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A number of papers have appeared in the last fifteen years that deal with
disorder points of particular two-dimensional lattice models ( Stephenson 1970,
Welberry and Galbraith 1973, Welberry and Miller 1978, Verhagen 1976, Enting
1977 and 1978, Rujan 1982, Peschel and Rys 1982, Dhar 1982 ). Very different
techniques have been used to obtain these solutions : methods related to
crystal growth ( Enting 1978, Welberry and Miller 1978 ), the use of the
statistical theory of Markov processes ( Verhagen 1978 ) or else based on the
transfer matrix method of statistical mechanics ( Rujan 1982, Baxter 1984 ).

Because of these various technics, methods and presentations of these
disorder solutions on different domains of ( mathematical ) physics
( crystallography, statistical mechanics, ...) there can exist at first sight
some feeling of confusion : there is & need to extract the most simple and
intrinsic concepts to understand these zolutions. Indeed we will try
to show that all these methods rely on the same very simple mechanism :
a certain local decoupling of the spin degrees of freedom which results in an
effective reduction of dimensionality for the spin system, Such a property will
be provided by a simple localcondition bearing on the Beltzmann weight of the
elementary cell generating the lattice.

We should first explain this terminology of disorder points, solutions...

Stephenson introduced this terminology on the simplest example of such
disorder solution : the two-dimensional anisotropic triangular Ising medel ( for
antiferromagnetic coupling constants ). )

Stephenson remarked on this Bonmwxzrmﬂm correlations can be calculated, that
there is a special point, a special temperature, in &IL paramagnetic ( disordered)
phase at which the behaviour of correlation functions changes from monotonic
to oscillatory.

Let us consider for instance a two point intra-row

correlation annwmonnhcn a temperature less than the disorder temperature au it

has the usual exponential decrease((up to some power law); for a temperature

higher than T, this exponential decrease is modulated by some oscillatory

wmn»ouw at the disorder point precisely one has a typical one-dimensional

hahavriniir FTar +the croarrelation function.
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Actually this terminology isn't so bad; if vou consider a specific two points
correlation function. The critical temperature corresponds to a temperature where
the long range order disappear: there remains only a short range order. The disorder
temperature corresponds to a temperature where even that short range order vanishes,
In that framework we can say that this peint corresponds to the highest disorder
for the system. Of course it is possible to give a great number of n_mu.u:uf.oam of
the disorder points; here we will not deal with the physical but
rather the mathematical aspects of these solutions. So our definition of disorder
points will be the Tfollowing: some special points in the Parameter space of the
model for which some effective reduction of dimensionality for the spin system
occur that enable us eventually to calculate different quantities like partition
function, correlation functions... .

For the simplicity of the exposal let us first concentrate on a spacific ( but
very interesting ) important model: the g-state checker board scalar Potts model
( fig 1 ). The lattice can be seen as a chess-board with black and white elementary
=quare, The Boltzmann weight of a black elementary cell is given bys:

o a
K, § m....... n_...u. .L_nmm. o..m. ncw + Num.q_n‘ 1t H..»M. nlu.. i

W Aou..... olu.. on_n. ouH )

a; denotes the spin of the Potts model, it can take qd colours
M denotes the ugual Kronecker symbol
K denotes the four coupling constants of the model corresponding to nearest

neighbour interactiona : if two nearest neighbour spin on and . are in the

¥
same state, the same colour the Doltzmann weight corresponding to the bond Am.mv.

. K. .
18 @ ‘' if not it ig normalized to 1 .

The partition of the wodel is given by Z = “ _ _ Sﬁam\ol..ﬂ: ﬂ,v
ﬁw %]

r

where mv denotes the sum over all the spin configuration on the lattice,

.HU. the product over all the elementary black Squares of the previous

Boltzmann weight,

Of course a similar definition can be given if one replaces the black by the
white elementary cells ( this corresponds to permute uu and _nu and in the
same time K,. and K, )a

Let us impose the following local condition on the previous "black"
Boltzmann weight W :
it T T H.D*r<n_nuukaw¢u.n.nu .
when one sums over the spin configurations of the two umz..nn. at the top of the
square qu. and A_MF. the Boltzmann weight must be independent of the spin

configurations of the two spins at the bottom of the square q.”nu.i QM\.

Introducing the notations a, b, ¢, d for the exponential of the coupling
Ky Ky
constants e ) ese @ s it is a straightforward matter to see that condition

( 1) reads

1
Mlu a = 1 b~-1 c - 1
- = . ( 2)
n.m.,n..u. a+qg=1 ba+gqg-=-1 c+q-1
with the following expression for H
Mo la-1)(b-1)(e=-1)
1
In—.lu

The specialists of the Potts model have recognized the expression of the

high-temperature variable ( sometimes called transmissivity ) t llnh..ml .

a+q-1

Let us now impose particular boundary conditions for the lattice i on the upper
layer , all Kr interactions are missing, so that the spins of the upper layer
only interact with those below, It immediately u..w:o:u that if one sums over
all the spins of the upper layer and if one requires the disorder condition (1)
( that is (2) ) the same boundary conditiona reappear for the next layer :
the n_muban.n. no:nm.nmeﬂ (1) Bo.-_.-u gn,nu_. n__..bn wien one sums over the spin at
the top of the blaek square, the two spins at the bottom no longer interact,
therefore the coupling constants ﬂb vanishes and we recover the same boundary
conditions, One can iterate this procedure immediately and "eat" that way the
whole lattice, What remains of this decimation Procedure iz just a multiplicative
factor for each elementary black square. We get that way, wnlﬂ_n-nopu. the
Partition function pPer site of the checkerboasrd Potts model restricted to nwn

disorder condition (2)(fiaila)

Z, = A

site

N~



Therefore we see that the partition function of that two dimensional
lattice reduces to the partition function of an isolated elementary black square.
A similar decimation procedure can be performed to calculate correlation
functions. Let us notice equation (1) also means that if one sums over the spin
configurations of the two spins at the bottom of a white aquare, the Boltzmann
weight of that white square must be independent of the apin configurations of
the two spins at the top of that square. So we can integrate from the top row
of spins downwards recursively "eating away" the black squares and from the
bottom layer upwards by integrating over white squares. We put a crossa on the

sguare that are "eaten away" in that procedure (fig 1b.c). We see that two differ=-

-ent cases must be distinguished : the light cone correlation functions for which

the correlations are the same as those on a string and the other one which are
the same as the one on a finite lattice. Therefore we see that an infinite
number ef correlation functions can be calculated exactly when we restrict
ourselves to the disorder conditien (2).

We thus have a fantastic amount of informations restricted to the discrder
condition (2). We can illustrate this fact for an important subcase of tha
previous Potts model : the ( g=2 ) checkerboard Ising model,

In that simple case an exact calculation of the susceptibility restricted
( to the disorder condition ) can even be performed : let us denote dw

( i=1, c.u. %) the four high temperature variables of that checkerboard
Ising model. One disorder condition for the checkerbeard Ising model is given
by t

dmn ﬁr = XY Some tedious algebra that will not be explained here

WL»

leads to a rather compact expression for the susceptibility restricted to the

1

previous disorder condition :

AVA ﬁn+ouvmu+ﬁm vﬁp+wmvnu+ﬁu

AH-ﬂuﬁmvau-»uﬂuVAnuﬂmﬂwu

nnnuu

This is a remarkably simple expression for a very complex quantity like the
mﬂhﬂﬂﬂ»wﬂwnwﬂw ¢ one remarks in particular an unexpected symmetry of

permutation between t  , t_  , t

1 2 3"

All these remarkable exact expressions restricted to the disorder peoints fully
legitimate to build a perturbation theory around these mwmuﬂnmﬁ.uupcﬂHOﬂm-

For simplicity let us just consider the triangular limit eof the checkerboard
Ising model ( ﬁ# = 1, ﬂ# =09),

Let us write the Boltzmann weight associated with each elementary cell of the

triangular lattice as

K.G.G, +K G.T K.G. G
17273 Y P2 71Y3 4 %5949
W= e |v,. :+.H.uqmclu+ama..umru+ﬂuqﬁqm )
OM is an Ising variable Amm aF 1).
t. + ﬂ.HF
The three variables Hw = = J (i, j,k=1,2,3) are three new variables
1+ ﬂHﬁNnu

well suited to an expansion in the vicinity of the disorder varieties,
Indeed the equations of the three disorder varieties are given by the vanishing
condition of these T (1. =0) .

A new diagrammatic expansion originates from the expansion of the preduct over
all elementary cells , The partition hﬂbﬂﬂwOﬂﬁDﬂ the correlation hﬁﬂnnwOﬂuvwﬂm
thus given as the sum of closed diagrams connected or not , which pass at most
cnce on each hatched triangle ( fig2 ) .

Because of this onumﬁwwwsn and these new variables , this new diagrammatic
differs in nature from the usual hight temperature one. In particular no
self-intersection wm allowed., A complete resummation of all these diagrams,
making use of the well-known Vdovitchenko = Feynmmann counting mdwu gives the

following expression for the partition function per site :

2n 2
1
2 2 2
- +
dq, dq, in ﬁp * a» + am - ﬂu + 2( ameu au Jcos a;

Hby +

b A

o o

5 = amuoum a, + NAHHHN | Huunomnnu + nwu (3)

+ mﬂapa
it is straightforward but tedious matter to check that this expression
identifies with the exact expression known for the partition function of the

anisotropic nﬂwm:mcwmﬂ.mmwau model, One verifies easily that the critical

variety is given by the simple equation : Hu » HN + Hm =1
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This new diagrammatic is the natural one for the study of the vicinity of the

disorder varieties. Indeed remarkably the expansion of ( 3 ) in powers of T

3

leads to algebraic expressions at all orders in T 1 This is in contrast with

u 1

the expansion of the partition function in the high temperature variable t

3

which leads, even at small onnowu\ﬁo complicated elliptic functions,
From a diagrammatic peint of view let us consider the class of diagrams

corregsponding to a fixed order in Hu + Remarkably enough it is possible to

exhibit closed recursion relations in each of these classes separately and also
to give a physical interpretation to these classes of diagrams. For the first
oerder in eu this corresponds to the discretized time evolution of two random
walkers on a one-~dimensional lattice 3 at each step the walkers must either

Jump to a neighbouring site with probability T, for a left ucaﬂsﬂm for a right

1
jump, or die with probability 1 - ( T, + T, ) - A particular history for the

two walkers corresponds to a diagram of the previous class on the triangular lattice

(fig 2b). The generating function of the diagrams of this class satisfies a

simple algebraic equation deduced from some closed recursion relations :

2 2
n:.m.ns.u .amu,,s.u + T

2
» S -:.nﬁ.u ..amu + T.T =0

12
This generating function g which can also be obtained from the expansion of (3 )

at first order in Hu s has a non analytic behaviour when eu +.Hm —_— 1 H

1-9 ~ (1-T -1 YA

. 1
2 with X = <

In fact the occurence and the location of this transition are nothing but a
consequence of the original transition of the Ising model itself:when § E—— |
2

the critical variety reduces to HH + em =1 ,
Second (o Q" ic si i
econdly the B = algebraic singularity was already known to occur for

the triangular Ising model { Blote and Hilhorst 1982 ). In fact the vicinity

of the disorder varieties, asymptotic to the critical one,is the only region

of the parameter space where the usual logarithmic singularity of the Ising model
1

(% =0) is replaced by another singular behaviour ( namely an hidden ¢ = -

singularity ),

In conclusion we would like to underline the fact that very important and
drastic physical or analytical consequences can be deduced from the extreme
simplification of the model on { or in the vicinity ) of these disorder varieties
Let us consider the phase diagram in the parameter space of a model; the different
phases are separated by the critical varieties on which the partition function
( and other quantities ) are non analytical. In the case of the anisotropic
triangular Potts model for wau*mhnmxtm have represented the critical variety of
the model (fig 3) given by an algebraic equation in the three high temperature
variables of the model. For that specific model the partition function can
even be calculated exactly and is given by some infinite m:wcﬂmwb product
( some elliptic function ). But we have also exhibited for that very modsl some
algebraic varieties ( in that parameter space) called the disorder varieties on
which nwbn in the vicinity of twwnwu the partition function is analytical and
has a very simple analytical expression. It is difficult to imagine what could
be the analytical behaviour of the partition function on the intersection of
these two algebraic varieties : in fact it can be seen that both varisties avoid
remarkably and intersect only for trivial values of the parameters of the model.

It should be noted that all the presently known cases of such regular
exact solutions correspond either to no intersection as previously seen or to a
multicritical ( trieritical for instance ) intersection for which a remarkable
cancellation of the different singular part occur. In any cases this regular
exact solutions give extremely precious insights om the phase nmwqur.um the model
(fig 4) « Many other constraints or conseguences can be deduced from these solutions
In particular it can be interesting to combine these exact solutions with the
other exact informations we have at our disposal on a model : for instance the

partition function of the checkerboard Potts model satisfies an exact

functional relation, the inversion relation :
i 1
Z(a,b,ec,d)ed(2-q-a, Y 2-q -e 3 ) = {a-1)(1-gq-a)(c-1)(1-q-c)

and some obvious symmetries deduced from the symmetry of the lattice :

2(a, byc,d)=2Z(c, b, a, d) = eue




Because of these functional equations the partition function can be seen as
some automorphic function with respect to an infinite discrete group of

symmetries G acting in the parameter space ( a, b, ¢, 4 ) :

G ZeZL o2
z 2z

Another interesting example is the checkerboard Ising model which is an exactly
solvable ( free fermion model ) in terms of some complicated elliptic functions:

the modulus of these elliptic functions is

- 2 o LA
ﬁﬁ._?;ﬁ:J:__.w..:
) i=d
k= -
y (.1 g ) (¢ t, t t )
t -t t
L "1 i % e

A ~-2K; . 3 . .
where ﬁw = e *“ denote the dual variables of the high-temperature variables

of the model. One remariks easily that this modulus trivializes on the disorder

varieties of the model and this explains how quite sophisticated elliptic

expressions trivialize to the previously noticed simole rational expressions.
These disorder varieties are deeply related to the "good variables" one has to

introduce on an exactly solvable model,

Finally we should underline the fact that all the results and ideas developped
here are not restricted to thd two dimensional models with nearest

neighbour interactions ( and without magnetic field ).

¥e give to &&a.ﬂmwnmﬂ as an exercice to find disorder solutions for the checker-

board Ising model with a magnetic field, a cubic Isinag model with three parameters

or a face centered cubic Ising medel with two parameters, for instance, (see figs5):

all one has to do is to consider the appropriate clementary cell and introduce a
disorder condition on that elementary cell by sayino that when one sums over the
spin configurations at the top of the cell the Doltzmann weight is independent
of the spin configurations at the bottom. That is your turn to play on your

favorite model !
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Checkerboard Q-state scalar Potts model
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A similar decimation procedure can be performed to calculate correlation functions.
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closed diagroms which pass at

moat once on each hatched

triasngle
fig 2
fig 3a q =2
Parameter space of the anisotropic triangular q state scalar Potts model :
. the three high temperature variables are in C-1/q, 11.
n particular history for the two One has represented’ the critical variety and ( below ) the disorder
walkers corresponds to a variety of the model for q = 2, q = 4 and g = 10. '

diagram of the first order in Hu




multicritical intersection,

curve where the partilion function

is regular
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Example : Nishimori line on the spin-glass problem

fig 4




Exercise:
i) Hy K, "
EH K
H, By H

o8
[
—

iii )

sommation over the spin configuration

Checkerboard Ising model with a magnetic field

IUH._.H...:uHIN.-._._P.

xw auxiliary magnetic fields

cubic Ising medel with three coupling
constants

disorder condition: th2K'+ thoL,thok

n
=]

MMt negative bounds

Ising model on the f. c. c. lattice

hints: use the star triangle relation



