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Abstract—The symmetry groups, generated by the inversion relations of lattice models of statis-
tical mechanics, are analysed for vertex models and for the standard scalar Potts model with two and
three site interactions on triangular lattices. These groups are generated by three inversion relations
and are noticeably generically very large ones: hyperbolic groups. Various situations for which the
representations of these groups degenerate into smaller ones, hopefully compatible with integrability,
are considered. For instance, the group becomes smaller for ¢-state Potts models for particular values
of g, the so-called Tutte-Beraha numbers. For this model, algebraic varieties, including the known
ferromagnetic critical variety, happen to be invariant under such large groups of symmetries. This
analysis provides nice birational representations of hyperbolic Coxeter groups. Remarkable varieties
breaking the symmetry of the lattice are seen to occur specifically for the Tutte-Beraha numbers. A
detailed analysis of these Potts models is performed for ¢ = 3. In particular, the algebraic varieties
corresponding to conditions for the symmetry group to be finite order are carefully examined. Finally,
specifically for the Tutte-Beraha numbers, the introduction of algebraic group invariants is discussed
in detail for ¢ = 3 in order to get closed expressions for the spontaneous magnetization of the edge
Potts models.

Keywords——Tutte—Beraha numbers, Standard scalar Potts model, Yang-Baxter equations, Bax-
terisation, Birational representations of hyperbolic Coxeter groups.

1. INTRODUCTION

In previous papers [1,2] it has been shown that there exist nontrivial, nonlinear discrete symme-
tries acting on the parameter space of lattice models of statistical mechanics generated by the
so-called inversion relations [3-6]. These nonlinear groups of symmetries appeared as powerful
tools to study integrable models in lattice statistical mechanics, as well as to find the critical
varieties of their phase diagrams [7]. These symmetry groups can also be seen as symmetries of
the Yang-Baxter equations (or star-triangle equations, when dealing with spin edge models) and
their higher dimensional generalizations. This provides a solution for the so-called “Bazterisa-
tion” problem [8].

It is important to note that these groups exist as (discrete) symmetry groups of lattice models
even when one is no longer restricted to an integrable framework [9-11].
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From this point of view, the straight but tedious, analysis of a three-dimensional model through
transfer matrix formalism, or any other classical method of lattice statistical mechanics, is re-
placed by an analysis of the transformations corresponding to the symmetries. These symmetries
act in the parameter space, and therefore, at first sight, are less sensitive to the dimension of the
lattice.

However, in the cases, integrable or not, known in the literature, a drastic difference seems
to appear between two-dimensional and three-dimensional models, suggesting an explanation of
the “obstruction” for three-dimensional integrability associated with generic three-dimensional
symmetry groups, and also suggesting an algebraic definition of the notion of dimension of the
model. In this framework the dimension of the lattice re-emerges through the “size” of the
(infinite discrete) symmetry group. As far as two-dimensional models on square lattices are
concerned, the discrete symmetry groups known in the literature were either finite groups [12,13]
or groups isomorphic to products of Z, up to a semidirect product by a finite group {9,13,14]. On
the other hand, for lattice models of dimension three, these symmetry groups are much larger:
they are generically free groups with (at least) three generators. With such symmetry groups,
the very ezistence of solutions of the tetrahedron equations® having a “generic three-dimensional
symmetry” seems problematic [14]: the only possibility for solutions of the tetrahedron equations
are probably cases where the representations of such “large” groups degenerate into products of Z
or even into finite groups [18,19]. Actually, a recent solution of Korepanov [20] of the tetrahedron
equations confirms this point of view: these solutions actually correspond to a case for which the
discrete symmetry group degenerates into a finite order group of order 32.

It will be shown here, that the analysis of the symmetry group of models on triangular lattices
“weakens” this opposition between dimension two and dimension three. We will analyse vertex
model on the triangular lattice, as well as the standard scalar g-state Potts model with two- and
three-spin interaction also on the triangular lattice [21,22]. Generically, their symmetry groups
are free groups with two generators. One recovers a situation similar to the one encountered in
dimension three: these models on triangular lattices thus provide ezamples giving hints for the
analysis of such large symmetry groups in dimension three.

However, these hyperbolic Coxeter groups of symmetries can actually degenerate into more
“reasonable” groups, leaving room for integrability in the case of Tutte-Beraha numbers?.

We will consider the consequences of these symmetries, with a special emphasis on criticality
conditions. We will pay particular attention to a (self-dual) critical variety given by Wu [21,24],
on the two- and three-site interaction Potts model on the triangular lattice, which we will revisit
here.

Particular attention is devoted to the three-state Potts model. In this respect it will be shown
that symmetry group invariants occurring specifically for the Tutte-Beraha numbers, seem to be
useful to “decipher the complexity” of the (resummed low-temperature) expansions of various
physical quantities and in particular, the spontaneous magnetization.

We hope such analysis will open a new class of lattice models for which a quite large set of

exact calculations can be performed without having any “Yang-Baxter integrability”3.

2. RECALLS ON SYMMETRIES OF LATTICE MODELS

Let us recall the symmetry group generated by the inversion relations [3,5,6] for lattices of
coordination number six, first, on the cubic three-dimensional vertex model [18,19] and then on
the triangular lattice.

!Generalizations of the Yang-Baxter equations in dimension three [9,15-17).

2The Tutte-Beraha numbers are particular numbers occurring in the analysis of chromatic polynomials [23].
3Such models do exist: for instance, disorder solutions [25,26] provide some examples of “computable” models
that are not Yang-Baxter-integrable. However, such disorder solutions correspond to dimensional reductions of the
model. We are seeking here for two-dimensional (or higher-dimensional) models with a genuine two-dimensional
complexity.
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2.1. Inversion Relations and the Group I'sp

Let us consider vertex model on a three-dimensional cubic lattice of size M x M. With each
bond, is associated a variable with ¢ possible states. A Boltzmann weight w(¢, j, k,[,m,n) is
assigned to each vertex configuration [27], and can be represented pictorially by:

The ¢® homogeneous weights w(i, 7, k,l,m,n) are first arranged in a ¢° x ¢® matrix R of entries:

Imn

RY% — w(i,j,k,1,m,n). (2.1)
One may [19] introduce an involution I which transforms R into IR according to:

irigiz | piazas __ ), st 612 gi3 .
Z (IR)Ouazaa lejzjs =A 63'16j26j3’ ‘\2'2)
oy,02,a3

where A is an arbitrary multiplicative factor. This relation can be represented pictorially:

A

The inversion transformation I amounts to taking the inverse of the ¢ x ¢® matrix R. One
also introduces the partial transpositions ¢, t, and t3 with:
(BR); 55 = Biljare: (2.3)
and similar definitions for t5 and t¢s.

For three-dimensional vertex models, one has four such involutions acting as symmetries of
the R-matrix [19]:

I,=1, I3 = t1Itsts, Iy = taltsty, Iy = t3ltqt,. (2.4)

These four involutions generate an infinite discrete group I'sp [19]. Let us note that the full
transposition is nothing but the product ¢t = ¢; - ¢3 - t3.

Considering the parameter space as a projective space (the entries of the R-matrix are homo-
geneous parameters), the elements of the group I'sp have a nonlinear representation in terms of
birational transformations. This group of symmetry of the parameter space of the model is very
large. This is, in fact, a hyperbolic Coxeter group [28-33].

REMARK. Coming back to integrability, it has been shown that the tetrahedron equations (gen-
eralization in three dimensions of the Yang-Baxter equations [10,15,16,34]) do have an infinite
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group of symmetry generated by four involutions K, Kz, K3, K4 [19]. They satisfy various re-
lations, for instance (K;K2K3K4)? = Id, where Zd denotes the identity transformation. This
group of symmetry of the tetrahedron equation is quite “large”, since the number of elements of
length smaller than [ is of exponential growth with respect to [, unlike the symmetry group of
the Yang-Baxter equations which identifies with the affine Coxeter group Agl) [18,19,29].

In contrast the infinite discrete symmetry group of the square lattice is generated by two
involutions (inversion relations) and therefore, is isomorphic to the infinite dihedral group. Let
us introduce I and J, the two inverse transformations on the square lattice vertex model [19]. A
Boltzmann weight w(3, j, k, ) is assigned to each square vertex configuration [27]:

(2.5)

The ¢* homogeneous weights w(i, j, k, 1) are first arranged in a ¢> x ¢® matrix R:
RY = w(i,j,k,1).
We introduce (see [1,18,19]) the inverse I by:
Y R (AR =X 8,85 =3 (IR}, - REY,
a,B a,f
and the other inverse J by:

S R -(IR)Z =u-6L8) = (IR - R,
a,B a8

Similarly to the situation occurring for the cubic lattice, I and J are two involutions related
by a partial transposition (denoted ¢; in [35]) of the indices: J = t;It;. Namely, ¢; reads:
(th;ch = RZJ

2.2. Inversion Relations of Triangular Vertex Models

For the triangular lattice the vertex Boltzmann weight [21] also reads w(i, j, k, [, m, n), and can
be represented by:

Similarly to the cubic model [18,19], the weights may be arranged in an ¢® % ¢® matrix. However,
for the triangular model there are only three inversion transformations, Iy, Iz, I3, which actually
coincide with three among the four of the cubic lattice (2.4). The fourth transformation I,
corresponds to a nonplanar picture, which is meaningless for the triangular lattice. Let us denote
T'triang a8 the symmetry group generated by Iy, I2, I3. As will be shown in the following, using the
equivalence between vertex and spin representation for this model [21], this group also generically
has an ezxponential growth.

Let us recall the results obtained by Baxter, Temperley and Ashley on the triangular vertex
and spin models [21]. They noticed that the integrable case discovered by Kelland for a triangular
vertex model (a 20-vertex model [36]), actually corresponds to the following situation: the vertex
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Boltzmann weight can alternatively be seen as either a left-hand side or a right-hand side of a
Yang-Baxter equation (more generally, this refers to the Z-invariance concept [37]).

In the framework of this very model, they brought out the correspondence such a vertex model
and the standard scalar q-state Potts model for anisotropic triangular lattices with two- and three-
site interaction (only on up-pointing triangles) through the Lieb- Temperley algebra [21,38]. In
terms of the two and three-site interaction spin model, these integrability conditions correspond
to have no three spin interaction and also to be at the transition temperature [21].

There clearly exists here a drastic symmetry difference between the square and the cubic
lattice, as far as the analysis of the group symmetries generated by the inversion relations is
concerned. This difference stems from the fact that the number of involutions generating this
very group is larger than two for the cubic lattice, which yields hyperbolic groups rather than the
infinite dihedral group. The analysis of the symmetries on triangular models can be seen as a
testing ground to study such hyperbolic groups, since the number of involutions generating this
very group is larger than two. In the following sections, we will concentrate on spin models on
triangular lattices and, more specifically, standard scalar Potts models {10].

3. TRIANGULAR SPIN MODEL

3.1. Notations for the Spin Model

Let us now consider the standard scalar g-state Potts model on a triangular lattice with nearest
neighbor interaction and three-spin interaction only on the up-pointing triangles:

, LON O\ O\ SO\ O\
\/O ®W

OO~ O~ O~_O\
ON OO\ O

SO OO OO

The partition function of the models reads:

Z Z H eKlav, oj H eK26a WOk H eKs‘sak o) H eK‘sa, a_.,lso ak (3.1)

{o:} (i,3) (3,k} (kl) {u.p.t)

The first three products denote the product over the edge two-side interaction Boltzmann weights
along the three directions of the triangular model, and the last product denotes the product of
all up-pointing triangles of the three-site interaction Boltzmann weights. The sum is taken over
all spin configurations.

In this framework one can now introduce the following notations:

Yy = rr12223 — (T1 + T2 + x3) + 2, where z = eX and zp= €%, i =1,2,3. (3.2)

Of course for ¢ = 2, the model degenerates into the nearest neighbor interaction triangular Ising
model since the three-site interaction becomes irrelevant. Therefore one will not consider this
g = 2 case in following (even if most of the results one will get are also valid in this very case).
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3.2. Duality Transformation

Let us recall that a duality transformation does exist on this model [21,24]. With notations (3.2)
this duality, denoted D, reads

(.’zz-—»x:‘=1+q$zy_1,

g+ a3+ a3 -2+ ¢y

. * __
D.J:c—»a:__ per
1Z2%3

(3.3)

2
e q
\y—)y = ——

Y

This duality is associated with a rotation of 180° of the corresponding vertex model on a triangular
lattice through the correspondence detailed in [21]. It should not be confused with the Kramers-
Wannier for Potts models [39-41]: Kramers-Wannier duality maps the triangular lattice onto
the honeycomb lattice. In fact duality (3.3) can be seen as the product of the Kramers-Wannier
duality together with a star-triangle relation. D is an involution.

In the isotropic limit x; = z2 = z3 = u, it gives:

(u,2) — (g—3)u+udz—g+2 (u3x—3u+2)2(u3a:—3u+2+3qu—3q+q2)
’ udz — 3u + 2 ! (B —3u+2+qu-—q) .

For g = 3 it gives physical points only if u < 1 (antiferromagnetic edge coupling constants) and
if the ferromagnetic condition u3z — 1 > 0 is satisfied or if u > 1 (ferromagnetic edge coupling
constants) and if condition u3z — 1 > 3 - (u — 1) is satisfied.

Introducing well suited homogeneous variables, duality transformation (3.3) can be represented
as a linear transformation Dy, (see Section 4.5), which satisfies relation: D? = ¢>Td, where Zd
denotes the identity transformation. The hyperplanes stable by Dy correspond to eigenforms
associated with eigenvalues +q. The two self-dual varieties symmetric under permutations of 1,
2, and 3 can be written, respectively, as follows [21,24]:

y=-¢q and y=gq.
Actually ¥ = q can be seen as the eigenform associated with eigenvalue —g and reads:
Tx1T2x3 — (X1 + T2+ 23) +2-¢=0. (34)

Hyperplane (3.4) is a critical variety in some ferromagnetic region [24], whereas y = —q has no
such property. Let us notice that hyperplane (3.4) is the only variety that is stable point by point
by duality D.

Note, that the well-known case of no three-site interaction, (x = 1), is not stable under D.
Namely, variety £ = 1 becomes:

(2122 + Tox3 + T3%1 — T1 — To — T3 — TT1T2%3 + 1) -y +q- (21 — 1){z2 — 1)(z3 — 1) = 0. (3.5)

3.3. Disorder Solutions and Their Dual

Disorder varieties are algebraic varieties for which dimensional reductions occur for vertex
or spin models, thus enabling the exact calculation of physical quantities such as the partition
function per site, an infinite number of correlation functions ... [25,42]. A straightforward
calculation, using a “disorder criterion” explained in [26], yields the following disorder conditions:

zz1Zox3 — (T3 + T2 +23)+2—¢q+q-x; =0, i=1,2,3. (3.6)
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When there is no three-sites interaction (x = 1) one recovers the known disorder conditions of
the two side nearest neighbor triangular Potts model [26,43].

These disorder conditions are “high-temperature” varieties. It is tempting to use duality (4.14)
in order to single out some “low” temperature varieties. Unfortunately, when one transforms these
disorder solutions by duality transformation (3.3), one gets:

¢ -z
Tor3x1 T ~— (1 + To +T3) +2°

212223 — (£1+ T2 +x3)+2—q+q-z; — (3.7)
This is related to the fact that these disorder conditions are nothing but he vanishing® conditions
of the z}’s.

For z = 1 the Kramers-Wannier dual [39] of these disorder varieties are algebraic varieties,
on which the low-temperature expansions of the partition function per site (and many other
quantities ...) simplify drastically to become the expansions of rational expressions [13]. Let
us call these last varieties “order varieties”. These “order varieties” are singled out: they do
provide formal constraints® on the low-temperature expansions of the model. Let us introduce
low-temperature variables A, B, and C:

1 1 1
A= —, B=—, C=—. (3.8)
1 T2 3
For instance, on the anisotropic triangular edge Potts model, relation:
A+BC+(g—2)- ABC =0, (3.9)

is a condition on which the low-temperature expansion of the partition function reduces to the
(low-temperature) expansion of the partition function of an elementary triangular cell [13]. It is
remarkable that these “order conditions” can actually be generalized to the (edge) checkerboard
Potts model in a magnetic field®, thus providing nontrivial (formal) constraints on the {low-
temperature resummed) expansion of the model [13]. Actually introducing the “order condition”
(see [13]):

D+ ABC-z+(¢q—2)-ABCD-z=0, (3.10)
one can show that the partition function per site is equal to a very simple expression when re-

stricted to (3.10) and that the spontaneous magnetization restricted to (3.10) is actually equal
to 1.

3.4. Inversion Relations

The inversion relations {7,25] for the two- and three-site interaction spin model can be repre-

sented pictorially as follows:
«

L

«

4 As it should [25], these three disorder varieties have no intersection with the ferromagnetic critical variety (3.4).
5Most of the time these “order” conditions are not in the physical domain.
6The fugacity is denoted z.
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which analytically means:

> w(a,8,7) - Iw)(B, &, 7) = A bayar- (3.11)
B

The Boltzmann weight w(a, 8,4) of model (3.1) is invariant under a common shift of each spin
a, 3, and . Therefore, v can be fixed in a particular color, namely zero. Thus, the Boltzmann
weight can be represented by a ¢ X ¢ matrix (o being the column index, and  the row one), with
entries w(a, §,0). Equation (3.11) thus becomes the following matricial relation:

W IW) = \-Zd,, (3.12)

where Zd, denotes the g x g identity matrix, and the ¢ X ¢ matrix Boltzmann weight W reads:

TT1T2Tx3 T2 T2 ... N 1]
I3 A 1 1 e 1
I3 1 = 1 ... 1
W= : 1 1 Iy
. . . 1
T3 1 1 ... 1 =

Using a “Zy_1 Fourjer transformation” [40,41], this ¢ xq matrix can be block-diagonalized into one
2 x 2 block and a (g — 2) x (¢ — 2) matrix proportional to the identity matrix, (z; — 1) X Zd,_2.
One can easily obtain the matrix inverse I(W). Note that I(W) is of the same form as W,
z,T1, T2, T3, being changed to the following birational transformation I:

( —1)2 ~2
z—I(r)= — (zz1 — 1) (21 +9-2) ,
(zz? +z21(¢—3) — g+ 2)(z1 — 1)
2 —3)—q+2 ~
xl_’_wa:1+a:a:;a(:q 1) g+ =2—q—x1+x1(i i)’
I 1 e (3.13)
g, T
2 z3(zz1 — 1)’
- Sud S
L 3 zo(zzy — 1)

I(z) can also be written:

I(-’E)—x%'(xl +q-2)-(z—-1)2%+2;-(z1-1) (z1+¢—2) - -+ (21 - 1D)*(@1 +¢-2)
B ri(z1+g-3)(x1-1) (2~ 1)+ (21 —-1)%*(z1+q—-2) ’

Obviously permutations of indices 1, 2, and 3 are also symmetries of the model. Introducing ps3,

the permutation of T2 and z3, and similarly ps; and py2, one can define the three following
transformations:

I) = pa3l = Ipas, Iy = paip12Ip12 = pr2lp12psr, I3 = p1apa1Ipa1 = pa1lpaip1a,

corresponding to the three” inversion transformations of the model [44].

TThis existence of three involutions singles out the triangular lattice among the bidimensional models, from the
symmetry group analysis point of view.
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4. THE SYMMETRY GROUP

Inversion I, permutations of x1,z2,z3, and duality relation D (defined by(3.3)) generate a
symmetry group of the parameter space of the model, denoted I'yp¢ in the following.

At this point it is worth noticing that duality transformation D, does actually commute with I,
and also with Sg, the group of permutations of z1, 22, 3, and therefore, the whole group generated
by I and S3. This commutation property enables us to see I'yp¢ as a hyperbolic Cozeter group
generated by two infinite order transformations, up to the semidirect product by a finite group.
These generically infinite order transformations read:

Jy = I, Jo = I I, J3 = I1;. (4.1)
By definition the J;’s satisfy relation:
J3JoJ; = Identity. (4.2)

Two of these J;’s generate I'yp¢, up to the semidirect product by a finite group.
Let us recall that, for generic values of ¢ when = = 1, Ty, is isomorphic to Z x Z, up to
a semidirect product by a finite group and degenerates into a finite group for Tutte-Beraha
numbers [23] (g = 2 — 2cos(kn/N)). In fact, for z = 1, the J;’s do commute and the elements of
group ['ypt read:
y=JU IR I, where a; =0, 1. (4.3)

Generically, n; and ny are relative integers. For q, a Tutte-Beraha number associated with N,
n1 and ng run into {0,...,N — 1}, the group I'yp being therefore isomorphic to the product
ZN X ZN X Zo.

In order to analyse the general case (z # 1), let us introduce the 3-cycle ¢ = p3;p12, and let us
write the J;’s in terms of ¢ and of a single one (generically) infinite order transformation, namely
(eD)?:

Ji = e(el)?e?, Jo = c2(cl)?c, Js = (cI)?. (4.4)

4.1. Transformation (cI)?2

For the sake of simplicity, let us consider transformation (cI)? as a homogeneous transfor-
mation, introducing zo = zx1z2x3 and a fifth homogenization variable t. One can then define
a homogeneous inverse I (corresponding to (3.13)) and clj, which written as a homogeneous
transformation, reads:

Tot — ToT3 Tot — Tox3
clp : (20,71, 72,23, ) — | —x1 — (¢ — 2)t, 23, — (¢ — 2)——— — %0, T2, ———— | .
Ty —t r1 —t
One notices that uz = ©1 + x2 + (¢ — 2)t and v = 3 — z¢ are just permuted by transformation
cly: ug < v3. With these new variables, one also has:

Tot — 2223

clpi(z1,23,t) = (T3,u3 — 71 — (q — 2)t, Fot), where Fy = TR

Transformation (cI,)? then reads:
(cIn)?:(us, v3, €1, 3,t) — (ua, vs,ug — o1 — (¢ — 2)t,v3 — T3 — (g ~ 2) Fot, Fy Fit),

where F; = Fy(cly) is the same expression as Fp, where the x;’s have been replaced by their
images by clp.

Introducing g, the roots of the second order equation 22+ (g—~2)z+1 = 0 and introducing the
successive iterates of Fy by transformation clIj (namely: F,+1 = Fn(clp)), one can write down
the general expression of transformation (cIp)?V (see [45]).

Let us note that for ¢ corresponding to a Tutte-Beraha number, the g% are N**-root of unity [7).
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4.2. Tutte-Beraha Numbers

Let us recall that, when there is no three site interaction (that is z = 1}, there do exist
particular values of g, the so-called Tutte-Beraha numbers {23,46], for which transformations J;’s,
or equivalently transformation (cI)?, become finite order ones [7,44].

Amazingly, this situation still holds for the generic case (with z # 1).

One can establish [45] for ¢ = 2 — 2 cos(kw/N), (a Tutte-Beraha number), that transformation
(cIn)?N reduces an identity, that is equivalently:

JN =1d, withi=1,23. (4.5)

REMARK. Such Cozeter groups can be seen as the fundamental group of a surface of genus g
minus k points [33]. Here there is a genus zero Riemann surface minus three points. At this step,
the Coxeter group, one has to deal with, is reminiscent of the Schwarz’s triangular groups®. Con-
sidering a geodesic triangle of angles 7/ny, 7 /ng, 7/ns, and considering S1, Sz, S5 the symmetries
with respect to the edges of the triangle, and defining the “rotations”:

Ry = 5353, Ra=8351, R3=55, (4.6)

the R;’s verify:

R =1d, with 2 =1,2,3, and Ry RyR3 =7d. (4.7)
In the study of these triangular groups, three different cases have to be distinguished: depending
on 1/n; + 1/ng + 1/n3 greater, lower or equal to 1.

Because of the ternary symmetry of our triangular Potts model, one has here ny = ng = ng = N.
The only Euclidean case is N = 3, while the other values of N yield hyperbolic triangles and
hyperbolic geometries, N = 2 corresponds to ¢ = 2, which is the Ising subspace of the model. In
this case the three-site interaction becomes irrelevant. Thus, the first interesting case is N = 3,
that is, g = 3 (or ¢ = 1).

4.3. The “Euclidean Case”: g=3o0or g=1

In this section we will restrict ourselves to N = 3, that is ¢ = 3 or ¢ = 1. In this case J} = Zd.
A “straight” analysis of this group, on the J;’s, is performed in Appendix A. In fact, in this
specific N = 3 case, it is better suited to introduce the transformations:

G1 = p12J1p31, G2 = pasJapi2, G3 = p31J3pa3. (4.8)

By introducing these transformations, it is easier to show that, for N = 3, Iypt is no longer a
group with an “exponential growth”, but reduces down to Z x Z up to a semidirect product by a
finite group (like the affine Coxeter group Aél) [18]).

First, one notices that the G;’s do satisfy a relation similar to relation (4.2):

G3G2G = Td. (4.9)

Let us first study the group G, generated by G1, G2, and Gs. The G;’s can be written in terms
of transformation I and of the three-cycle c:

Gy =ciIctlc?,  Gy=1Iclle, G3=clIc®l (4.10)
Using (cI)® = Zdentity, G1G reads:

G1Gy = I It e = c*(cI)™4c? = c2(cI)?c? = Iclc?

4.11
= G4G. (411)

8Such groups have been obtained from the analysis of the ratios of solutions of second-order differential equations
ramified in three points.
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Thus, the G;’s actually commute. From relations (4.11) and (4.9), it is clear that a generic

element of G reads:
g=G1Gy?, (4.12)

where n; and ng are relative integers, which explicitly means that G is isomorphic to Z x Z.
[yupt can be seen to be generated by I and ¢, up to some semidirect product by a finite group.
From relation (4.10), one gets at once:

clel = Gl_lc2, eIl = Gs, Alel = G;l, AIc*I = Gye,
Iclc = Gz, Iclc? = G31, IIC = Gy, IIc* = Gaqe.

Thus, T'yp is ésomorphic to Z — Z up to a semidirect product by a finite group.

4.4. Numerical Analysis

These infinite order transformations, represented as birational transformations, act as (sym-
metry) transformations in the parameter space of the model. In the z = 1 subcase, it has already
been noticed [47] that, for 0 < ¢ < 4, the infinite set of points of the orbits of the discrete
group of birational transformations is dense in an algebraic curve, while in the other case, they
accumulate to fixed points. One has a similar situation for z # 1. Therefore, in this section we
restrict here our study to 0 < g < 4.

To complete the analysis of the (infinite discrete) symmetry group, one has to study its (gener-
ically infinite order) generators (the J;’s). We draw here their orbits in the four dimensional
parameter space (CP;) of the model. From relation (4.4), it is clear that the iterations of the J;’s
amount to performing the iteration of transformation (cI)2. For generic values of g (of course dif-
ferent from Tutte-Beraha numbers, see Section 4.2), the iteration of (cI)? yields curves. Figure 1
shows such a curve obtained for ¢ = 3.5 (which is not a Tutte-Beraha number).

Figure 1. Two-dimensional projection of an orbit of transformation (cI)?, for g = 3.5.

For Tutte-Beraha numbers, since the J;’s are finite-order transformations, one has to consider
other elements of the group. As far as the Euclidean case is concerned (¢ = 3 or ¢ = 1), let us
recall that the G;’s are the commuting generators of the symmetry group isomorphic to Z x Z.
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(a)

(b)

Two-dimensional projections of two orbits corresponding, respectively, to the itera-
tions of transformations G2 and G3, for ¢ = 3.

Figure 2a illustrates the iteration of G for ¢ = 3. Remarkably, curves are obtained once again.
Of course, iterating G for ¢ = 3 also yields curves, as can be seen of Figure 2b. Considering
one orbit of the symmetry group generated by the G;’s one gets, as it should be, a surface which
can clearly be seen on Figure 2c as the product of curves like Figures 2a and 2b. This last figure

gives a nice illustration of the Z x Z structure of the group.

(c) Orbit generated by transformations G2 and Gj, for ¢ = 3: this surface is the

product of the two curves of Figures 2a and 2b.

Figure 2.
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Figure 3. Two-dimensional projection of an orbit of transformation G2 for g = 0.5.

Figure 4. Two-dimensional projections of two orbits corresponding, respectively, to
the iterations of transformation J1J3 for a Tutte-Beraha number (g = 2 + V3).

Amazingly, the G;’s which no longer commute when g is no longer equal to 1 or 3, do yield
curves, as can be seen on Figure 3 which represents the iteration of Gy for ¢ = 0.5 (not a
Tutte-Beraha number).

All these results are remarkable: if one considers the iteration of more involved elements of the
group, one generically gets quite “chaotic” figures (except of course for ¢ = 3 or ¢ = 1). Figure 4
shows such a quite “chaotic” orbit corresponding to the iteration of J;JZ for a Tutte-Beraha
number (g = 2 + v/3).

These last figures and the study of many other orbits not given here, give a good hint of the

“complexity” of these (infinite) hyperbolic Coxeter groups. They are generically of “exponential
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growth”, even when additional relations occur (see relation (4.5)). This numerical study indicates
that for generic values of g, the generators of the symmetry group (the J;’s) seem integrable since
their iterations yield curves apparently in the whole parameter space. Moreover, the G;’s seem
to satisfy the same property for any value of g, though they emerged from the analysis of the
Euclidean case (g = 3 or ¢ =1).

A way to verify this assumption, is to give the algebraic equations of these curves. For this
purpose, in the next section, we will seek algebraic varieties invariant under the J;’s and the G;’s.

4.5. Group Invariants and Well-Suited Variables

Let us first take into account that there exist three (homogeneous) polynomials, of degree,
respectively, 1, 2, and 3, invariant under permutation of i, x2, and z3, and covariant under
transformation I (see (3.13)). These three polynomials read:

D) =zy+z2+ 23 — 10 + (g — 2)8,
D, =t($1 + zp + 23 + 2o — t) — T1T2 — TaZs — T3T1,

D3 = tz.’llo — T1T2Z3.

Let us consider the cofactors (under the action of I) of Dy, Dq, and Dj:

I(Dy) z;—1 I(Dy) T3 4+ qrr) — 227, +1—¢
C = = s C = = — s
! Dl (xz:l - 1) +IoI3 2 Dz (ZEIL‘l — 1)2 + IT2Z3 and
o, 1Ds) _ _(m-1)(@ei+(g—2zzi+1-09)
T "D ziz? - (zz1 — 1)3 '

One notes that the cofactor of D3 is the product of the respective cofactors of D; and Djy.
As a consequence, one directly gets an snvariant under the whole group generated by I and the

permutations of x;, 2 and x3:
D1 . D2

Ds
This provides, for arbitrary q, a canonical foliation of the parameter space (CPy) by codimension
one algebraic varieties (namely cubics).

Let us recall that duality transformation D, defined in Section 3.2, is also a symmetry of the
model, which commutes? with transformation I and with permutations of 1, 2, and 3. Let us
notice that duality D can actually be represented as a linear transformation when written in
terms of homogeneous variables:

A (4.13)

Zo = Zo+ (¢ — 1) (21 + 22 + 23 + (g — 2)8),
T — (g~ 1) @1+ 20 — 22 — 73 — (¢ — 2)t,
Dpid 20— (g—1) 20+ 20 — 11 — 23 — (¢ — 2)¢, (4.14)
23— (q—1)-z3+ 0 — T2 — 71 — (g — 2)8,
t—29—21 —T2— T3 +2¢.
Considering the previous covariant polynomials, one sees that Dy and D; simply transform under

the duality transformation:
(D1,D3) — (=g~ D1,¢* - Da). (4.15)

The duality acts in a slightly more involved way on Dj:

Dy — D3 =g¢*-(¢- D3 — D - Dy). (4.16)

9This is related to the fact that duality (4.14) corresponds to & weak-graph transformation [48): therefore, it has
a linear representation and commutes with the inversion relations.
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Therefore, as far as the other covariant polynomials are concerned, one can barter D3 for a
homogeneous polynomial, namely:

D3d = 2q . D3 - D1D2. (4.17)
On this new “self-dual” covariant the duality gives:
D3q — ¢* - Dsq. (4.18)

Algebraic varieties Dy, Ds, and D3y do have covariance properties with respect to the whole
group Typy (including duality (4.14)), which is (generically) a hyperbolic group. From the point of
view of effective algebraic geometry, this provides examples of algebraic varieties with very large
(discrete) groups of (birational) automorphisms.

4.5.1. Curves generated by the J;’s or the G,’s

It has been seen in Section 4.4 that the iterations of the J;’s yield, for arbitrary q, curves in
the whole parameter space. In order to prove that these curves are actually algebraic, one has
to exhibit two other algebraic invariants for these very transformations. From relations (4.14),
it is clear that the study can be limited to transformation (cI)2. One can show that the two
polynomials.

Ei=xz14+ x4 —x3+$0+(q——2)t, FE; It(l'l +1T9 — I3~ To ~—t) ~ T1To + T2xT3 + T3ZT1,

are actually covariant under the action of (cI)2. These expressions happen to have, respectively,
the same cofactors (under transformation (cI)2) as Dy and D,. This immediately provides two
additional algebraic invariants under (cI)2:

A =20 Ay = T (4.19)

Curves like Figure 1 are thus given as intersections of cubics, quadrics, and hyperplanes, namely:
A=4, Ay =6y, Ay = 8y, (4.20)

where the é’s denote arbitrary constants.

Considering the previous covariant polynomials, one notices that five of them are “eigen-
polynomials” of the duality transformation (4.14). In addition to the previous two covariants D;
and Dy (see (4.13)), one gets:

(El, EQ) — (qu, q2E2). [421)

Algebraic curves, with an infinite number of (birational) automorphisms are either elliptic (or
rational) curves [49]. Amazingly, by eliminating zo and z3 from relations (4.20) one gets (as
expressed in inhomogeneous variables):

(61+1)-(52+1)-($11¢2——1)=(461525-(1'1+132—2)+(61“1)'(52-1))'($1+I2+q—2),

which proves that these curves are actually rational curves.

Let us now consider the G;’s (or equivalently the (cI;)2"’s). The previous numerical analysis
indicated remarkable occurrence of curves, when iterating the G;’s for any value of q. Let us, for
instance, consider Gs. One notices that polynomials:

Fy = z3, Fy = (2123 + T223 — T3t — xot) - (z122 + (g — 3)zot — (g — 2)zox3),



184 J.-M. MAILLARD

are actually covariant under the action of G3. The values of the cofactors of these F)’s yield two
G3z-invariants:
D1 D1 Ds
Al == Ay = .
1 Fl 3 4 F4

(4.22)

Figures like Figures 2a, 2b, or 3 are thus algebraic (elliptic) curves given by intersections of
cubics, hyperplanes, and quartics.

Duality transformation (4.14) also acts on polynomials F;’s. One can barter them for new
“self-dual” homogeneous polynomials, namely:

Fig =2q-235 — Dy, Fy=2q -Fg— (q2 —3q+1) (D2 —z3Dg) - D;.

4.5.2. The “Euclidean cases”: ¢g=3and ¢=1

Let us recall that for ¢ = 3 (or ¢ = 1), these G;’s do commute and that: G3G2G, = Zd. It
has been seen that each of the G;’s generates algebraic elliptic curves. Therefore, for ¢ = 3 (and
q = 1), the orbits of the group generated by the G;’s yield algebraic surfaces which are products
of two elliptic curves, as clearly seen on Figure 2c. Since this surface is stable under the group Ss
of permutations of x1, Z2, and z3, it is natural to give its equation without referring to two of
the G;’s, that is, without having any direction singled out.

Actually, for g = 3, there exists an additional polynomial:

D5 = —z12273 (22 + 2% + 2% + 22 — t%) + 2o (2223 + 2325 + 2322), (4.23)

symmetric under permutations of z1, z2, and z3 and covariant under I, from which one deduces,
taking into account its cofactor, the (Sz-symmetric) invariant:

r _ D:13D2

5= D (4.24)

Invariant (4.24), together with invariant (4.13), thus give S3-symmetric equations of these alge-
braic surfaces. For ¢ = 3 one thus has a foliation of the four-dimensional parameter space in
algebraic surfaces given by (4.13) and (4.24).

Similarly, for ¢ = 1, a Sz-symmetric polynomial covariant under the action of I, namely
Dj =z - D, yields the following S3-symmetric invariant:

AI D?

3= _D_g’ (4.25)

and the duality gives, on this last covariant: D — ¢2Dj.
For g = 3, the duality acts in the following way on Ds:

Ds — D3 =9-(27-Dg— D} -Dg),  yielding: Ds — (Dg)" = 3'°. Ds.
For g = 3, one can thus substitute Ds for a self-dual covariant:
Dsq = 54D — D3 - D,.
This new self-dual covariant duality (4.14) yields:

Dgg — 3% . Dsq. (4.26)
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4.5.3. Self-dual well-suited variables

One would like to trade the foliation given by (4.13) for an equivalent, yet self-dual one. In
terms of A, given by (4.13), the duality transformation (4.14) reads:

A
A g — .
— —q Py , (4.27)
and for ¢ = 3 only, invariant A} becomes:
AI
u 97,5
AL — =27 T AL (4.28)
From this one immediately gets a “pseudo” self-dual invariant, namely Agua) given by:
A Dy - Dy
A = = . .
dual = 5 TR = 50 Ds— Dy Ds (4.29)
Actually duality transformation (4.14) acts as follows on Agya:
Adu:stl ? "‘Adual- (430)

The critical ferromagnetic variety D, = 0 reads Agya = 0.
Similarly, for ¢ = 3 only, one can introduce invariant Ag"*' such that duality relation (4.14)
reads:
Adual ., _Adual, (4.31)

Invariant AZ"®! reads:
Al D3.D
Adual — 5 — 1 2 ) )
5 54 — AL~ 54Ds — D3 - D, (4.32)

For ¢ = 3 one would also like to exchange the foliation of the parameter space in algebraic sur-
faces given by (4.13) and (4.24), for a foliation corresponding to two explicitly self-dual algebraic
conditions.

Here, we introduce invariants denoted X and Y:

1 Dy 1 Dy

X:——: Y:——:————- .
A= D, D, and AL = DT Dy (4.33)

and also the following “pseudo-self-dual” invariants:

~ 1 —1 -, 1 1 .
X_E_X—-G—-Ed—ual- and Y—Q—Y—m, (434)
which transform, under the duality (4.14), as follows: (X,Y) — (-X,~Y). From the two
“pseudo” self-dual invariants AgU®! and Agua (or (X,Y)), one can easily get two explicitly self-

dual invariants.

4.6. Two Remarkable Varieties: z = 1 and Its Dual

Let us come back to the vanishing of the three-spin interaction that is z = 1, or D3 = 0. One
notes that this variety is not self-dual. Variety £ = 1 is well known [25] and plays a special
role: the symmetry group I'yp¢ is isomorphic to Z x Z (up to some semidirect product by a finite
group) [10].
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4.6.1. A remarkable variety: z =1

In this £ = 1-subcase (D3 = 0), there exists a rational parametrization which amounts to
introducing the well-suited variables {10]:

1-t3.y . 1
z; = ____ué,_’ i=1,2,3, where g = t% + = t2 (4.35)
t-u;—t t

In the z = 1 and D; = 0 subcase (critical condition for the edge Potts model) one can actually
calculate ezactly and very quickly the partition function per site, using the inversion trick and
these well-suited variables [7].

In this £ = l-subcase an algebraic antiferromagnetic variety has been proposed by Martin and
Maillard {50] on the basis of the analysis of the discrete group generated by the inversion relations
that is:

M,y (z1, z223) = (¢ — 2) - T17273 + 2+ (T1T2 + T2T3 + T3Zy)
+(@-2) (@1 +z2+23)+(g—2)°-2=0.

With this rational parametrization, the antiferromagnetic relation (4.36) and the critical con-
dition D; = 0 read, respectively:

(4.36)

(t4 - 1)2 - (tuqugus — 1) —0

(4 -1)° (twrugus +1) _
BE—u)-w)t-m) O T BEu - w) - w)

and the ratio:
My(zy,z2,23)  1-—t (twaugus +1)

= . 4.
D, 2 (tu1u2u3 -1) ( 37)
Algebraic expression D reads in the z =1 limit:
(2 +1)° (tuy — 1) - (bup — 1) - (tug — 1)
Ds=(x3—-1)-(x2—1) - (z1 ~1) -
2= (z3=1) (22 - 1) (21~ 1) Bl —u) = ua) (¢ —ua)
For ¢ = 3 (that is t5 = —1), Djs also reduces to a very simple expression in the z = 1 limit,

namely:
Dy = —zyx0x3(x3 — 1) - (23 +1)- (2~ 1) - (22 + 1) - (1 - 1) - (z1 + 1)
_ (t“—1)3 (B3u;—1) (FPuz—1) (Bua—1) (bur—1)(fus +1)(tus—1)(fug+1)(tuz—1)(tus+1)
- 9 (t — u1)3(t — u2)3(t — u3)’ :
The ratio (4.37) is actually an invariant of the group Diang [7). In fact, this invariant can be
replaced by other ones using the following remarkable identity:

M}—-q-(¢g—4)-D}
=4-(1+(q—2)-z1+23)-(1+(¢q—2)-z2+23) - (1+(g-2)-z3+7%). (4.38)
One can also, instead of the ratio (4.37), introduce the following algebraic invariant [7]:

(g — 2) - 12073 + (T129 + Tox3 + T371) — 1

1= (172 +T2z3 + 7321) + (@ —2) - (z1 + T2+ 23) + (g —1) - (¢—3)° (4.39)
Equivalently one can introduce invariant:
I, = 217273 — (21 + T2+ 73) — (¢ — 2) _ T1z283 — (T1+ T3 +73) — (¢ - 2)
(@ —2) - z12023 + (T172 + T223 + Taz1) — 1 —z122%3 - W(zy, T2, 73)
where 111 1 1 1
W(z1,z2,x3) = 1?—1 33_2 E - (x_l + 55_2 + ;c;) —(g—2). (4.40)

In the numerator of (4.40) one recognizes D; for z = 1 and the denominator is nothing but the
numerator where the z;’s are changed into the 1/z;’s.
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4.6.2. Another remarkable variety: The dualof z =1

Since duality (4.14) commutes with [y, the dual variety of * = 1 also corresponds to the
degeneracy of T'ype into a group isomorphic to Z x Z (up to some semidirect product by a finite
group). This remarkable variety (3.5) also reads:

D3 = ¢*(gDs —~ D1D3) =0, (4.41)

or explicitly,

(e2x3z32? + (2372 + 2izs + zd2s + 222} + 712) + 2128) ~ (2 + 22+ 22) +1) (4.42)
+ (g —3): ((z122 + T123 + To23) — (1 + T2 + T3) + T1ToT3 + 1) = 0. )
In the isotropic limit z; = z2 = 3 = u and, for ¢ = 3, this variety reads
uS-r? +ud (1-3u?) 2+ (1-6u® +6ud) =0. (4.43)
There is also a rational parametrization of (4.42) as follows:
ng , nf s Nag
Ti = i=1,2,3and z = = (4.44)

t‘dlx‘d2z'd3z’

with

) (#* — 2 4+ 1) — thugug — uoug — trugus + touy + tug + tus,
ny = (uptgugt — 1) - (t* =% + 1) — t*ugus — uyuz — thugug + tous + tug + tuy,
)« (¢* = £2 + 1) — t'ugus — uyus — thugug + toug + tus + tuy,
niz =t uyuous - (t2 - 2) + tz(ulw + uyuz + uguz) — t3(uy + ug + ug) + 2% — 1,
g = ugtaug (82 + 8 — 1) — tP(uquy + urus + ugus) + t3(ug +up +uz) +t- (t8 -t - 1),
diz = (urugugt — 1) - (¢* — % + 1) — thugus — ugug — t*usup +t - (t1uy + ug + u3),
doz = (urugugt — 1) - (t* — % + 1) — thugug — wyug — trurug +t- (trug + ug + 1),

d3x = (urugugt — 1) - (t4 -2+ 1) -~ ttugug — urug — tluqug + t - (t4u3 +ug + uy) .

ny = (uuguat — 1

ng = (uyusust — 1) -

With this rational parametrization (4.44) inversion relation (4.13) takes a very simple form:

t? 1 1
—_— - —], 4.45
(Ul,UQ,U3) (’U,l’tz"Ug tz_uz) ( )

and the polynomial expressions D;, D3, D3 read, respectively,

(¢t - 1)2 - (t - uyugug — 1)

Dl = 2.4 3
D2 _ - (t2 + 1)3 (tu1 - 1)('114 — t)(ttju,;;— 1)(U2 - t)(tu;; - 1)(U3 - t)’ and (4.46)
Dy= 2 (¢4 - 1)2 (2 + 1) (tus — 1)(us — t)(tug — 1)(uz — t)(fu1 — 1)(uy — t)(tujuoug — 1)
- t.d3 ’
with

d = uiugug - % — (2uiugus + uz +us + u1)t3 + (ugus + uiug + ugug + 2)t2 - 1.
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4.7. Additional Algebraic Invariant for z = 1.
Additional Algebraic Invariants for Finite Group Subcases

At first glance, there seems to exist an incompatibility between invariants (4.13), (4.24), and
invariant (4.39) (or (4.40)) of the rational parametrization [7,10] introduced for £ = 1 (no three-
spin interactions).

The previous occurrence of an additional invariant specific of x = 1 (see (4.39)) and of another
one specific of ¢ = 3 (see (4.24)), deserves some comments. Invariant (4.39) exists for arbitrary q
when z = 1 and cannot, at first glance, be simply extended to z # 1. Similarly, invariant (4.24)
only exists when ¢ = 3. When restricted to ¢ = 3, it may seem that there is an incompatibility
between these various invariants when one considers the x = 1 limit. In fact, the answer to this
paradox is the following: when ¢ = 3 and = = 1 the discrete group degenerates into a finite group.
The orbits of the group are no longer surfaces, or curves, but a finite set of points and one can
have as many (independent) “algebraic” invariants as the dimension of the parameter space. In
z = 1, ¢ = 3 subcase, besides the £ = 1 (D3 = 0) condition, one has the two invariants A; and T
((4.13) and (4.39)) and (at least) a third invariant (see Appendices D and E.4 for more details).
Actually, in this £ = 1, ¢ = 3 subcase, one has an additional covariant namely:

Po = (2 + 223 + 3x223 + 225 — 1 + T1Z2%3) - (3T123 + T1ZT2x3 + 223 + 221 + 2 — z2)
X (3z1x3 + =1 + 2T12223 + T3 + 1 + x2) - (T1T2x3 + 32129 + 222 + 221 + 2 — x3)
X (z1 + 3T122 + 2212923 + T3 + 1 + x2) - (1 + 1 + 2212023 + 3xax3 + T3 +22)  (4.47)
x (223 — T2 + T1x223 — 1 — 1) - (229 — 23 — 71 — 1 + 212223)

X (z122x3 + 221 — T2 — T3 — 1).

Note, that pg obtained, from the disorder condition, (3.6) taking the product of the images of
this disorder condition under the group [iriang, Which happens to be finite for ¢ = 3. Note, that
po transforms as follows under the inversion relation:

P9
Py 4.48
! z3 -z (448)

One has, therefore, an additional invariant in this ¢ = 3 (z = 1) subcase:

I=-2&. (4.49)

Invariant (4.49) is basically built as the product, over the discrete group, of the disorder con-
ditions. Appendix C.1 give calculations corresponding to a straight generalization of such an
invariant in the £ = 1 and q = 3 subcase, but for the checkerboard Potts model. One can also
build another invariant from the product, over the discrete group, of the “order conditions”
described in Section 3.3. These two invariants (product over the group of disorder conditions,
product over the group of “order” conditions) can both be used. However, the invariant product
over the group of “order” conditions is better suited for the analysis of low-temperature expansions
and the analysis of quantities of a “low-temperature” nature like the spontaneous magnetization
(see Appendix D).

From this new invariant, which does not exist!® for arbitrary ¢, one gets a new foliation of
the parameter space in terms of the algebraic surfaces, Iy = constant. Invariants 7 and I
can be shown to be algebraically independent. One can verify that the intersection of z = 1
(i.e., D3 = 0), As = constant, T = constant, and Iy = constant gives a finite set of points
corresponding to the orbits of the discrete symmetry group.

10Tn the o = 1 subcase the group becomes finite for the Tutte-Beraha numbers. When the group is finite, and
only in this case, one can get additional invariants, similar to (4.9), built as product over the group of disorder
(or “order”) varieties.
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REMARK. If one can imagine, for ¢ = 3 and z = 1, that the critical manifolds correspond to
quite involved relations between these various invariants [51], at first glance, one expects the
phase diagram of the model for ¢ = 3 and z # 1, to depend only on inveriant (4.13) and the
phase diagram of the model for z = 1 and ¢ # 3, to depend only on invariant (4.39). Therefore,
a question naturally pops out, namely the “continuity” of the phase diagram [51] for ¢ ~ 3 and
z ~ 1. We will address this question in parallel publications.

5. REMARKABLE ALGEBRAIC VARIETIES
AND MONTE-CARLO SIMULATIONS:
TOWARDS CRITICAL MANIFOLDS

Critical manifolds have to be compatible with all the symmetries of the lattice model: the
discrete symmetries generated by the inversion relations, as well as the (continuous) weak-graph
(“gauge”) transformations [48]. The self-dual variety (3.4), that is D; = 0, is already known as a
critical variety of this very Potts model, for arbitrary g, in some ferromagnetic region [24]. This
variety!! is, as it should be, stable under the whole hyperbolic Cozeter group [44]. In a rather
general framework, one can write a critical manifold as follows:

F(Agua, A™) =0 or F (XY) =0, (5.1)
where F (or F) is any (transcendental) function such that:
F (Aduat, A8™) = F (~Aquar, -A8™) or F(X,7) = F(-X,-7). (5.2)

In order to get some hint on the critical manifolds, one also has to take into account other exact
results. For instance, there should not be any intersection between the disorder conditions'? and
the critical manifolds or, if any, this should localize very precisely a tricritical manifold [52).

Several varieties pop out as natural conditions for criticality since they have been shown to be
stable under the whole infinite Coxeter group, namely (besides D, = 0) the self-dual varieties
Dy = 0, D3g = 0 (that is, 6 - Dy — Dy - Dy = 0), and for ¢ = 3 only, D5y = 0 (that is,
54 - Ds — D3 - Dy = 0). Unfortunately, these “candidates” for criticality are ruled out by Monte-
Carlo simulations [52].

5.1. D, =0 and a Tricritical Manifold

Monte-Carlo simulations have been performed in the ¢ = 3 isotropic limit, on 3 x L? sites
triangular lattices with both 2w /3-rotation invariance and translation invariance, for various
values of L [52]. The Monte-Carlo calculations [52] show that D; = 0 is actually a critical
variety, and that, on the algebraic variety D1 = 0, both first-order and second-order transitions
occur. Therefore, there must exist a codimension-two tricritical submanifold which corresponds
to the “frontier” between these two types of transitions on the codimension-one variety Dy = 0.
Our objective is to get the equation of such a variety.

1t is clear, from the two invariants (4.13) and (4.24), that, when restricted to Dy = 0, the only
expression invariant under the group which does not trivialize because of Dy = 0, is the ratio:
s _ D3
A3 T ds - D%
The (x,u) = (4,1) point (critical pure three-spin point) seems to be, in the case of the isomorphic
mode, a tricritical point [52]: this yields the following value —1/2 for the new invariant Zjew,
which singles out the algebraic variety:

2.D3+ Ds- D} =0. (5.4)

Inew = (5-3)

11The globally self-dual variety y = —q cannot be critical one since it is not stable under Iyps.
12The analysis of the action of the hyperbolic group on these varieties also has to be performed, in order to
generalize the analysis already achieved in the z = 1 limit [26].
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Monte-Carlo calculations confirm that D; = 0 is actually a critical variety even for quite
anisotropic points. However, the interpretation of the possible tricritical behaviour of the in-
tersection of D; = 0 and (5.4) is a more delicate question that will be addressed elsewhere.

6. FINITE ORDER CONDITIONS

6.1. G4 = Identity for ¢ =3

In a previous Section 5.1, it was indicated that the intersection of D; = 0 together with
variety (5.4) was a possible candidate for the equation of a critical manifold. We see here that
this very intersection has a remarkable interpretation in terms of the discrete symmetry group.

Let us recall (the generically infinite order) transformation Gy = ¢2-I-¢- I (see (4.10)) which
reads for the three-state model:

Gi(z1,Z2,73,7) = (Z16, T26, 3G+ LG, with
i = zg - (z3z — 1) - (1 — z1 + z3zT) — T3)
(z3z3z — 232 — 131 + 21 + 1 —73) - (21 — 1)’
Lo = — riziz —z3+1 -}
(1 + z3z?z — 2%z — 231 + 71 — 73) - T3 (6.1)
1 -2+ 23071 — T3
I3g = — ) and

1 +zsziz — 22z — z3 + 71 — 23’

(zsz3z —2fz —zay + o + 1 - x3)2 -(zy — 1+ z3221 — T3)
(1— 2% — 23+ 232%z) - (1 — o1 + 23221 — 23) - (2I2 — 1)

rg =

In fact, by writing condition G§ = Zdentity, one gets a dimension-one (self-dual) algebraic
variety:
2-D3+Ds-D2—D2%.D,-Dy=0. (6.2)
Under the duality transformations relation (6.2) gives:

2-D3+Ds-D2~D2-Dy-Dy — 3% (2-D}+ Ds-D3 — D} -Dy - Ds). (6.3)

In the isotropic limit relation (6.2) reads u = 1 together with:

ziul! — 6ul%23 + 41024 — 30228 + 9u%2? + w2 + 8ufz? — 3ubBx® + 20722

—24zu” + 1208z + 22%u8 + 20u° — wPx — 5ulz? — 28u? + ulz? + Butsy (6.4)
A+ + 8l +udr? + Tl —5u+1=0,

which in the z = 1 limit, gives
(w+1)23 (u-18%=0.

6.2. G}’ = Identity Varieties for ¢ =3

For ¢ = 3, Section 4.3 shows that the whole discrete group is finite if transformation G is
actually of finite order.

Let us study systematically these finite-order conditions.

It should be noted that the conditions corresponding to G, = Zdentity and G? = Zdentity
do not yield codimension-one algebraic variety symmetric under the permutations of z;, z2, x3.
Therefore, the analysis of the algebraic varieties GIY = Zdentity starts with N > 3.

All the (no three-spin) points z = 1 (that is D3 = 0) yield G = Zdentity. Conversely,
G3 = Identity corresponds to D3 = 0 and its dual, D, - D; — 3 D3 = 0, or equivalently:

X-(3-X-1)=0 or (6-)”c+1)-(6-5(—1)=0. (6.5)
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This last condition, D, - Dy — 3 - D3 = 0, reads in terms of the z;’s:

1 — (z1Z2 + T2x3 + zazy) — (22 + a:% 4+ zg) + T1T2Z3T + :cfa:%x%a?
2 2, .2 2 2 2 2,2 2,2 22 (6.6)
+Z3T7 + TaZ] + I5T1 + T3X3 + T2x3 + T123 — ToT3T1T — TL3TIT — T5Z327x = 0,
which, in the isotropic case r, = z2 = 3 = u, gives
1—6u? +uz + 22u8 — 324’ + 6u® = 0. (6.7)

The G} = Tdentity variety has been detailed in the previous section. Next is the G3 = Zdentity
variety which reads a self-dual codimension-one variety namely:

~Dj- D3+ (D} - D} Dy~ 7Dy -D}- D} +14-D} - D3) - Dy

6.8
+DY.D?.D2_5.Dy.Dy- DS +5- DS = 0. (6.8)

After a few calculations one can also find that condition G$ = Zdentity, written as G} = G‘l_a),
yields the previous G$ = Zdentity conditions, together with another algebraic variety:

Ce =2 D2D3 — D3Ds3 - (10D3 — 5D3D; Dy + DD?) - Dy + D3 - (D2 Dy — D3) =0,
which can also be written in terms of the (pseudo-self) dual invariants X and ¥ (4.34):
Co = 3456 - 72 - 288 - X - (1 + 60)"(2) ¥ - (12824 1) : (144)24 —72X2 4 1) =0. (6.9)

One verifies immediately by looking at (6.9), that condition G = Zdentity is self-dual. In the
isotropic limit it reads an involved expression given in Appendix B.

Large formal calculations enable us to write down explicitly the algebraic varieties correspond-
ing to the finite-order conditions GY = Identity for larger values of N. One should note that,
remarkably, all these conditions G) = Zdentity are codimension-one self-dual varieties, which
we denote Cny = 0.

The GV = Identity varieties seem, for arbitrary N (N > 3), to be codimension-one algebraic
varieties of the form:

0=P(X) - YN + P(X) - YN 4 Py(X) YN 24 Py(X) YN8 ... (6.10)

with Po(X) = Pp(0) and P,(X) =0 for i = 1,...,N. For example, by introducing ¥ = 1/A}
and X = 1/A, condition GJIV = Zdentity reads, respectively, for N = 3,4, 6:

C3=X-(3-X-1)=0, Ci=Y+2X>-X%2=0, and
Cs=Y2-X (14X?-7X +1)-Y - X* (1-5X +5X?%) =0, (6.11)
Co=2Y>—X (10X?-5X +1)-Y + X% (1 - X) =0,

orinterms of X =1/6 — X and ¥ = 1/54 — Y (see (4.34)):
Co=(6-%-1)-(6-%+1), Ci=-6-F-X% (12%2-1),
Gs=1728 V2 —288. X (84)"(2—1) ¥~ 1+12X% +1872X4 — 8640X°,
Ce =3456.?2—288-X(1+60)22) Y- (125{2+1) : (144)24—72)22+1).

Let us give some additional examples. The codimension-one variety corresponding to G] =
Tdentity is also self-dual and reads in terms of the two invariants X and Y:

Cr=0=Y*+ (65X —1-10X%) . X Y3+ (111X% - 36X + 4~ 111X%) . X°.Y?
+ (13X —291X* +194X° +192X% - 69X% ~1) - X*. Y + (7TX ~ 1+ 7X3 - 14X?) - X®,
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or equivalently,
Cr = 0 = 2085984 - ¥4 — 497664 - X - (1 +60- )”(2) 73
+ (1728 — 435456 - X? + 30606336 - X* — 331444224 - )26) Y2
+288% - (2011392)”(8 — 20736X° — 6048X* + 48X2 + 1) 8%
+ (20901888)?12 —17418240X 10 — 2301696 X% — 7920X* + 269568 X ¢ + 120X2 — 1) )

The codimension-one variety corresponding to G} = Zdentity is self-dual and reads:
Ce=-Y*4(2-14X +28X?) - X - Y3 + (240X3 — 93X? — 240X* + 16X — 1) - X? . Y?
= (12X — 195X* — 58X% 4+ 130X° + 144X3 — 1) - X* . Y + (2X? - 4X +1) - X'* =0,
or equivalently,
Co = 0 = —4478976 - T4 + 1492992 - X - (84)2'2 . 1) 73

+ (10368 — 1074954240X% — 746496 - X% + 31352832)2’4) - Y?

+432. X (12)”(2 + 1) : (112320)"(6 +2736X* — 156 X2 + 1) ¥

+3 (1445(4 +48%2 — 1) - (207365{8 — 34560X° + 864X % — 48%2 + 1) .

The following (codimension-one) self-dual varieties Cy = 0 are given in Appendix B for N =
9,...,15. One can easily write down these conditions in terms of the “pseudo-self-dual” invariants
X,Y in order to make explicit the self-dual character of conditions Cy = 0.

The coefficients quickly become quite large, however one can get simpler expressions and coef-

ficients by introducing:

]

. R . . Y
X —X=— Y —Y=—. 6.12
V12 V128 (612)
by

With these last invariants, conditions Cy and Cg are replaced
Cr=Vi-2% (sX2+ 1) V34 (1 —21X% 4+ 123X - 111)“(6) P2
e (4)"(2 +OTXE — 42Xt 41— 12)2'6) ¥
~1+410X2% - 55X +156X% — 111X® — 70X + 7X12,
Cs = 12X - (7)2’2 - 1) P33Pt 412 (1 — 60X - 6X2 + 21)24) P2
+6-X- (65X6+19X4—13X2+1) : (X2+1) ¥
+6- ()’(4+4)22-1) - (X'4+4X3—2)”{2+1) : (X4—4X'3—2X2+1).

In the £ = 1-limit, which corresponds to D3 = 0, i.e., X = 0, the previous finite-order
conditions Cy =0 (N = 3,...,15) read Y™ = 0. All these equations GY = Identity therefore
degenerate into:
u-{l1+u)=0, (6.13)
in the isotropic limit when x = 1. Therefore, it seems likely that no = 1 isotropic point (except
u =0 and u= —1) can belong to a finite-order condition GY = Identity for N # 3.

REMARK. All these relations are Sz-symmetric, therefore they identify with conditions GY =
Zdentity and G = Identity, and are therefore sufficient conditions for having a finite group.
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6.3. Genus of the Finite-Order Conditions

It is remarkable that all these finite order conditions are codimension-one varieties. They can
all be written!® in terms of the two group invariants X and Y. These relations between X and Y
(X or ?) cannot be obviously deduced from any further analysis of the discrete group generated
by the inversion relations. Thus, several questions pop out. Where do the explicit equations of
these curves come from? What is the nature of these curves? For instance, are these algebraic
curves P(X,Y) = 0 elliptic curves?

At least for GY = Tdentity for N = 7 (or 8), one can get some hint concerning this last question
since the polynomial is of degree four in Y:

Ag Y 44 -A)Y3 4647 - Y2 +445-Y + 44 =0, (6.14)
where the A;’s are polynomial in X. Introducing:
92 = AoAy — 4A1A3 + 342, g3 = AgA2A4 +2A1A2A;3 — AgA% — A4A? — 43,

and the discriminant:
A = g3 - 2743,

discriminant A reads for N = T:

44 A(N =T7)= X% (29376X° — 29376 X" + 16200X* — 5360X >
+ 1003X2% — 97X + 4) - (3X —1)'5.

These curves are not rational curves. Recognized in this discriminant are the two following
rational cases X = 1/3 and X = 0, namely D3 = 0 and its dual variety. In fact, using the
Macaulay algebraic geometry computing system [54], one gets that condition C4 = 0 is a genus
one curve, that Cs = 0 is a genus ten curve and that Cy = 0 is a genus 78 curve.

In the (X, Y)-plane most of these infinite sets of finite-order conditions are algebraic curves of
genus greater than one, amazingly associated with a foliation of Py in algebraic (elliptic) surfaces.

6.4. Generalization for Arbitrary ¢

These calculations can be generalized for arbitrary g. The (generically infinite order) birational
formation G, reads:

(z3z + 2197 — 312 — g+ 2) - x9 - (1 — 71 + 71237 — T3)

Xig = ,
e (x1— 2%z —(q—2) 1z + (¢ —2) + z3zsz + (¢ — 3) - T123x — (¢ — 2) - x3) - (z1 — 1)
Nog
= 226 h
Tog Dogs’ where

Nag = (1 - 3a37 — z3gz + 2337 + 2307) - 2%
+(=(g—3)-z3+(q—3) ~ (¢* ~5q +6) - 23z + (¢* — 5¢ + 6) - z3z) - 13
+(g*—4g+4) 25— (¢* - 5g+6) -x3 — (¢ —2), (6.15)
Dag = (z1 — iz — 2197 + ¢ + 2212 — 2 + 23237 + 217302 — 3Z173T — T3q + 223) 3,
1—214+z1232 — T3
T — 23z — 19T + g+ 2712 - 2 + r?231 + 717397 — 37123T ~ T3q + 223’
Nl M N2

2
Nig = (21 — 2z — 2197 + ¢ + 2217 — 2 + 23237 + 217302 — 321737 — T3g + 223) ",

T3¢ = —

where

13This is not surprising since one can show [53] that conditions G{V = Tdentity are automatically invariant by the
discrete group generated by the inversion relations.
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Noyg=11-1+4+(¢9—2) z1732 — (¢ — 2) - T3,
D1y = 22212z — gzixsz + 233737 + gzizdr — 5zi230
+ 62112z — 621737 + 71220 (6.15)(cont.)
+ 5z1T3gT — T123¢°T — xf —3z173 + T123¢ + 321 — 210 — (¢ - 2)3- :cg
+(¢* ~ 59 +6) - 23 + (¢ - 2),

Dy, = (1 — 2y + 1232 — 3) - x%z+x1qm—3$1x~q+2 .
g

Writing down the GI¥ = Zdentity relations yields calculations that are too large. However, it
is possible to get the solution for N = 3. Writing down the relations: G; = G712 on the four
coordinates again yields the two relations:

q-D3~D1-D2=O and D3=0. (6.16)

Conversely, one can easily see that Gy reduces, for z = 1, to an order-three transformation:

14q 232 -1
+q T3 2 T 1) (6.17)

.’E,l‘,m,]._>.’1],— ) 3
(1 s ) (2 T3 x1~2+q

Of course by duality, this is also the case for q- D3 — Dy - Dy = 0.

REMARK. For the Tutte-Beraha numbers the group is finite for D3 = 0 (that is z = 1) and
therefore restricted to its dual variety: q- D3 — Dy - Dz = 0. Do other algebraic varieties exist,
such that the group becomes finite for arbitrary values of ¢g? Do other codimension-one (or
codimension-two) algebraic varieties also exist such that the group becomes finite for the Tutte-
Beraha numbers? The calculations become unfortunately quickly very large.

REMARK. For z = 1, but for arbitrary ¢, it is known [10] that the group is isomorphic (up to
semidirect product with finite groups) to Z x Z. Therefore, to some extent, the z = 1 subcase
can be compared to the ¢ = 3 subcase: in both cases, the group is (up to a semidirect product)
isomorphic to Z x Z. In the z = 1 subcase, one has to introduce the J;’s in order to see it,
these J;'s being order three for ¢ = 3 (and arbitrary z), while in the ¢ = 3 subcase, it is necessary
to introduce the G;’s in order to see that the group isomorphic to Z x Z (see Section 4.3),
these G;’s being of order three when x = 1 (and arbitrary g).

7. SYMMETRY GROUP INVARIANT APPROXIMANTS FOR
SPONTANEOUS MAGNETIZATION

The previous algebraic group invariants are certainly well-suited variables to analyze the “an-
alytical complexity” of the various physical quantity one can encounter. However, most of the
physical quantities depend, in a quite nontrivial way, of various “spectral” parameters [47]. In
this respect, some “one-point functions” like, for instance, the spontaneous magnetization can be
seen as remarkable group invariant expression which should not depend “too much” of various
“spectral” parameters (whatever they are [49] ...). Of course we do not expect the spontaneous
magnetization of the edge Potts model to be a closed algebraic expression (like for the Ising
model: see 7.1 in the following). It can be seen as a “transcendental invariant” for the group.
Taking advantage of the previous analysis which singles out a “canonical” invariant (namely Ag)
corresponding to z # 1 deformations of the edge Potts mode, one may ask the following ques-
tion: is it possible, to write down the spontaneous magnetization as a (more or less involved)
function of invariants like the group-invariants Af, Z, and Io, (respectively, defined by (4.24),
(4.39), (4.49))? Is it possible to write a closed expression of these invariants which could be a
good approximation for the spontaneous magnetization?

Let us consider the ¢ = 3, £ = 1 subcase of this model. This subcase can be seen as a
testing ground for providing an example of ezact calculation using the symmetries (and various
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analyticity assumptions), but no Yang-Bazter structure. We use here the specificity of the Tutte-
Beraha numbers and of the z = 1 (no three-spin interaction) case. The calculations are sketched
in Appendices C, D, and E.

Let us first recall the exact expression of modulus of the elliptic functions occurring in the
elliptic parametrization of the checkerboard Ising model [49,55]:

k2_Hti-(l—tz)-(l—kti)'(tf+t;-t,";-t;‘)
St (=) () (- t)]

=1t

(1.1)

where the t;’s denote the usual high-temperature variable t; = th(K;), and the ¢}’s denote their
dual ¢tf = (1 —¢;)/(1 +¢t;). It is clear on (7.1) that this valuable expression, which is a key
ingredient to foliating the parameter space, parameterizing the model, finding the critical variety
(namely k2 = 1) and to actually solve the model, could have been “guessed” from the various
degeneracies of the model, namely K; = 0, K; = 0o and the disorder solutions, their (Kramers-
Wannier) dual and the action of the discrete group generated by the inversion relations. Let
us also recall the exact expression of the spontaneous magnetization of the checkerboard Ising
model [55]:

M =(1- kY8, (7.2)

The spontaneous magnetization has a remarkably simple expression in terms of the algebraic

invariant k2. When restricted to the critical condition, k% = 1, it vanishes. Furthermore, when

restricted to the “order” solutions (dual of the disorder solutions), namely ¢} + & -tr -t =0,

the spontaneous magnetization M becomes equal to 1. This can be checked formally on low

temperature resummed expansions of the spontaneous magnetization [56,57]. Both quantities M

and k2 do have the same symmetries (symmetry of the square, inversion relation symmetries,
)

It is tempting to try to generalize this result to ¢-state edge Potts models, and, in particular,
to the three-state standard scalar edge checkerboard Potts model [58], in order to get simple
closed expressions (or approximations), for instance, for the spontaneous magnetization. The
calculations are sketched in Appendix C.1 for the checkerboard lattice because this very lattice
provides a “nice” representation of the Kramers-Wannier duality, namely £ — 1/k. Unfortunately
these calculations are too naive and yield an algebraic invariant which does not suite well with
the resummed expansions (see Appendices C.2 and C.3).

Actually we will see that the honeycomb lattice (dual of the triangular one) is better suited to
address this question (see Appendix D).

7.1. Algebraic Invariant for the Honeycomb Lattice

Let us recall the low-temperature variables (3.8) and the well-known (ferromagnetic) critical
variety of the three-state honeycomb Potts model [39):

Coon®Y = 14+ (A+B+C)+2.-(BA+CA+ BC)+ ABC =0. (7.3)

The results are the following. Let us introduce the following (see Appendix D.2 for more
details) group invariant for the honeycomb lattice:

NPotts
(DPotts)s ’
Noowts = 27(ABC + AA + BC)(BCA + B + CA)(ABC + C + BA)(ABC + A+ B +2BA + 1)

X (ABC+C+B+2BC+1)(ABC+C+A+2CA+1)(A-C+B+BA+1)
Xx(C+A-B+CA+1)(C-A+B+BC+1), and (7.4)
Dpotts =1+ (A+B+C)+2-(BC +CA+ BA) — (A% + B® + C?)

kpotts = where
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— (A*+ B*+C®%) - (CA® + B?A+ C?A + BA® + B2C + BC?) + 6ABC
—2(A°B+B%A+A’C + B%C + CPA+ C®B) + 2. (B2A? + C? A% + B24?)
~3(BC?A+3B*CA+3BCA?)

— ABC - (3CA+3BA+3BC +5A% + 5B + 5C?) (7.4)(cont.)
—2ABC (CA*+ B*C + C*A + BC? + B’ A + BA® + 6ABC)

—54°B2C*C + B+ A)—2- A’B?C? . (AC + BC + AB) — A3B3C3.

Let us introduce a first approzimation for the derivative of the (low temperature normalized)
partition function, z - -f—z In(A), namely:

Der = (1 — kposs)/® — 1. (7.5)
The (resummed low temperature [10]) expansion of z - - In(A) can be written as follows:

A(C + BA)(B + CA)
(1-42)?
2 2
_A -(A"(ll);(;;t);‘lA—l).(B+C)_BC+4__(1—A;:;2)§.(B+C)3
o (B+2CA)(C+BA)(A>-5A2+A-1)(A-1)*
(1-42)*
(B+CA)-(C+BA)-A-(1+54%+24%)
(1- 4%)*

(3A% 4+ 4A4* +343 — A2 ~1) . (A—-1)®- A- (B + CA) - (C + BA) BC

(- A2)3 (1= A3)2 (7.6)

d
ZEID(A)——Q

+2

BC

+4- (B+0)?

+2-

A? 2AP+4 A5 A3 +5A2 42441+ A%) (1 — A)(B + CA)(C + BA)
' (1—42)% (1 - 43)°
(A=1)A%. (A2 —9A - 4)
(1-42)?

+4 (B+0C)?

L84
(1— A42)*
A-1)2(A-3)(4+1)43
(1-42)*
A%(C + BA)(B + CA)(44 - 5)(1 — A)?
' (1- A2)°
A%(C + BA)(B + CA) (243 + 74)
' (1- 42

(B+0O)*+2- -BC-(B+0C)?

_2.( . B%C?

+4 - BC

-4 (B +C)%

A straightforward calculation enables us to write (7.6) in terms of D, as follows:

-3 _d
5 2 - In(8) = Der - (1 4+ A+ Der + gt + ), (7.7)

where R.q has a remarkably simple expression for A = —3/2, namely:
A-(1+A—4A% 4 A3 4 A4 3

(edsh s el o ok

(1-A3) (1-43)

A- (1~ A5 5. A8 243

_ _— —— ———— 2
—(l—A)-(l—A3)2 BC - A3y BC+(1—A3)2 (B+C)~.

Rest = . (B + 0)2

(7.8)
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One should also note that invariant kpgs is built in such a way that it does vanish when one is
restricted to the “order conditions” of the three-state edge Potts model on a honeycomb lattice,
(A+ BC + ABC = 0,...). Furthermore, when one restricts oneself to the critical condition
of the three-state edge Potts model on a honeycomb lattice, kpotts actually becomes equal to 1.
Therefore, the closed expression (7.5) leads to the recovery of the critical (magnetic) exponent of
the three-state Potts model [39], 3 = 1/9, on the critical variety C3°"ey =0.

Conversely, condition kpows — 1 = 0 factorizes into this very critical condition together with
three other algebraic varieties, namely:

honey honey honey honey 2 .
kpows =1 =0 4= C5 - (€] - CJo™ ™) " =0, with

Co™ = 14+ (A+B+C)+2-(BA+CA+ BC) + ABC,

choney — ABC? +2ABC + A+ 2CA+ B+ 2BC — C? + 1, (7.9)
Cho"Y — ACB® +2BA+ A+2ABC+1- B>+ C +2BC+1,

ChoneY — BCA? — A2 1 2BA+ B +2CA + C + 2ABC + 1.

This factorization of condition kpgits — 1 = 0 is reminiscent of the factorization for the checker-
board Ising model (see equation (C.16) in Appendix C.1). If formula (7.5) is taken for granted,
one should expect a § = 2/9-magnetic critical exponent [39] on these three new varieties (7.9).

By performing a Kramers-Wannier duality [40,41], one deduces three remarkable varieties for
the triangular lattice from the last three algebraic varieties. In terms of the variable z;’s one of
these reads:

xgschf + 2x9x3T1 — mf + 2x9x1 + 22123 + 1+ 23 + 292 = 0, or
(‘1:1 +2) . (211‘21‘3 — (.’131 +:E2+l‘3) - 1) +3'(£L‘1 +1) '(1 +$L‘2+.”133) =0,

which have a remarkably simple form in terms of the rational parameterization of the z = 1
subcase of the Potts model (see (4.35)):

ug - uz +t2-u? =0, with: 6 = —1. 7.10
1

Such varieties, remarkably simple in terms of the well-suited variables u;’s are specific of the
Tutte-Beraha numbers (see Appendix E.2).

7.2. Comments on Invariant kpgiis

Since expression (7.4) seems to be particularly well-suited to “decipher” the resummed low-
temperature expansions of the spontaneous magnetization of the three-state edge Potts model
on the honeycomb lattice (see (7.8) and Appendix D.3), it is tempting to compare (7.5) to
other expansions available in the literature, and in particular to the expansions on which the
most extensive studies have been performed, namely isotropic low-temperature expansions [59,60].
Unfortunately for the three-state edge Potts model, only high-field expansions are specifically
dedicated to the honeycomb lattice [59]. From this expansion, the first coefficient of a low-
temperature expansion can be deduced. The agreement between (7.5) and this deduced low-
temperature expansion for the spontaneous magnetization is quite good (see Appendix D.4).
The largest low-temperature expansions for the spontaneous magnetization have been obtained
recently for the square lattice up to order A*” in [60]. By setting the limits C = 0 and B = A,
one can easily get from (7.5), the equivalent of (7.5) for the isotropic three-state edge Potts model
on the square lattice. For the square lattice, kpotts reads:

povare _ 27 A% (247 424 +1) - (A+ 1)f

= 7.11
Potts (1424 — 443 —24%)° (1)
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The low-temperature expansion of the spontaneous magnetization of the three-state edge Potts
model square lattice reads [60]:

Maquare = 1 g 2. % In(A) = 1 ~ 3A% — 1245 — 1247 — 36.4° — 10849
— 21041 — 4804 — 1746 A% — 2340A™® — 10566 4% — 19500A!° — 53976 A6
— 152604417 — 329424 A8 — 97130449 — 2403291 4%° — 5955576 A2! — 16858584422
— 40337376 A%3 — 110301321 4%% — 287061696 A% — 730223208426 — 1985703720427
— 5070001716 A% — 13446444720A%° — 35650214232A430 — 92442918828 43!
— 247542929499A432 — 648347258796 433 — 1713912378552A43* — 4559593914288 43%
—11991311519034A43 — 319431037151284%7 — 84599939924118 438
— 224265087762144 4% — 597511883594619A4%° — 1584231404110704A%!
— 4220295103426356 A%2 — 11234571367790256 A% — 20892611571334848 A%

— 79763126301078204A%% — 212500082474434470A% — 567062477783225940A4%7,
and the expansion of (7.5) (but for (7.11)) yields:
(1 — Kfauareyl/9 _ g - 344 _ 1245 — 1247 — 4548 — 96A4°% — 234410 — 5764 — 144642

Potts

— 346843 — 91084 — 2203245 — 57774A'S — 14400047 — 37380048 — 952128417

— 2466738A%° — 635332842 — 16509432472 — 42797448A% — 1116172144%* — 290794368 4%
— 76079574046 — 1990352736A%7 — 5221859292428 — 13707847944A% — 3605608519243

— 94917607680A3! — 2502486855994 — 660357590880 A33 — 1744686518304 434

— 4613473905696 A3° — 12211923142131 4% — 323512569279364%7 — 85779066068604.438

— 227613073998444A3° — 604434359093817A%° — 1606203980794368 4!

— 4271216035201722A%% — 11365197818350656 A% — 30260209228058898 444

— 80615490837540204A4% — 214886746688288580 A% — 573101698152234528 447 .

The difference between these two expressions reads:

9A% — 1249 4+ 24A1° + 9641 — 30042 + 112843 — 1458414 + 2532415 + 3798416
— 8604A17 4 44376 A8 — 19176 A19 + 63447A%° + 397752421 — 349152422 + 2460072423
+ 1315893424 + 3732672425 + ... .

The agreement between these two expansion is remarkablel4. For instance, if one compares
the coefficient of A%2, A28, A% A5, A39 A% and A*", the coefficients in these previous two
expansions are actually equal up to 0.0207, 0.0609, 0.0119, 0.0130, 0.0149, 0.0112, and 0.0105,
respectively.

The agreement between these two expansion is so good that it is tempting to imagine that
the Kramers-Wannier dual of (7.4} is also well-suited to express the spontaneous magnetization
of the three-state edge Potts model on the triangular lattice and that there may exist a single
expression generalizing the previous two for the three-state edge Potts model on the checkerboard
lattice. Unfortunately, the Kramers- Wannier dual of (7.4) is not a well-suited expression for
the (low-temperature) resummed expansion of the spontaneous magnetization of the three-state
edge Potts model on the triangular lattice (see Appendix E.4). The resummed expansion of the
spontaneous magnetization of the three-state Potts model on the anisotropic triangular lattice
corresponds to:

5. a In(A) = 24%C? 9 4A4CH B34 9 My - A2C?

- . .B2y = - .B¥4 “BY4...
dz (1 — A2C?)? (1 - A202)° (1—A3C3)% (1 - A202)*

141n particular when one recalls the problems encountered in the Pade analysis of the three-state Potts models.
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where
My =2A% +2C% + 6A3C3% — 8A%C? + A'C* 4 20* A% — 4A5C3 + 24808 — 447C5

+2A10C8 —4C8A% + 208 A% —4CTA® + 201048 — 2A7C% — 24507 — 2A8CC 4+ 8455
—8ABC® + 3A10C10 _ 24408 — 243C* + 20 A% + 208 4° + 2C2% A + 2C° AB + 244C?.

Another invariant seems to dominate the expansion of the triangular lattice (see Appendix E.4).
It should be quite close to the following invariant:

Yo _ _ABC-(1+4)-(1+B)-(1+0)
ane = T (ABC + (BC + CA + BA) —1)3°

(7.12)

In the case of the triangular three-state edge Potts mode, Monte-Carlo simulations have been
performed?® in order to see if the new varieties (7.10) could not be critical varieties. Monte-Carlo
calculations show that these varieties are not critical varieties with a magnetic critical exponent
given by formula (7.5) (namely 8 = 2/9), but it may be possible that these varieties could be
“special” in some way (see Appendix E.3).

Furthermore, expression (7.11) for the square lattice, inherited from the one for the honeycomb
lattice (see (7.4)) does not yield a simple representation of the Kramers-Wannier duality. The
Kramers-Wannier dual of (7.11) reads:

square (L +2A4)%(24+ A)* (5424 +24%) (A-1)*
ko™ = 3 ) (7.13)
(104 — 1+ 1242 + 443 + 2A%)

Eliminating variable A between (7.11) and (7.13) yields a quite complicated (involutive) algebraic
relation between kp... and kicy = (see Appendix D.3).

These two facts suggest, for the checkerboard and square lattices, that one should introduce,
instead of a single one, (at least) fwo invariants, one being dominant for the honeycomb limit and
another for the triangular limit. A “nice” representation of Kramers-Wannier duality probably
requires considering at least these two invariants. This could be consistent with the fact that
varieties (7.10) are not 8 = 2/9-critical varieties. This also suggests that expressions like (7.4)
are just approzimations for the dominant singular part of the spontaneous magnetization*®¢ and
have to be improved. Finally, this suggests that, even for the honeycomb three-state Potts mode,
one should be able to improve the previous results (see (7.4) and (7.7)) and get “improved”
symmetry-invariant approximations for the spontaneous magnetization.

7.3. Towards “Improved” Algebraic Invariants

In order to “improve”the invariants let us remark that the resummed expansions of the various
group invariants provide either simple 1 — A2, (respectively, 1 — AC) singularities, or on the
contrary, quite involved singularities but not the Nt* root singularities 1 — AN known to occur
in the resummed expansions of the spontaneous magnetization of the three-state (or g¢-state)
edge Potts models [10]. Actually, though (7.5) enables us to retrieve the exact critical exponent
B = 1/9, its (B, C small) expansion yields only 1 — A? singularities for the honeycomb lattice.
This could suggest that the 1— A" singularities in the resummed expansions, are not related to the
dominant singular part [13] of the spontaneous magnetization but to sub-dominant singularities.

In order to understand the occurrence of these N*® root of unity, it is interesting to consider
the resummed expansion of the partition function per site of the three-state Potts model on

15We thank J.-C. Angles d’Auriac and H. Meyer for communicating these results prior to publications.
16This situation is reminiscent of the susceptibility of the Ising model where the closed expression of Syozi and
Naya [61,62] gives the dominant singular part of the susceptibility (see [13]).
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rubber bands [6,63]. Such an example is given in Appendix F for the square lattice. The (low-
temperature normalized) partition function per site, denoted A, is one of the three solutions of a
polynomial equation:

PA)=A+Cy A’ +C1-A+Cp =0, where
Cp= n0+Cn1+Cn.2+"', n=0,1,2,

where the Cp,;’s are of order j in B. Let us introduce the (resummed low-temperature) expansion
of A:

Wa had W,
A=143-(g—1)- A2-B2+(q«1)~2mm-3“. (7.14)
n=3

1-—

One can actually understand, on this very example, that the occurrence of the singularity 1 — A3,
is related to the following relation:

3+ Cro+2-Coo = (1— A7) - (1 4%) = ;KP(A), (B=0). (7.15)

Appendix F also enables to understand that singularity 1 — A3 does not occur for W;. Since
we know that the 1 — AV singularities occur in the resummed expansion of the spontaneous
magnetization for all the values of the integer N [10], this seems to suggest that the “polynomial”
needed for a closed algebraic formula for the spontaneous magnetization is of “infinite” degree.

8. CONCLUSION

The discrete symmetry group generated by inversion relations has been analysed for the stan-
dard scalar Potts model with two- and three-sites interactions on the triangular lattice [45]. The
group generated by three involutions is seen to be generically a very large one (like a free group),
namely hyperbolic groups.

In this analysis a remarkable situation pops out for g-state Potts models for particular values
of q, the so-called Tutte-Beraha numbers [23,46]. For these values of g, some of the (generically
infinite order) generators are of finite order. However, even with such additional relations on
the generators, one still gets groups with an “exponential growth”, except for ¢ = 3 (or ¢ = 1).
Additional relations on the generators can also occur on particular algebraic varieties, yielding a
degeneracy of the group into products of Z. We have seen that z = 1 and its dual variety (4.41)
are such varieties. It would be interesting to systematically seek more examples of such varieties.

A detailed analysis of the ¢ = 3 case has been performed. For ¢ = 3 the finite-order con-
ditions for which the group degenerates into a finite-order group are found to be codimension
one varieties. In this ¢ = 3 subcase, a rather systematic study of well-suited group symmetry
invariants has been performed. It could be of some help to analyze the analytical structure of
certain physical quantities like, for instance, the spontaneous magnetization. In particular, we
have got a closed algebraic expression which is a quite good epprozimation of the spontaneous
magnetization for the honeycomb lattice.

As a byproduct, this analysis provides nice birational representations of hyperbolic Cozeter
groups as well as providing algebraic varieties having such large groups of (birational) automor-
phisms. It is clear to see that many calculations, performed on the hyperbolic Coxeter groups of
symmetries of triangular Potts models, can simply be generalized to three- (or higher-) dimen-
sional vertex models mutatis mutandis. This first analysis of hyperbolic Cozeter symmetry groups
for lattice models, including degeneracy subcases, should help a better understanding of the sym-
metries of three-dimensional models and provide tools to perform ezact calculations based on the
symmetry analysis of these higher-dimensional models.
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APPENDIX A

MORE RELATIONS ON THE GENERATORS
OF THE HYPERBOLIC COXETER GROUPS

The analysis of I'iriang can be performed directly on the J;’s. Let us now consider the Tutte-
Beraha subcases. One has the following relations between the J;’s:

J¥N=7d, i=1,2.3 (A.1)
One can easily deduce many other relations for the Tutte-Beraha numbers, for instance:
Jz = Jy-1gN-1 (A.2)

Since J3 can be rewritten in terms of J; and J3, the Coxeter group can be seen as generated by
J1 and J; [28]. Then, using relations (A.1) with i =1 or i = 2, one obtains the form of a general
element of the group:

VIR SN SN A (A3)

where ny,ngy; =0,1,..., N—-1;n,=1,2,... N-1, a=2,3,... k.

Generically, there is no further relation between the J;’s thus I' is a free group generated by
two infinite generators (let us say, for example, J; and Ja).

Introducing the well-suited transformations:

Gy = N1JsJa, Ga=JoiJs, Gz =J3JaJy, (A.4)
one can show that N = 3 is singled out, I" reducing to Z x Z up to a semidirect product by a
finite group.

At first, let us study the group, G, generated by Gi,G, and Gs. Relation (A.2) can also be
written in the following way by using relation (A.2):

JJ=JN7 Rds=JN7Y gy =JN (A.5)

then GoGg reads: o
G2Gs = (JpJ1Js)(J3JaJy) = JoJ1 J2JoJ).

Notice that for N = 3, one can use relation (A.5) and obtain:
GoGs = JoJRJ2Jy = J2J2J? = J3J2J2 T3 = JaJoJ2 1 Js = JaJoJy JadiJs = GGy (A6)

Thus, the G,’s actually commute if and only if N = 3. Furthermore, they do satisfy a relation
of the same structure as (4.2):

G1G2Gs = Td. (A7)
Let us now suppose that N = 3. A generic element of G reads:

g=GraGy, (A-8)
where n; and ny are relative integers, which explicitly means that G is isomorphic to Z x Z.

Let us now demonstrate that I' is isomorphic to G, up to a semidirect product by a finite
group. If v denotes a generic element of I', it can be written as follows:

7= (H Tz',j,k) Jrt3, (4.9)

where T} ;& = J;J;Jk and (o1,02) = (0,1,2).
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One can immedia,tely~ replace, T1 23, T331,2, and T2 3 by the identity transformation, and
T1,32 = G1, T2,1,3 = G2, T32,1 = G3. Besides, one has some kind of “pseudo”-commutation
relations between the G;’s and J;’s:

J1G1 = GoJy, J2G1 = GaJa, J3G1 = GaJa,
J1Ga = G3J, J2G2 = G3Ja, J3Gy = G3Js, (A.10)
J1Gs = Gy J,, JoG3 = G1J, J3G3 = G1J3,

then «y reads:
v =Cepay ([ Tuw) 1075 (A.11)

In fact, all the T j x’s, where {i, j, k} = {1, 2,3}, have already been replaced by “words” in terms
of the Gy’s. Thus, using relation J3 = J2J%, the only T; j x’s, appearing in (8.11) are:

Ti12=T1, Ti21=Ts T211=Ts3 T221=T4 To12=Ts Ti22="Ts.
However, it is easy to remark that these T;’s satisfy the following relations:
Ty = G3T1, T3=GGsT1, Te=GTy, Ts=GG1Ty,

and besides
T? = G?GoT4, T2=G2G,Ti, TiTs=TT;=1d

Thus, I is isomorphic to Z x Z up to a semidirect product by a finite group.

APPENDIX B
FINITE-ORDER CONDITIONS Gy =ZDENTITY FOR Q@ =3

Let us give here a list of the codimension-one self-dual varieties corresponding to G =
Zdentity. They read:

Cn=) ¢ Y'=0, (B.12)
i

where the ¢;’s are polynomial expressions in X with (relative) integer coefficients.
The codimension-one variety, corresponding to G} = Zdentity, is self-dual and reads:

Co=3-Y%— (636X +72X%) X Y5+ (4-46X +219X% — 504X° + 504X*) - X% .v*
+ (679X3 — 1842X6 — 147X? — 1842X* — 1 4 2763X5 + 18X) - X3 . Y3
+ (2394X* — 1197X° + 669X2 — 1803X°% - 123X +9) - X7 - Y?
+ (401X% — 896X* + 16X + 414X™ — 1035X° + 1239X° — 1 — 108X?%) - X®.Y
+(3X3-9x?+6Xx-1) - X =0,

or equivalently:

Co = 15479341056 - Y'® — 371504185344 - X3 . Y5
+ (26005292974085{6 — 11943936 + 464380231685(4) Y4
— 407664 - X - (5 — 1248%2 + 54432X%% + 19097856)'{8) D%

+A2(fc).ff2+ss4x.A1 (5().?“0(5() =0,



Hyperbolic Coxeter Groups 203

with

A2 (X) = 5184 — 124416 X2 — 48522240X* — 8707129344 X®
1 2020054007808%° + 1755758502.%6 — 6176257081344.X 12,
AL (X) = —112320X° — 87340032X ' + 188116992X'? 4+ 11088X* — 188X2 + 1
+ 2472394752 X — 3366144 X8,
Ao (X) = —1+36X2 — 194586624 X% 4+ 20777472 X8 + 15479341056 X '8 + 9792 X*
+ 3929554944 X 12 — 34828517376 X 6 — 822528 X6 — 19349176320X 4.

Introducing invariants (6.12), these last expressions become simpler namely:

Co=3-Y6 —7295X3 14. (126)‘(6 27X~ 1) .y
—2X. (378X'4 +5-104X2% + 921)‘(8) P3
+3 (196X6 ~ 65X — 399X12 4 1566X1° — 2%2 41 - SIXS) p?
+2X . (-475{2 —487X% +231X* 4+ 3 — 195X% + 207X — 1053X1° + 189X12) Y
+3X2%-1-476X5 — 782X 4 1002X® + 1316X% + 3X1® 4+ 68X* — 540X 4 — 81.X16.

The codimension-one variety corresponding to Gi° = Zdentity is self-dual and reads:

Cio=Y%+(3X -1-6X?%)-X Y54 (255X2 — 85X —255X3 +10) - X3.v*
+ (—1185X* — 300X? + 800X> + 60X + 790X° - 5) - X*.Y?
+ (4506 X° — 17X — 4013X° 4 2055X* +1 — 2253X" + 136X” — 660X°) - X° . Y?
+ (868X° —95X2 — 685X * + 264X " + 330X° — 660X° + 15X —1) - X® .V
+(1-3X+ X% X% =0,

or equivalently

Co = 5159780352 - V¢ — 2579890176 - X - (12)2’2 + 1) B %
+ (14929920 —1612431360X2 — 1315743989760X° + 109645332480)24) 2%
+ 2488320 - (125(2 + 1) : (1365125{6 — 9648%4 + 156X2 — 1) P8
—1728- (6727421952)"{12 +5 —792X% — 350853120X 1% — 2592000.X°®
+ 62640X% + 36391680)"(8) P24 1152% - 0 (X) : (12)‘(2 + 1) 5%

+ (17285(6 +1584%% — 60X2 + 1) g (X) =0,

with

X\ = 2985984 X 12 — 12441600X1° + 311040X® — 158976 X° + 11376 X* — 216 X2 + 1.

AL (X) = 0853747212 + 28366848X1° + 62208 X8 — 152064X° + 6192.X% — 120X2 + 1,
X (X)
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Again in terms of invariants (6.12) this reads:
Cro= V5 —6X ()‘(2+1) 7o +5(1 - 51%°—9X% 1 51X%) . 74
+10X - (X'2 + 1) : (79)26 — 67X +13X2 - 1) P8
n (-2253)‘(12 — 1755X® — 5+ 66X2 + 1410X 10 + 1500%° — 435)”(4) P2
8%, (33)212 +114X10 + 3X8 — 88X° + 43X4 — 10X2 + 1) - (X’Z + 1) ¥
+ (X6+11X4—5X2+1) : (X"" —6X% —7X* —4X3+7X2+2)“(—1)
x (X6+6X5—7X4+4X3+7X2—2X—1).
The codimension-one variety corresponding to G}! = Zdentity is self-dual and reads (B.12) with:

co = —1,
cg = 2n — 26X2% + 52X3,
cs = 1098X° — 6X? — 441X* — 1098X° + 82X3,
cr = 9462X° + 9432X7 — 14193X® + 4X3 — 3482X° + 742X° — 85X4,
cs = 29X° — 5800X® — 10785X 0 + 10729X° — 317X — 2955 X 12 + 5010X ! + 17967 — X*,
5 = 450007 X2 — 36 X7 — 8300X° — 183756 X! — 701604X 13 — 254088 X 15 + 635220.X 14
+ 819X8 + 48942X 10
ca = 96392X1% — 905355X 17 — 1181576 X5 + 9X8 — 238X9 — 31560113
+301785X '8 — 20390X 1! + 1306971X 16 + 2852 X0 4 728500X 14,
c3 = 107428 X — 416364 X2 + 2469751 X' — 359872X 15 + 1457274X2° — 24116X 13
+3951X1% — 1756987X 17 + 31X0 + 915917X 16 — 446X 11 — X° — 2406174 X°,
c2 = 3921X'7 — 23425X 18 — 376065X 2% + 221796 X 23 — 221400X2° — 55449 X %
+ 362881.X21 — 378X16 + 88794 X9 + 16X 13,
c1 = 1834X"° — 23859X26 4 71812X2% + 52821.X25 — 279X18 _ x16
+ 25X 17 — 48670X 2% — 74438 X2* + 5302X %7 + 23358 X 21 — 7891 X2,
co=—X% 4 11X% — 44X% 4+ 77X%® 55X + 11X30,

The codimension-one variety corresponding to G2 = Zdentity (B.12) with:

cg = —2,

cr =6X —38X2% + 76X3,

ce = 1088X° — 449X* — 1088X° + 88 X3 — 7X?,

cs = 9310X° — 79X* + 9120X7 — 13965X° + 684 X5 — 3278X° + 4X3,

cq = 30X° —93939X10 — 406X° — 15416 X8 — 52838 X12 4 48070X° + 3164X7
- X4+ 105676 X1,

c3 = 3076X° — 81979X 12 + 106594.X 13 — 13977X 0 — 421 X8 + 41512X 1! — 86080X 14 — X8
+32X7 4 3443215,

cz = 1692X ™ + 88472X 1% + 24X° — 53463X 14 — 7428 X2 4 7053017
— 100506 — 260X ° + 23314X 1% — X8 — 23510X8,

c1 = 20X - 2849X%0 4 814X2! 4 5144X'7 + 848X15 — 173X 14 — 2504 X16 — x12
— 6661X'8 4+ 5544 X9,

co = x22 + X2 _4X2,
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The codimension-one variety corresponding to G1* = Zdentity (B.12) with:

c14 = 1,
c13 = 22X% —4X — 44X3,
c12 = 6X2% —46X3 +131X* + 166 X6 — 166X°,
c11 = 19166X° +16920X7 — 28749X8 — 9X* — 4870X° + 630X5 — 4X3,
c1o = —376735X 12 — 2061X5 — 102535X8 4 753470X ! + 332081X° — 662045X 10 4 89X 5
+ X% +19408X7,
co = 179240X° — 5677671.X 1% — 84X° — 7084940X 14 4 2172X7 — 828356 X 1° + 2618872 !
+ 2833976 X 15 — 255308 + 8163172X 13,
cg = 36X7 — 25841583 X1 — 3595995 X 1% + 42698208 X 1% — 1116 X% — 4850215216
— 140616 X 10 4 11259027X 13 + 840420X ! + 34213977X17 — 11404659X*® + 16016 X2,
cr = 62366 X1 — 255092649X 18 — 474376X 1% + 2669814 X 1% 4+ 43023480X 2! — 9X®
— 150582180X2° — 95144007X 16 — 5741X'0 4+ 331X° + 37645872X 1° + 248402658 X 19
— 11431638 X 4 181864551X 17,
s = 468445155 X% — 375453015X%2 + 107275X 13 — 48164520X %4 + X° 4 884x 1!
— 16596807X 1 4- 54132501 X 17 + 273496776 X% — 414599493 X 20 4 192658080.X %
— 745487X 14 — 138078891 X8 — 11557X 12 — 43X 10 4 3984560X 1%,
cs = —4216X 15 — 23246946 X1° + 912409755X 24 — 685515X 17 — 716767191.X2°
— 76780498X27 — 797360400X2 4 120X — 239693730X2! + 68625X 16
+ 505814490X %2 + 85879152X % + 4691515X '8 + 345512241 X2
cq = 4790014 X %0 — 160266120X % — 19969205X 2! + 64161465X %2
+ 311586450X 2% — 10627X 17 — 463526472X 27 — 468914811X 2 4 22887455 X230 — 16X15
+ 285221689X %8 — 114437275X%° — 869740X'° + 115599X 18 + 539368809.X 26 + 60416,
c3 = X% - 9546 X% + 30033130X 24 4+ 70613026 X32 — 187554800X3! 4+ 791X18
— 1283873233
— 76069635X%5 4 157330983X20 — 41 X7 + 360982362X %8
— 388448166 X 20 + 318744046 X0 — 265247394X 2" — 9639880.X%3 + 80811.X2°
+ 2490950X %2 — 510070X 2,
o = 12740149X33 — 4697117X30 — 527066 X3¢ + 84186 X%7 — 12970962X 32 — 456030X %
+9220752X 3 + 3162396X35 — 10326 X 26 — 8271495X 34 + 1728297X%°
- 25X 4 756X %5,
c1 = 17524X3% 4 980925X33 — 3735X%8 4 X5 — 31X 20 4 438X?%7 + 263504X3! + 21456X%°
—87768X3° — 113906.X 38 + 1155490X 35 — 780578 X3¢ + 370214 X3%7 — 1242823 x34
— 580817X32,
co = +182X40 4 13X4%2 — 91X* — 156X + 65X38 — 13X37 + X36,

The codimension-one variety corresponding to G}* = Zdentity reads:

c1z =1,

c11 = 33X2% —5X — 66X3,

c10 = 2091X% + 10X2 + 820X — 2091.X°% — 146X 3,
cg = 51360X8 — 2295X5 — 10X3 — 33080X7 + 11575X° — 34240X° + 240X¢,
cg = 88200X8 — 548064 X! + 274032X 12 + 495978 X0 + 5X* + 2513 X6
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— 181X°% — 262710X° - 18984X7,
cr = —T6615X° — 2808084 X% — 981498 X! + 11998 X8 + 61X% — X5 — 1176 X7 — 95335216
+ 329343 X% 4+ 2027148X 12 + 2383380X 14,
cs = 533918X 12 — 4675440X 1% — 3080X° — 3253383 X 17 + 3128625X 14 + 24990X 10 — 87
— 137046 X" — 1512021 X3 + 231.X8 4 1084461 X 18 + 4872273 X6,
cs = 9069711X 16 — 17768520X 17 — 248101 X '3 + X® + 44870X 12 —~ 6076 X! + 1551135620
~ 25335870X° + 581X %0 4 1058345 X1 + 25532766 X 18 — 3518896X 15 — 35X°9
— 4431816 X2,
cq4 = 8031600X % — 9501450X%° — 1330735X '8 + 4278750X 1 — 120X 4 + 282775 X 17
+ 14352285X %! + 3240X1° — 39345 X 16 — 14064945X %2 — 2007900.X 24,
c3 = 2264885X 2" + 16 X% + 378374X?7 + 239790X 1 + 5816880X 2% — 5670600X 24
+ 3856071.X%
— 1702683X 2% — 870000X%° — 46285X '8 — 458X '6 _ 4268865X 2 + 5949X 17,
ce = 31X — X% — 1656115X2* — 329065X 22 + 2594400X%° — 23132X2° — 159531 X3°
— 3167946 X %6 + 2921346 X%7 — 443X '8 4+ 100465X2! + 3870X 19 + 797655X 2
— 1915618X 28 + 833240X 23,
c1 = 280X%3 — 1855X2 — 66535X3C + 52220X 27 + 34496 X3! + X 2! — 24395X 26 4 87155X29
—11517X32 — 79950X 28 — 25X 22 4 2094X33 4 8085X 25,
co=+X% — X33 _6X% 4+ 5Xx34.

The codimension-one variety corresponding to Gi° = Tdentity reads:

C16 = —9,
c1s = 290X3 - 145X? + 25X,
c14 = T125X5 — 3045X4 + 630X3 — 55X2% — 7125 X8,
c13 = 9443X° — 417416 — 1211.X* + 108766X° + 109872X 7 — 163149X8 + 70.X3,
c12 = 97320X7 + 2448680.X ! + 1323X° — 56X * + 1207988 X° — 14635X° — 421235X8
—1224340X 1?2 — 2236919X 10,
c11 = 678039X° + 8680056.X 15 + 12452 X7 — 111989.X8 — 17991363X 12 — 21700140.X 14
+ 8592370X ! + 25307166 X 13 — 853X° + 28X° — 2870244 X 10,
c1o = 89817464X 15 — 469562X 10 4 61854.X° + 301X7 — 95397318 X 16 4 2520133 X 11
~ 9815259X 12 — 5496 X8 — 21548015X 18 + 64644045X 17 + 28080170X '3
~59010131.X1¢ — 8x8,
co = 350898976X 18 — 12832X10 4 1643388 X 13 + 992X 9 — 13544232X'5 + X7 + 251206109.X2°
—45X8 4 73140264X 6 — 71773174X % — 541988 X 12 + 104413 X1 _ 388667984 X 1°
—201684145X 17 — 1229013 X4,
cg = 3563999094X2° — 412X 4 86208330X 16 — 2128340448X ' — 1988008992X 23
—242475X 12 4 958395375 X 18 — 4377674070X % — X0 — 16979532X 15 — 329227860.X 17
+ 3737407239X 22 + 14823X'? + 497002248 X %4 + 2442285X 14,
cr = 105X 1% — 549761134X%" + 2473925103X 26 — 4005X 13 + 72131.X 14 — 813468 X 15
— 3510271851X 2! — 588891036X 1% — 5443027605X 25 + 7716287679X 2% + 168476936 X8
+ 5961316803X 22 — 7821106908 X 23 + 6422415X 6 — 37590360X 17 + 1619651049X20,
ce = 19904754327X 26 — 15X13 — 840610922X 2! + 992243662X30 + 11914238576.X28
~ 12843 X5 — 55750129X 19 4+ 240297445X2° + 164818 X% + 10350804.X 18
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+ 10743198954 X 24 — 1503457X 17 — 18227502951 X %7 — 5631133635X23
— 16487353161X 25 + 2404443576 X %% — 4961218310X%° + 635X 14,

cs = 8778582X %0 — 27448399922 X2° 4 199877136X 22 + 22417411968 X% + 2159640588 X 2*
— 5388866436X2° 4 1072X 6 — 1358539.X1° — 18778235985X 27 — 13134426396.X 3!
~ 897364830X 3% — 719793207X % + 11118193815X 2% -+ 4935506565.X 32 — 46125999.X 2!
—15754X 17 4+ X — 47X 4 25572366009X % + 167097X 18,

cs = 1077500X %% — 982X — 125600532X %5 + 1870397532X 3¢ — 1065255286.X27 — 139693 X 2
+ 5684483477X30 — 6416078038 X3! — 3818595163X 3% + 13802X20 + 31826207.X 24
— 607816272X 3% — 4017479622X % — 6539598 X 23 4+ 2293042980 X 28 4+ 10130271236
+ 567148699032 4 45X 18 4 40444639226 — X7

c3 = 47841314X % — 43X % 4 859026789 X2 + 3452857X 26 + 9339608238 — 664178 X 25
+ 2962458493 — 14287286 X 27 — 11090X %3 — 554173054 X3! — 969339604 X3
+ 872X2% + 632198614.X3¢ — 131110277X% — 1099890449X33 — 30090505037
— 14368628 X3 + 99226 X24 + X0 4 1152423789X3¢,

cp = 1728951 X% 1 31X%° 4 4761X3! + 8897265X37 + 9214176 X3° — 246993 X 42
—5301420X % — 520055440 — 10811551.X38 — 763250.X 3¢ — 34588.X32 4+ 187480.X33
—474X30 _ X728 | 93929805X35

c1 = X3! - 58804X36 4 3230X° — 3001.X3¢ — 24225 X4 — 234815X42 4+ 410594 X4
+ 93258 X% — 514154 X0 4+ 381.X3% 4 15807X35 + 470232X3° — 317671X8 + 159098.x37
—29Xx32

co = —8X% 4+ 14X _ 7X%5 4 x4 4 x48,

In terms of the “pseudo-self-dual” variables X =1/6 — X and ¥ = 1 /54 =Y (see (4.34)), these
finite order conditions, respectively, become:

Cnoc—3- 70+ X (156%% 1) 7%+,
C~'120<~6-3~’8+)~('(228X2—1).}7’7_;_...,
C~'130<3'1~’14—)~(-(132X'2+1).}713+...7
5’140<2-1712~)?-(132)2’2_1).1711+...,
(715“*6-17164—)?-(1+348X‘2)'Y’15+-~-.

In the isotropic limit, these conditions yield fairly involved expressions. For instance, condition
G§ = Zdentity reads:
u24x9 + (u24 . u21 + 3u22 _ 12,“23) :1:8
+ (63u®? — 9u®® — 12u?® + 3u!® — 1202 + 4u!® - 41%) 27
+ (165u'® + 54u® — 4u'® — 175u®! + 3u® + 9u® — 9508 + u1? — 42u20) 2°
+ (6u® + 13u'® — 620u!® + 1984 4 6ul! — 15u
+ 267u’” — 13u'? + 393u'® - 108u?! — u?) °
+ (744u'” — 1063u'® + 600u'® + 8142 — 4500 + 1350 + 12313 + 14u° — 01618) z*
+ (60u! — 69u'? + 210u'?) 2
+ (807ul® + 789u'7 + 360u'® — 35u® + 78ul® — 2730u!® — 63ut + 2707 — 279u!? — 387u ) o3
+ (—378u’® + 1899u¢ — 4ub) 23
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+ (633u° — 2618u'® + 999u'® + 2154u™ + u® + 720u® + 48u® — 6u® + 2607u — 1242u°) 2?
+ (—3u* — 3722u1? — 186u” + 579u!?) z?

+ (10477 + 306u'® — 1 + 2880u'® — 94u® + 6u + 34950 — 4982u'? + 309u* — 415u8) =

+ (—1618u° — 294u’ — 624u™* — 6u®) z

— 78u* + 3 + 120u? + 1578u® + 996u° — 30u — 1781u® — 203u° + 2880u!°

+912u7 + 224u'? — 1248u!? — 3374° = 0,

which, within the z = 1 limit, gives:
2-(u+1)% (-1 =0
Another example is condition G§ = Identity which reads:
v (ut1)-2?—ut (143 u) 2 +1-2u—u?+4u® =0,

together with a polynomial relation of degree 16 in z, 42 in u which corresponds to the sum of
310 monomials and G}° = Zdentity reads:

z?u® — 3u82® + (u® - 8u® +3u? —u? +8u8) -z + (1 - 3u+u? + Tud — 9u? + 2u5) =0,

together with a polynomial relation of degree 24 in z, 63 in u which corresponds to the sum of
695 monomials.

APPENDIX C

TOWARDS ALGEBRAIC INVARIANTS FOR THE
THREE-STATE CHECKERBOARD POTTS MODEL

C.1. CHECKERBOARD MODELS

Since, in the following, one considers low (or high) temperature expansions, let us introduce
the low temperature variables:
1
A=t gt -1 p_1 (C.13)
i To Z3 T4
The checkerboard Potts model {without magnetic field) is self-dual with respect to the Kramers-
Wannier duality [40,41,55] which reads

1-A4 I — 1
A— A* = = . C.14
1+(g-1)-A =z14+g-1 ( )
The modulus of the elliptic function of the checkerboard Ising model:
4 * * * *
i (L—te) - (L+t:)- (8 +85 -t - t}) (C.15)

k% = ,
,I;[ltf'(l—t?)'(1+tf)'(ti+tj'tk-tz)

reads (after simplifications) in terms of the low-temperature variables:

k2 = %, where
k

Ni =16-(A+ BCD) - (B + ACD) - (C + BAD) - (D + BCA),  and
Dy =(~1—-BC — AC — BA+CD + BD + AD + BCAD)

x (BC —1+ AC — BA+CD — BD — AD + BCAD)

x (BC —1— AC + BA—CD + BD — AD + ABCD)

x (=1 — BC + AC + BA— CD — BD + AD + ABCD).
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Remarkably condition k? — 1 = O factorizes the well-known critical condition of the model
(Fgcte = 0) together with three other varieties breaking the Cy, symmetry of the square of the
lattice:

_ Felxcto . (F?cto . F;cto . Fgcto)
Dk ’

Fast® = ABCD — (AD + BD + CD + AC + BC + BA) + 1,

F2%° = ABCD+(AD + BD +CD + AC + BC + BA)+1-2-(AD 4+ BC), (C.16)

Fa%® — ABCD + (AD+ BD +CD + AC + BC + BA)+1—-2-(AB + CD),

F3° — ABCD + (AD + BD + CD + AC + BC + BA) + 1 —2- (AC + BD).

It is important to note that the set of these three conditions F2°° = 0, (i = 1,2, 3) is stable
by the two inversion relations of the checkerboard Ising model, and that these three additional
varieties are also critical.

It is tempting to try to generalize a pattern like (C.15) to g-state Potts models. However, the
analysis of the successive images of the disorder solutions under the (infinite) discrete group of
birational transformations, generated by the inversion relations for the g-state edge checkerboard
Potts model [25], shows that one gets an infinite number of such image varieties!”. In order to
avoid infinite product expressions for a tentative substitute of k2 (see (C.15)), it is necessary to
restrict oneself to Tutte-Beraha numbers. Taking into account the remarkable properties of the
Euclidean subcase ¢ = 3 (see Section 4.3), the three-state standard scalar edge checkerboard Potts
model, pops out as a good candidate for building the equivalent of the algebraic expression k2,
and hopefully, get exact expressions for the spontaneous magnetization.

k21 where

Checkerboard Potts Model for ¢ =3

Let us restrict to ¢ = 3. Let us first of all, consider a polynomial @ which is the product of
the four disorder conditions:

Q=(ABCD+ BCD+ A)-(ABCD + ACD + B) (©17)

x (ABCD + BAD + C) - (ABCD + BCA+ D). ”

Denoting Q1, @2, Q12, @21, and Q21 the algebraic expressions corresponding to the action of:
L, I, - Iy, Is- Iy, I - I - I with:

1 B 1 D .

11. (A,B,C,D) e (,/_4-,—(14-3)’5’_(1 +D)), (‘u18)
A 1 c 1 .

Iy (A,B,C,D)—*(—(1+A),—B~,—(1+C),B) ('u.].g)

One can see that the product of the action of the whole group (generated by the two inversion
relations of the checkerboard model) is actually equal to the product Qproq = Q- Q1 - Q2 - Qi2 -
Q21 - Q121- This new product happens to be a perfect square. If one introduces the square root
of Qprod; it reads Geheck = Neheck/Deheck Where Neheck and Deheck read:
Neheek = (ABCD + BCD + A)- (ABCD + ACD + B) - (ABCD + BAD + C)

x (ABCD + BCA+D)-(BD+BAD+C+CD + BC + BCD)

x (BD+BCD+ A+ AD + AB + BAD)

x (AC+BCA+D+CD+ AD + ACD)

x (AC + ACD + B+ BC + AB + BCA) (C.20)

x(BD-1+CD+ AD+ ACD + BCD + BAD + ABCD)

x (BD-1+BC+ AB+ BCA+ BCD + BAD + ABCD)

x (AC-1+CD+ ACD+ BC+ BCA+ BCD + ABCD)

x (AC -1+ AD+ ACD + AB+ BCA+ BAD + ABCD),

17With the “awkward position” that the partition function is a multivalued function with infinite valuation [26).



210 J.-M. MAILLARD

and
Depeak = ABAC*D* - (1+ 4)*-(1+ B)*-(1+0)*- 1+ D). (C.21)

Let us denote G* the (Kramers-Wannier) dual expression of Geheck- In order to have a nice
representation of the Kramers-Wannier duality [40,41,55] (like for the checkerboard Ising model:
k% — 1/k?), one can introduce the following ratio:

. Gcheck . . __
=g, withG =%, (C.22)

where the denominator Dg- and the numerator Ng-, respectively, read:

Dg-=(2+ A - 2+B)*-(2+C)*-2+D)* - (4-1)*
x(B-=1'.(Cc-1)* (D-1)* (1+24)*-1+2B)* (1 +20)*-(1+2D)?, and
NG' =312'Nl‘N2‘Na‘N4'N5'NB'N7‘N8‘N9'NIO'N11 -le,

with, for instance,

Ny =-1-2BCD+ ACD + BAD + BCA
—2CD -2BD —-2BC+ AD + AB + AC + 3ABCD.

Algebraic expression G is invariant by the group generated by the two inversions (C.18) and
(C.19) of the checkerboard model. Note, that G is not symmetric under the whole group Sy of
permutation of (A, B,C, D) but only (as it should) under the symmetry group of the square Cy,.

Let us now consider the two polynomials:

8=(1-A)-(1-B)-(1-C)-(1-D) and T=(1+2A4)-(1+2B)-(1+2C) - (1+2D),
as well as the following polynomials:
U=(1+A4)-1+B)-(1+C)-(1+D) and R=ABCD.

Let us denote ST their product. The product corresponding to the action of (C.18) and (C.19)
on ST, (namely the product Py = H - Hy - Hy - Hy - Hay - Hi21) happens to be exactly equal
to Psy = S*T*W*/U%/R*. Let us introduce, as a multiplicative correction term, Cg equal to
Psr/3%4. Expression Cg is, by construction, invariant under the group generated by the inversion
relations. One now introduces, instead of G, a new algebraic expression:

= —— =3 . = .
G1 Co Por (C.23)
We get the remarkable property that the critical condition of the ¢ = 3 checkerboard Potts model,
namely [56,57]:

T122T3T4 — (T1 + T2 + T3 + T4) — (122 + T123 + T1T4 + T2T3 + Ta2Tq + T324) =0,
or
1-(ABC+BCD+ABD+ ACD)~ (BA+CA+AD+ BC + BD + DC)} =0, (C.24)

reads in terms of invariant G;:
G1 =1 (C.25)

Note that G, on the contrary, is not equal to 1 on the critical condition (C.24).

The algebraic expression G, satisfies all the symmetries of the spontaneous magnetization (per-
mutation symmetries of the three z;’s, inversion relation, duality ...). It vanishes on the disorder
conditions (and its inverse vanishes on the “order” conditions) and becomes equal to 1 on the
critical variety. It can thus be seen, as first glance, as a generalization of the Ising modulus of
elliptic functions (C.15).
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C.2. RESUMMED EXPANSIONS
FOR THE CHECKERBOARD
POTTS MODEL

The resummed expansion of the partition function of the checkerboard g-state Potts model, in
the presence of a magnetic field, reads [10,25,56,57] (denoting z the fugacity):

BX+D BX? 4 D)?
() = (g - 1) - PEEPI oy g (BXEDY)

(@—1) (A22%+ C22% +242C%2%) (BD + BY + DX)?
e 1~ A2C24)

(@—-1)(g—2) ACz?(A+C +24%C?:2) (BD + BY + DX)?
* 2 ' 1 A3C324

(g—1)(g—2)* ACz(2BDX) + ACz (B2X? 4+ D%)?))
T2 (1 - A2C77) (C.26)

(g—1) [ (A2C%:2 - 7). AtC4A 4 4

. (B*+D

T ( (1 - A2C272)° (B*+ D7)

2 (1 - A2C222)°
(g-1)? ((5+A47C%7) (1+24°C%2%) - A2CP2BPD? |
2 (1 - A2C2:2)°

C(@-1)? ((8 +4A2C22%) A3C32% - (B3D + BD3)>

with
_ ACz-(D+ ABCz) _ACz-(B+ ADC?z)

A= 1— A202;2 1 - A2C2;2
and where the A, B, C, D denote the low-temperature variables (C.13). Performing the derivative
of (C.26) with respect to z, one gets:

and Y

(C.27)

(ACz - (B? + D?) (1 + A%C?z?) - BD)
(1— A2C222)°
AtCe
+2-(q—1)-(q—2)-——-—(1_A202z2)3
A20252 . (14 A%C?2% + A3C32° + 3ACz)
(1 — A2C222)°
+csa- (B*+D*) +c13- (B3D+ BD?) +cpp- B2D* + .

z- dgz-ln([\) ={(q—1) - ACz
(B*+ D?) (C.28)

+(g-1)-(g—2)-

.BD-(B+ D)

The derivative of (C.28) is nothing (up to a multiplicative factor) but the magnetization minus
one. Recalling the “order” conditions (see Section 3.3), let us introduce the product of the two
“order conditions” (see [13]):

P=(D+ABCz+ (q—2)- ABCDz)(B + ADCz + (¢ — 2) - ABCDz)
= (1+ A*C?z%) - BD + ACz - (B* + D?)
+(g—2)-ACz-(1+ ACz) - (B*D + BD?)
+ (g —2)%- A%C?*2% . B*D?

(C.29)

The “order conditions” are such that, restricted to them, the (low-temperature expansion of the)
magnetization becomes formally equal to 1 [13). Actually, at this order, one can verify for (C.28):

d
z-—In(A) = P-H, (C.30)
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where H, at this order, reads:

_ (g-1)ACz | 2-(q—1)-(q—2) A3C32®
T o) (1 — A2C272)3 (B+D) (C.31)
+Hy-(B*+D?) +H;-BD+---.

At this order, relation (C.30) corresponds to the following relation between c;3, €44, c22:

(1 + A4C4z4) (1+ A%2C%2?%) (g—1)-(qg—2)243C33 . 2ACz - 1)
5 A2.a ) M T T - +c22=0.

A20222 ACz c1s (1 — A20222)?
The expressions of Hy and Hj in terms of ¢13, c44, and cgp read:

C44

(1+ A%C%:7) 2(g — 2)2A4%C*24 (1 + AC2)(¢—-1) 1
= A_Cz’ . " Caa— :

H )
2 ACz (1 - A20222)° ACz

Hj3 =c34 ~

The expressions of ¢13, cqq, and cge are quite involved, and therefore, will not be given here.

C.3. REMARK ON THE IMAGE OF THE
ORDER CONDITION BY THE INVERSION
RELATIONS FOR CHECKERBOARD MODELS.
RESUMMED EXPANSIONS VERSUS
ALGEBRAIC INVARIANTS

In the numerator of G; (see (C.20)), the image, by the inversion relations, of the four “order”
conditions, read, respectively,

BD+BCD+A+AD+BA+BAD=0 and BD+ BAD+C+CD+ BC+ BCD =0,

together with six other algebraic varieties. Among these varieties the previous two are compatible
with the (low-temperature) resummed expansions of the checkerboard model (namely B and D
small).
BD-(1+0C) BD.-(1+ A)
(1+B)-(1+ D) (1+B)-1+D)

In fact, when one substitutes {C.32) in the resummed expansion (C.28), for z =1 and ¢ = 3,
one does not get zero (as one could expect from a naive interpretation of the automorphy property
of (C.28)). In fact, if the spontaneous magnetization can be as a automorphic function of several
complex variables with respect to our discrete group of birational transformations [10], it is a
maultivalued function [25] with a very complicated covering. Furthermore, if one considers the
(anisotropic) triangular limit of invariant G;, namely Gi"*"¥, this expression is not invariant
under the permutations of zi,xza,T3.

One also remarks that the (B, D small) expansion of G, is paradoxically more involved that
the resummed expansion of the spontaneous magnetization (see (C.28)). In particular, the ra-
tional expressions occurring in the resummed expansion of the spontaneous magnetization only
have Nt* roots of unity 1 — ANCYN, while the rational expressions in the (B, D small) expansion
of Gy paradozically have much more complicated denominators. Unfortunately, all the “correct-
ing” terms by which one can multiply G;, cannot easily change this situation, suppressing the
“unpleasant” singularities in (C.22) and replacing them by “nice” N*! root singularities of (C.28).

In fact, even an “improved” G; is probably not sufficient enough to describe the resummed
expansion of the spontaneous magnetization ((C.28) for z =1 and ¢ = 3).

In the following we will try to clarify this point considering two limits of the checkerboard
Potts model: the triangular model and, more particularly, namely the honeycomb model (and
more precisely the algebraic invariant built from product, over the group, of “order” varieties),
which seem to correspond to less analytically “subtle” situations.

A= and C =

(C.32)
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APPENDIX D

TOWARDS ALGEBRAIC INVARIANTS
FOR THE HONEYCOMB POTTS MODEL

D.1. SPONTANEOUS MAGNETIZATION FOR Q-STATE
EDGE POTTS MODEL ON THE HONEYCOMB LATTICE

In the Ising case, one has for the spontaneous magnetization of the honeycomb lattice:

M=(1-k)"", wherekfz:16'(1+ABC)‘(;4+BC)'(23+AC)'§C+AB)'
(1-4%"-(1-B2)"-(1-C?

For arbitrary g, the relation between the spontaneous magnetization and the derivative with
respect to z of In(A) reads:

q d
1 g ). (D.33)

d g-—1
ady | =1 . 1_ =1—
z n(A) p (1-M) or M=1

Taking the C' = 1 limit'® one gets the equivalent of expansion (C.28) for the three-state honeycomb
Potts model:

. C 4. 3
e Lm(h)=(g-1- 2 <C;’i*‘;§f; A)+2‘(q--1)-(q—2>-AT(_BTf2)?—
A?.(A-1)-(A2-44-1)-BC-(B+C)
+(g-1)-(g—2) (= Ay
A-(2A* 4+1+5A%) - (B+CA)- (C+ BA) - (B +C)?
3 _5A2 —1)-(A-1)3. CA) - (C .
+(q_1).(A 5A2 4+ A1) (A(ll_)Az()f+ A).-(C+ BA)- BC (D.34)

A (245 + 4A% + 543 + 5A% 4+ 24 + 1 + A%) (B + CA)(C + BA)(B + )2
(1-42)%.(1-4%)%. (14 4)
2. (14 A% —345 - 44% - 343) - (1~ A2). A- (B+CA)-(C+ BA)- BC
(1-42)%.(1-A43)%.(1+A)
-(A—1)-(A-3). B%C?
(1- A2)°

+2-(¢g-1)-(¢-2)

+{g-1)-(g-

6 4
+3.(q-1)- -2 AL
2)2‘A4~(A—1)-(A2—9A—4)-(B+C)2‘BC

(1-a%)?
12 A?. (24% 4+ 74) - (C + BA) - (B+CA) - (B +C)?
(1-42)*
—(g—1)- Az-(5—4A)-(A—l)z-(C+BA)-(B+CA)~BC.
(1- A2

+(q—1)~(q~2)2<143

+{g-1)-(g-

D.2. SEEKING FOR INVARIANTS
FOR THE HONEYCOMB LATTICE

Let us first recall the two invariants of the triangular lattice. Written in terms of the low-
temperature variables (C.13) invariants Y in (4.33) and (4.37) read:

triang __ _ (1+A)(1+B)(1 +C)BCA
Y (BOTCA+BA—1+Bcap (D-35)
pptriang _ _=1=2:(A+B+0) — (BC+CA+BA) + BCA (D.36)

BC+CA+BA—-1+BCA

18 And replacing D by C.



214 J.-M. MAILLARD

Resummed expansion (D.34) has to be compared to the Kramers-Wannier dual of (D.35) and
(D.36) together with an invariant originating from product of “order” varieties denoted Proq:

P .
Prod =2 %, with (D.37)

Pp=(-1-C—A—B+BCA)® (—1+ A+ B+C+2(BC+CA+ BA)+ ABC),

and

=(BCA+A+BC)-(BCA+ B+ CA)-(BCA+C + BA)
x (BCA+A+B+2BA+1)-(BCA+C + B +2BC +1)

D.38
X (BCA+C+A+2CA+1)-(A—-C+B+BA+1)-(C+A-B+CA+1) ( )
x (A-C—-B—-BC-1).
Let us introduce the ferromagnetic critical variety of the honeycomb lattice:
choney = _142.(BC+CA+BA)+(A+B+C)+ ABC =0. (D.39)

One notes that Proq has a (C(')“’"ey)‘3 singularity. One immediately verifies that Pioq is invariant
under the honeycomb inversion relation:

-A 1 -C
(A,B,C) —_— (m, —B-, ﬂ—a—) . (D.40)

One notes that this invariant cannot be obtained from the one on checkerboard Potts model
(namely G;) since the honeycomb limit of this invariant gives an expression which is not Sz
symmetric (see Appendix C.3).

The Kramers-Wannier dual of (D.35) and (D.36) read, respectively,

(C+2)(2+B)(A+2)(A-1)-(C-1)(B~-1)(1+2C)-(1+2B)- (1+2A)
27-(C—-1+A+B+2BC+2CA+2BA+ BCA)3
3.(BCA-1-A-B-C)
BCA-1+2(BC+CA+BAY+A+C+ B’

Yhoney —

Mhoney -

Expression Y1o"®Y is invariant under the honeycomb inversion relation (D.40), while Mhoney
becomes — Mhoney,

In the case of the (honeycomb) three-state Potts model, since the discrete group is finite, one
can introduce many other invariants. For instance, by introducing:

Ko ABC-(1+A4)-(1+B)-(1+0C)
honey = 17194) . (1+2B) (1+2C) (1-A)-(1-B) - (1-C) - (A+2) (B+2)-(C+2)’

one can easily verify that it also transforms like Kyoney — —Khoney under the inversion relation
of the honeycomb three-state Potts model (D.40). Of course one can also introduce many other
invariants:

( Mhoney + 3) . ( Mhoney _ 3)
(Mhoney)2

4 (A+B+C+BO+CA+BA(BCA-1+BC+CA+BA)

(-1—-A—B - C + BCA)?

_ 30, Koney Y™ (1+ A)1+B)(1+C)ABC _ 4
(Mtoney)3 (ABC-1-A-C-Bp (A+1)p

"BC+:--.
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For B and C small, these invariants expand as follows:
4-(A+2)-(1+24) +2-(1+2A)-(A+2)-(A+1)'(B+C) +

Yhoney -~

27(A - 1)2 3(A—1)3 B
1+A 6-(1+A+A42%)-(B+0)
honey __ q
M 3.1+ T AR , (D.41)
. _ A-(A+1)
I“’°“ey“4-(1+2A)(1—A)(A+2) BO A+
One then gets:
d A T
Rt | =Proq- |1 —-18- ——— . N )
z n(A) = Prod (1 18 T (B+C)+(1+A)2'(1—A3)2 ) (D.42)

where
T, = ~A%- (184° — 99A4* — 2184% — 3734% — 2544 — 135) - (B + C)?
+(1—A)-(A+1)- (1845 +174° — 3A* — 5443 — 6942 — 534 — 18) - BC.

It is necessary to introduce other (resummed expansion well-suited) polynomials. Another
additional invariant is particularly interesting to introduce because it yields a nice (B, C small)
expansion:

((]Whoney)2 427 Yhoney _ 1)
3. (Mhoney)2

Q=
q
(-1-A-B-C+BCA?* -1+ A+ B+ C+2BC+2CA+2BA+ ABC)’
q1 = ~9ABC — 2(BC + CA + BA) — 2B*C? - 2B*C — 2BC? — 2C%A? — 2CA®* — 2B%A?
—~2BA? —2C%A - 3BCA% — 3BC?A — 3B2CA + 3(B°C?A + BC?A? + B2CA?)

+2A%BC + 2B3CA + 2ABC® + 2BC?A® 4 2B?C A% + 2B2C% A% + 2B%C3A
+2BC3A?% + 24%C%B? + 2B3C? A% +2B3C%A - 2B%A + 2B3C A% +9B%*C? A%

with

1 expands as follows:
2-A (A-1)(243 + A2 -5A-2) 24%(A 4 5)(C + B)?
2 2 . BC + 3 PR
1-A (1~ A?2) (1 - A?)
An invariant which expands like (see the right-hand side of (D.42)):

Q1 = (C+B)+

1-18- (B+C)+--,

1— A2
and which can cancel the (C(})'°"ey)”3 singularity of P,oq, is for instance:
Qs=(1+3-Q1)°
_(-1-A-B-C+BCAS(-1+ A+ B+ C+2(BC+CA+ BA)+ BCA)®
= 3
a3

)

where g3 reads:

g3 = -1 —2(BC + CA + BA) — 2(B?C? + C?A% + B*A?) + BC? + B*C
+CA?+BA* + C?A+B*A—- (A+B+C)+ (A +B*+C*) + A+ B>+ C°
+3B2C%?A +3BC?A® + 3B*CA® + 12B*C? A?
+5(A®BC + B3CA + C®BA) +2BC?A® (D.43)
+2B%C%A +2BC3A? + 5 (B2C? A% + B2C®A* + B3C?A%) + 2B%C?A + 2B*CA?
+2B3CA? +2B%C +2B®A + 2C°B + 2C%A + 2A%C + 24%B + 2B*C3A?
+2B2C343% + 2B3C%2A% + B3C3A® —6ABC +3ABC - (A+ B+ C).
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The expansion of Q3 is remarkably simple:
9 (243 +224%) - (C + B)?

A
Qs=1+18- 5 (C+B)+

(1- 42)°
+ 9(A—1)-(2A3+A2—5A—2) -BC
(1-42)°
One thus exchanges Proq for a new invariant, denoted Lags:
P
Lagt = Prod - Qs =2- q—f;’ (D.44)
3

Amazingly, one verifies that L,s is such that, restricted to the critical variety of the honeycomb
lattice, namely (D.39), becomes equal to 2/27.
Invariant, L,e expands as follows:

L = 2A(B + CA)(C + BA) 243(C +B)?  2A-BC-(1-A)?
ast = 2 toe= 7 T 2
(1- A?) (1-A2) (1- A?%)

In term of this new invariant L,g, relation (D.42) reads;

R

2 %ln(A) = Lose (14 52(Lasty Tire o) 4 ++), (D.45)

where J; denotes various well-suited invariants, and Sy is of order two in B and C.
Recalling (D.33), one gets from (D.45):

M—l = —E.z. iln(A) = (l—kpotts)1/9_1+...
2 dz \ (D.46)
=_kPotts_4(kPotts) +-"=—-§-L +..
9 81 g '
The Lagt = —2/27 limit corresponds to kpoees = 1. In order to get a simple expression for the
spontaneous magnetization at criticality, one thus finally introduces:
2
honey _ 77 -Lage,  such that Cho"Y = 0 = kIoneY = 1, (D.47)
Conversely, )
Cll)loney . C;loney N cgoney . C:l;oney
ERoreY 1 = ( 5 ) : (D.48)
a3
with (see (7.9)):
choneY = _14+2.(BC+CA+BA)+(A+B+C)+ ABC, (D.49)

choneY —(BC ~1)- A2+ 2-(B+C+BC)-A+(B+C)+1,....

One can actually verify that this set of three last additional varieties (D.49) (see also (7.9))
(which break the S3 symmetry of permutation of z1, 2, and z3) have simple covariance properties
with respect to the inversion relation of the honeycomb model.

These three “cousin varieties” of the critical variety Co°"% = 0 are reminiscent of the situation
one has in the case of the Ising honeycomb model (see also (C.16) for the checkerboard model).
In the Ising case, condition k? = 1 reads (using (D.33)):

_FSCtO . (Ft{cto . Fgcto . Fgcto)

Teiv = (A-1)1+A)(B -1)(B+1)(C - 1)(1 +0),
F&to — ABC — (BC + AB + AC) — (A+ B +C) +1, (D.50)

Fo%© = (AB—14+ A+ B)-C+1+(A+ B) — BA,
Ft* = (BC-14+B+C)-A+1+(B+C) - BC,
Fa° = (AC~1+A+C)-B+1+(4+C) - AC.
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D.3. INVARIANT OF THE HONEYCOMB LATTICE
VERSUS RESUMMED EXPANSIONS. FINE TUNING

Let us recall De,:
D, = (1 - kPotts)l/g - 1. ([).51)

The expansion of this very expression, for B and C small, reads:

. — 2 2
p, _PACH+BAYB+CA) 24047 .. 24

(1 — A2)? (1— A2)? m'(BWLC)ZWL”"

On the other side, z - d% In(A) has the following resummed low-temperature expansion for the
three-state Potts model on the honeycomb lattice (see (D.34)):

2A%2(A-1) (A2 -44-1
2o L ipay = PACHBABF CA) | 2404 - 1) (47 ) (B+0C) BC
dz (1— A?) (1 - A?)
aa? (D.52)
+ s (CH+BP+--.
1-42)° ( )
One verifies that:
(1 — A)? -
o Ly - Do = (04 pe). a4 (D.53)
dz (1 — A2?) (1—A43)°.(1+ A)?
where a9 reads:
=A-(34° + 443 + 542 + 444+ 3) - (B> + C?
=4 ) ) (D.54)

+ (24°% + 34 + 942 +104% + 94* + 345 + 2) - BC,
or equivalently at this order of the expansions (namely order two in B and C see (D.45)):

AW,
(14 A)%. (1 - 43)?

d
z.d—z-ln(A)=Der-(1— )=Der.(1+)\.Der+’R,est+...), (D.55)

with
Wy =A(BA* +44% + 54 +4A+3) - (B+C)? + (A~ A+1)- (242 +34+2) (A—1)®- BC.

At this step, without additional information, there is some ambiguity in the determining of A. If
one converts the two following quantities (where P and S denote, respectively, BC and B + C),
to partial fraction form:

B AW, _35°-12P 35°-12P 1958  19§°
(1+A)2-(1-A3%)%  4(A+1) 4A+1)2 36(A-1) 36(A—1)?
_ 65— 18P +2A48% —9PA  28% - 6P +2AS* - 6PA

9-(A2+A+1) 3-(A2+ A+1)° . end
5. 4. (C+BA)-(B+C4) _ S? N 52 _S2—4P+S2—4P
(1 — A2)? T2(A-1) 24-1)2 2A+1) 24+ 1)

two values of A pop out: A = —3/2 and A = —19/18. For the first value of A one gets a particularly
simple expression for Reg, namely (7.8).
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D.4. GROUP-INVARIANT VERSUS LOW-TEMPERATURE
EXPANSIONS FOR THE HONEYCOMB LATTICE

It is tempting to compare the expansion of (7.5) with the low-temperature expansion of the
spontaneous magnetization in the case of the honeycomb lattice. The isotropic limit of (7.4)

reads:
ghoney _ 27-(A+1)3 . A3

Potts — (1 _ 3A2 — A3)3 )
(1 — KESPEVVI/9 _ 1 — 9 A3 4 6A® + 24A° + 86A° + 32447 + 122448
+4722A°% + 1843241 + ...

and

(D.56)

One cannot find directly low-temperature expansion for the spontaneous magnetization of the
three-state honeycomb lattice in the literature but rather high field expansions [59]. However,
from these high field expansions, one can get (by derivation with respect to the magnetic field)
an expansion for the spontaneous magnetization, namely:

2 d
—5 . (Mhoney — ].) = Z- IZ- ln(A)
— 243 + 6A% + 2445 + 8245 + 30047 (D.57)

+ 1176 A8 + 4434 A4° + 15720410 + ... .

Taking into account the fact that (D.57) is basically a high field expansion [59] and not a low
temperature one (only the first terms are correct), one remarks, however, a quite good agreement
between these two expansions.

D.5. COMMENTS ON K{;g:;y FOR THE THREE-STATE HONEYCOMB
POTTS MODEL

The isotropic limit C = B = A, of the invariant of the honeycomb lattice (7.4), is simple!®:

" 34(A+1) \°
kbotey = (T-(-:&ﬁ%—l) = (kiso)®. (D.58)

Condition kpotts = 1 reads two conditions:
kiso—1=1-34A—642— A% and (kiso)? + kiso+ 1= (1 + A+ 42)°. (D.59)
The first condition kjso — 1 = 0 is the well-known critical condition of the isotropic honeycomb

lattice in terms of the low-temperature variables.
The Kramers-Wannier dual of (D.58) reads:

3
oney _ 34* (4* +1) (@ +24)2+A4A)A-1)°
kl}l{WY_(_(A*)3_3(A*)2+1) _<_ 3A—-1+6A4%2 + 43 ) ' (D.60)

Let us recall the rational parameterization (4.35). Invariant kporeY has a rather involved form

when written in terms of the uj, us, us variables. The simplest part is the denominator, which
reads (Du, uz,us)° With:

Diuyugus = 9 (0 +ud +ud — 3uguzuy) - 13 + 9 (2udud + 2udu? + 2uduf + 3ufuful) - ¢

— 9. (2u} + 2ud + 2ud + Bugugus) -t + 9 (3ufudud — udud — udud — udud).

19This simple form for the isotropic limit of the model enables us to write down very simply the unit circle
lkpotts| = 1, namely |kiso| = 1. However, one should not expect the unit circle to play a key role for the honeycomd
Potts model [64). This used to happen for the Ising model as a consequence of the elliptic parameterization that
we do not expect here.
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In the square limit C = 0, invariant kpo"eY becomes:
2R2 2 2 — —_ -
gsauars _ 27A’°B*(A+B+2BA+1)(A+1)*(B+1)*(B-A-1)(B-A+1) (D.61)

Potts ™ (_1_2BA+ BA? + B2A — 2B2A? + 2B3A + 2A3B — B— A+ A2 + B2 + A3 4 B3)%’

It has been noted, in Section 7, that this expression, inherited from the one for the honeycomb
lattice, does not yield a “nice” representation of the Kramers-Wannier duality (like for instance,
k — k/(a-k —1)). In the isotropic case, (D.61) becomes (7.11) and the Kramers-Wannier dual
of (7.11) is given by (7.13). One can eliminate A between these two expressions to get a relation
between (7.11) and (7.13). Actually, the resultant yields (the square of):

R=2% kK% —141-2% . k°K5 . (K + k)
+3- 2%k K* - (4429 (k® + K?) + 9366kK)
— 2% KBPK3 . (K +k)- (210748 - (k* + K?) + 213467k K)
+3.2 k?K?. (48719 - (K* + k*) — 24169286 - (k*K + kK?) — 47735079k K?)
—-3.2" kK - (K +k)- (5687 (k* + K*)
— 805800479 - (K*K + kK?) — 2859101424 - k*K?)
+ 2634567894 - (kK®° + k°K) — 1398272669644k* K>
— 448223873571 - (k*K? + k*K*) + 1331 - (K® + k%)
+3- (K +k)- (141113 - (k* + K*) — 42754046948 - (k*K + kK®) + 193362094422 - k*K?)
+ 985534719482 K2 + 246865154424 - (kK> + k3 K) + 50285730 - (k* + K*)
+27 (K + k) - (20524825 - (k* + K?) — 3221730802k K)
+3-219. (124093734 - kK + 16041625 (k? + K?)) — 215.5% . 5037 - (K + k) + 5% - 217.

APPENDIX E

TOWARDS ALGEBRAIC INVARIANTS
FOR THE TRIANGULAR LATTICE

E.1. THE TRIANGULAR LATTICE: SINGLED OUT ALGEBRAIC VARIETIES

From the critical variety and the three additional varieties for the honeycomb lattice (see (7.9))
one can deduce (using the Kramers-Wannier duality) the critical variety and three singled out
varieties for the triangular lattice:

1-ABC - (BC+ AC +BA)=0, and
1424 — BC +2AC +2BA + BCA? + BA? + CA? =0,
14+2C +2BC +2AC - BA+C*A+ BC?4+ BC? =0,
1+2B+2BC — AC +2BA + B*A+ B?CA + B?C =0,

or, in terms of the z;’s:

(E.62)

z1%223 — (r1 + 22 +23) —1=0, and
Cirang — pozaa? + 20oxazy — T2 + 22027 + 22103 + 1 + 23 + Ty
+ (1 +2) - (xoz3z1 — 1 — 21 — 23 —23) + 3(x1 + 1)(1 + 23 + x2) =0, (E.63)
Cirane — (15 4+ 2) - (zoxaxy — 1 — 21 — T2 — 23) + 3+ (22 + 1)(21 + 23 + 1) = 0,
C;’i‘”‘g =(r3+2) (Toz371 ~1—21 —22—23)+3- (23 +1)-(x1+ 22+ 1) =0.
In the isotropic limit C¥"'*"8 = 0 becomes (1+wu+u2)2 = 0. In the anisotropic square limit (E.63)

yields: _
Ci*"8 = zox? + dxoxy — 2% 4+ 221 + 2 + 22,

Cyrian8 = g2z, + dzox) — 23 + 222 + 2 + 11, (E.64)

C*™8 = 120 + a1 + T
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E.2. TUTTE-BERAHA NUMBERS

For the Ising model, the additional varieties for the triangular and honeycomb lattices read,
respectively,

AB—-AC+BC+1=0 or wugu;+us-t=0, with
t*=-1 and Uguz — 3 - uy = 0, with =1,

More generally, considering the inversion relation of the triangular lattice:

(w1, u2,u3) — <t2 - ! ) , (E.65)

up 12 up’ t2-ug

and a variety of the form:
ul'u?-u3+a'u{w=0, (E.66)

it is straightforward to see that (E.66) is invariant by the three inversion relations (E.65) if:

t*M =1 and o?-t?.t*M =1,  thatisa=+£tM"1 (E.67)
Of course this can easily be generalized to the checkerboard lattice.
This makes clear that such varieties only occur for Tutte-Berahe numbers.

E.3. CRITICALITY OF THESE ADDITIONAL VARIETIES?

Since, in the case of the Ising model, three other varieties similar?® to (E.63), occur in addition
to the critical variety which also happen to be critical (see also Appendix C.1), it is natural to
wonder if the additional varieties (E.83) could not be also critical varieties. If one takes for granted
expression (7.5) to represent the dominant singular behaviour of the spontaneous magnetization,
one expects the magnetic critical exponent §, corresponding to these three new critical varieties
chomey (and also Ci"*"®), to be 3 = 2/9. If one assumes that the (well-known) relations for the
critical (or tricritical) exponents of Potts models are still valid (see relations (5.23) in {39]), in
particular:

_1-8-8
168

one gets a thermal exponent: o = 5/3. In order to examine the critical character of the additional
varieties (E.63), Monte-Carlo calculations have been performed on the anisotropic edge triangular
Potts model. Unfortunately, Monte-Carlo calculations seem to indicate that the points of any of
the three varieties (E.63) are not 8 = 2/9-critical points. Note however, that Ci"*"¢ = 0 in (E.64)
is nothing but the antiferromagnetic critical condition of Baxter [65] for the square lattice in the
g = 3 limit:

(E.68)

(.'1:1 +1) . (2}2+1) =4—gq. (E69)
It is thus possible, in view (E.64) and (E.70), to imagine that these additional (S3-symmetry
breaking) varieties could however be critical varieties with other exponents.
E.4. ALGEBRAIC INVARIANTS FOR THE TRIANGULAR LATTICE

For the anisotropic triangular model we have (at least) four group-invariants:

ABC-(1+A)(1+B)(1+C)

K= 52807280 1200 - A1 - Bl — O/ AT NE+2C + )’

(E.70)

which transforms into its opposite —X under the inversion relation of the triangular lattice,

—1-2(A+B+C) - (BC+CA+ BA) + ABC
BC+CA+BA—1+ BCA ’

Mtriang = - (E71)

28Breaking in particular spontaneously the symmetry of the lattice.
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which transforms into its opposite —Mjriang, under the inversion relation of the triangular lattice

and:
ABC-(1+A)(1+ B)(1+C)

Y!‘i = - 3
triang = T (BC + CA+ BA—1+ BCA)?
and also (form (4.49) and Miriang):

(E.72)

. Ntriang
Giriang = 27(BC+ CA+ BA—~1+ BCA)?*(-1-2(A+ B+C)-BC-CA—-BA+ ABC)%’

where

Neriang = 2 (1 + 2BCA + 34 — BC + 2CA + 2BA)(1 + 2BCA + 3B + 2BC — CA + 2BA)
x (1+2BCA+3C +2BC +2CA — BA) - (2 + BCA + 3B + BC + CA + BA)
x (2+BCA+3A+BC+CA+ BA)-(2+ BCA+3C + BC + CA+ BA)
x (=14 BC + CA—2BA + ABC)(—1+ BC — 2CA + BA + ABC)
x (-1 — 2BC + CA + BA + BCA).

Yiriang a0d Giriang are invariant under the inversion relation of the triangular lattice. Curiously K
is also covariant for the inversion relation of the honeycomb lattice (see Kponey in Appendix 1.2):
one can easily verify that it transforms like X — —K under the inversion relation of the honeycomb
three-state Potts model.

The expansion of three of these (up to a sign) invariants yields:

AC-(1+A)(1+0)

}Cz2'(1+2A)'(1+2C)‘(A—l)-(C—l)-(A+2)(C+2)'B+"'v
AC +24A+2C +1 ,
Mtriang = A0 -1 + e, (12'73)
AC-(1+A)(1+0)
KriarlgI — (AC’_]_)3 -B+.-.

One should note that these three invariants yield only 1— A-C singularities, or simple singularities
like 1 — A, C+2.... One cannot get the 1 — AY . CV singularities known to occur on resummed
expansions [10,25) in this way. The last invariant Giriang yields more involved singularities, for
instance CA + 2A + 2C + 1 singularities.

The resummed expansion of the spontaneous magnetization of the edge three-state Potts model
on the anisotropic triangular lattice corresponds to (see (7.12)):

24202 . dAtct

e r—————— —————— 3 ...
(1 __A2c2)2 + (1 _A2C2)3 B+ :

d
X a—;ln(A) =

More precisely, in the z = 1 triangular limit (namely D = 0), expression (C.28) becomes:

d A2C? Adct
.2 =(q— B?
2 — In(A) =(g-1) (1 —eoa t i A202)2)
24404 248C8
+(g-1)-(g—2)- + - B®
(@-1)-(e-2) ((1 — 20?2 (1- A202)3>
L 2= 1)A20? - (A% + C? + A%C? + C*A? + 3A%C% + A*CY)
(1 - A2c2)*
L2192 (34207 — A%C* — ASCS — ASC® — ATC" + A+ C — ASC®) A°C®
(1 - A202)3 (1 - A3C3)?
3(g—1) - (g — 2)248C® YO 1)24404 (242C% +7)
(1 - A202)* (1- A20?)*

B* (E.74)

B4

+ B*.
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In contrast with the honeycomb lattice, there are many ways to get a resummed expansion
like (E.74), in terms of group invariants of the triangular lattice. For the honeycomb lattice,
invariant (7.4) was built from the modification of an invariant which corresponded to taking the
product over the group of the “order varieties”. It seems that the equivalent of (7.4), but for the
triangular lattice, could rather be an invariant corresponding to a modification of Yisiang.

Thus, coming back to the checkerboard lattice, we could therefore, have (at least) two invari-
ants, one which “dominates” in the honeycomb limit and the other in the triangular limit.

APPENDIX F

OCCURRENCE OF n* ROOTS OF UNITY
ON ANISOTROPIC SQUARE LATTICE RUBBER BANDS

In order to understand the occurrence of 1 — AV singularities in the resummed expansions of
the edge Potts models, let us consider an anisotropic square lattice g-state Potts model on rubber
bands, for instance the one for which the transfer matrices are represented as 3 x 3 matrices
in [6,63].

After extracting the leading low-temperature terms, the largest eigenvalue A can be seen to
be solution of the following algebraic equation of third degree (characteristic polynomial of the
3 x 3 transfer matrix):

A+ C-A24+C - A+Cy=0, with
Co = A%(B —1)°*(Bq+1— B)4,
= A%B-1)*(Bqg+1-B)-c,
=—A%B%.¢® +3A4%B%(2BA - B — A) - ¢*
+ (1543B% - 7A?B? - 14B34°% + 11B%A% - B* —~3A°B — BA®) -.q (F.75)
+(B—1)-(B?—1142B? +134°B? + BA* - 8A°B+ B+ A*+ A> +1),
where
c1 = A®B® . ¢ — AB*(6BA® —2B -1 -3A%) . ¢*
+ (11B%A% - AB? + B3 —7AB® + 3B* - 124°B? + 34°B + 2BA) - ¢
~(B—1):(7AB?-54AB® + B> -5A4°B+4B~5BA+ A*+ A +1).
The expansion of A, when B is small, reads:

3-(¢-1)- W, 2
A=1+——1—;——'B —1) Z

yv - B™, with

AQ)ﬂ 1
W, = A%,
Wa = (3¢ —5) - A* +44% +1,
W4=3q-(q—2)-A6—3(A4——A2—l)A2

3A%(q—2)- (7A% +8A% — 245+ 54 — 24°% + 2 + 34")

A2+ A+1 ’
Ws =3A4%(q— 2) - ¢* ~ 34% - (A% +54* + 34% +1)
3A2 . Qsz 3A2 ) Q53
(g—2) ——=2 _ 1+ 3.(¢—-2) —m———3, ith

Qs3 =1— 44 — 1542 — 46A4°% — 1024* — 116A4° — 10745 — 7247 — 194% + 24° 4 A0,
Qs2=—q-A-(44° + 845 + A7 — 2 — 2845 — 504° — 64A4% — 554° — 304% — 94).
Note, that W7 also has a (1 + A + A%)* singularity. In fact the characteristic equation reads:

PA)=A3+Cy A2+ C1-A+Cy=0,  where
Co = Cgo + Co1 + - - - + Cog,
Cy=Cyp+Cu+-- +Cs,

Cq = Cao + Ca1 + Ca2 + Cos,

(F.76)
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where the Cj;’s are of order j in B, reads successive equations of the form:
Reot (W1, Wa, ..., Win1) + (34 Cro+2- Cop)- W, =0. (F.77)
The occurrence of a new singularity is thus related to the following combination of the Cj;’s:
3+ Cio+2-Cy=(1-A4% (1-4%. (F.78)

This key expression can be seen as the derivative of the characteristic polynomial (F.76) with
respect to A, in the B = 0 limit.

34+ Cip+2Cy = %P(A) (B = 0). (FTQ)

Let us note, however, that for the first coefficient, W5, there is the following equation:
(A% —1) - (Caz + Co2 + C12) ~3B% - (3+ C1o + 2Cy0) - (g — 1) - W = 0,
where

Cypp+Coa+Cr2=3-(¢g—1) - A2B%. (A3 -1). (F.80)

Therefore, one sees that the singularity 1 — A% cancels out for this first coefficient W,. A mech-
anism where all the N*® root of unity occur, clearly needs to consider “polynomial” relations of
infinite degree.
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