +r/O'/£n +Pn+l 

= r/0" (q - 1)  n + r/1 • (q - 1)  n - 1  + r /2"  (q - 1)  n - 2  + " "  + r / n ,  (D.5) 

which yields the following relations between the three generating functions r/(x), v ( x )  

and/z(x) :  

xr / (  x ) l~( x )  xr / (  x ) 
+ v ( x )  - (D.6) 

1 - ( q -  l ) x  1 - ( q -  1)x" 

This relation is nothing but relation (8.14), which can also be obtained by performing 
the "right action" of K on factorization (8.2), and using (3.10), one gets 

v.+l  = ( q  - 1)vn + r/n - (r/0/zn + 7]1/.£n-1 -~- " ' "  "q- r/n--l/£1 ) • (D.7) 

Similarly, performing the right action of K on factorization (8.1), and using (3.10), 
one obtains 

/z.+l = ~'.+l + qvn - (~.1Xl + ~ . - l t z 2  + " "  + I z . ( l )  • (D.8) 

Moreover, it can be shown that (8.2), the factorization relation on K ( M n ) ,  necessarily 
yields the factorization of the determinant, namely (8.1) (and also the inequalities ~'n > 
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1 +r / ._ l  when r/n-1 4: 0). Factorizations (8.1) and (8.2) and the "right" factorizations 
(3.10) are equivalent when assuming (D.7) and (D.8). The proof is given in [21]. 
Relation (D.8) yields 

q x v ( x )  + ( ( x )  = 1 + ( ( x ) .  ~ ( x ) .  (D.9) 

Appendix E. Proof of the q-independent relations 

From relations (8.1) and (8.3), one can get the action of K on the initial matrix M0, 

K' (Mo)  = Mn. fn- l .  f~n_o?~',)+l . f(Zt2-¢,)-(,1o-(,)-I . f(n23-¢3)-(-o,-¢2)+(no-¢,)+l 

f ( r / 3 - - ( 4 )  - -  ( n 2 -  ~r3 ) + 0 7 1 - ( 2 )  - ( r / o -  srt ) - 1  K2 
" n - - 4  " ' "  = Mn" f'~] " f 2 - 1 "  f ~ 2 " "  " 

(E.1) 

The action of h" on (E.1) yields 

K,,"+'(Mo) = K , ( M , ) .  f i x , .  f 2 _ ~ .  f ;_K~. . . f - ( , , , ,  

M,,+I • f f f q  " fT,-_~ " f n f ~ " "  f F  ~" 
= Mn+l" fnK~_l " f~2. f~)'~31.., f~,,+, 

(E.2) 

which yields 

From (E.2) one gets the following linear relations: 

Kl = --1, K1 + K 2  = 710 - -  ~'1 , K 2  + K3  = T]I - -  ~ " 2 ,  

K3  "}" K 4  = 712 - -  ~ 3 ,  " ' "  (E.3) 

Defining In as the determinant of the left-hand side of the previous equation, one gets 
from (E.1) the expression of In as 

I.= :o+,. • 

. S(n4__+3q( ()12--(,>--()l,--(2)+()I,--(i )+ I ) 

. / ~ . s ' ~ q ( ( r / , - - ( 4 )  - -  (r/2--~r3) + (r/ l--st2 > -- ( r /o - - ( ,  ) --  I ) . . . 

= f , + l "  f ~ ' "  f°n~2_l" f ° n ~ 2 " " .  (E.4) 

Let us introduce the two new generating functions, 

o-(x) = 1 + 0-1x + o'2x 2 + 0"3 X3 + ' ' "  , 

K ( X )  --- KI x -1- K2 X2 + K3X 3 + "" • . (E.5) 

From the very definition of I, ( In = det(h"(M0)) ,  as well as from the definition of the 
K,'s and the o-n's (see (E.2) and (E.4)) and from (8.1), one gets the linear relations 

o'l = ( 1 -  q , O"2 = (~ + qKl , 0-3 = (3 + qK2" " " , (E.6) 
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0-(x) = ( ( x )  + qx .  K(x) ,  (E.7) 

and (E.3) yields 

(1 + X) • K(X) = X 2. rl(X ) -- X . ( (X )  . (E.8) 

The right hand side of (E.8) is nothing more than - x  • p (x ) ,  therefore a very simple 
relation between p(x )  and K(X) is obtained, 

x p (x )  
K(x) = - - -  (E.9) 

l + x  

From (E.7) and (E.9) one finally reaches 

0-(x) = f (x)  - q xp (x )  (E.10) 
l + x  " 

It is obvious that the degree of  the ln's is +q, therefore, one immediately gets from 
Eq. (E.4) the linear relation 

q" ( - - 1 )  n ---- /~n+l  "b (0-1 " f in  "~ 0-2 " /~Jn-I "[- 0"3 " / 0 n - 2  J r ' ' '  ") , (E.11) 

which yields 

qx = f l (q , x )  .0-(x)  or f l (q , x )  --- qx 
1 + x  (1 + x)0 - ( x )  

and from factorization (E. 1 ), 

q - (1  qK(X))  q ( ( q , x )  
te(q,x)  = ( I + x )  0-(X) = (1 +X)0-(X) 

(E.12) 

(E.13) 

All these relations do not yet prove that for any generalization ("straight" generalizations, 
self-similar generalizations,...) the generating functions p(x )  (or equivalently K(x) ) and 
0-(x) are actually independent of  q. However, we have actually proved in [21] that 
ul = q - N and vl = q - N + 1, which show that K1 and 0-] are actually independent of 
q. Moreover relations (E.1) and (E.4), together with the particular form of M .  K ( M )  
or M .  K( M) in the case of  the "straight" generalizations, are certainly sufficient to 
argue that K(x))  and 0-(x) are actually independent of q in the case of "straight" 
generalizations (see also Appendix A). 

Appendix E Some explicit expressions of p(x) 

Let us give here explicit expressions of p(x )  and, for instance, of the generating 
function ~'(q, x) ,  for various permutations considered here. 

For class I ( and class IH see Section 3.1, and for class V (see subsection (3.2.1)), 

one has 

p(x )  = (1 + x )  • (1 + x 2 ) .  (F.]) 
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For class I (and class III and also class II but only for q = 4), and for class V, ( (q ,  x) 

reads, respectively, 

( ( q ,  x) = ( 1 - x) 3 + q(x + X 3 ) , 

sr(q,x) = l - 3 x + x  2 - x  3 + q ( x + x  3) .  (E2)  

For class VI one also has 

1 
p(x )  - (F.3) 

1 - - X  

(see Section 3.2.2) and for class IV (see Section 3.2.3) and for class II for q > 5. For 

class IV, and class VI, ( ( q ,  x) reads, respectively, 

l + ( q - 2 ) x + x  2 + ( q - 1 ) x  3 + x  4 qx 
( ( q , x )  = 1 - x  4 = ( (0 ,  x) + (1 - x ) ( 1  + x )  ' 

1 + (q - 2)x  qx 
( ( q , x ) -  l _ x 2  - ~'(0, x)  -k- ( 1 - -  x ) ( 1  + x )  (F.4) 

For class II for q > 5, ( ( q , x )  reads 

( ( q , x ) = {  + ( q - 3 ) x + 2 x  2 + ( q - 2 ) x  3+3x4~) 
1 - x 4 

qx 
= if(O, x)  + 

(1  - x )  • (1  + x )  

1 - 2x - 2x 3 qx 
= + (E5)  

( l + x ) - ( l + x  2) ( l - x ) . ( l + x ) "  

For the second example of Section 6.1.2, one has 

1 + x  2 
p ( x )  = 1 - x 3 ' (F.6) 

and for the "self-similar" generalization of the third example of Section 6.1.3, (see 

Eq. (6.19) ) one has 

l + x  
p ( x )  = 1 - x 4 " (F.7) 

For this "self-similar" generalization of the third example defined as in Section 6.1.5, 

( (q, x) reads 

1 + ( q -  2)x  qx 
( ( q , x )  - 1 - -X 4 = ~'(0, X) + (1 --X4~ " (F.8) 

For the "straight" generalization of the third example defined as in Section 6.1.4, the 
generating function ( ( q ,  x) reads 

l + ( q - 3 ) x + x  2 + x  3 qx 
( ( q , x )  = i - x  2 = sr(0 'x)  + (1 - x ) ( 1  + x )  (F.9) 

In this example one sees that p(x )  is different for the "straight" and "self-similar" 
generalizations. 
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For the fourth example (see Section 6.1.7, Eq. (6.41)) for q = 4  only, one has 

l + x  
p(x )  = 1 - x  6 " (E l0 )  

In this example for q =  5 one has p(x )  = (1 + x )  • (1 + x + x  2) and p(x )  = 1 + x  
for the "straight" generalization for q > 6. In this last case, K(X) is remarkably simple, 

(K(X) = --1).  Recalling the very definition of the Kn'S, this means a simple result for 
the action of ~', 

~n( Mo ) = M___~n (E l  1) 
A 

For permutation P7 for 4 x 4 matrices (see Section 6.1.11 ), an approximation of the 

generating function p ( x ) ,  compatible with the approximations of  a ( x )  and f l (x )  (see 

(6.56)) reads 

1 - x + x 2 + x  3 

p(x )  = 1 - x (F.12) 

In fact, with the number of iterations performed here (namely, ten iterations) one can 

only be confident about the  firstten coefficients in the expansion of p(x ) ,  

p ( x )  = 1 + x 2 + 2x 3 + 2x 4 + 2x 5 + 2x 6 + 2x 7 + 2x 8 + 2x 9 + 2x 1° + . - . .  ( E l 3 )  

The zeroes of  expression ( E l 2 )  are not on the unit circle, but with the number of 

iterations performed here one cannot rule out the fact that the zeroes of p(x )  could well 
be on the unit circle. 

For permutation P8 for 4 x 4 matrices (see Section 6.1.11) the expansion of p(x ) ,  
which corresponds to factorizations (6.57) read 

p ( x )  = 1 + X + x 2 + X 3 + 2x 4 + 2x 5 + 2x 6 + 2x  7 + 3x 8 + 3x 9 

+3x  l° + 3x 11 + 4x  12 + • . . .  (F.14) 

I f  the stability regime for the factorization scheme is actually reached one can write 

p ( x )  as 

1 
p ( x )  = 

( 1 - x ) . ( 1 - x  4) ' 

and the relations on the generating functions a ( x )  and/3(x) ,  

1 + x + 2 x  2 
x .  ce(x) = f l ( x )  • (1 - x  4) • (1 - - X  2) ' 

8x 2 / \ 

4 +  ( 3 x -  1 _ x2;: i l - x , ) ) '  

which give expressions (6.60) and (6.61) for or(x) and f l (x) ,  

( E l 5 )  

( E l 6 )  
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Let us make  the fo l lowing  comment :  up to M 12, f13 one cannot  rule out  other 

expressions of  p ( x ) .  For instance,  with the prejudice that the zeroes of  p ( x )  have to 

be on  the un i t  circle, the "Euler ian"  product ,  

(1 + x 4) • (1 + x 8) • (1 + x 12) • (1 + x 16) - . .  (1 + x  4"n) - - .  
p ( x )  = , (F.17)  

1 - x  

which expands  as 

p ( x )  = 1 + x + x 2 + x 3 + 2x 4 + 2x 5 + 2x 6 + 2x 7 + 3x 8 + 3x 9 + 3x 10 

+3X 11 + 5X 12 + 5X 13 + 5X 14 + 5X 15 -.1.- 7X 16 + 7X 17 + 7X 18 + 7X 19 + • . .  , 

( E l 8 )  

or (wi thou t  this pre judice)  

1 + x 4 + x  8 
p ( x )  - , (F.19)  

1 - x  

which expands  as 

p ( x )  = 1 + x + x 2 + x 3 + 2x 4 + 2x 5 + 2x 6 + 2x 7 + 3x 8 + 3x 9 + 3x 1° 

+ 3 x  II + 3x 12 + 3x 13 + 3x 14 + 3x 15 + 3x 16 + 3x 17 + 3x 18 + 3x 19 + • . .  , 

(F.20)  

are good  approximat ions  which are ruled out  in favor of  (F.15)  on ly  with the calculat ion 

of  MI3. 

Final ly,  let us consider  the rat ional  but  not  birat ional  t ransformation of  Sect ion 7.2 

( K  = T - I  = P1 • t .  I ,  where  Pl is project ion ( 7 . 2 ) )  on  4 x 4 matrices. With a prejudice 

that p ( x )  should  be a ra t iona l  funct ion with zeroes  on  the  un i t  c ircle  one rules out  the 

integers per iod P in t roduced in (7 .17)  up to P = 14, leading for a first approximat ion  

for p (  x ) , 

( 1 + x  2) 2. ( 1 +x4) • ( 1 --x2+x 4) 
p(x) = ( E 2 1 )  

( 1 - -x ) .  ( 1 +x+x2+x 3 +x4+xS+x *). ( 1 - -x+x2--x  3 + x  4 - x s + x  6 
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