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STAR-TRIANGLE AND INVERSION RELATIONS IN STATISTICAL MECHANICS
J.M. Maillard

Introduction

The study of the two-dimensional models in lattice statistics and
the related exactly integrable 1+l dimensional field theory has deve-
loped intensively over the past ten years and this evolution, this deve-
lopement does not seem to decrease. There are several reasons why one
can be interested in such models : the need to leave the framework of
perturbation theory with the hope to describe particle spectrum and
scattering, the fact that some 1+1 dimensional exactly solved models
have physical applications for some important solid state theories
(Solitons in magnets[61,11], Peierls-Frohlich model, Anderson localiza-
tion, Kondo effects [19,37,1]) ,the importance of exactly solved two-
dimensional models of lattice statistics to understand the critical

phenomena (universality...).

The recent step forward in such a field corresponds mainly to the
recognition that the several ways used to solve models in different do-
mains of mathematical physics are often connected, and lead to an
essentially unique mathematical structure. One must recall the emergen-
ce of the quantum inverse scattering method [18] which realizes the
synthesis of the ideas developed in statistical mechanics by Bethe [10],
Onsager [49], Yang [56], Lieb [42] and Baxter [2 ] and the twenty years
old inverse scattering method introduced by Kruskal and cowaorkers 3,23l

and also developed by Lax [ 40], Zakharov [57] ...

This quantum inverse scattering method shows some aspects which
are paradoxically simpler than the corresponding onesin the classical
inverse scattering method. The new algebraic Bethe ansatz of the QISM
is more efficient and powerful than the old coordinate Bethe ansatz.
There exists a lot of good reviews which describe the results and

technical aspects of exactly solvable models and explain the relations
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between the different concepts and ideas one can encounter on these
models (Faddeev [17], Kulish and Sklyanin [38], Olshanetsky and
Perelomov [481, Baxter [ 3], Lieb [43], Kasteleyn [34], Thacker [54],
Zamolodchikov [58] ...).

For our purpose we will emphasize the following point:there exists
a very simple property which is the keystonme of all the methods and

technicalities used to solve these models whatever the domain of mathema-

tical physice we deal with ., For particle physics in 1+1 dimensions this
property is called the S matrix factorization and one must mention
Zamolodchikov's work [59], for one-dimensional Bose gas with & function
interaction it is called the Yang relations [56] for two dimensional
statistical mechanics on lattices it is called the star triangle rela-
tion [ 3][ 7) (it is for instance the key point in the solution of the
Baxter model [ 2] and also of the 2-d Ising model [T ] . There is a
funny anecdote about that 2-d Ising model : in the seventies Onsager
revealed [50] that not only did he know, as far back as 1942, the exis-
tence of the star-triangle relation but he used intensively this very
property to get the solution of the 2-d Ising model ;'hnfortunately",

as we know, he preferred to give a completely algebraic solution

(Clifford algebra...) of this model).

This property is clearly also the keypoint of the QISM and the

reason why this method is so elegant and simple.

This property also occurs in Lie group theory,where, as Semenov-
Tian-Shansky [39] pointed out, the factorization property of the inter-
twinning operators coincides with the Yang-Baxter relation. Thus, beyond
the particular problem studied , it seems that all these exactly sol-
vable systems share this very simple mathematical structure,which can be

thought as some homological condition that describes the symplectic
structure of these systems. We will try in the following to explaim, in

a very pedestrian way, why a so simple property is so constraintfull.

The second point we would like to emphasize is that there is a
complete formal identification between a 1+1 dimensional factorized
S-matrix theory and a two dimensional vertex model with a star-triangle
property in statistical mechanics : as we said,the S-matrix factoriza-
tion is nothing more than the star triangle property; besides, the well
known crossing and unitarity property [33] of the S matrix have two cor-

respondents in statistical mechanis, for instance, the rotation of 7/2
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of the lattice (or some other symmetry) and what is called the inver-
sion relation [52][62]. Because of these relations we will from now
on restrict ourselves without much loss of generality to lattice mo-

dels in statistical mechanics.
Let us now outline the plan of the paper :

- we will give a definition of the star -triangle relation

(s.T.R.)

- we will also define another very simple relation which occurs
simultaneously with the 5.T.R. for the two-dimensional (2-d) exact mo-~

dels : the inversion relation (I.R.)

- we will study the connection between the S.T,R. and the I.R,
we will see that the S.T.R. is deeply comnected te the I,R., but, on
the contrary, we will see that the I.R. can exist even when no S.T,R.
exists, as we will show for the 2-d anisotropic Potts model by exhibi-
ting an inverse functional equation satisfied by the partition func-

tion.

- having recognized the I.R, as an interesting concept, we will
use it by looking at the analytical comsequences of this I.R, and, at
last, we will come back to the 8.T.R., examining some consequences

of the I.R. on the S.T.R.

The star triangle relation

As we said, the star triangle relation is the keystone to the exact
solution of most lattice models ; the reason for this is essentially
due to the fact that the transfer matrices of the corresponding models

commute provided the star-triangle relation is satisfied.

Let us give a definition and a graphical representation of the
star-triangle relation (S.T.R.) . If W, W', W' are Boltzmann weightsas-—
sociated with the elementary cells (square) of three different square
lattices (W depends on the configuration of the four spins at the four
corners of the square) the star triangle relation means that the parti-

tion function of the two graphs below are equal :
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O1s Ogs:.-.0, are fixed spins located at the four corners of the
three different squares. They may belong to 22 for Ising models, or
Zq for Potts model for instance. One sumsover all the configurations of

the central spins 0 and 0'. This relation analytically means

X W(OZ,UB,U,U]) . W'(cl,s,ﬂs,cé) . W'(o,0,,0

? U )
s 3 5

4
P 1 (] ' " 1
z'w(u 104205:0g) + W' (0,,0,,0,,0") . W'(5,,0,,0",0(),

To fix the ideas, let us consider the well-kmown Baxter model [2] : in
this case the Boltzmann factors (W,W';nd W") have certain symmetries
(for example W(a,B,Y,8) = W(-2,-B,~Y,-6) the spin reverse symmetry) and
there are only four different values, usually called a, b, ¢, d corres-
ponding to the different spin configurations a, B, Y, 8. If one intro-
duces a', b',... and a", b"... for W' and W" the STR corresponds to a

set of six equations ; let us pive for information two of them :

acda" + da'd" = be'b" + ca'c"
ablc" +dd'b" -~ balcl' + CC"J"

These equations are homogeneous and linear in a",b",c",d" (or a,b,c,d
or a',+..), and therefore in order to have a nontrivial solution some
determinants must vanish. These vanishing conditions are algebraic rela-
tiong between a, b, ¢, d and a', b', ¢', d' which should, at first
sight, mix indissolubly these two sets of parameters. The "miracle"
that occurs with exact models is a factorization of these rela-
tions : these relations are equivalent to sayingthat some algebraic

expression . (a,b,c,d) is equal to the same one for a', b', c¢', d'
i

mi(alb!c!d) = (pi(a':b',c' !dl}
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For the Baxter model [2 ] one has two such expressions

@, (a,b,c,d) = e Lo, =22,
ab
One should say that, in general, the STR only admits trivial and unin-
teresting solutions. An obvious one is W=W', for W'(g,c,d,e) = ﬁg.d
(which, as we will see later, corresponds to the fact that the transfer
matrix commutes with itself). There are also a great number of solutions
such that the STR is satisfied whatever W, W', W' are. Most of the time
they correspond to models for which the partition function is the same

as the one of a one~-dimensional, or even zero-dimensional lattice model,

One getsquickly convinced for particular models that the set of
trilinear homogeneous equations corresponding to the STR overdetermine
the few nmon trivial solutioms that must exist. Thus the temptation is
strong to try to classify exhaustively all the non trivial solutions of
the STR. In fact this is not an easy task at all : the number of equa-
tions, the number of parameters and even the number of terms in each
equation is too important, and if one tries to examine one of the
Boltzmann weights,one obtains extremely complicated algebraic relations
(vanishing of some determinants). Moreover the beloved perturbation
approach of the physicist does mot work very well : if one tries to
generalize a non trivial solution of the 5.T.R. by examining the
neighbourhcod of this solutien, ome will, in general, get nothing.
There are too many perturbation parameters : perturbation theory is
great when one has one, or two, perturbation parameters but when one
has ten or even more... Another difficulty among many others is due to
the fact that the restriction of a model that satisfies a S§.,T.R. may no
longer satisfy a 5.T.R. (the anisotropic 2-d Ising model satisfies a
S.T.R. but its restriction,the Zsotropic 2-d Ising model does not sa-
tisfy a S.T.R. relation except the trivial one W = W'). To see that
a model satisfies a 5.T.R., one has to merge it into a larger model
that satisfies a S.T.R. So it seems that we do have a problem with a
straightforward approch of the 5.T.R. : we will come back to this pro-

blem with more appropriate approach at the end of this paper.

From a STR it is simple to show that the transfer matrices with

periodic boundary conditions associated withWand W' commute

[T(w), TWH]1 =0 . n
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If one Taylor-expandsT(W) and T(W') one sees that (1) will imply an
infinite set of commutation relations [Ti’Tj] = 0 ; this is the expres-
sion for an infinite number of conservation laws for integrable mo-
dels (infinite number of quantities in involution). We do not explain
here the problem of simultaneous diagonalization by the Bethe ansatz
of this family of commuting transfer matrices which depend on some con-
tinuous parameters. There are some nice and simple reviews(for instance

[3,34 1) that explain these ideas.

The inversion relation

The inversion relation (IR) was first introduced in statistical
mechanics by Stroganov [52] and intensively used by R.J. Baxter [62].It
is formally identical with the unitarity relation of the two-body
S-matrix people use in the framework of the Watson's equation (unitari-

ty + crossing) to calculate the total S-matrix (Zamolodchikov [58]).

One interest in this relation is that, if one is not interested in
sophisticated informations on the model (such as the spectrum, the ei-
genvectors of the transfer matrix...), the IR can be used as a short

cut to calculate extremely simple and quickly the partition function.

Let us define the inverse relation [62] ; the inversion relatien

means that the partition functionsof the two graphs below are equal :

9110559, and o, are fixed spins and one sums over the configurations of
spin 0. This relation analytically means that, whatever o, and 9,

are, one has

a,,0

) w(o,,0,,0,,0) . W (g,,0,0,,0,) =F .38
g 1*?72*"3 I'1 3774 229,

(F is some known functionm).

In almost all exactly solved two-dimensional lattice models one
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finds out simultaneously a STR and an IR for these models (with some
exceptions like the gaussian model). The STR has a very nice stability
property with respect to the IR : for instance, acting simultaneously
on the (OI’UB'US) and (02,03,04) side of the two hexagons of the STR
with the inverse of W' (Wi) and using the very definition of the IR

one pets immediately a new STR

g, 6'3 G, g,
(of course W' does not play a special role and one gets also a large
number of other STR by making use of WI or W;). This new relation leads
in the same way, to the commutation of the transfer matrices associated

to W and Wy

[T, TMH] = 0

We will see later that this profound connection between the STR and

the IR can help wus to study the S.T.R.

It is possible to interpret this connection between the STR and
the IR 1in the case of the vertexmodel, by saying that these two rela-
tions generate a non-trivial representation of the group of permuta-
tions [24].

So S.T.R. and T.R. are deeply connected : nonetheless the question
remains of whether the inverse relation can be used independently of
the star-triangle relation (I.R. without S.T.R.). We will reply positi-
vely to this question : for this purpose we will exhibit an inverse
relation and an associated functional relation for the 2-d anisotropic
Potts model at all temperatures (and not only at the critical tempera-
ture where it is known that a S.T.R. occurs). We make the choice of the
Potts model because of its importance in solid state physics and
statistical mechanies, but the ideas we will develop here are not

restricted to this model.
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Inverse relation for the Potts model

First sum up the g-state, scalar, two-dimensional, anisotropic
Potts model for a square lattice [55]. If a; and oj,belonging to Zq,
which are spins on a square lattice are in the sme state, the statis-
tical weight associated with the corresponding vertical bond will be
c, if not it will be +l ; if oj and Uk (horizontal bonds) are in the
same state it will be b if not +I.

—t— e
H

Cc

c
b
G Ok
The partition function is therefore
Su;0; Sg.0
zZ = Z T ¢ *3 q p 37k
{o} <ij> <jk>

E denotes the sum over all the spin configurations on the lattice ,
o}

AL, the products over respectively horizontal and vertical bonds.
There are two different ways of introducing the inverse relation
for the Potts model. We can for example introduce the following

Boltzmann weight
g

60 a a
- p 1093 29
g 0, =» e Pog €z

0,

It is easy to see that we consider thus simultaneously two shifted
copies of the same Potts model and that one has, with the definition
of the IR, a corresponding Boltzmann weight W

I
=1 - P -
e T2 and F = (b-1) (1-g-b)

for b1 = 2-q-b
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« § ® 1950 vy 299 o 9g.9, (%) LPYLA

G, G %

(=1 (1=a-b) - 8,0,

[}

G,

The second way, and it is the most natural from our point of view,
is to introduce the well-known transfer matrix formalism for that model.
An immediate generalization of the Ising case leads to write the trans-

fer matrix T_ _, as a matrix product T v L T
a,a 1 2

with
a0 ',U"

a

o i—“ o' N (1? c601,0i+1) ‘C?aﬂi-ﬂi

1

—x and T, =®b60ilgi
0, $—x 0
c
b "
g, *__" G,
c

O;* b “0-1"

T, is merely a diagonal qH X qN matrix and one gets easily

T LT = 1,

where 1 is the qH!qN identity matrix. T, is the tensoral product of N

2
times the same qxq matrix whose inverse (in the usual sense of the in-
verse of a matrix) is obtained by replacingb by 2-g-b (up to a known

(b-1)(1-g-b) multiplicative factor). Therefore one has :

T,(b).T, (2-q-b) = -1 (1-g-5)N .1 . )

1/2 1/2
2 T 7T

Instead of T, introduce E =T |

(it does not change the parti-

tion function). T satisfies :

T(b,c) . T(2-q-b, -1:) = m=nY gt 1 .
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Let | be the eigenvector corresponding to the largest eigenvalue
A(b,c) of T(b,c); equation (1) leads to

T(b,e) T(2-q~b, %) |2 = (b-l)n(l-q-b)N |

= A(b,0) T(2-q-b, D) | .

empirically equal to A(b,c)A(2—q—b,%*ﬁ>and in consequence, if onme deno-

tes by Z the partition function per site of the model in the thermody-

namic limit (which is of course lim AIIN(b,c)), one gets [28]
Noco
Z(b,c) . Z(2-q-b, %J = (b-1) (l-g-b) . (2)

This relation takes place between the function Z(b,c) and the same func-
iy 1 p 5 i 4

tion at (2-q-b, E)' What is meant by saying the same function ? This

does not mean the partition function with the new values of the parame-

ters : for instance in the (q=2) Ising case, one can show easily that

Te (T(b,e))™ = Te(T(-b, %O)M.

that is to say

Z(=b, %) = 2(b,c),

therefore z” would be a known algebraic function. This is not the case
of course. In fact the relation takes place between the function Z(b,c)
and an gnalytieal eomtinuation of this function. One can get convinced
of this by looking at one dimensional or quasi-one dimensional (rubber
bands) problems. For more delicate cases, Stroganov [52] and also
Baxter [62] seem to justify this fact by considering the complete inte-
grability of the models which, because of the family of commuting trans-
fer matrices, provides an analytical path leading from the eigenvalue
at the point A, A(8), to its analytical continuation at the inverse

point -8,

So the question is : is equation (2) correct for the Potts model
which, precisely, does not satisfy a S.T.R. (except at the critical
point)? If we reply positively, we will get that the inverse relation
and its consequence, the inverse functional relation on the partitiom
function, can be used outside the framework of complete integrability.
In fact, this problem truly involves two complex variables and any jus-
tification of (2) seems to be quite complicated. The best way to get

convinced of (2) is to show it directly, using empirical metheds, for




385

instance diagrammatic expansions for the Potts model. A diagrammatic
expansion exists for the Potts model [25] ; it is a generalization of
the well-known expansions of the Ising model : for example the low

5 1 1 :
temperature expansion ¢ 0, =7 0 gives

Z(b,c) = be |1 + 470 ...] = be Alb,e)
l:nzc:2 J

(A is a normalized partition function which tends to 1 in the low tem-—

perature limit). The first term 5;2 corresponds to the diagram [] ,
bc

. -1 L
the following term —%—2» to D , the term bzca to E:

be
In order to verify equation (2), it is necessary to have an expansion
. . Lo 1 1 1
stable by the inverse transformation (if g+ 0, = 0 then 55 + 0
but unfortunately 1/(l/c) + =). The expansion one needs is, for instan-
ce, one with small lb values but arbitrary values for c. Fortunately, it
is possible to obtain this new type of diagrammatic expansion. Let us

look at all the terms in -]2- 3

g-1 g-1 q-1
O 22 3 24 3 v

It is easy to sum over all these diagrams, which compose a geometrical
q-1 1

series,to get B I Relation (2) leads in terms of A(b,c) to :
b” -1
2n A(b,c) + fn A(2-q-b, %) = 9,n[ (b-1) (1~ 'b)] : (3)

b(2=-g~h)

Up to -—]7. relation (3) is actually satisfied :
b

(g-1) (g=1)
——2—-—-—2 +

b (c™-1) b

(-5%%) -1 . %)

c b

We see that relation (3) imposes strong restrictions the ;_ singula-
rity not only must vanish, but the sum of the two terms oft Eflle left
hand side of relation (4) must be independent of c¢ because the right

hand side of (3) does not depend on c.

In fact it is possible to show, up to —]-, that relation (3) is

satisfied [28]. £
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We can now be confident with thisrelation and imagine determining
analytically the partition function from the inverse functional equa-

tion and from the obvious symmetry equation between b and ¢ :

Z(b,c) Z(2-q-b, é) = (b-1) (1-q-b)
Z(brc) = Z(C,b) .

These equations are very like the functional equations for automorphic
functions. The partition function is some generalization to several
complex variables of automorphic functions, with respect to a group G

generated by the two involutions

I: (b,ec) + (2-g-b, %J and S : (b,c) =+ (c,b) .

b-q -
If one introduces appropriate new variables x = S:a:—and y = _q+ (with
1 . - o
q, = I = % + 7 /q(q—ﬁ) ) the transformations I and S take a simple

multiplicative form
2
1%
I: (x,y) = (;, *;} St (x,y) + (y,%) .
With these new variables it becomes quite clear that this group is an
infinite discrete group which satisfies the exact sequence
0+2Z>G~ ZZ +0 .

In the special case of the critical temperature (b-1)(ec-1) = q,
or xy = -q, it is known that one has a STR and that it is possible to
caleculate the partition function (using a mapping with a symmetric six
vertex that can be solved by the Bethe ansatz method [ 8]), Is it pos-
sible to use our two functional equations to get more gquickly the par-
tition function ? The answer is yes. Let us write these two functiomal

equations :

1
Z(x) . Z(;) = -qq,

o0 =) .

The function Z(x) has singularities at least for the orbit by the group

G of x=1. If we look at the solution which has only this set of singu-
larities (maximal analyticity assumption) it is unique,and it is clear

that it is given by some kind of iteration between these two equations :
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q
A(x) A(— —-;—

A(—q+x) A(Eg)

En—lx)

Z(x) = V-qq,

where
oo

nEO (I+q
ARX) = —m———
I (l-qznx)
n=0 +
One can verify on the known solution for the critical Potts model that
this eulerian product shape solution is correct [B] . This calculatiocn
is completely identical to the determination of the S matrix using the

principles of analyticity,unitarity and crossing [33].

Coming back to the general case for all temperatures, it is possi-
ble to find the minimal solution of our two functional equatioms : it
is of the form Z(x,y) = £(x) f(y) where f has again some eulerian

product shape.

This solution is physically shoking because it factorizes into an
expression which depends only on the vertical coupling constant and
another one which depends only on the horizontal one. In fact, this so-
lution is ruléd out, as can be seen on a large q expansion for imstance
[29]. This reminds the well known CDD ambiguities (Castilleja, Dalitz,
Dyson 1956) phenomena ; but one sees also, on that large q expansion,
that the usual examples of CDD ambiguities [14] one finds in the lite-
rature are not sufficient to find the physical solution of this

Potts model : this expansion even excludes a Veneziano-type form like

f£x) £(y)
x

g(=) hix
y ¥)

Therefore the partition function does satisfy a very nice set

or even more elaborate forms.

of functional equations ; however the physical solution is a very com-
plicated one (except at criticality). These ideas open a new class of
models which satisfy nice functional equations without being exactly
soluble. This class is a very large one [44] and contains important
statistical models like, for instance, the three dimensional Ising mo-
del [27] or the three dimensional Potts model. In fact it is pos-
sible to generalize what has been said for the 2-d Potts model to the
3-d anisotropic cubic Potts model [30] and get that way the following

functional equation :

Z(a,b,c) Z(2-gq-a,b,c) = (a=1) (1=g-b)
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(a,b,c correspond to the three different axes of a cubic lattice). The
corresponding group G is a little bit more complicated : let's only say
that it has a normal subgroup H isomorphic to ZxZ. It is also pdssible

to verify this functional equation diagramatically. There is a particu-
larly interesting subcase which is the (g=2) cubic Ising model. We will

come back to this point later.

One should notice that the inversion relation is a much more uni=-
versal concept than, for instance, the Kramers-Wannier (KW) duality [35]
One does not know any self-duality property for the 3-d Ising model;
however an inversion relation exists for that model. This is not speci-
fic of that model : the inversion relation exists for a number of models
much more important than the number of models with a self-dual property
(non-planar lattice, models with magnetic field with three, four spins
interactions...). This is encouraging because the IR is much more cons-—

traintfull than the self-dual property.

Before looking at the different analytical consequences of the IR,
let us make a few remarks : the IR on the transfer matrix seems to imply
a functional equation not only for the largest eigenvalue (the partition
function) but for other eigenvalues of the matrix. For instance, for the
symmetric six vertex model (which is equivalent from the peint of view
of the partition function to the critical Potts model), the ratio Kg
of the largest over the next largest eigenvalue has been evaluated

exactly [32] 3

4m
1/2 4m, t
Ay 12, 1/2, -1/2, = d*t7x) '(I*T) .
T x)=t (x " “4x Yy I g H
o m=1 (|+t4m Zx) ) (l +F )
®
one verifies easily that
A 1/2 A 1/2
2 l\ _ ("2 .
T %) AT (x) (crossing symmetry)
o L o
and
a2 2
\K—) (x) . (I—) K::) = 1 (inversion relation).
o o
This can be also checked on the symmetric eight vertex model, or

the anisotropic 2-d Ising model (this ratio is linked to the interface
energy which has a very simple expression for the 2-d Ising model). As

the relation seems to be satisfied by other eigenvalues of the transfer
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matrix, it is thus natural to look for an inverse relation on the cor-
relation functions, Such relations exist [30] but we will just mention

this fact without any detail.

Analytical consequences of the inverse relation

Let us come back to the low temperature expansion in the case of
the two dimensional Ising model, The inverse relation for

the normalized partition function A becomes [62] :

20 Abye) + fn A(-b, D) = a(l ~ ) -
b

In the 2-d Ising case, the resumming of the geometrical series leads

to terms where only the b2=1 singularity oceurs, so that one can write

© 2
1 Pr(c”)
¢n A(b,c) = ): Lt (5)
e bir (cz_i)Zr I

where Pr is a polynomial of degree less than 2r-l. One has for Pr

pr(c?) +(-.:2\ .Pr(l\a_

(CZ_l)r-[

This relation indicates that if the first r-1 coefficients of Pr are
known, the polynomial Pr is determined completely. If one assumes in a

recurrence that one knowns Pl""’P then from the symmetry

-1
fn A(b,c) = &n A(c,b) one can determine the preceding r-l coefficients

of Pr and thus Pr.

Therefore, using only the inverse and symmetry relations, one can
say that the partition function is determined in a unique way. Of
course the analyticity hypothesis (5) is very important : for the Potts
model c¢”=1 for singularities for every integer n occur [29] and it is

no longer possible to determine the partition function.

In the anisotropic 3-d Ising model (cubic lattice) if one uses a
high temperature expansion, and introducing the more convenient parame-
ters

u = th Kl’ v = th K2’ w = th K3

(Ki are the three different coupling constants along the three axis

of the cubic lattice) one has [27] :

tn AGu,v,8) + 20 Al -v,-w) = 2a(1-vD) (1=w?)
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and

2 2 u2 4 4 u2 > uh
fn ACu,v,w) = (v'+w') . 5 + (v+w) — (1 —E§-+-§)

I-u (l-u™)
i v2w2 . A+Bu2+CuA;Du6 o
(l-uz)

From the inverse and symmetry relations, and from a knowledge of the
coefficient of the uzvzw2 term (one sees easily that it is 16), one can
immediately determine A, B, C, D which gives us the anisotropic high
temperature expansion up to the Bth order in th K. The simple isotro-
pic expansion has had a chequered career : there hag been an accumula-
tion of mistakes (and misprints) on this expansion because of the dif-
ficulty to evaluate the disconnected terms and mainly the number of em=
beddings of self avoiding rings of large size [53]. On that anecdotic
example one will appreciate the possibility to have an exact and cons—
traintfull funetional equation to check this kind of expansion. To
higher orders it seems that, as in the two dimensional case, only u2=l
singularities occur : if this is true,it is certainly a very important

analytical property of the 3-d Ising model.

Determination of critical manifold by the group G [45]

It is well known that it is possible to localize the critical
temperature, when it is unique, as the stable point of the KW duality
{35]. 1t is natural to extend this line of argument (with or without
self dual property available) : it can easily be seen that if (x,y) is
a singularity for the partition function, then the automorphic proper-
ties associated with the group G imply that the orbits of this point
under the group G are also singularity points. Therefore the critical
manifold has to be stable under the action of the group G. In general
manifolds which are stable under such a discrete infinite group are
very complicated. Accordingly, we assume that the critical manifold is
an algebraic variety f(x,y) = 0. Such an assumption is supported by
almost all the exactly known critical manifolds. We make the following
change of variables u = xy, v = %, f(x,y) = g(u,v). A particular ele-

ment of G, (SI)2 is such that

(51)2 : (u,v) + (u, qu)

: 4 :
Hence g must be stable under the transformation v + q.v; however this
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property (periodicity) is in contradiction with the algebraic character
of g, unless g does not depend on v. Therefore the critical variety is
necessarily of the form u = C, where C is a constant depending only on
q (the number of states of the Potts model).This constant can be deter-

2
mined using the invariance under : (u,v) S&, —%7 vhich leads to

2 _ 2 qZ

C” = q,, and thus to the two eritical manifolds vxy = -q, and xy = q_.

+
The first one gives the critical temperature of the anisotropic ferro-
magnetic Potts model and the second one 2ives exactly the
equation recently obtained by Baxter [ 5] for the critical temperatureof
thegnisotropic antiferromagnetic case. One can also get very quickly the
partition function for this antiferromagnetic critical variety using the
I.R. and symmetry relation and it coincides with the exact expression

[5 ]. The same ideas generalize easily to the 3-d Potts model and one
obtains that, if the critical manifold is an algebraic variety, it can

. s 2
only be one of the two varieties xyz = a, and xyz = =q, .

However, these two varieties are excluded by precise numerical
estimates for the simple cubic lattice (Ditzian and Kadanoff [16],
Bléte, Swendsen [12]). This leads to the conclusion that, in this case,
the critical manifold is not an algebraic one. This confirms that some
profound differences occur for this model between d=2 and d=3. The same
ideas can also be applied to many other models and for instance one
gets that way the exact critical varieties for the Potts model on the

triangular, honeycomb or chequerboard square lattice [45].

Lee-Yang singularities of the partition function

As analyticity properties seem to be deeply involved in the action
of the automorphy group G, it is tempting to look at the relationship
between the group structure and the Lee-Yang singularities of the parti~
tion function. Let us introduce Gy the subgroup of G, whose elements
are such that their decomposition into I and S contains an even number
of I. The set of zeros of the partition function must obviously,
because of the automorphy property of the partition function, be stable
by the group G,- In the case of the Potts model a generalizatiom of the

y

XY = | for the
-q

Lee-Yang theorem enablesto locate the Lee-Yang singularities [41,26,47].
They are located, using our variables x and y, at T

: . . . . +
square lattice. This manifold is obviously stable by GO and even by G,
This result stands only for q > 4. From the simple expressior for this

manifold when expressed in the variables well adapted to the automorphy
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group G,it is quite clear that the Lee Yang singularities are deeply
connected to the group. It should be noticed that, in the isotropic
case, this variety splits , for q < 4, into two circles |b-1| = Vg and
|b#1| = V4-q which reduces at g=2 to the equation of the well-known
Fisher's circles [45].

The inversion relation and critical properties

The inversion relation implies strong constraints on the partition
function. Does it tell us something on the critical property of the
partition function that is to say on the singular part of the partition
function ? The inversion relation can clearly be restricted to the sin-
gular part of the partition function. For instance in the symmetric

eight vertex model, introducing with Baxter (appendix E of [2])

the variables y = TE/KX and U = %; (spectral variable) which remain fi-

nite near the critical temperature, one can write

-sting(U) = —sting (-u) (crossing symmetry)

-Bf () + (—sting)(2u~U) = 0 (inversion relation).

sing

If one assumes a Kadanoff-type form such as

. - 2= (1)
sting =a(l,u) . q + .,
(q vanishes as T tends to Tg) one gets
a(u,u) = a(-U,p) (6)
a(u,u) + a(p-t,u) =0 - N

Paradoxically the inversion and symmetry relation contain the sophis-
ticated information, the amplitude a(U,u) that multiplies the scaling
law qz_Ol (weak universality), but does not give any information on the
critical exponant 2-t. From the exact kmown solution of the symmetric

eight-vertex one sees that
2

vt dos 2 L
sting = 4 cos 5 cot g 5=+

T/ ”
The amplitude satisfies equations (6) (7) and is a periodic function as

it should be.

On the contrary, we have seen that the IR, combined with the sym-
metry relation and some analyticity assumptioms, completely determines

the partition function and therefore the critical exponent o.
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Thus the question remains open to know if a more sophisticated
use of the inversion relation would constrain the critical exponents.
For instance the critical exponents of the 2-d Potts model are known
exactly (conjecture of den Nijs, Nienhuis et al [47]) and become ratio-
nal numbers when the group G degenerate into a finite group. This rela-
tion between the critical exponents and the group G suggests that it
mipht be possible to get these exact expressions using the I.R
concept.

The inversion relation and the star-triangle relationm (31]

Finally, we come back to the study of the STR and show that the
IR can help us to find STR and, perhaps, to classify exhaustively some
family of them. Usually, the STR is used to derive the commutation of
large transfer matrices, i.e. in the thermodynamic limit, when their
size N goes to infinity. Nonetheless the same commutation is quite de-

ducible whatever the value of N is.

Hence, it is quite feasible for the smallest values of N, 1,2,3,4,...
to examine the conditions implied by the commutation and thus to get
necessary conditions for satisfying the triangle relation. The S.T.R.
leads to a so constraintfull overdetermined system of equations that it
seems natural to search/gggéssary conditions which would enable some
systematic procedure to limit the research range. On the contrary, to
find sufficient conditions;:s:ds an extraordinary feat of intuition.

Let us consider the most general model with the following parameters
corresponding to the |6 different configurations of Ising spins T Ops

04, T (I.R.F. model, interaction-round-a-face model).

(01,02)
(++) (+=) (-+) (-=)
(03,04)
(+4) a b c d
(+=) e 3 g h
(-+) i i k 1
(-=) m o p

The commutation of the transfer matrices with periodic boundary condi-

tions, for the size N=1 leads to the two simple equations

[TN(W). TN(w')} =0 N=1

a__E af_pl E = d‘
d d m om
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(a',...,p" denote the parameters associated with theBoltzmann weight W').
The factorization into a form wi{W) = mi(W') which is so important in

exact modelg and enables their uniformization, occurs here very simply.

For N=2 one gets (using also the N=1 equatioms)
be _ el _ no _ hi _ a? _ n - 32—22
b’ e'i oo h'y a2 2 2 42
m a'"-p
. _fiegi-a® oo d% be no
f'k'+g'jl—'a'2 mz ei " h{

Therefore in order that the STR be satisiied one must have:

ml(w) = EEE = wlcw') = gome constant

d
m

- = be _
mz(W) = cte wa(w) = constant

etc... If one adds the N=3 algebraic expression @05 and the N=4, and,
due to the fact that one can gauge-away some variables (weak graph
duality [22]), one finds that the number of cunstraints"wi(w) = cons-
tant " is equal, or greater, than the number of relevant variables :
the only solution is the trivial solution W' = AW (the transfer matrix

commutes witg itself). Therefore it seems necessary to restrict the mo-
& _be  no
m ei " hR
Let us make use of the connection between the IR and the STR : we
have indicated that the S.T.R. implies [TN(W), TN(W')] = 0 but also
[TN(H), TN(Wi)] = 0. If one gets, for some finite N, some algebraic

relation wi(w) = wi(w'), one can say that wi(w‘) = wi(W) = wi(W{).

del to the case.

Thus the algebraic expression 0, has to be stable by the inversion
rélation I. 1In fact there are not one, but two inversion relationms
(conjugated by the g rotations). In general these transformations do
not commute and generate an infinite discrete group and an infinite
number of constraints. All the constraints from finite § commutation
relationsand their transformed by IR seem to restrict the only
non trivial solution (without excluded configurations)to essentially
the Baxter model and the free fermion Felderhof model [20] : details
of this study will be published elsewhere [ 4€]. For this model most of

bc

the ®, become trivial T l,... and for other non trivial @,

equations like mi(W) = mi(wl) become identities.
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This systematic approach can be applied to a lot of models
(Ashkin-Teller model, staggered vertex models...). Let us just mention
two examples : the hard hexagon model [ 4] (a=sb=c=d=e=i=m=g=j=0) for
which one gets three algebraic expressions called A], AZ, A3 (in
Baxter's notation ) at respectively the N=2,3 and 4tN order and for
which one can verify algebraically that (Az)I = Aj-Al (one has A2=A3-Al
for this model so that Az = (AZ)I). Let us mention also the 2-d
anisotropic Potts model where one gets at the N=3 order (with our pre-

ceding notations), the equation
b'e' (c2b2e1-b%-e2) + (q=2) (c'+b') (cb+1) =
(8)
be(e'2h'241-b"2-c'2) + (g-2) (c+b) (c'b'+1) .

This equation is not immediately in a factorized form but for q=2, one
gets
be _ b'c'
5 =
(1-b%) (1-c?)  (1-b'H (1-c'?)

for q#2 one verifies that bc = b+c+q-1 (ferromagnetic critical condi-
tion) and be+btc = g-3 (antiferromagnetic critical condition) both

satisfy the equation (8).

But, of course, it is especially in three dimensions (due
to the tremendous complexity of the tetrahedron relation [60][ 6]
which is the multidimensional generalization of the §,T,R.)that such
ideas could be useful . Since the tetrahedron relation is known to im-
ply the commutation of transfer matrices of arbitrary size, in the same
way as the S.T.R. does, the same approach applies without any major
modification in three dimensions : one obtains also necessary condi-~
tions from the commutation relation of the transfer matrices with pe-

riodic conditions along two directions of respective size N and M :
"] =
[TN,M(w)' TN,M(W J1=0 .

For N=1, one recovers the two-dimensional necessary conditions of the
I.R.F. model. Thus, the study of the commutation relation of the two-

dimensional model can be used again in three dimensions,

In the case of the model studied by Zamolodchikov which satisfies
a tetrahedron relation [60] one can get, as necessary conditions for

this tetrahedron relation, algebraic equations such as wi(W) = mi(w').
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For instance

4 4 4 4
(B-Q,) -(P +q ) "+ (B —Q,) = (P +Q,)

R0H1R2R3

(W) =

(240" = (2,0 (gm0 - @yrep”

Rk RaRy
(with the Baxter's notations [ 6]). Of course it is more tedious to get
the algebraic expansion @ A straightforward generalization of the
connection between S.T.R. and IL.R. enables to say in three dimensions
that mi(w) = mi(w') = wi(H) = wi(wl). May be these simple calculations

can be a systematic approach for the tetrahedron relatiom,

Conclusion

One would like to continue to develop exact models and go further
in two dimensions : there are very few models that have been solved in
the presence of a field (spherical model, KDP ferroelectric model, free-
fermion Felderhof model [20]). It seems that exact solubility has more
or less something to do with the vanishing field conditions and it seems
unlikely that some generalized S.T.R. can be used to solve the Ising or
other models in the presence of a field. It seems also that exact solu-
bility has something to do with criticality conditions of a model (see
for instance the Potts model) : the Ashkin-Teller model can be solved
on its ecritical self-dual line and it is known that this line splits
into two critical lines ; is it possible to calculate exactly the par-
tition function on these two lines ? The conformal invariance is a
property which exists for a lot of exactly solved 2-d models (it is far
from being understood on the 2-d Ising model in the scaling limit for
instance) : what are the relations between this property and the two
prece ding ones? Another important question is to know if the exact sol-
vability of a model is related to the rationality of the critical expo-
nents of the model : if it could be possible to calculate exactly the
partition funcrion, for instance of the Potts model at all temperatures,
for the values of q for which the exponents are rational (and for which
the group G degenerates: q = 2+2 cos 2T % with k and n integers ;
Tutte-Beraha numbers) it would be a giant step forward, The problem of
the relation between complete integrability and some other properties

for two-dimensional theories, raises a very important question : is
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exact integrability an inherently two-dimensional phenomenon or does
similar behaviour occur in (more realistic) three or four dimensional
theories ? The answer is far from clear, but, for instance, the (l+1)
dimensional non linear 0 model is often mentiomed in the literature to

have much in common with the (3+1)dimensional Yang-Mills theory [51].

However to answer these questions, it seems important to understand
precisely what makes a model integrable, There are a lot of new ideas
(Kac-Moody algebra [21]). But it seems to us that the Yang-Baxter equa-
tions and their multidimensional generalizations (tetrahedron equations)
are a key point to understand exact models : a lot of particular solu-
tions to Y-B-E have been found and many people devote their energies to
make progress the general Y-B-E theory ([ 91,[15],[36] group theoretical
approach). In this framework we have shown that the inversion relation
plays an important role for the Y-B~E (S.T.R.). We have indicated that
the inversion relation is an important concept even when mo STR exists,
The study of models which are not integrable, but satisfy exact
functional relations is an open subject, Let us just recall the 2-d and
3-d Potts model and the 3-d Ising model which are ''matural” models in

statistical mechanics.

How to use at best these exact relations on these models ? We have
just started to try to answer the gquestion but much remains to be

done.
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