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We describe birational representations of discrete groups generated by involutions, hav-
ing their origin in the theory of exactly solvable vertex-models in lattice statistical me-
chanics. These involutions correspond respectively to two kinds of transformations on
¢ X g matrices: the inversion of the g X g matrix and an (involutive) permutation of
the entries of the matrix. In a case where the permutation is a particular elementary
transposition of two entries, it is shown that the iteration of this group of birational
transformations yield algebraic elliptic curves in the parameter space associated with
the (homogeneous) entries of the matrix. It is also shown that the successive iterated
matrices do have remarkable factorization properties which yield introducing a series of
canonical polynomials corresponding to the greatest common factor in the entries. These
polynomials do satisfy a simple nonlinear recurrence which also yields algebraic elliptic
curves, associated with biquadratic relations. In fact, these polynomials not only sat-
isfy one recurrence but a whole hierarchy of recurrences. Remarkably these recurrences
are universal: they are independent of g, the size of the matrices. This study provides
examples of infinite dimensional integrable mappings.

1. Introduction

This paper belongs to a set of papers’™ analyzing birational representations of
discrete groups generated by involutions, having their origin in the theory of ex-
actly solvable vertex-models in lattice statistical mechanics. These mappings were
actually introduced in previous publications*® as symmetries of the Yang-Baxter
equations and, more generally, as nontrivial symmetries of phase diagrams of lat-
tice models in statistical mechanics.® More precisely these birational mappings are
generated by simple transformations on 4 x 4 (or even ¢ X ¢) matrices, namely the
matricial inverse combined with an arbitrary permutation of two entries. Six classes
of transpositions, or of their associated mappings, have emerged from this study.3
Only three of these classes correspond to tntegrable mappings.

We concentrate here on a particular transposition belonging to one of these
three classes (denoted class I in the framework of the classification introduced in
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Ref. 3). It gives a simple heuristic example of permutation which actually yields
integrable mappings for arbilrary ¢ X ¢ matrices and, amazingly, happens to be
related with the sizteen-vertez model We will show that the iteration of these
birational mappings exhibits remarkable factorization properties, for any values
of g. These factorization properties explain why the complexity of the iterations,
instead of having the exponential growth one expects at first sight, actually has a
polynomial growth.” If one can imagine that the integrability of mappings yields a
polynomial growth of the “complexity”, the reciprocal statement is not obvious.”

It will also be shown that the polynomial factors, occurring in these factoriza-
tions, do satisfy remarkable nonlinear recurrences. Since these factors are related to
determinants of ¢ X ¢ matrices, these nonlinear recurrences can also be seen as re-
markable nonlinear identities bearing on determinants of matrices of arbitrary size.
Moreover, these nonlinear recurrences in one variable will be shown to be related to
biquadratic relations associated with elliptic curves. These elliptic curves are actu-
ally the same as the one generated by the birational transformations on an arbitrary
number of variables previously mentioned. Let us recall that the equations of such
an elliptic curve have been obtained as intersections of quadrics for birational trans-
formations in CP;s, for instance for all the integrable mappings studied in Ref. 8,
as well as in the example of the sixteen-vertex model.%®

We will try here, on this simple example of permutation, to give a list as large as
possible of structures, properties, formulas associated to these concepts, and their
mutual connections: in particular the relation between the polynomial growth of
the complexity” and the integrability. For heuristic reasons we will first present the
different results and demonstrate them later on in Sec. 7.

2. The Notations

To set up the notations, let us consider the ¢ x ¢ matrix

mip Miz M1z Mg
ma1 Moz M3 My

qu M3y M3y M3z M3zq - . (2,1)
Mgy Mya Mgz Mgy

We introduce the following transformations, the matrix inverse T , the “homoge-
neous” matrix inverse I and the permutation of the entries m,5 and my,, we denote
t:

t: myg <« Mo (22)

3More generally in Cqu_l, these equations can be obtained as intersections of algebraic varieties
simply deduced by sums and differences of minors of ¢ X ¢ matrices.



Determinantal Identities on Integrable Mappings 2159
=~ 1
T: R,—F; (2.3)
I: Ry — R;'-det(Ry) . (2.4)

The “homogeneous” inverse I is a polynomial transformation on each of the entries
m;;. It associates to each entry m;; its corresponding cofactor. The two transforma-
tions ¢ and T are involutionsie. I? = t = Id, while I verifies I? = (det(R,))?~2-Zd,
where 7d denotes the identity transformation.

We also introduce the (generically infinite order) transformations K =t - I and
K =t.1. Transformation K is cleajly a birationaltransformation on the entries m;;
since its inverse transformation is I -t, which is obviously a rational transformation.
K is a homogeneous polynomial transformation on the entries m;;.

We will first analyze some remarkable factorization properties of the iteration
of the homogeneous transformation K, considering first, for heuristic reasons, the
case of 3 x 3 matrices.

3. Factorization Properties
3.1. The left-action of K

Let us now consider a generic ¢ X ¢ matrix (2.1) denoted here My. Let f; denote
the determinant of the initial matrix: f; = det(Ms), and let M; denote the matrix
deduced from My by transformation K, M; = K(My).

For ¢ > 4, the determinant of matrix M; amazingly factorizes some power of
the determinant of matrix My, more precisely f{ =3 This enables us to introduce a
new polynomial fo:

det M1
fa= %5—) . (3.1)

One also remarks that f7~* factorizes in all the entries of the matrix K(M,),

leading to the definition of a new matrix Mj:

_ K(M)
===
1

M,

(3.2)

One then considers the successive matrices obtained by iteration of transformation
K and their corresponding determinants, and gets the factorizations

_ det(My) _ K(My)
det(Ms) K(Ms)
fa= 4=

F4=1 3 pg=-3 = 74¢=2 79 gp0-4°
1 'fg‘s 1 ‘f22‘

3

The factorization properties are now stabilized and they reproduce in a similar way
shifting n by one at each step. Generally, one has the following recurrences for
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n>1andq> 4

K(M,
Mpys = _—2£_2—+2)?;——4 (3.3)
fﬂ fn+1 fn+2
det(M,
43 = '—,1_—1(—3—+22—_‘§ (3.4)
n n+1 fn+2
and the following relation independent of q:
~ K(M, M,
R(Maya) = S0 12 (35)

det(Mn+2) - fnfn+1fn+‘2fn+3 '

It should be noticed that, for a given initial matrix My, the successive reduced
matrices M,, belong to two matrix vector spaces. More precisely transformation
K? preserves, for each initial matrix My, a six-dimensional vector space. Since this
property is also satisfied for matrix M,, one obtains two different vector spaces
corresponding respectively to n even or odd (see Appendix A).

3.2. The right-action of K

In the previous section, the successive matrices M, were transformed under the
(left) action of transformation K. One can also introduce a “right-action” of K
on the matrices M,,, on the entries of M,,, and on any polynomial expressions of
these entries (such as the f,’s for instance), replacing the entries m;; of My by the
corresponding entries of K (M), i.e. (K(Mo))i;.

Amazingly, the right-action of K on the f,’s and matrices M,’s also yields
remarkable factorizations, moreover in this case f;, and only f; does factorize:

(fn)K = fnt1- f{‘"

and
(Mp)k = Mny1- fi™ . (3.7)

To shed some light on the relation between the right and left action of trans-
formation K, one can also introduce the successive (non-factorized) matrices M,
corresponding to n-times the left or right-action of K on Mg:

o~

Mn = I{n(Mo) = (MO)K" . (38)

These matrices M,, can be expressed in terms of the M,’s and f,’s:

— S~

My = K(Mpa) = (FO7077° g0 gfo=

R S A

_f(q_—22)(1—3) ,f‘I:‘; ‘M, . (3.9

)(91—2)3
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Introducing the “natural” homogeneous polynomials k, = det(f\l\n), these poly-
nomials are related to the “elementary” polynomials f:

k, = (fl(q—l)"— ‘féqnl)"' -fé"l)"_ '(14_-41).f"_3)
N APRD MERE Al AT (3.10)
where
ny=gq(g-2)°, ny=(¢-1)7%(¢-3)+2,
(3.11)

n3=(q—1)(q—3), n4=q—3.

3.3. Polynomial growth of the degrees and exponents

Denoting oy, the degree of the determinant of the matrix M,,, and B, the degree of
the polynomial f,,, one immediately gets, from the previous relations, the following
linear recurrences on oy, B,:

Un42 = (q - 1) ,Bn +3 ﬂn+l + (q - 3) ,Bn+2 + ﬁn+3 (312)

(g—1) any2 = an43+9(@—2) Bn +2q Bnt1 +q(qg — 4) Bnya (3.13)

yielding relations between the two corresponding generating functions a(z) and

B(z):
za(z)=((¢g-1)z*+322+(¢—3)z+1) B(z) (3.14)

((4-Dz-1)-a(x)+g=(2(a -2 2> +202* + (¢ - 4) z) - B(z) . (3.15)

From these relations between the two generating functions a(z) and B(z), one
deduces their expressions in terms of ¢ (¢ > 4):

o) = 11+ (@—3)z+327+ (¢ — 1)27)

ofz) = (I+z)(1-1z)3
> qn2 q (_1)nq n n
- AT S WP A SRy | z 3.16
03 (4 - ) (3.16
_ qr 1 }00: n(n —(=1™) z"

Recalling the definition of u, and v,, one also gets, from the right-action of trans-
formation K (see (3.6) and (3.7)), the two linear relations

(=D on=anp1+va  (q=1)Bn =Bns1+q ptn (3.18)
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yielding on the generating functions
(q-De-1)-ofx)=¢" zv(z) — ¢
(@-1)e—1)-f@) =gz p(e) —qz . (3.19)

Equations (3.19), combined with (3.16), enable us to deduce the two generating
functions p(z) and v(z):

_z((g=3)+22* -3
o) = = (o= 2P

s 2 —1\n 2
=Z(%’—+%+g-(——u—”——§ﬁ—l> @ (3.20)
n=1

z((¢—-4)+2z+(¢—2)2°)
1+=z)(1—=)3

o0 2 n
qn q (l)q n 2
_2 141 X /1 " - -1 n
_n=1<2 +4 2 +( ) n l1-n} z

v(z) =

(3.21)
Remark: All these results are slightly modified if one considers ¢ = 3.
The left-factorizations read:
K(M, t(M,
Mpya = —(Tﬂl and foy3= 'd—e%z—ﬂz (3.22)

yielding, for the inhomogeneous transformation:

K(Mn+2) — Mhnys

I{(Mn+2) - det‘(Mn+2) - fnfn+3 '

As far as the right-factorizations are concerned, (3.6) and (3.7) are still valid. The
generating functions 8(z) and p(z) are directly obtained, replacing ¢ by 3 respec-
tively in (3.17) and (3.20). On the contrary, the generating functions a(z) and v(z)
are not given by (3.16) and (3.21), they read

3(1+223)

2 (1+2)? z3
T-2P079)

o(z) = I-228 ~ (+2)(1-2p"

and v(z)=

(3.23)

Because of all these remarkable factorization properties, the degree of these var-
ious expressions (entries of the matrices M,’s and polynomials f,,’s) does not grow
ezponentially with n, as one could expect at first sight: it does grow polynomially
with n. A proof of this statement will be given in Sec. 6.2. This polynomial growth
is closely related to the integrability of these iterations, as will be seen later.
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3.4. Orbits of K for qxq mairices

An efficient way to see the possible integrability of transformation K is to look
at its iterations.®3 Let us, for instance, consider the iteration of transformation K
acting on a § x 5 matrix. Figure 1 represents the projection (on two variables among
the 24 others) of an orbit of such an iteration. On Fig. 1, and also on the other
projections, one does see that these orbits are actually curves. If one takes any
other initial point (another initial matrix) in the parameter space, namely CPy4,
one also sees curves. These curves do foliate the whole parameter space CPyy. 1t is
possible to prove that these curves are actually elliptic curves.

3.5. Recurrences on fn’s and k, s

Though the definition of the polynomials f,, depend on ¢ (see (3.1), (3.2), ... ),
they do satisfy the recurrences independently of q:

fnf£+3—fn+4f3+1 — fn—1f3+2 —fn+3.f3 (3 24)
fn—-lfn+3fn+4 - fnfn+1fn+5 fn-—an+2fn+3 - fn-lfnfn+4
The f,’s do satisfy other recurrences also independent of q. For example
fas1f2patnss — fnrafiiafnie _ fav2fiisSnie — fnsaf2pafnsn (3.25)
fiiofnya3fnsr — fnfnrafliss fiiafnrafnrs — fas1fnssflys
and
fnfn+1fn+5 - fn—lfn+3fn+4 — fn+2fn+3.fn+7 - fn+1fn+5fn+6 (3 26)
f,?fn+6 —fn—2f3+4 f3+2fn+8"fnf72;+s
From (3.24) and (3.26), one immediately gets another recurrence
Inf2ia = faxaf2pn  Frneafiis — frvefaya (3.27)

frzxfn+6 - fn—2f3+4 B f3+2fn+8 - fnf3+6

These recurrences can be written in terms of the k,’s, however they now depend
on ¢. For instance, (3.24) becomes

~1 -1
kf;+1 — kn+2 _ kgx+2 - kn+3

= St S (3.28)
g-239-219—1 q—239-239~1 n+1%n+43 g
kn+2kn+lk" — An43 kn+3kn+2kn+l - kn+4

Many other recurrences on the f,’s and the k,’s are also satisfied, as will be seen
later.
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3.6. Recurrences on l, and z,

Introducing also the variables I,, which are related to the inhomogeneous birational
transformation K by I, = det(K"(Mp)), one has the following recurrence for any
positive integer n:

Int3lnyo —1 Inyalngr —1
= Al ] l . 3.29
Iy I£+213|+3 lnga—1 1, Iﬁ+113+2 Inys—1 " n+1in4+24in43 ( )

One notes that the variable I, occurs, in this recurrence, through the product:
Ty =llnyr . (3.30)
With these new variables, the previous equation on the I,’s can be written more

simply as

Zopz—1 zayr -1

= Ty Tpya - (3.31)
Tn41ZTn42Tny3 — 1 InTpy1Tnpz—1

Similarly to what happened to the f,’s and k,’s, they also satisfy other recur-
rences, independently of the value of q. For instance, (3.25) becomes

In+alaialayz — 1 lntalagalngr =1

= A Y AP 3.32
I,.+513+413+31?,+2I,.+1 -1 ln+413+312+2lg+1ln -1 nind2ines ( )

which reads in terms of the z,,’s:

Tni2Zns3— 1 Tpp1Znpz — 1

= T . 333)
P ntn42 (
-’Cn+1-"«‘?, } 2.’53‘ +3Tn44 — 1 :c,,znl 1I3+21‘"+3 -1

Similarly, (3.26) becomes

s 1721+4172:+51n+6 -1 lnt1 1£+2172:+3In+4 -1

3 14 14 3 TLR O L8
b2 liyalnpalngslivelner — 1 lnlg i lnyolnalnyalngs — 1

Aa g alhpalnpalass - (3-34)
which reads in terms of the z,’s:

Tn4+3Tn44Tn4s — 1 Tn41ZTn42Tn43 — 1

2 2 .2 = 2 22 .2
Tn42Z043%01a%045Tn46 — 1 TnZo T 0T0 aZngs — 1

TnTn+1Tn42Tn43Tn44 - (335)

These recurrences can be extended to n any relative integer as will be seen in
Sec. 3.8.
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3.7. Relations between the ky, fn, In

Let us give the relations between the various variables introduced in this paper (k,,
ln, fn, 22). The k,’s can be written in terms of the l,’s:

ko = 20070 @™ aeDnTE e e g (3.36)

Conversely, the l,,’s can be written in terms of the k,’s:
by =kn k9 kS, k795 k0, kX0, (3.37)
From the definition of the z,,’s
T =lplnys (3.38)
one gets a very simple expression of the z,,’s in terms of the k,’s:
Tp=kpyr- k177 (3.39)

The k,’s can be written in terms of the f,’s

)n—d )n—s )n -6

= (T T T T f D e ) gD, fR R far (3.40)

where the n;’s are defined in (3.11).

From this equation, one gets the z,’s in terms of the f,’s, which amounts to
taking into account the homogeneity of the recurrences on the f,’s (see Sec. 4.7):

x_kn+l
n = TooT
k!

_1)n-3 _qyn—4 _1yn-8 ny na " na
R SR S Aty WA WYL I p L N

—_1)n—14 —1)n-—-35 —~1)n—6 n n q_l
€Y S S AR vl S LAY 1IN (PR L3 AP

_ fz—l fﬂ+2
ff+1 fn—2

(3.41)

Let us note that one can deduce, from these previous recurrences on the f,’s,
many more recurrences. The existence of such recurrences is closely related to the
existence of an elliptic parameterization of the iterations. It is also remarkable that
all the recurrences can be written in terms of the z,’s defined by (3.30). All these

facts will be clearly understood when the proof of these recurrences will be given in
Sec. 6.
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3.8. The reversibility of the recurrences

It is important to note that all these recurrences on the I;’s or z,,’s are actually
valid for n being a relative integer and not only for n > 0. One can in fact directly
extend the definition of the I,,’s to n being any relative integer:

o~

I,,:det(f{’"(Mo)), n=-00,-,+00, with:I?:t-I, K-'=T7-t.

One has for instance,

lo = det(Mo) , 1) = det(K(My))

I_1 = det(R~'(Mp)) = det(T - t(Mp)) = det(t:Mo))
Iy = det(fi’z(MO))
1

—_2 = m = det(K’Z(Mo)) .

The previous recurrences are valid for n positive or negative, for example

Ll -1 _ lilg—1
BEEL =1~ LERl, =1 -ihb (3.42)
or
lilo -1 ol -1
- . I— _ ‘
LPRI =1 LRI, =1 -l (3.43)
or even
2 _ 2
oyt 2o Bl A_ilohdy . (3.44)

LBIEBl, — 1 BBRBI_, —1

Moreover, one should note that these recurrences are reversible. They are in-
variant under transformation I, — 1/1_,,. The fact that all these recurrences are
reversible is not surprising since one has representations of birational transforma-
tions and that the group of transformations one deals with is clearly reversible:

t-T—T-t. (3.45)

4. Hierarchy of Recurrences and its Symmetries

The variables z,, satisfy many more recurrences, valid for arbitrary values of ¢, and
for n any relative integer. Let us show, for instance, that all the recurrences on the
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z,’s can be written in the general form

i, ia iy
Trt1Zng2-- Tyt — 1 rhogkL pka 2Fete
o J1 2 Ji41 n “n4l¥n42 - Cnttts
TR T Tnggr —

1'1 iz '.!
z z R -1
n4l4s n424s ﬂ-!-H--! (4'1)

Jo 1 Ja 141
Tnt+sTnt14sTnd24s  Tnttds+1 — 1

with the first and the last exponents i, i1, jo, jt+1, ko and k¢4, being equal to 1.
It can be written in a more symbolic way, with obvious notations as

. Lz = — . (4.2)
:cs;’) -1 " 2:5,]4)_, -1
Up to a simple multiplicative factor :cs,k) = :z:g%’f‘x'z“ ..., one has the same rational

expression on the left-hand side and the right-hand side of Eq. (4.1) up to a shift s
(n — n+s).

Let us also associate to a recurrence of the form (4.1) the symbolic “coding”
sequence

((S), (il) i25 DY it)’ (jOa jl) j?r T jt+1)i (kOl kl’ k2> N} k¢+’)) . (43)

Let us first recall recurrence (3.31), which corresponds to the sequence ((1), (1),
(1,1, 1), (1,0, 1):

Tpyo— 1 _ Toypr— 1

Tn41Tn42Tnts — 1 TnTpgl Tnpz — 1 (En Ent2 - (44)
This recurrence will be established in the following (see Sec. (6.1)). At first it will
be shown, in the next section, that recurrence (4.4) generates a whole hierarchy of
recurrences (which are actually verified for the birational transformations associated
to the transposition analyzed in this paper). In order to classify these recurrences
we will introduce a short notation Sg , for the coding sequences or the recurrences.
The index s corresponds to the shift of recurrence (4.1), the indices N and r being
two other indices enabling us to distinguish between various recurrences with a
given shift s.

The first recurrence of this hierarchy, (4.4), will be denoted Sﬂ .

4.1. Equivalence of two recurrences

Among the various recurrences satisfied by the z,,’s some of them simply identify.
It is a straightforward calculation to see that recurrence (4.4) is exactly the same
relation between successive z,’s as an apparently different recurrence of the form
(4.1). This new equivalent recurrence is one of the most simple recurrences satisfied
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by the z,’s:

Tpp2—1 oz —1

2
= Tn Tpyo - (4.5)
Tnt1 Tn43d — 1 Zp Tup2—1 nt

This new sequence ((1), (1), (1, 0, 1), (1, 0, 2)) will be denoted Sglg. More gener-
ally, recalling the general form for the recurrences described here (see (4.1)), it is a

straightforward calculation to show that two recurrences exactly identify if one has
the following relations:

1) iz it ko k1 k3 Eige  __ jo,01 J2 Jt41
T 1Tz Trgte Tl Tl 1 Enta - Tnfies = TR TR Trya - Tt (4.6)
or
ko k1 L2 ke  _ L jo,0n J2 Ji41 i ig i
Tn Tpg1Znto - Tnttds — AR AR cTntt41 TogitsTngots o Tngtts -

(4.7)
These two conditions can be rewritten in a more compact way using the symbolic
notations (4.2)

2®. () = £ (4.8)
or
=¥ = 20, zs:_la . (4.9)

More precisely, if condition (4.8) is satisfied, recurrence (4.1) is equivalent to recur-
rence

(5) @)

In - 1 (k) () a:nﬂ -1

e P S s < (4.10
I'S;k) _1 nts xg:)-’ _1 )

and, conversely, if condition (4.9) is satisfied, recurrence (4.1) is equivalent to re-
currence

() (%)
zn —1 . z -1
LS ¢ RSt o o B
In — 1 ) = Tnds . 4.11
29 2P -1 zf,’_,),,.zf,'l, -1 (.11

4.2. Procedure Il

When one of the two conditions (4.8) or (4.9) are satisfied, other recurrences, with
the same shift, can actually be deduced from the previous ones by the following
transformation which we will call “procedure 11 ”:

O: 2, — zn. ngs (4.12)
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acting on the left and right-hand side of (4.2), the factor zF) being changed in a
different way. More precisely, if condition (4.8) is satisfied, recurrence (4.2) implies

a2l =1 4y _ ZateTatas =1 (4.13)
zS.J).zS{l, -1 " z,(,fl,.sz_zh -1

and, conversely, if condition (4.9) is satisfied, recurrence (4.2) yields

135:).15:3,, -1 . ) (f) _ 1'5:-)}.; -375:3-2., -1 4.14
O Gy Fn Tt T Gy G) - (4.14)
zn' Tay, — 1 ZntsTntas — 1

Coming back to our previous examples, namely recurrences (4.4) and (4.5), pro-
cedure II generates, from (4.5), the new recurrence corresponding to the sequence
(M, 1, H,0,1,1,1),(1,0,1, 1)), namely

Tny2 Tnpz — 1 Tnsi Tngz— 1
= c Ty Tn42 Tn43 - (415)
Tni4l Tn42 Tn43 Tnga— 1  Tp Tnyl Tng2 Tnys — 1

We denote this sequence Sglz) , the increment of the value of N in S;;), (1—-2)
corresponding to the action of procedure II on sequence 592). Similarly procedure
II generates from (4.4) the new recurrence denoted Sgll) =((1), (1, 1),(1,2,21),
(1,0,1, 0)):

Tpy2 Tnya — 1 _ Tpt1 Tnpz — 1

= - T Ty - (4.16)
Tnil Thyr Tagz Tnta— 1 Ta oy T2 Tnya— 1

Let us note that the two recurrences (namely (4.16) and (4.15)), deduced from
procedure Il from two equivalent recurrences (4.4) and (4.5), are not equivalent.
They do not satisfy either (4.8) or (4.9).

4.3. Shift procedure

In order to get other recurrences in this “hierarchy” it is worth noticing that one can
always deduce new recurrences using a “shift” procedure. Starting from recurrence
(4.2) one immediately gets, combining this very recurrence with itself where n has
been shifted by s:

2 -1 28 (&) 2, -1

. ) my = .
zSi') -1 +s ::24)_2, -1

(4.17)

Let us, for instance, consider recurrence (4.5). The relation we deduce from this
“shift-procedure” corresponds to the sequence S\% = ((2), (1), (1,0, 1),
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(1, 1, 2, 2)) and reads

Tnpz—1  Znj1 -1

2 2
= - Tpn T4l Thpo Toys - (4.18)
Tn42 Tntgda — 1 Tn Tny2 — 1 nt2 Tnt

Similarly one gets, from the first recurrence we introduced, namely (4.4), another
recurrence with a shift of 2 associated with the sequence szl) =((2), (1), (1,1,1),
(1, 1,1, 1))

Zagz—1 _ Tpyr =1

= " Tn Tpgl Tn42 Tpn43d - (4.19)
ZTn42 Tn43d Tntq — 1 Zn Tngl Tnp2—1

Let us also consider recurrences (4.15) and (4.16). One easily gets, using the “shift

procedure”, two new recurrences with a shift of 2, respectively ngg = ((2), (1, 1),
(1,1,1,1), (1, 1,1, 2, 1)):

Tny3 Tnya — 1 _ Tn4l Tniz — 1

Tny2 Tn43d Tn4d Tngs — 1 Thn Tngl Tngo Tnez — 1

“Tn Tnil Tnt2 T2pg Tnid (4.20)
and S$8 = ((2), (1, 1), (1, 2, 2, 1), (1, 1, 1, 1, 0)):

Trn43 Tppq — 1 Tnil Tnpz — 1

Tnt2 xf,+3 z?:+4 Trps—1 24 37?;+1 "-'34-2 Tnys —1

* Tn Tn4l Tn42 Tn4s - (421)

4.4. More recurrences

At this point one can recall the previous symmetries (procedure II or equivalence
when conditions (4.8) or (4.9) are satisfied ... ) to see the possible relations be-
tween the four last recurrences (4.18), (4.19), (4.20) and (4.21). We first note that
recurrences (4.20) and (4.21) are actually equivalent. We also note that (4.20) sat-
isfies condition (4.9) and that (4.21) satisfies condition (4.8). Recurrence (4.18)
neither satisfies (4.8) nor (4.9). On the contrary, recurrence (4.19) actually verifies
condition (4.9), and is thus equivalent to another recurrence, S{2 = ((2), (1), (1, 2,
1), (1,1, 1, 0)):

ZTpez—1 Tpp1— 1

= * Tn Tntl Tn42 - 4.22
Tng2 22,3 Tnpa—1  Zn i Znya—1 (422)

This recurrence satisfies condition (4.8).
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Since recurrence (4.19) satisfies condition (4.9), procedure II yields another re-
currence, S = ((2), (1,0, 1), (1,1,2,1,1), (1, 1, 1,0, 0, 1)):

In43ZTnys — 1 Tn41Tn43 — 1

Tn42 Tn43 T2, 4Zn458n46 — 1 Tn Tnp1 T2 5 TnsaTnpa— 1

© Ty Totl Tnt2 Tnts - (4.23)

Moreover, let us recall that (4.9) is deduced from (4.4) by procedure II, that (4.19) is
deduced from (4.4) by a shift procedure and that (4.21) is also deduced from (4.16)
by a shift procedure. These three relations induce a relation between (4.19) and
(4.21), similar to procedure I, denoted II;, corresponding to the transformation
Lpn — Tn.Zn41 (on the left hand side and right hand side of recurrence like (4.2)
but not on factor zﬁ")).

Similarly, recurrence (4.18), which does not yield any recurrence by procedure
11, and which does not satisfy condition (4.9) nor (4.8), can be seen to be related to
(4.20) by the “induced” procedure II,: we have a situation similar to the previous
one, namely recurrence (4.15) is deduced from (4.5) by procedure II, recurrence
(4.18) 1s deduced from recurrence (4.5) by a shift procedure and recurrence (4.20)
is also deduced from (4.15) by a shift procedure ... Note that procedure II yields
other recurrences. For instance, from (4.20) which satisfies condition (4.9), and
from (4.21) and (4.22), which verify (4.8), one gets new recurrences.

Let us now recall recurrence (3.35), that is S§24) =((2),(1,1,1),(1,2,2,2,1),
(1,1,1,1,1)):

ZTn43Tnydlngs — 1 _ Tpp1Tn42Tn4s — 1

R R = T 22 22
Tn42Ty 4380 4aTnysTnas — 1 TnTp1Tn40%045Tnta — 1

T Tng1Tn42Tn+3Tnt4 - (4.24)

This recurrence does satisfy condition (4.8) which is a condition to be equivalent to
another recurrence. This new equivalent recurrence, S§25) =(2),1,1,1,(1,1,1,
1, 1), (1, 1,1, 2,2, 1)) reads

In43Tn4aTn4s — 1 _ Tn4+1Zn42Tn43 — 1

Zn42Tn43Tn4+4Zn45Tn46 — 1 TnTn41Zn4+2Zn43Tn4q — 1

2 2
" TaTn+1Tn+2%043%n44%n4s5 - (4.25)

It is important to note that neither recurrence (3.35), nor (4.25), are equivalent, or
related by a II procedure, or by a shift procedure, to one of the previously mentioned
recurrences ((4.4), (4.5), (4.19), (4.18), (4.16), (4.15), (4.21), (4.20), (4.22) ... ).
Recurrences (3.35) and (4.25) are consequences of recurrences (4.5) and (4.4) and
only of these recurrences.
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1.38348

-1.38348

-3.15515 033730

Fig. 1. Projection of the iteration of transformation K acting on a 5 X 5-matrix.

4.5. Figures

Having simple nonlinear recurrences in one variable (the variable z, for in-
stance), it is tempting to visualize the iteration corresponding to these recurrences,
considered now for themselves, without referring to the matriz framework of our

birational transformation anymore. Let us consider, for instance, recurrence (4.4)
associated to Sgll) . It reads

(1 - 2f'n+2) ~ Tn Tn42 (1 — Tny2 zn+1)
Tn T4l z?.n (zn41—1)

Tn43 = (426)
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Fig. 2. Iteration of recurrence (4.26) in the (zn, Tn41)-plane.

The iteration of recurrence (4.26) yields Fig. 2 in the (z,, zp41)-plane. It is

clear on Fig. 2, that one gets a curve. It will be shown in the next section, that this
curve is actually an algebraic elliptic curve.

Similarly, one can iterate recurrence (4.15) to get, in the (z,, z,41)-plane,
Fig. 3. Iterating recurrence (4.20) one gets Fig. 4. Again it will be shown in the
next section that the curves corresponding to Figs. 3 and 4 are also algebraic elliptic
curves.
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-2.006004

-2.00000 2.00000

Fig. 3. Iteration of recurrence (4.15) in the (zn, Tn41)-plane.

In contrast, the iteration of recurrences (4.25), (4.19), (4.18) (or (3.35) ... )
yields (generically) figures like Fig. 5 which corresponds to iterate the “almost”
integrable® recurrence (4.25).

These figures make very clear that recurrences (4.16), (4.15), (4.21) and (4.20)
are all integrable mappings and that recurrences (4.19), (4.18), (3.35) or (4.25) are
not integrable mappings. Of course these recurrences, which are consequences of
integrable recurrences also yield curves when the initial conditions are in agreement
with recurrences (4.16), (4.15), (4.21) and (4.20) (see Sec. 3.4) or, equivalently,
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Fig. 4. Iteration of recurrence (4.20) in the (zn, n41)-plane.

when the z,,’s are defined, as we did in Sec. 3.7, as determinants of the iteration of

a matrix under the action of transformation K.

4.6, Integrability versus non-integrability in the hierarchy
Recurrence (4.4) has been integrated in Ref. 8 and yields biquadratic relations in
terms of some new variables g, defined by &, = gny1/qn.

(p—gn— ‘1n+1)(Qn ntr+A)=p. (4.27)
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-2.00000,

-2.00000 2.00000

Fig. 5. Iteration, in the (x5, Tn41)-plane, of a nonintegrable recurrence: recurrence (4.25).

This equation is reminiscent of Eq. (1) in Ref. 10 and similar, or more general,
equations have been analyzed in detail by many authors 19718

Recurrence (4.5) has been seen to be equivalent to recurrence (4.4), and thus
correspond to the same biquadratic relation (4.27).

4.6.1. An ezample of integration

Let us now consider some recurrences which are not equivalent to (4.4) or (4.5), but
are, however, consequences of these two recurrences. In particular let us show that
they can also be integrated in a similar way. Let us introduce the variables ¢,, such
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that z, = ¢n4+1/9n. Recurrence (4.16) can also directly be written as

(qn+3 - Qn+1)
On+2  (9nt3 Intd — Gn Gns1)

= same expression withn — n+1 . (4.28)

This form for recurrence (4.28) yields a straightforward integration introducing a
first integration parameter A which enables us to write (4.28) as

Int3 — Qi1 = A (qn+3 Int+a — Gn qn+1) *qn42 (4-29)

and to introduce two new constants of integration p; and p,:

A Gn @nt1qn+2 = dng1 = Pn = Pnyz - (4.30)

From the two relations (4.30) one easily gets

Pn " 4n43 —dn+1In4+3 = Pn+4l "In — In qny2 . (431)

This last relation enables us to introduce a last constant of integration:

Prt1l In + Pn Ont1 + Pnyl Gnt2 —Inldny2 = B . (432)

Eliminating ¢,42 between (4.32) and (4.30) finally gives {wo biquadratic relations,
depending on the parity of n:

AGngnt1 (Prt1 G+ Pn Gnt1 — 1)+ (P — 1) (Pry1—an) =0 . (4.33)

Integration of other recurrences are detailed in Appendix B.

4.6.2. Towards tintegration

Let us show here how the remarkable form of recurrence (4.1) enables us to perform
two integrations for recurrences satisfying either (4.8) or (4.9), thus introducing two
constants of integration.

Before considering this general demonstration, let us briefly analyze the non-
integrable recurrence (4.19). Introducing again the variables ¢,’s such that z, =
@n+1/4n, one can easily see that one can only perform one integration step. Recur-
rence (4.19) can be written as

In42 — dn41
(q"+3 - qn) *dn+19n42

= same expression with n — n 4 2 (4.34)
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which yields an integration “dead end”:

Tn42 — Gn41 = An - (Gn43 = Gn) " Gnt1qns2 With Ap = Anyo . (4.35)

In contrast, if one introduces other homogeneous variables g, taking into account the
shift of 2 in (4.34), that is £, = gn42/gn, One can easily see that more integration
steps can be performed. Recurrence (4.19) is now written as

dn4+3 — dn41
(Qn+3 Int+da —4qn Qn+l) ‘In+1In429n+3

with Ap = Ange

= same expression withn —n+2= 12, ,

(4.36)
which gives

An tqn n+1dn+2 + = pn  with p, = Prn+2 - (437)

In+1
Let us now consider a recurrence of the general form (4.1) written in a symbolic
way as (4.2). Introducing some variables g, ’s, well-suited for such a recurrence with
a shift of s, namely z, = gn4:/qn, recurrence (4.2) becomes, with obvious symbolic
notations:

O] (¥) qs.j)

q?;;, — q&) Gy ey = same expression with n - n+s
Ings — In

= A With Ap = Anys - (4.38)

Let us now assume that condition (4.9) is verified. Rewritten in terms of the
¢n’s, condition (4.9) reads

k
o, d9),d%,, (4.39)
ky —  @G) () .
qn qn qn+8

This condition on the ¢,’s can be rewritten as

(k)
W = On with Apn = Qp4s (440)
Qn+a

but in fact one can actually verify that a, is actually equal to 1. Relation (4.40)
means that the cofactor q(’)/q( ) gt®) occurring in recurrence (4.38) is actually equal
to 1/(q qn+,) which allows us to integrate (4.38) as follows:

1 1
BT T = At aS)y = 2 0¥ (4.41)
an n+s
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This last relation enables us to perform one more integration, introducing a new
set of constants

dn
or equivalently
M q§) ¢ = png) =1 with pn = pays and A = Anys - (4.43)

Let us now assume that condition (4.8) is verified. Rewritten in terms of the
¢n’s, condition (4.8) reads
) Nk
QY(IJ‘!)‘J — qs:-z—s qSI-{?.! R (4.44)
RO ORG

This condition on the ¢,’s also reads

.
_;W— = Qg with Qp = Qpy4s (445)

and, again, one verifies that o, is equal to 1. Relation (4.40) means that the
cofactor, occurring in recurrence (4.38), is actually equal to 1, which enables one to
integrate (4.38) as

0y ~ ¢ = Ange 09, = An g (4.46)
This last relation enables us to perform one more integration, introducing a new
set of constants

An qr(xj) - qs:.) = Pn with Pn = Pn+s (447)
or equivalently
An qr(lj) =pn+ qr(:) with p, = Pn+s and A, = An+s . (4.48)

All these constants of integration may, or may not, be enough to completely
integrate recurrence (4.1): for instance it has been seen that many of the recurrences
in the hierarchy ((4.19) for example) are simply not integrable, even when satisfying
(4.8) or (4.9).

4.6.3. Hierarchy diagram

Let us sum up the connections between these different recurrences and their respec-
tive integrability, or nonintegrability, by the following diagram.
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s s
(5.4) (5.6)
Shift/ \TT m Shiftl
N T R I
E-@:”‘Dl 1 (5.24) (5.19) 617y 0 (522 1 (5.34) 1 (5.36)
Trl T M, Shift Shifs 1T, 1 l'l'l'
sl | S% [ %
..... ' (532) [ (5.28) (5.26) R
T i
Y

where I:' corresponds to an integrable recurrence

-n (449)

and corresponds to a non-integrable recurrence

This diagram is of course a “truncated” diagram: it goes to infinity since one
can always transform any recurrence into a new recurrence using the shift procedure
of Sec. 4.3.

4.7. Three-parameter symmetry group

Let us try here to understand why the homogeneous variables g,’s are well-suited
variables in order to integrate the previous recurrences (when integrable). We will
see that the variables ¢,’s take into account a three-parameter group of symmetry
of the recurrences.

Let us first remark that the variables f, always occur through the product
fn - fa+1- As a consequence, it is tempting to consider the new variables g, =
fa » Jat41. In terms of these new homogeneous polynomials one of the simplest
recurrence on the f,’s already introduced (for instance recurrence (3.24)) reads

In 93+2 — 9n+3 9?.+1 . _9n Gn+3
In—-1 9n41 9721+3 - 972; In+2 In+d4  In+1 Iny2

= same expression withn —n+1.

(4.50)



Determinantal Identities on Integrable Mappings 2181

Remarkably, this new equation has a three-parameter dependent symmelry group,
namely

gn —a™ b *C-gnt1 - (4.51)

It is thus interesting to introduce a new variable, invariant by the two parameters
b and ¢ of group (4.51):

gn n42 Jn fags
Tn = = . 4.52
9241 nt1 fase (452)

In terms of this new variable, recurrence (4.50) reads

n — Tpnyl . 1

= same expression withn - n+1 . (4.53)
Tn—1—Tn42 Tn Tn4l

Let us remark that variable r, actually identifies with g,42 introduced in
Sec. 4.6. The homogeneous variable ¢, transforms, under the three-parameter group
(4.51), according to

¢ =@ gayr - (4.54)

In contrast, the variable z,, = ¢,,41/¢n (see Sec. 4.6) is actually invariant under
the whole three-parameter symmeiry group (4.51).

4.7.1. Comment on the integration of the recurrences on the z,,’s

One should note that one can also integrate our recurrences in terms of the z,’s,
using the integration performed with the well-suited variables g,’s (see Sec. 4.6).
Let us, for instance, consider the integration of one of our recurrences in terms of
two biquadratics (see for instance, denoted B;(qn, gn4+1) and Ba(gni1, qny2) (in
our previous ezamples one remarks that one has By(¢niy1,qn+2) = B1(dn+2) Int1))-
Using the very relation between the z,’s and the g,’s, the system of these two
biquadratic relations reads

Bl(‘]n, In ‘xn)—_-o , B2(Qn‘zm an ~.’B,,-z"+1)=0 . (455)

Eliminating the homogeneous variable ¢,,, one immediately gets a relation between
z, and z,41. Let us consider, for instance, the simplest example of integrable
recurrence, that is recurrence (4.4) (or equivalently (4.5)). For this example the
two g,-biquadratics, B; and Bs, identify (see (4.27)) and the resultant between
them yields a bicubic relation.

The other recurrences can similarly be integrated in terms of the variables z,s,
and one also gets bicubic relations.



2182 S. Boukraa, J-M. Mazllard & G. Rollet

Recalling the occurrence of general (nonsymmetric) biquadratic relations (see for
instance the “pre-Bethe Ansatz” for the sixteen vertex model®), it is interesting to
see what kind of relations can be deduced from the previous procedure. The result
is the following: the elimination of g, between B(gn,¢n - ) and B(gn - Zn - Tn41,
gn - Zn)® for a general biquadratic B with its nine coefficients, yields a biquartic (of
a particular form).

Let us however note that the elimination® of ¢, between B(g,, ¢, - zn) and
B(gn - Tn, Gn - Tn - Tny1), for a general biquadratic B, yields much higher degree
relations.

4.8. Biquadratic relations versus Weierstrass’s canonical form

The elliptic curve (4.27) can be rewritten, after several transformations, in the

canonical Weierstrass’s form®17:
yY'=4z28-grz—gs (4.56)
where
129, =16 A2+ 81 p? =24 p p + p* (4.57)

216 g3 = — 482%p2 — 6473 + 144X p pu ~ 216 u® — 122 p* + 36 p® pu — p® (4.58)
and the discriminant reads
A=gd—27g2=—p? (162 = pP u+ 822 p> + X p* =36 X p p+ 27 %) . (4.59)

The relation between integrable recurrences on the various variables we intro-
duced (fn, 9n; kn, In, Tn, @n, see (3.24), (4.50), (3.28), (4.4), (3.35), (4.53)) and
biquadratic relations, such as (4.27), is reminiscent of the relation between the
integrable birational mappings associated with the sizteen-verter model and their
associated biquadratic relations corresponding to the (pre-) Bethe Ansatz on the
same model.® In fact, all these integrable mappings and recurrences can be seen to
be associated with different representations of the same elliptic curve represented in
the simplest way by a canonical Weierstrass form like (4.56).%17 Conversely, one can
get Eq. (4.53) from the biquadratic equation (4.27). Let us consider the biquadratic
relation (4.27), written in a homogeneous way, and the same equations where n is

bRemark the permutation of the arguments for the second biquadratic: B(gn « Tn - 41, Gn * Tn)
instead of B(qn * Tn, qn *Tn * Tnt1)-

©This elimination procedure gives quite different results from a direct elimination of gn41 between
B(gn, 9n+1) and B(gn42, qn41) which remarkably gives a symmetric biguadratic relation between
gn and gn42, while the elimination of gny1 between B(gn, gn41) and B(gn41, gnt2) gives a
biquartic relation between g, and gny2.
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shifted by one each time, yielding the system of equations

Ao+ A1 (g + an41) + X200 Gng1 + A3 ¢n @np1 (@n + qns1) =0

Ao+ A1 (@nt1 + @n+2) + A2 dnt1 Gntz + A3 Gnt1 Gnt2 (Gnt1 + gnt2) =0 (450)
4.60
Ao+ A1 (grt2 + @n+3) + A2 Gng2 Gne3 + A3 Gnt2 tnta (dnt2 Hgne3) =0

Ao+ 21 (gn43 + gntd) + A2 @n+3 dnta + A3 n43 Gntd (n43 + qnea) = 0.

The elimination of the variables Ag, A1, Az, Az yields a determinantal compatibility
condition which actually identifies with recurrence (4.53):

(¢n + @n+1)  @n na @n gn+1 (@n + gn41)
(Gn41 + @n+2)  nt1 Gnt2 a1 Int2 (Gntr + dnt2) | _
(gn42 + 0n43) Gnt2 Gnt3  Gn+2 Gns3 (Tnsz + qnes) |
(gn43 + dn+4) Gn43 Inta  Gnt3 Gnta (In+3 + dnta)

0 (4.61)

[ S vy

4.9. Finite orbitls

The search for solution of the so-called tetrahedron relations (and their higher di-
mensional generalization)®13 is clearly an important challenge in lattice statistical
mechanics.1%722 It has been argued that, generically, the symmetry groups of these
(over-determined) relations is too large to allow solutions to survive to such strong
constraints.32® Solutions should correspond to cases where such large symmetry
group degenerate into symmetry groups similar to the one of the two-dimensional
models, or, more probably, the best “bet” for finding solutions should amount to
seeking for models (or conditions on the models) for which these groups degenerate
into finite groups.>?3 This situation amounts to say that birational transformations
like K are of finite order.523d

Unfortunately, finding the algebraic varieties corresponding to finite orbits for
birational mappings in CP,z_; yields too large formal calculations. Let us seize
the opportunity we have here to actually associate to these birational mappings
in CPpa_y simpler recurrences on a single variable, in order to get these finite
order conditions. As a consequence of this correspondence, the algebraic varieties
corresponding to finite orbits for birational mappings in CP,2_, are included in the
(algebraic varieties) conditions corresponding to write down the conditions for these
recurrences to be periodic.

dOne can also recall some examples coming from lattice statistical mechanics with a CP, parameter
space, such that the iteration of the corresponding birational mappings has been shown to yield
elliptic curves foliating the whole parameter space CP,;.24:25 The set of points for which these
birational transformations are of finite order have been shown to be particular curves of this linear
pencil of elliptic curves.?4:25 The knowledge of these finite orbit curves gives a precious hint to get
the algebraic invariants enabling to write down this foliation.
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Recurrence (4.4) can be seen to have finite order orbits, which can be written
alternatively as algebraic conditions bearing on the z,’s, or the g,’s, or even on the
three parameters A, u and p (see (4.27) and (4.53)), thus giving as many examples
of “special” Weierstrass’s elliptic curves (4.56).

For instance the orbits of order four (2, = zp4+4, ¢n = gn44) correspond to the
following algebraic conditions:

TnZTny2—1=0, p=XAp OF Gny1dn4s—gnn42=0. (4.62)

These conditions can also be seen to correspond to the following relations mixing A
and the ¢,’s:

n gn42 = /\ . (463)

The orbits of order three are also simple. They read
TnZTn4+l1Tn42 — 1=0. (464)

The orbits of order five in variables ¢,, £, or A, u and p respectively read

(zn zz“ Tpto— 1) (#n Zugs — 1) = Tnp2 (Tn Tug1 Tng2 — 1) (zn41 — 1) (4.65)

or

(¢r420n+3 — @0 Gn+1) (Gn+1 9043 — @n Gn+2) = @n In+3 (9n43 — @n) (Gnt+2 — Gnt1)
(4.66)

or

pi—prp+23=0. (4.67)

Amazingly, recalling the bicubic relation between z,, and z,41, it is worth notic-
ing that the vanishing of three of the coefficients of the bicubic are nothing but finite
order conditions, respectively third order, fourth order and fifth order conditions.

Clearly, and, similarly to what happened in Refs. 24, 25, the finite order condi-
tions become quickly involved. One “handable” way to describe these finite order
conditions seems to write them down in terms of the three parameters A, ¢ and p.

One should also note that these conditions yield remarkably simple conditions
on the products of the z,’s (involving larger number of consecutive z,’s compared
to conditions like (4.65)). This can be understood as follows: all the previous

recurrences can be written in a short way, using symbolic notations similar to the
one of (4.2), as

Enys =2z . E, (4.68)
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where E,, denotes some expression in the variables z,,. A condition of finite order
N on the z,’s, of course implies a condition of the same finite order N on the E,’s

(En4nN = E;;). One thus directly gets a condition bearing on the factors :cs.k):

k k
SR NI SR (4.69)

It is important to note that such conditions on the g¢,,’s are also, to some extent,
finite order conditions for all the recurrences of the hierarchy detailed in Sec. 4.6.3
(see (4.49)). More precisely, for the nonintegrable recurrences ((4.19), (4.18) ... )
one can always look for such finite order conditions among the finite order condi-
tions occurring for recurrences closer to the basic recurrence (4.4) at the top of the
“hierarchical diagram” previously described (see Sec. 4.6.3).

5. Relation with the Sixteen-Vertex Model

In the case of 4 x 4 matrices, a particular permutation of the entries of the matrix,
t;, has been introduced in the framework of the symmetries of the sixteen-vertex
model.® This permutation corresponds to

Myg > M31 , M3z <> My, Mgz <> Miy, Mz > Mag . (5.1)

Remarkably, the symmetry group generated by the matrix inverse T and transfor-
mation t;, or by the infinite generator Ky, = t, -f, has been shown to yield algebraic
elliptic curves given by intersection of quadrics.’ We analyze here this particular
permutation of the entries, since, as it will be seen in the following, it surprisingly
yields closely related results.

5.1. Factorization properties for the partial transposition i,

Let us consider a 4 x 4 matrix Mg and the successive matrices obtained by iteration
of transformation K,, =t; I, where ¢, is the permutation of the coefficients of the
4 x 4 matrix previously described associated with the sixteen-vertex model.5° The
first matrices and determinants read

M1 = Ktl(MO) N M2 = Kh(Ml) y Fl = det(Mo) , F2 = det(Ml) .

From the third action of K, factorizations appear, they read for arbitrary n:

K, (M, det(Mp 41
e (5.2
and Ki,(Mnys) = Muga '

det(Mn42) B Foy1Fnys '
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From these factorizations, one can easily get linear recurrences on the exponents
an, Bn, pn and vy, and the following expressions for their generating functions:

4(1 + 322 4z z2(3—= 2x2
a(z):%—}-z—)a)—, Ble) = s p(z)z(l—(_Ta), M) = s -

The expressions of the exponents a,, O, n and vy, read respectively:
an=4(2n%+1), Br=2n(n+1), po=n’-1, vy=n(n-1).

It is worth noticing that these factorizations are also satisfied for K (correspond-
ing to transposition my3 « my ) instead of K;,, however the associated polynomials
F.’s are no longer the optimal factorizations; namely one recovers from (5.2) the
factorization relations (3.3) and (3.4) for ¢ = 4, changing K;, into K and F, into

fn—l fn-

5.2. Recurrences for the partial transposition 1,
Amazingly, the F,’s corresponding to K;, do satisfy ezactly the same recurrences

as (3.24) where the f,’s are replaced by the F,,’s:

FnF3+3 - n+4F3+1 _ Fn—1F3+2 - "+3Fr?
FaoaFngsFava— FrFnyiFays FaoFnyoFnia— FooaFrFags

(5.3)

which in terms of the [,’s reads

lotalnyslnga =1 layaldyolnsr =1

= 222 5.4
Intslpalngalbpolngr = 1 lngald gld I3, 1, — 1 7 mttind2intaindd (5-4)

or, for instance,

F3Fn+2Fn+4 — Fn—-an+1F3+3 _ F3+1Fn+3Fn+5 - FnFn+2F3+4

= 5.5
Fi1Fnys — FuFly, FRyaFuya— Fap1F3ys (5:5)
which in terms of the I,,’s reads
In+2 In+3 -1 1n+1 Iﬂ+2 -1
= N O O .
In+1 I'2l+2 1'21+3 In+4 —1 In I'2'+1 1'2‘+2 I,,+3 -1 N *n4l ‘'nd2 *n43 (5 6)
and in terms of the z,’s reads
Tn42 — 1 _ Tnt4l1 — 1 2
Tnt1l Tn42 Tn43— 1  Zn Tns1 Tnga — 1 Tn Tntl Tnto - (5.7)
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Among the various recurrences verified by the l,,’s, one also has

ln4slialnyalngz — 1 Intaliyslyyolngr =1

In+613+511+415+313+21n+1 -1 ln+51r4|+412+3lv71+213+1ln -1
'Iﬂ1721+11721+21721+31'1+4 : (5-8)

On the z,’s, one has the following recurrences (coded with the symbolic se-
quences previously described):

SN =), (1), (1,1,1),(1,1,2) ,

83 =), (1), (1,2,1), (1, 1, 1))
SH=(2,(1),(1,1,1),(1,2,3,2) ,

83 =(2,(1),1,2,1),(1,2,2 1) (5.9)
S =), (1,1, (1,1,1,1),(1,1,2,2) ,

s =(), 1, 1),1,221),(@11,1,1)

S§3=((1), (1, 1),(1,3,3,1), (1, 1,1,0)),

Recurrences (5.5) or (5.6) are nothing but recurrence Sglg on the z,’s.

Let us give some examples of such relations. Sgl.l) reads

T Tn43 — 1 xr 1 92 — 1
g+2 ;+ = 2"+ 2"+ Tn T4l Tn42 Tnts (5 10)
Tntl Thgo Tnya Tnpa — 1 Tn Tayg Thyg Taga — 1

(this equation is nothing but (5.3) or (5.4)) and S:glg (see Appendix E) reads

2
Tpnp2 Tpyg Tnga — 1

3 1 3
Tn41 Tnpz Tnga Tnpa Tnas — 1 (5.11)
Tpy xﬁ+2 Tpyz— 1

= ITn T T Z
3 4 3 n 4n4l dn42 Ln43
Zn Tpp1 Tupo Tngs Tnta — |

(this equation is nothing but (5.8)). Again one has a whole hierarchy of recurrences.
The analysis performed in Sec. 4.6.3) for transposition my, 9} — mys, ;1 is still valid.
Amazingly a recurrence in the variables 1, for transposition mys < moy is also
a recurrence in the variables z,, for t;.
For instance, recurrence (5.10) (resp. (5.11)) in the variables z,, for ¢;, identifies
with recurrence (3.31) (resp. (3.32)) on the variables I, for transposition mj; «
mai.
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Clearly, performing the ratios of the left-hand sides and the right-hand sides of
Egs. (5.10) and (5.11), one can get an invariant I, for the action of Kj,:

I = Tn4l Tayy Tnys — 1 Tn ZThi1 Tays Tnts — 1
n= 3 4 .3 1 1
Tn Tny1 Tng2 Tng3 Tntd Tptl Tpy2
= same expression with n - n+1 . (5.12)

Of course many more invariants can be obtained from similar ratios of recurrences
for K,, and also for K (for transposition mjs < m2;). The relation between these
invariants and some quadratic covariants under the action of Ky, or K (see Ref. 9)
has been detailed elsewhere.®

The relation between the various variables k,,, I, z,, and F, read as follows: one
has the same relations as (3.36), (3.37), (3.38) and (3.39) but of course for ¢ = 4,
and one also has the following expression for k, in term of the F},’s:

ko= (F 7 F P FE 3 Fala)® F3, - Fap (5.13)

One recovers Eq. (3.40), for ¢ = 4, again changing F, into f,_; f,. Combining
(5.13) and (3.39), one gets z,, in terms of F,’s:

ke (PR OB FYS FR,Fasi)® FRFaso
TR R R R Py Fasal FYy - FanP

_ B3P _ fllifawe
Fr?-f-l Fn—l f3+1 fn—2

(5.14)

Similarly to what has been done for transposition m;s < my;, one can extend
t) to ¢ X ¢ matrices, defining again ¢; as

M1z > M2y, Maz < Mgy, Moz <> Mg, M43z < May , (5.15)

the other entries m;; being unchanged.

Unfortunately, the factorizations do not yield a polynomial growth of the com-
plexity, and we have not been able to find any simple recurrence. Many other
generalizations of the partial transposition ¢; to ¢ x ¢ matrices can also be seen to
fail yielding recurrences on some f,’s.%

6. Demonstration of the Factorizations and of the Recurrences

We will here establish the previous factorizations and recurrences. We will consider
the ¢ x ¢ matrix R, (2.1).

As the transposition ¢ acts symmetrically on only two entries of matrix R,, it
can be seen as a “deformation” of the matrix in a fixed direction led by matrix P:

t(Ry) = Ry+ Ao - P
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where Ao = [Rq]21 - [th 2 &= M2 — M2, and P reads

LR - R e T = O =
o O O O

The inhomogeneous transformation K, can thus be seen as a “deformation” of the
matricial inverse I:

K(R)=I(R)-A,-P (6.1)
where
A1 = [K(R)21 — [K(Rh 2 = [[(Rg))12 — [(I(R)l21 - (6.2)

Let us introduce matrix U = R, K (R,), which is, by construction, very close from
the identity matrix (U = Zd, — A, R, - P)

14+ A1 mys —Aymqy 0 0
Ajma; 1-4A;my 0 0
U= A1 mas —A1 ma; 1 0

This expression of U gives at once the determinant

det(U) = det(R,) - det(K(R,)) = lo ) = zo
= (14 A;my) (1 - Ay my) + Admyymy,
=14 (myz — m21) Ay + (myg may — myamay) A2
=1-A¢A+ NoA? (6.3)
where Ny = (m1; ma2 — miama) (that is the 2 X 2 minor corresponding to rows

and columns 1 and 2 of the R, matrix). Let us notice that this provides an easy
way to calculate the determinant of K(R,):

det(K(R,)) = zo/ det(R,) . (6.4)
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One is now able to calculate easily the second step of the iteration
K*(Ry) = t(I(K(R,))) = t(I(U).Ry) (6.5)

where T(U) reads

_(1—A1m21)/20 Al mu/a:o 0 0
—Al mzz/l‘o (1+A1 mlg)/xo O 0
) = gl T 10 (6.6)
01
with the notations
T — _ A1 (maz + Ay (ma1 maz — M3z my1))
1= o
T, — _B1(ma + 81 (ma1 myy — mgy myy))
2 = Zo .
Thus the explicit form of K 2(R,) reads
m11/Zo {m21 - &1 No)/zo (mi3 + &1 (m11 m23 — m21 m13))/ %o
. (m12 + A1 No)/zo m22/%o (m23 + A1 (m12 mag — maz mi3))/zo
K*(Rq) = T2/4: -T1 /8, Ty my3 +Trma3 + ma3
(6.7)

Since these results have been calculated for a generic matrix R, they can be applied
successively on each matrix I&"(R }. Thus, all the equations given above i in this
section are actually recurrence relations. Furthermore, the expressions of K (Rg)
and K2(Rq) will permit us to demonstrate, first the recurrence on z,’s and, in a
second step, the factorizations of the matrices K"(R,) and of their determinants.

It is worth noticing that the orbits of K? move inside a five dimensional affine
space (see also Appendlx A) which depends on the initial matrix R, (or equivalently
any of its iterates K2"(R,)).

1

To X2 Tan-2
-(Rq+a,.-P+b RY(Ry) + cn - RY(Ry) + dn - RS(R,) +en - R¥(R, ))
(6.8)

K™ (R,) =
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6.1. Demonstration of the recurrences

Straightforward calculations on the expression of K "+2(R,) as a function of K "(Ry),
allow us to write the following relations:

N,
Nn+2 = - (69)
Tn
-A 2A N,
Appg= —2n ¥ 2841 0n (6.10)
Tn
Using the expression of z,, namely (6.3):
T =1-AnAnp + Na A2, (6.11)
it is easy to eliminate N,, to obtain two equations on =, and A,:
(.’L‘n An+2 + Aﬂ) Aﬂ+1 =2 A'21+1 N" =2 (:En -1 + An An+1)
Nn+2 — Tn42 — 1+ An+2 An-}»a - & _ZTn— 1+ A, Aﬂ+1 ) (612)

2 = 2
An+3 T, A"+l Zn

Introducing the well-suited variables p, = A, Anyy — 2, Egs. (6.12) become

ZnPnyl = Pn (613)

Tpt2+1l+pry2  Ta+14p,
(Prs2 +2)° (Pnt1+2)° 2o

(6.14)

The last equations straightforwardly give

2 2
(z,,+2+1+ Pn )(p—"+2) zn = (zn+ 1+ pn) (——Q"——+2) . (6.15)

In Tnyil T Tn Tnil

One obtains a second equation shifting n by one and replacing pny1 by pn/zn

2
(x,.+3+1+ Pn ) ( Pr +2) ZTnt1
Tn Tn4l1 Tny2 ZTn Tn4i

= (x,,+1+1+21) (—?i——+2)2 . (6.16)

Iy TnZTntl Tnt2

The elimination of p, amounts to calculating the resultant of (6.15) and (6.16)
with respect to variable p,. This resultant, up to the trivial solutions (z,4; = 1
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and zn4+2 = 1), yields the recurrence

(Zn42—1) (Zn Tn41 Tns2—1) = (Zn+1—1) (Zn41 Zn42 Zny3—1) Zn Taypa = 0. (6.17)

One remarks that recurrence (6.17) is nothing but recurrence (4.4), which yields
the whole hierarchy of recurrences detailed in Sec. 4.6.3.

Let us remark that ¢, and p, introduced in Secs. 4.6 and 6.1 (see for instance
Eq. (6.13)) are simply related: ¢, = go po/Pn-

One should however note that the ¢,’s are homogeneous variables, which is not
the case of the p,’s.

One recovers Eq. (4.4). Similarly, one can deduce a recurrence bearing only on
Py using (6.13) in (6.17). One gets

I Pn—Pni3 i P+l — Pntd

= (6.18)
DPn Pn43 Pn+1 = Pn+2 Pn+1 Pn+4 Pn+2 — Pn43

Amazingly, this recurrence between pn, pnt1, Prn+2, Pnts and ppyq is compatible
with a shorter recurrence between only p,, Pny1, Pny2 and ppya:

PnPnt2(Pny1 + 2)2
—Pnp2 ) —PnPn42Pi ) + PPl +Pab1 Pl )+ 4Pni2Pntt + 4Pnt1 +PaPny1 Pl |,

(6.19)

Pn43 =

6.2. Demonstration of the factorizations

Factorization properties are obviously meaningless on matrices K "(Ry), which have
no polynomial entries, but rational ones. Let us thus change the previous variables
to the homogeneous ones:

K(R,) = det(R,) K(R,) ;
K being homogeneous of degree ¢ — 1 one obtains:
K*(R,) = det(R,)*~* K(K(Ry))
= det(R,)*! det(K(R,)) K*(R,)
= det(Ry)! "2 zo KX(R,) . (6.20)

Let us now consider the form of zq K 2(R,) given by Eq. (6.7). One remarks that
its entries are polynomials in the entries of the matrix R, and quadratic in A,.
The definition of A; (relation (6.2)) straightforwardly shows that its denominator
is det(R,). The entries of the matrix zo det(R,)? K %(R,) are thus polynomials, and
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Eq. (6.20) proves the first step of the factorization:
K*(Ry) = det(Ry)*™* M, . (6.21)
The same kind of demonstration can be performed on det(K(R,)):

det(K(R,)) = det(R,)! det(K(R,))
= det(Rq)q_l Zo -

The expression of zo, namely (6.3), is also quadratic in A;. One thus has the
factorization

det(K(R,)) = det(R,)*™3 f5 . (6.22)

Notice that (6.21) is valid for ¢ > 3, and (6.22) for ¢ > 2. Considering successively
the explicit expressions of K™(R,) and of their determinants, we noticed (see (3.3),
(3.4)) that there are further factorizations: they can actually be obtained the same
way. Let us assume these factorizations (they have however been strictly obtained
by formal computer calculations), and show how these factorizations “propagate”
for generic n. Let us assume the following recurrence hypothesis, up to order m,
and demonstrate the next step:

(fo)x = 1" fanr (6.23)
det(Mn) = fi23 £y f72 famn (6.24)
(Mp)k = f{™ Masa (6.25)
K(Ma) = 325 f3-1 J37* Moy (6.26)

forany n<m.

Let us first calculate K((M,)k) in two different ways, using respectively the right
and left action of K:

K((Mpn)k) = fE " K(Mpyr)
= (fm—2)}(—2 (fm—l)?( (.fm)}(_4 (Mm+1)K

- f§Q-2)#m—2+2ﬂm—l(7‘4)ﬂm f:‘__21 frzn f'qn_+41 (Mm+1)K . (627)

One thus obtains the equation

f§q—1)"m-((9—2) bm-2+28m-1(9-4)Bm) I{(Mm+1)

= fEA PR £ (Mimg)k - (6.28)
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As we assumed that, generically, fi has no common factor with other f,’s, K(Mp 41)
actually factorizes f:;'_zl 2 f,qn:fl. Assuming that, generically, there is no further

factorization, it then allows one to define the next matrix M,, 2 by the relation
K(Mpmy41) = f.qn:zl f;i ,qr::l Moyg2 . (6.29)
One thus obtains
(Mm41)x = ffq—l) Vm—((1—2)um-:+2um-x(q—4)u...)Mm+2 ‘ (6.30)

These two equations have the right form to go on with the recurrence, if one defines

Vm+1 as

Um41 = (€= D) Vm — (¢~ 2) -2+ 2ptm—-1 (9 — 4) itm) - (6.31)

To obtain the two last equations, one just has to proceed the same way, calculating
det((Mm )K)

det((Mm)x) = f1"™ det(Mpmy1)
= (fm—2)}(_l (fm—l):;( (fm)}(—a (fm+1)x
= fq—l)um_ﬁa B2 H(q=3) im -le_—ll f,‘?, f:n:'sl Fms)K ; (6.32)
that is, the equation

FEvm (@D B2t a1 +(4=3) #m) det(Mpmy1)

=570 2 £33 (fme)k - (6.33)

Similarly one gets the “minimal” factorization (that we assumed to be the exact
one) of det(My, 41) and defines f,40:

det(Mmya1) = f& 8 f3, F075 fmaa - (6.34)
Besides (fm41)k reads
(fm+1)K - flq Vm_((q—l) Um—-2+3 bmo1+(g—3) i) fm+2 . (635)

We have thus demonstrated the recurrence hypothesis at order m + 1 and ppm41
reads

pmt1 = @Vm — (9= 1) im-2 + 3 pim-1+ (¢ — 3) ptm) . (6.36)

From (6.31) and (6.36) one recovers (3.20) and (3.21).
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Let us show that the factorization properties (6.26) of the successive matrices M,
in fact enable one to obtain the factorization properties (6.24) of their determinants.

Let us recall that K(M,) = det(M,) - t(M,7!), (6.26) can thus be rewritten in
the following way:

det(Mn) - My = f1Z3 f2 1 S t(Mn4a) - (6.37)
Taking the determinant of the previous relation one directly gets
det(Mn)*™} = (F323 f2-1 f37)7 - det(t(Mn41)) - (6.38)

One can get easily convinced that this yields the factorization of det(M,) by
fI73 £3_, £373 and one recovers (6.24).

Let us now show that the right and left factorizations are also related, and are
to some extent equivalent.

At first, let us assume, for any n, up to order m, some left factorization proper-
ties:

K(Mp) = Moy - fY™ - "0 3™ fa2y - £ (6.39)
and
det(Mp) = fi™ - £ - f3" 77 oy - St fagr (6.40)

Assuming the right factorization properties (6.23) and (6.25), we will show that
(6.39) and (6.40) are still valid for n = m+ 1, thus establishing the left factorization
properties of K.

Combining relation (6.39) and relation (6.24), one can write

K((Mm)k)
K(Mm+1) = (q—1) m
1
BrUmtp2marttlm ) .fu,.. Um-1 fu3 Uy Vm41
_ L J1 2 'J3 Cdm=-1"Jm " J1
- m+2 (41"1)"m
1
fm
— Mm+2 _flﬂx Umtprtm_rt - +pm61+¥miy1—(¢—1)Vm
m U —
MR PUUREERD SR S i (6.41)

This result is nothing but (6.39) with w4, reading

Ump1 = M1 Um + 2 Um—1 + F U U+ VUmg1 — (g~ 1) vm (6.42)
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Similarly combining relations (6.40) and (6.23) one gets

det((M,)k
det(Mnyr) = 2NN
1
S SARGSMSASES  LRF SSLRELF HERS - R A URY AP
- q vy .
1 (6.43)

This result is nothing but (6.40) with vy,4+1 reading
Um+l = Um 1+ Um_1 2+ + m V1 + fmt1 — Vm - (6.44)

In order to show the reciprocal statement, that is, that the left factorizations
(6.39) and (6.40) yield the right factorizations (6.23) and (6.25), let us assume (6.39)
and (6.40) for every n, and assume (6.23) and (6.25) for n = 1,2, ... m. We will
demonstrate (6.23) and (6.25) for n = m + 1.

(Frst)x = det((Mm)x)
m+1)K = fom BtV mot bt VL v Umet gvs gva o
1 27+ J3 m-1"Jm Jmy1

1o - det(Mm41)

Um 14+Vm—1 2+ +pm V1 _fv,,. L fYm=1_  gvs _ pvz gy
1 2 3 m—=1"Jm Jmy1
— f;m+1+q Vm=(Vm p1+Vm—1 2+ +im v1) fmyz - (6.45)
This result is nothing but (6.23) with gm4, reading
BPm+1 = Umi1 + qVm — (Vm 1+ Umor 2 + - + i 1) (6.46)
Similarly
K((Mm)k)
(Mm+1)K = Um  fUm—1 ruz  puz  phiUmtpztmoatoothmty
2 3 m—1"Jm" " Jy
=Mpys- ffq-l)um‘*‘umﬁ-l_(ul Hm+tUu2 pmo1++tm 1) ) (6.47)
This result is nothing but (6.25) with v, 41 reading
Vnt1 = (@ — 1) Um + tmy1 — (U1 pin + s pfip—1 + - + U p1) - (6.48)

7. Conclusion

In the framework of the analysis of groups of birational transformations generated
by involutions,*%23-25 an interesting heuristic example has emerged?; it is well
suited to present the various properties related to such birational transformations.
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More precisely, we have concentrated on the relations between various struc-
tures and properties, and in particular, the relation between polynomial growth, the
occurrence of recurrences, and the integrability.

These particular birational transformations have been seen to be integrable and
to yield elliptic curves, when iterated.® We have revisited here this particular ex-
ample in more detail, looking systematically at the successive iterates of such a
birational mapping. The iteration of this transformation, seen as a homogeneous
polynomial transformation, has been shown to satisfy remarkable factortzation prop-
erties. As a consequence, we have noticed a polynomial growth of the degree of
the successive iterated transformations (instead of a (¢ — 1)" generic exponential
growth). This polynomial growth can be seen to be, to some extent, a conse-
quence of the integrability (more precisely of the occurrence of elliptic curves in a
CP,-projective space). More generally, examples of birational transformations, the
iterations of which yield abelian varieties, could be shown to also have a polynomial
growth.® Nevertheless the precise relation between polynomial growth and the oc-
currence of abelian varieties, for the iteration of birational mappings remains an
open question.3

In a forthcoming publication,? it will be seen that factorization properties, in
fact occur for any birational transformation generated by the two following simple
algebraic involutions, namely taking the matrix inverse of ¢ x ¢g-matrices together
with permuting two entries of such a matrix. Even more generally, factorizations
do occur for quite general permutations of the entries of the matrices.3

Factorization properties of transformation K have enabled us to define homoge-
neous polynomials (the f,’s). These polynomials are simply related to determinants
of the successive iterates of the ¢ x g-matrix. Remarkably they also satisfy nonlinear
recurrences in one variable.

We have been able to show that these recurrences are in fact organized in a whole
hierarchy of recurrences, deduced from one basic recurrence. Without referring to
the matrix framework of our birational transformations anymore, one can consider
these recurrences for themselves as many discrete dynamical systems: the previously
mentioned basic recurrence is actually an integrable recurrence, as well as a subset of
recurrences of our hierarchy. All these integrable recurrences can be integrated to get
elliptic curves represented as biquadratic equations in terms of some homogeneous
variables, or particular bicubic relations in terms of inhomogeneous variables.

Surprisingly, though our hierarchy emerged from the analysis of an integrable
mapping, all the recurrences are not integrable, even if they all are reversible.

All these analyses have also been performed for another birational transfor-
mation associated with the sizieen verter model, yielding very similar results. In
particular, we have noticed a remarkable correspondence (identification up to a
simple change of variable!) between the two hierarchies of recurrences.

These transformations generated by two simple involutions, the matrix inverse
and a particular transposition of two entries of a ¢ x ¢ matrix, can therefore be rep-
resented either as birational transformations on ¢ — 1 variables, polynomial trans-
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formations on ¢? homogeneous variables (the entries of the ¢ x ¢ matrix) yielding
integrable mappings for arbitrary ¢ (see Sec. 3.4), or nonlinear integrable recur-
rences on only one variable, for instance, the determinant of the image of these
matrices under these transformations.

This function of the g2 variables (the determinant) realizes a “canonical” em-
bedding of the birational mappings in ¢ — 1 variables into mappings in very few
variables. In fact, all these integrable mappings in ¢ — 1 variables and all these
integrable recurrences yield the same elliptic curve.

The occurrence of Phicker variables?® in the analysis of birational transforma-
tions in CP,g,® and here, the natural occurrence of determinants for analyzing the
same birational transformations should be interpreted in a close future as Grass-
mannian structures?® associated with elliptic curves.

Finally, we would like to underline that all the results, structures and properties
detailed here are actually valid for ¢ x g-matrices for arbitrary q.

In particular, these mappings provide an ezample of integrable mapping in ar-
bitrary dimension.

Acknowledgment

We thank M. Bellon and C. M. Viallet for many discussions and much encourage-
ment. We would like also to thank B. Grammaticos and A. Ramani for very fruitful
conversations.

Appendix A

Let us revisit some of the relations and properties introduced and analyzed in Sec. 3.
The matrices M, defined in Sec. 3 (see relations (3.3) and (3.4)) satisfy many
additional properties and relations. This list would be too long. Let us just give a
couple of interesting properties. It should first be noticed that, for a given initial
matrix Mg, the successive matrices M,, belong to two simple matrix affine spaces.
For n even one has

M,=ad® My+aV-P+a® My+a® My+a® Ms+a® My (7.1)

where P denotes the matrix P previously defined (6.1).
The successive matrices M, for n odd also belong to a five-dimensional affine
subspace:

My =00 M +bD P+ M+ 53 Mg+ - M; 43 .My . (7.2)

It is worth noticing that matrix P belongs to both the “odd” and the “even” affine
subspace.

Another interesting property corresponds to the particular form of the product
of two successive matrices M, and M1 (see Sec. 6), where the introduction of the
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matrix U and relation (6.3) are the key points to actually prove the recurrences of

this paper).

Let us introduce the following ¢ x ¢ matrices:
Upn =M, - My . (7.3)

One can verify that these matrices have the form

[ fa-1- w11 fa-1-u12 0 0 o]
frn-1-u21  fa-1-u22 0 0
un = fn—l ° fn * U:.il vs2 fn—-z ’ fn+1 0 o (74)
0 fn—Z ‘fn+1

where the determinant of the 2 x 2 block up left reads
u11 U2 ~ Y12 U21 = fa-2 fapa . (7.5)

On the form (7.4) for the matrix U, = M, - M, 41, one sees that additional
factorization properties occur.
Appendix B
A first biquadratic relation

Introducing the variables ¢, from z, = ¢n+1/¢n, Eq. (4.15) reads

(Gn+4 — @n) In41Tn42 43 (9045 — Tn+1) Int2 nt3 Inta

In+3 — In+1 In4+4 — In42 (7 6)

Equation (7.6) can be “integrated”: one first remarks that the right hand side and
the left hand side of recurrence (7.6) identify up to a shift of 1 of n, which means
that they have to be equal to one constant we denote A:

1 1

In41 In43

=X (‘In+4 - Qn) ‘qdn42 - (7.7)

This now yields to introduce two new constants p; and p; namely

A gn gni2 + = Pn = P42 - (7.8)

Qn+1
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From the two relations (7.8) one gets
Pn dntl Int3 — dn43 = Prtl “qn Gn42 = dn (7.9)
which yields to introduce a new constant of integration u:
Prt1 qn Gnt2 = qn — Qn+1 — Gn42 = 4 . (7.10)

Eliminating ¢, +2 between (7.10) and (7.8) finally yields a biquadratic relation:

(Pn Gn+1 — 1) (Prs1 qn — 1) A tnnrr(B+ o+ ns1) =0. (7.11)

A second biquadratic relation

Introducing the variables g, from z, = ¢,4+1/9n, Eq. (4.21) reads

n+5 — dn+3 - dn+3 — In+41
(¢n+5qn+6 — dn42 4n+3) * Gn+4 (4043 In+4— @n @n41) " dns2

(7.12)

In fact, Eq. (7.12) can be “integrated”: one first remarks that the right hand side
and the left hand side of recurrence (7.12) identify, up to a shift of 2 of n, which
means that they have to be equal to two constants, A; and A3, depending on whether
n is odd or even:

(Qn+3 dnt4 — qn Qn+1) *qnt2 = —An (qn+3 - qﬂ+1) . (713)

with A, = An42, This means that ¢, ¢gn+1 gn+2+ An gn41 is invariant when one shifts
n of 2, yielding to introduce two new constants p; and p;:

n qn4l qny2 + An In+1 = Pn (714)

with p, = pn+2. Considering the ratio of g, ¢n+1 gn+2 and gn41 gn+2 gn+3 one easily
gets

(Pn - An (In+1) “qnt3 = (Pn+1 — Ang1 ‘1n+2) *qn (7-15)
and also:

(Pn+1 — Ant19n42) “Gntda = (Pn — An €n43) ~Gng1 - (7.16)
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From these two relations (7.15) and (7.16), it is clear that one can introduce a new
constant u:

(Pn — An@n41) “Gn+3+ Pn " Gni1 + Prgl “dnt2 = 4 (7.17)

(Pr41 = Ant14n) “Gns2+ Prg1 o + Pn dny1 = 44 . (7.18)

From relation (7.14) and (7.18) one easily eliminates ¢, 42 to get

(Pn - An Qn+1) ’ (Pn+1 —Ang1qn) = (p— (Pﬂ+l “Gn + Pn " Gn41)) qn dn41 - (7-19)
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