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Abstract. A simple criterion is given which provides disorder solutions for spin models of 
the Ising or Potts type. New disorder solutions are thus obtained, in particular for the 
Potts model on a Kagome lattice and for the general anisotropic Ising model on a 
three-dimensional cubic lattice. The validity of the disorder solution, when extended 
outside the physical domain, is also discussed. 

1. Introduction 

A great variety of anisotropic models of the Ising or Potts type (with different coupling 
constants in the different directions) are known to possess remarkable submanifolds 
in the space of parameters, where the partition function is computable and takes a 
very simple form (Enting 1977). These so-called disorder solutions provide a precious 
insight into the behaviour of the partition function in its anisotropic parameters. 
Different techniques have been used to obtain these solutions for the various models: 
methods related to crystal growth (Enting 1978, Welberry and Miller 1978), to Markov 
processes (Verhagen 1976, Rujan 1982,1984), or else to transfer matrices (Baxter 1985). 
In most cases, the problem of computing the partition function was compared with 
an equivalent one in another field, where appropriate techniques for reaching the 
solution were available. However, such a change in the point of view was in fact 
unnecessary, as will be shown in the following. 

Indeed, all these methods rely on the same simple mechanism: a certain local 
decoupling of the spin degrees of freedom which results in an effective reduction of 
dimensionality for the spin system. Such a property is provided by a local condition, 
bearing on the Boltzmann weight of the elementary cell generating the lattice. It is 
this criterion that we shall define and study in § 2 of this paper. Hence, new disorder 
solutions will be produced (e.g. for the Potts model on a KagomC lattice), together 
with three-dimensional generalisations (Ising models on a cubic lattice). 

I t  will appear that particular boundary conditions must be imposed in order to 
easily obtain the disorder solutions for the partition functions. A priori, when coming 
back to standard periodic boundary conditions, this should limit these solutions to the 
physical domain only. In 0 3, we shall study, using the simple example of a strip 
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model, the meaning of the disorder solution, when extended to a larger domain. It 
will be seen that it is still related, through analytic continuation, to the usual partition 
function with periodic boundary conditions. 

2. Local criterion for disorder solutions 

In  this section, we shall exhibit a local criterion to impose on the Boltzmann weight 
of the elementary cell, and  show how to obtain a resulting disorder solution for the 
partition function. The procedure will be carried out for several models successively, 
including already known ones, like the anisotropic triangular Ising model with a field, 
or the checkerboard Potts model, but also new ones, such as the Potts model on a 
Kagomk lattice, and the general anisotropic cubic Ising model. 

2.1. Triangular Ising model with a magnetic field 

In  the following, the different lattices will be considered as staggered lattices with 
various elementary generating cells. Figure 1 summarises the notations in the case of 
the triangular lattice, for which the Boltzmann weight of the elementary cell will be 

W n ( U , ,  U,, U k ) = e x p ( - K l u ~ u , - K ~ U , U ~ - K 3 U k U , - H ~ U , - H , U , - H ~ ~ ~ ) ,  

H = HI + H 2 +  H3 ( U I J . k  E ZJ. 

Figure 1. k i n g  model with a magnetic field on a triangular lattice 

In every case, the criterion will be defined by the following condition: after summation 
over some of its spins (to be defined in each case), the Boltzmann weight associated 
with the elementary cell must not depend on the remaining spins any longer. For 
instance, for the triangular lattice, we shall require that 

c wn(‘,, 
U1 

g k k ) = A ( K I ,  K2, K3r H )  

is independent of U, and uk. 

interactions only, this leads to the following subvariety, in the space of parameters: 
For an  anisotropic Ising model with a magnetic field, with nearest neighbour 

t ,  t 2 t3 (  1 + t,)’(l + t 2 ) 2 (  1 - t 3 ) 2 ( 1  - z )2+4(  1 + t ,  tz t , ) (  t l +  t 2 r 3 ) (  t 2 +  t , t 3 ) (  f 3 +  t ,  t,)z = 0, 
2H (1 )  

t ,  = tanh K ,  ( i  = 1,2,3), z = e  , 

in which one recognises a generalisation of Verhagen’s condition (1976). 
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Let us now impose particular boundary conditions for the lattice: on the upper 
layer, all K ,  interactions are missing, so that the spins of the upper layer only interact 
with those below. I t  immediately follows that if one sums over all the spins of the 
upper layer and if one requires the disorder condition (l) ,  the same boundary conditions 
reappear for the next layer. On the other hand, the partition function per site 2 can 
be defined by 

N 

Z d N = C  n w, (u )  ( 2 )  
{U} n = I  

where U stands for all the different spins, n denotes the different cells, of total number 
N, and d the number of sites per cell. (This definition will be valid for all the different 
cases studied in this section; d = 1 for the triangular lattice.) Iterating the procedure 
allows one to perform the summation over U in the partition function per site (2) and 
leads one to an exact expression for the latter ZD, when restricted to subvariety ( 1 ) :  

Z D = A ,  A =  2( 1 - ( -?)'I2. 
( 1  - t;)i'2(l - t 2 )  

(3) 

This also gives Verhagen's solution (1976) as a particular case. 

2.2. Checkerboard Potts model 

The checkerboard lattice can be seen as generated by an elementary square cell (see 
figure 2). The associated elementary Boltzmann weight will be defined by 

w, ( U,, U,, u k ,  a,) = a sm~m,  b'm,-i c 'v id  s m ~ i  ( ( + t j , k , l  E zq)* 

The corresponding criterion 

C W " ( a , , ~ , , a k , u / ) = h ( a , b , c , d )  
up'i 

provides q 2 -  1 conditions, which in fact degenerate into the unique equation 

U - 1  b-1 C - 1  - l / d  - 1 
l l d + q - l  a + q - l  b + q - l  c + q - l '  (4) 

An iterative procedure similar to the one previously developed, together with analogous 
boundary conditions (an open lattice with no interactions d on the upper layer), reveals 
the exact analytical expression of the partition function per site 2, ((2) with d = 2 ) ,  
on the variety (4): 

( a +  q -  l ) ( b + q  - l ) ( c + q  - 1) A =  
l / d + q - l  

zD = A '1' 

Figure 2. Potts model on a checkerboard lattice. 
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This is precisely the result which had been suggested by diagrammatic expansions 
(Jaekel and Maillard 1984), and proven by means of a transfer matrix method (Baxter 
1985). 

Let us remark that the criterion used by Baxter is very similar to the one introduced 
here. Indeed, let us consider the checkerboard lattice as an IRF (interaction round a 
face) model, generated by the elementary square cell of figure 3, with the following 
associated Boltzmann weight: 

$(U, ,  uJ, uk, a,) = a S ~ r b S ~ - , c s \ ~ ~ , d d ~ ~ i e b " , u , e - ' - ~ a ~  
5 

where e is an irrelevant coupling constant. Then Baxter's criterion is just that 

$(U, ,  U,, (+k, ai) = Ais, b, C, d )  
U! 

is independent of a,, (Tk, U,. The same kind of iterating procedure as the previous one 
leads to the results (4) and ( 5 ) .  Moreover, when one restricts this criterion to the Ising 
case ( q  = 2), one also recovers Enting's condition (1977) for a disorder solution of the 
checkerboard Ising model, which was obtained by means of a 'conditional probability' 
associated with an elementary cell: 

~ ( ' ~ l u ~ ~  (+k, u I ) = A ( l + a # ( ~ t ,  uk* 

& o +  01 
c ( i i  1 / e  0 6  

0, 0 

Figure 3. Potts model seen as an IRF model. 

Let us finally remark that, although identical for the checkerboard Potts model, the 
two criteria developed here have in general different realms of application and are not 
equivalent. 

2.3. Potts model on a Kagome' lattice 

The KagomC lattice can be generated by the elementary cell represented by figure 4, 
with its associated Boltzmann weight 

w, (a,, a;, (Tk, U,, U,,, ) = a 'vm b '-moi c 'v, a smmok b 'om*,  c'g-k (u t j ,k , l ,m E zq)* 

The corresponding version of the criterion can be written as 

w n ( u ~ ,  uk, VI, a m )  = k ( a ,  b, c) 
'Jjck'm 

and is independent of U, and U,. It leads to the following unique condition: 

I / c -  1 a - 1  b - 1  
- 

I / c + q - l  a + q - 1  b + q - 1  
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Figure 4. Potts model on a Kagomi lattice 

with the partition function per site then taking the following rational expression (take 
d = 3  in ( 2 ) ) :  

( a +  q - 1 ) 2 ( b +  q - 1)’ z - A I / 3  A = q  
( l / c + q - 1 ) 2  D -  9 ( 7 )  

One will remark that, by construction, the disorder variety appears to be the same as 
that for the triangular lattice, and  moreover that the respective expressions for the 
partition functions per site are similar (compare (7) with ( 5 ) ) .  This new exact particular 
solution for the Potts model on a KagomC lattice is found to be in agreement with its 
special case of the Ising model ( q  = 2). Indeed, the partition function of the latter is 
exactly known for any values of the parameters, and  can be expressed in the form of 
elliptic integrals (Green and  Hurst 1964). One easily checks that for the relation (6) 
between the parameters, the modulus of the elliptic integrals vanishes, providing the 
required rational expression (7).  

2.4. General cubic Ising model 

The previously introduced criterion provides a quick and easy derivation of disorder 
solutions. Moreover this holds for a large class of two-dimensional models. Another 
advantage lies in the immediate generalisation to three dimensions. 

Let us consider the most general anisotropic cubic Ising model, with nearest 
neighbour interactions only, that can be built in a staggered way starting from the 
elementary cubic cell shown by figure 5. It will depend on 12 parameters, i.e. on 

Figure 5. General cubic Ising model. 
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the different coupling constants associated with the 12 links of the elementary cube 
generating the lattice. Let us denote its Boltzmann weight by 

Wn((+lt u2, u 3 7  u 6 9  (+71 

= exp(K,u ,u ,+  K2u2u3+ K3a3u4+ K4u4ul) 

x eXp( K5U5CT6 + K6'+6u, + K7U7Ug + KgUgUs + &U, Ug 

+ K I O V ~ U ~ + K I I ~ ~ ~ ~ +  K12'4u8) (U, , ,= , , *  E Z2). 

A three-dimensional generalisation of the disorder criterion is provided by 

w n ( ' I ,  u2, u39 O 5 9  u6, u7, u 8 ) = h ( K ~ , ~ = I , 1 2 )  (8) 
VI ,~2.-3.u4 

which is independent of us, u6, U,, U*, from which one must extract the set of equations 
between the coupling constants, representing the conditions for a disorder solution. 
Instead, and for reasons that will become clearer in the following, we shall introduce 
the following sequence of operations, as illustrated by figure 6. First, after summation 
over spins u2 and U, we replace interactions K , ,  K 2 ,  K l o  (resp. K 3 ,  K,, K 1 2 )  by 
equivalent ones L, ,  L2, L,,,(resp. L3, L,, LIZ) ,  using a well known star-triangle 
transformation (Domb and Green 1972): 

i,J, k = 1,2, 10 (resp. 3,4,  12). 

Figure 6. Star-triangle transformations in the cubic Ising model. 

Then imposing the constraint 

L,,+ Ll2 = 0 (9) 
we can, after summing over the remaining two spins, make use of another star-triangle 
transformation: L , ,  L4 and L l l  (resp. L2, L3 and L,) become MI, M4 and MI,  (resp. 
M,, M3 and M,): 
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Finally, the disorder criterion for the cube is satisfied as soon as the following additional 
equations hold: 

MI+ K,=0,  MI+ K8=0,  M 3 + K 5 = 0 ,  

M4+ K6=0,  M9+ M I I  = O .  (10) 

Collecting the equations in (9) and (10) provides a subvariety of codimension six in 
the 12-dimensional space of parameters, for which the disorder condition (8) is satisfied. 
In  an iterative way completely similar to the two-dimensional one, the disorder criterion 
(8) can be used on the lattice, once adapted boundary conditions are chosen: an open 
lattice with the interactions K 5 ,  K,, K ,  and K 8  missing in the upper layer. Consequently, 
the partition function per site, when restricted to subvariety (9), (10) (take d = 4 in 
(2)),  becomes 

2, = A I i 4 ,  

A = ~ ( K I ,  Kz, KIO)x(K3, K4, K I , ) ~ ( L I ,  L4, KI , )A(L ,  L39 K9), 

X( K,, K,, K k )  = 2 [ ~ 0 s h (  K ,  + KJ + Kk)  cosh( K ,  + K, - K k )  

x cosh( K ,  - KJ + K k )  cosh( K, - KJ - K k ) ] 1 ’ 4 .  

One will note that we could have performed the same sequence of transformations, 
but starting with spins uI and c3, and ending with spins u2 and a,. A simihr result 
would have followed. 

Conditions (9), (10) obviously are a sufficient set of relations for satisfying (8). In 
general, the latter will provide a subvariety of codimension seven (Z3 - 1 homogeneous 
conditions) in the 12-dimensional space of parameters, where the partition function 
is known. But degeneracies can occur between these conditions, and lead to subvarieties 
of lower codimension. Such is precisely the case of the previous example (9),  ( lo),  
thanks to the use of the star-triangle transformations. Another efficient way to decrease 
the codimensionality is to impose symmetries on the interactions, which remain compat- 
ible with the disorder conditions (8) or (9), (10). For instance, if one identifies the 
coupling constants K , ,  K2, K3, K4 respectively with K ,  K ,  K,  - K ,  and K 5 ,  K,, K,, 
K8 respectively with K ’ ,  K‘,  K ’ ,  -K’ ,  and K9,  KIo, K , , ,  K12 with L, then (9) is 
automatically satisfied and  the criterion (10) provides a subvariety of codimension 
one, in the three-dimensional space of parameters ( K ,  K ’ ,  L )  defined by the equation 

T I+  7 2 ~  = 0, T = t a n h 2 K ,  T’ = tanh 2 K ’, T = tanh L, 

where the partition function is found to take the simple expression 

(Jaekel and  Maillard 1985). 

3. Analytical extension 

The partition functions per site which have been computed in 9 2 correspond to lattices 
with unusual boundary conditions. In the physical domain, where the coupling con- 
stants are real, these d o  not affect the partition function per site in the thermodynamic 
limit (this can be seen by using the Perron-Frobenius theorem for instance), and  the 
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expressions computed in 8 2 also correspond to partition functions per site with standard 
periodic boundary conditions. Such an identification is also confirmed by expansions 
(Enting 1977). However, there are cases for which the disorder variety lies partially 
or even entirely outside the physical domain, where the boundary conditions are known 
to play an important role (Baxter 1982b). One can then legitimately wonder whether 
the expressions computed here have any relationship with the partition functions with 
standard boundary conditions. In order to shed some light on this problem, it seems 
better to exhibit an example where both expressions are exactly known. That is why 
we shall now study a simple illustrative model: the triangular Ising model with a 
magnetic field, on a strip. 

The underlying lattice will be on a torus, with doubly periodic (transverse and 
longitudinal) boundary conditions, as represented by figure 7. The partition function 
per site Z will be defined by 

Figure 7. lsing model with a magnetic field on a triangular strip. 

The latter is easily computed by means of the transfer matrix method and is given by 
the largest root of the following characteristic polynomial: 

,43 - [1-2(  1 + u ) v ] A * + [ ~ u * u +  ( 1  + 2 u  - u2)v2]A -2u’( 1 + u ) u 3  = 0 ( 1 1 )  
where 

The criterion for disorder, in its version of § 2.1 (( l ) ,  in the isotropic limit K ,  = K 2  = 
K3 = K ) ,  also allows one to compute the partition function per site of the transversally 
open lattice, on a disorder variety: 

when 

e 4 K + e * H + e - 2 H + 1 = ~  ( v + u = O ) .  
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As is easily seen on the corresponding limit of the characteristic polynomial ( 1  1): 

[ A -  u’][iA’-(l+ u)’A-2u3( 1 + u ) ] = O  

the disorder solution AD is also a root of the latter. Yet, one easily verifies that it does 
not identify with the largest root: 

A = ~ ( 1  +U)’ { I +  [ 1 +  ( - lyu)’]”’i 
2 

and thus that it does not give the partition function per site of the lattice with standard 
periodic boundary conditions. However, the fact that both expressions are roots of 
the same polynomial reveals the existence of an analytic continuation between them. 

This simple example already indicates how careful one must be when using the 
disorder solution, in order to get additional information on the behaviour of the 
partition function per site, outside the physical domain. For instance, Bessis et a1 
(1976) have shown, with the help of Lee-Yang’s theorem (1952), that the partition 
function per site has an expansion of the form 

where P, is a polynomial in U. In the previous example 

P1(u)=  1 + u + u 2 .  

In these variables, which are convenient for applying Lee-Yang’s theorem, the 
disorder condition reads U + U = 0 and one gets the impression that the expansion does 
not agree with the disorder solution (12) for the partition function. However, the 
validity domains of these expressions being different, one must replace the disorder 
solution by its analytic continuation (13), which does agree with the expansion (14). 

4. Conclusion 

The criterion developed here, under various forms, shows that disorder solutions for 
the partition functions of spin models can be simply and directly obtained, without 
necessarily borrowing techniques from other fields. The method is also easily adapted 
to the case of vertex models, where it gives a particular version for finding disorder 
points (Baxter 1982a). Moreover, the correspondence between vertex models and 
one-dimensional quantum spin chains of the X Y Z  field type (Peschel and Rys 1982, 
Peschel and Emery 1981) allows one, when translating the criterion, to find the energy 
of the ground state. These exact solutions are different from the ones obtained in the 
cases of complete integrability, and hence provide complementary information on the 
behaviour of the quantum spin chain with respect to its coupling constants. 

The iteration procedure which leads to the disorder solution is very similar to the 
one used for deriving the inversion relation (Jaekel and Maillard 1984), and both 
happen to hold simultaneously for many models. In that case, the inversion and the 
spatial symmetries of the model generate an infinite group, which plays the role of an 
automorphy group for the partition function, and which can be used to provide, from 
the disorder variety, an infinity of transformed varieties where the partition function 
is known. 
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Finally, the rational expression that appears on the disorder variety also implies 
constraints on the analytical behaviour of the partition function, especially at the 
intersection with the critical varieties. The disorder solutions can thus be very useful 
for clarifying the phase diagrams of anisotropic models, which tend to be rather 
complex ( A N N N I  models (Peschel and Emery 1981), Ising model with a field (Lin and 
Wu 1979)). 
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