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Abstract
We revisit, with a pedagogical heuristic motivation, the lambda extension of
the low-temperature row correlation functions C(M,N) of the two-dimensional
Ising model. In particular, using these one-parameter series to understand the
deformation theory around selected values of λ, namely λ= cos(πm/n) with
m and n integers, we show that these series yield perturbation coefficients,
generalizing form factors, that are D-finite functions. As a by-product these
exact results provide an infinite number of highly non-trivial identities on the
complete elliptic integrals of the first and second kind. These results underline
the fundamental role of Jacobi theta functions and Jacobi forms, the previous
D-finite functions being (relatively simple) rational functions of Jacobi theta
functions, when rewritten in terms of the nome of elliptic functions.

Keywords: Ising correlation functions, form factors,
lambda extension of correlation functions, sigma form of Painlevé VI,
D-finite functions, globally bounded series, Jacobi forms

1. Introduction

We revisit, with a pedagogical heuristic motivation, the lambda extension [1] of the two-
point correlation functions C(M,N) of the two-dimensional Ising model. For simplicity we
will examine in detail the lambda extension of a particular low-temperature diagonal correl-
ation function, namely C(1,1), in order to make crystal clear some structures and subtleties.
However similar structures and results can be obtained on the two-point correlation functions

∗
Author to whom any correspondence should be addressed.

1751-8121/23/085201+35$33.00 © 2023 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/acb574
https://orcid.org/0000-0002-8233-8501
mailto:maillard@lptmc.jussieu.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/acb574&domain=pdf&date_stamp=2023-2-16


J. Phys. A: Math. Theor. 56 (2023) 085201 S Boukraa and J-M Maillard

C(M,N) for the special case ν =−k studied in [2] where Okamoto sigma-forms of Painlevé
VI equations also emerge.

In 1976 Wu et al [3] discovered, in the scaling limit T→ Tc with N · (T−Tc) fixed, that the
isotropic diagonal correlationC(N,N) is given by a Painlevé III equation. This was generalized
in 1980 by Jimbo and Miwa [4] who defined for T< Tc

σ = t · (t− 1) · d
dt

lnC(N,N)− t
4

with t= k2, (1)

and for T> Tc

σ = t · (t− 1) · d
dt

lnC(N,N)− 1
4

with t= k−2, (2)

and in both cases derived the sigma-form of Painlevé VI non-linear ordinary differential
equation (ODE) satisfied by σ:(

t · (t− 1) · d
2σ

dt2

)2

= N2 ·
(
(t− 1) · dσ

dt
−σ

)2

− 4 · dσ
dt

·
(
(t− 1) · dσ

dt
−σ− 1

4

)
·
(
t
dσ
dt

−σ

)
. (3)

The low-temperature diagonal two-point correlation functions C(N,N) are (homogeneous)
polynomial expressions [5, 6] in the complete elliptic integral of the first and second kind3:

K= 2F1

([
1
2
,
1
2

]
, [1], t

)
, E= 2F1

([
1
2
,−1

2

]
, [1], t

)
. (4)

In [1] it has been underlined that these correlation functions C(N,N) have lambda extensions
which are also solutions of (3), that can be defined using a ‘form factor’ low-temperature
expansion [1, 7] (see (9) in [1]):

C−(N,N;λ) = (1− t)1/4 ·

(
1+

∞∑
n=1

λ2n · f(2n)N,N

)
, (5)

where the form factors [1] f(2n)N,N are also polynomial expressions [5, 6] integral of the first and
second kind (4). For instance for the simplest low-temperature correlation function this form
factor expansion reads

C−(1,1;λ) = (1− t)1/4 ·

(
1+

∞∑
n=1

λ2n · f(2n)1,1

)
, (6)

where the first form factors read:

f(2)1,1 =
1
2
·
(
1− 3EK− (t− 2) ·K2

)
, (7)

f(4)1,1 =
1
24

·
(
9− 30EK− 10 · (t− 2) ·K2

+(t2 − 6t+ 6) ·K4 + 15E2K2 + 10 · (t− 2) ·EK3
)
. (8)

3 In Maple K is 2/πEllipticK(t1/2) and E is 2/πEllipticE(t1/2). With that normalization one has K= θ3(0,q)2 and
t1/2 = k= θ2(0,q)2/θ3(0,q)2 and thus k ·K= θ2(0,q)2, where q denotes the nome.
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For λ= 1 we must recover, from (6), the well-known expression of the low-temperature two-
point correlation function C(1,1) = E:

C−(1,1;1) = E= 1− 1
4
· t− 3

64
· t2 − 5

256
· t3 − 175

16384
· t4 + · · ·

= (1− t)1/4 ·

(
1+

∞∑
n=1

f(2n)1,1

)
, (9)

which corresponds to write the ratio E/(1− t)1/4 as an infinite sum of polynomial expressions
of E and K.

2. Simple power series expansions and formal calculations

For pedagogical reasons we restrict our analysis to the low-temperature two-point correlation
function C(1,1) and its lambda extension. Since all these lambda extensions are power series
in t, we can try to get, order by order, the series expansion of C−(1,1;λ) from the non-linear
ODE (3). Recalling [1] the form factor expansion (6), we can either see the series expansion
in t as a deformation of the simple algebraic function (1− t)1/4, or more naturally, see the
series expansion of the lambda-extension of the low-temperature two-point correlation func-
tion C−(1,1;λ) as a deformation of the exact expression C−(1,1) = E (M denotes here a
difference to λ2 = 1, see (16) below):

C−(1,1;λ) = CM(1,1;M) = E+M · g1(t)+M2 · g2(t)+M3 · g3(t)+ · · · . (10)

Using the sigma-form of Painlevé VI equation (3) one can find that this expansion (10) reads
as a series expansion in the variable t:

CM(1,1;M) = 1− 1
4
· t−

(
3
64

+
3

256
·M
)
· t2 −

(
5

256
+

9
1024

·M
)
· t3

−
(

175
16384

+
441

65536
·M
)
· t4 −

(
441

65536
+

1407
262144

·M
)
· t5

−
(

4851
1048576

+
9281

2097152
·M− 5

16777216
·M2

)
· t6 + · · · . (11)

Note that this low-temperature expansion (11) gives for σ defined by (1):

σ = t · (t− 1) · d
dt

lnC(1,1;M)− t
4
= (M− 4) ·σM, (12)

where:

σM =
3

128
· t2 + 3

256
· t3 + 3

32768
· (3M+ 74) · t4 + 3

65536
· (9M+ 94) · t5

+
3

8388608
· (9M2 + 1270M+ 8176) · t6 + · · · . (13)

Recalling the expansions of (1− t)1/4

(1− t)1/4 = 1− 1
4
· t− 3

32
· t2 − 7

128
· t3 − 77

2048
· t4 + · · · (14)
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one can see that this series coincides (as it should) with the series (11) for M= 4 (i.e. λ= 0
in (6)). Recalling the expansions of f(2)1,1 and f(4)1,1 :

f(2)1,1 =
3
64

· t2 + 3
64

· t3 + 705
16384

· t4 + 321
8192

· t5 + 18795
524288

· t6 + · · · ,

f(4)1,1 =
5

1048576
· t6 + 15

1048576
· t7 + 7335

268435456
· t8 + 2855

67108864
· t9

+
4052025

687194767366
· t10 + 5215005

68719476736
· t11 + · · · (15)

the series expansion (11) can be seen to match with the (form factor) expansion (6) with (7)
and (8) (together with the previous expansions (15)) if one has the following correspondence:

M= 4 · (1−λ2). (16)

At the first order in λ2 one gets from (11):

(1− t)1/4 · f(2)1,1 =
3
64

· t2 + 9
256

· t3 + 441
16384

· t4 + 1407
65536

· t5 + 2319
131072

· t6 + · · · (17)

in agreement with the exact expression (7). At the second order in λ2 one gets from (11):

(1− t)1/4 · f(4)1,1 =
5

1048576
· t6 + 55

41943046
· t7 + 6255

2684354566
· t8 + 36625

10737418246
· t9

+
3079025

687194767366
· t10 + 15116115

2748779069446
· t11 + · · · (18)

in agreement with the exact expression (8). At the third order in λ2 one gets from (11):

(1− t)1/4 · f(6)1,1 =
7

4398046511104
· t12 + 161

17592186044416
· t13

+
33789

1125899906842624
· t14 + 332703

4503599627370496
· t15 + · · · . (19)

Matching the form-factor expansion (6) with the series expansion (10) one gets the following
(infinite . . .) identities:

(1− t)1/4 = E+
∞∑
n=1

4n · gn(t), (1− t)1/4 · f(2)1,1 =−
∞∑
n=1

n · 4n · gn(t),

(1− t)1/4 · f(4)1,1 =
∞∑
n=1

n · (n− 1)
2

· 4n · gn(t), · · · (20)

and conversely:

E = (1− t)1/4 ·

(
1+

∞∑
n=1

f(2n)1,1

)
, g1(t) =− (1− t)1/4

4
·

∞∑
n=1

n · f(2n)1,1 ,

g2(t) =
(1− t)1/4

32
·

∞∑
n=1

n · (n− 1) · f(2n)1,1 , · · · . (21)
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2.1. Algebraic subcases

It had been noticed [1], for λ= cos(πm/n) where m and n are integers, and λ2 ̸= 1, that the
lambda extension (6) is not only D-finite4, but is, in fact, an algebraic function.

2.1.1. λ= cos(π/4). For instance for λ= cos(π/4) = 1/
√
2, i.e. for M= 2, one finds

that (11) is actually the series expansion of an algebraic expression

(1− t)1/16 ·2F1

([
−3

8
,
1
8

]
,

[
1
4

]
, t

)

= (1− t)1/16 ·
(
1+(1− t)1/2

2

)3/4

= 1− 1
4
· t− 9

128
· t2 − 19

512
· t3 − 791

32768
· t4

− 2289
131072

· t5 − 56523
4194304

· t6 + · · · (22)

in agreement of the exact result given in equation (99) of [8].

2.1.2. λ= cos(π/6). Another example corresponds to M= 1 (i.e. λ=
√
3/2= cos(π/6)).

The series (11) reads:

1− 1
4
· t− 15

256
· t2 − 29

1024
· t3 − 1141

65536
· t4 − 3171

262144
· t5

− 151859
16777216

· t6 − 477697
67108864

· t7 + · · · . (23)

One first finds that this series (23) is D-finite, being the solution of the order-four linear
differential operator:

D4
t +

1
3
· 19t

3 − 30t2 + 36t− 14
(t− 1)(t2 − t+ 1)t

·D3
t

+
1

216
· 1625t

4 − 3439t3 + 5091t2 − 3628t+ 680
(t− 1)2(t2 − t+ 1)t2

·D2
t

+
1

11664
· 10033t

5 − 26608t4 + 53854t3 − 55334t2 + 16160t+ 880
(t− 1)3(t2 − t+ 1)t3

·Dt

+
1

186624
· 3689t

5 − 6725t4 + 2573t3 + 8t2 + 5200t− 3520
(t− 1)4(t2 − t+ 1)t3

. (24)

In fact the series (23) is not only D-finite, it is an algebraic series. Denoting S(t) the series (23),
and S12 = S(t)12 its twelfth power, one can see that S12 is actually solution of the quartic
equation

336 · t8 · S412 + 210 · 326 · t6 · (t− 1) · p6 · S312
+ 217 · 315 · t4 · p12 · (t− 1)2 · S212 + 226 · (t− 1) · p24 · S12
+ 232 · (t− 1)4 · (t2 − t+ 1)12 = 0, (25)

4 Like in the λ2 = 1, M= 0 case.

5
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where:

p6 = 5t6 − 15t5 + 138t4 − 251t3 + 138t2 − 15t+ 5,

p12 = 113t12 − 678t11 + 5829t10 − 22930t9 + 148410t8 − 463518t7

+ 665661t6 − 463518t5 + 148410t4 − 22930t3 + 5829t2 − 678t+ 113,

p24 = 64t24 − 768t23 + 4965t22 − 22231t21 + 3243192t20 − 31880523t19

+ 66263383t18 + 309635262t17 − 1791331236t16 + 3209457458t15

− 698769519t14 − 6199132605t13 + 10265065180t12 − 6199132605t11

− 698769519t10 + 3209457458t9 − 1791331236t8 + 309635262t7

+ 66263383t6 − 31880523t5 + 3243192t4 − 22231t3 + 4965t2 − 768t+ 64. (26)

2.1.3. λ= cos(π/3). Similarly, for M= 3 (i.e. λ= 1/2= cos(π/3)), the series (11) reads

1− 1
4
· t− 21

256
· t2 − 47

1024
· t3 − 2023

65536
· t4 − 5985

262144
· t5

− 300315
16777216

· t6 − 979737
67108864

· t7 + · · · (27)

and can be seen to be solution of an order-four linear differential operator:

D4
t +

2
3
· 11t− 7
(t− 1)t

·D3
t +

1
54

· 587t
2 − 737t+ 170
(t− 1)2t2

·D2
t

+
1

1458
· 2855t

3 − 5223t2 + 2130t+ 110
(t− 1)3t3

·Dt

+
1

11664
· 161t

3 − 702t2 + 1785t− 220
(t− 1)4t3

. (28)

Again, the series (27) is not only D-finite, it is also an algebraic series. Denoting S(t) the
series (27), and S6 = S(t)6 its sixth power, one can see that S6 is solution of the quartic equation

327 · t4 · S46 − 210 · 320 · t4 · (t− 1) · (t− 2) · S36
+ 29 · 311 · t2 · p4 · (t− 1)2 · S26 + 215 · (t− 2) · p8 · (t− 1)2 · S6
− 216 · (t− 1)8 = 0, (29)

where:

p8 = 8192t8 − 38912t7 + 82304t6 − 93704t5 + 64151t4

− 20756t3 + 6914t2 + 4t− 1,

p4 = 3584t4 + 5312t3 − 5307t2 − 10t+ 5. (30)

Actually (11) provides [1] an infinite number of algebraic functions for selected values of λ,
namely λ= cos(πm/n), or M= 4 · sin2(πm/n), with m and n integers.

2.2. The gn’s are, at first sight, DD-finite

The form factor expansion (6) is well-suited [1] to analyze the deformation of the (1− t)1/4

algebraic solution of the sigma-form of Painlevé VI equation (3). We underlined in [1] the fact
that all the form factors f(2n)1,1 are D-finite (polynomials in E and K).

6
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Let us now see the series expansion (11) as a (one-parameter) deformation (10) of the
C(1,1) = E low-temperature exact expression:

CM(1,1;M) = E+M · g1(t)+M2 · g2(t)+M3 · g3(t)+ · · · . (31)

At first sight these gn(t)’s have no reason to be D-finite. The series expansion of g1(t) reads:

g1(t) = − 3
256

· t2 − 9
1024

· t3 − 441
65536

· t4 − 1407
262144

· t5

− 9281
2097152

· t6 − 31405
8388608

· t7 − 13877397
4294967296

· t8 + · · · . (32)

Inserting (31) in the sigma form of Painlevé VI non-linear ODE (3) (with σ defined by (1)),
one gets straightforwardly, at the first order inM, that g1(t) isDD-finite5 [9]: it is solution of an
order-three linear differential operator L3 with coefficients that are themselves D-finite (they
are polynomials of hypergeometric 2F1 functions). This order-three linear differential operator
is of the form L3 = L1 ·LE where the order-two linear differential operator LE is the operator
annihilating the complete elliptic integral of the second kind E, and where the order-one DD-
finite operator L1 reads:

L1 = K3 · (t− 1)2 · (2 · (t− 1) · tDt+ 5t− 3)

−EK2 · (t− 1) ·
(
4 · (t− 1) · (t− 2) · tDt+ 10t2 − 27t+ 13

)
−KE2 · (t− 1) · (10 · (t− 1) · tDt+ 26t− 17)

+E3 ·
(
2 · (t− 1) · (t− 2) · tDt+ 3t2 − 14t+ 7

)
= 2 ·

(
(t− 2) ·E3 − 5 · (t− 1) ·KE2

−2(t− 1) · (t− 2) ·EK2 +(t− 1)2 ·K3
)
· (t− 1) · t ·Dt

+(t− 1)2 · (5t− 3) ·K3 − (t− 1) · (10t2 − 27t+ 13) ·EK2

− (t− 1) · (26t− 17) ·KE2 +(3t2 − 14t+ 7) ·E3. (33)

At first sight g1(t) is DD-finite and one easily verifies that the series expansion (32) is actu-
ally solution of the order-three DD-finite linear differential operator L3 = L1 ·LE. Could it be
possible that g1(t) is, in fact, D-finite?

3. The gn(t)’s are D-finite

In order to see that the gn(t)’s are D-finite, let us recall that there actually exists an exact closed
expression [8] for the lambda extension C(1,1;λ). This requires to rewrite everything in terms
of the nome [10] variable q and use extensively Jacobi theta functions. This exact expression
has been given in equation (98) of [8]:

C−(1,1;λ) =
−θ ′

2(u,q)
sin(u) · θ2(0,q) · θ3(0,q)2

where: λ= cos(u), (34)

where θ ′
2(u,q) denotes the partial derivative of θ2(u,q)with respect to u. This exact expression,

when rewritten in terms of the t variable, is, at first sight, a differentially algebraic function6.
Let us write (34) as

5 A D-finite function is a function solution of a linear ODE with polynomial coefficients. A DD-finite function is a
function solution of a linear differential equation whose coefficients are D-finite functions [9].
6 A differentially algebraic function [11] is a function f (t) solution of a polynomial relation
P(t, f(t), f ′(t), · · · f(n)(t)) = 0, where f(n)(t) denotes the nth derivative of f (t) with respect to t.

7
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f(u)
sin(u) · θ2(0,q) · θ3(0,q)2

where: f(u) =−θ ′
2(u,q),sin(u) =

(
M
4

)1/2

, (35)

where M is defined by (16), and let us perform the Taylor expansion7 of f(u)/sin(u) in M:

f
(
arcsin((M/4)1/2)

)
(M/4)1/2

= f(1)(0)+
1
24

·
(
f(3)(0)+ f(1)(0)

)
·M+

1
1920

·
(
f(5)(0)+ 10f(3)(0)+ 9f(1)(0)

)
·M2

+
1

322560
·
(
f(7)(0)+ 35f(5)(0)+ 259f(3)(0)+ 225 · f(1)(0)

)
·M3 + · · · (36)

where f(n)(u) denotes the nth derivative8 of f (u) (with respect to u). From this Taylor expan-
sion (36) one gets the following exact expressions for g1(t), g2(t), etc . . .(and even the first
term g0(t) = E):

g0(t) = E=− θ
(2)
2 (0,q)

θ2(0,q) · θ3(0,q)2
,

g1(t) =− 1
24

· θ
(4)
2 (0,q)+ θ

(2)
2 (0,q)

θ2(0,q) · θ3(0,q)2
,

g2(t) =− 1
1920

· θ
(6)
2 (0,q)+ 10 · θ (4)

2 (0,q)+ 9 · θ (2)
2 (0,q)

θ2(0,q) · θ3(0,q)2
,

g3(t) =− 1
322560

· θ
(8)
2 (0,q)+ 35 · θ (6)

2 (0,q)+ 259 · θ (4)
2 (0,q)+ 225 · θ (2)

2 (0,q)
θ2(0,q) · θ3(0,q)2

,

g4(t) =− 1
92897280

· N4

θ2(0,q) · θ3(0,q)2
,

g5(t) =− 1
40874803200

· N5

θ2(0,q) · θ3(0,q)2
, (37)

where

N4 = θ
(10)
2 (0,q)+ 84 · θ (8)

2 (0,q)+ 1974 · θ (6)
2 (0,q)

+ 12916 · θ (4)
2 (0,q)+ 11025 · θ (2)

2 (0,q),

N5 = θ
(12)
2 (0,q)+ 165 · θ (10)

2 (0,q)+ 8778 · θ (8)
2 (0,q)+ 172810 · θ (6)

2 (0,q)

+ 1057221 · θ (4)
2 (0,q)+ 893025 · θ (2)

2 (0,q), (38)

and where θ (2n)
2 (u,q) denotes the (2n)th partial derivative of θ2(u,q) with respect to u.

Let us recall that ratios of D-finite expressions are not (generically9 . . .) D-finite: they are
differentially algebraic [11]. Section (2.2) suggests that the gn(t)’s are DD-finite (or DDD-
finite, . . .): the previous expressions (37) of the gn(t)’s as ratio of derivatives of theta functions
confirms this prejudice. On the other hand, all these gn(t)’s are globally bounded series [12]
(see (32)), and we have seen, so many times in physics, and in particular the two-dimensional

7 One has, at first sight, a Puiseux series in M1/2 but all the coefficients for M−1/2, M1/2, M3/2, . . .are here equal to
zero because all the even derivative f(2n)(0) are equal to zero.
8 Note, in this Taylor series (36), that the terms corresponding to even derivatives f (0), f(2)(0), . . ., f(2n)(0), are

identically zero, since the odd derivatives of θ2(u,q) with respect to u vanish: θ (2n+1)
2 (u,q)) = 0.

9 The denominator must not be an algebraic function.
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Ising model, the emergence of globally bounded series as a consequence of the frequent occur-
rence of diagonals of rational functions [12–15] (or n-fold integrals [10, 16–21]). This may
suggest, on the contrary, that the gn(t)’s could be D-finite.

3.1. Expansions of the gn(t)’s in the t variable

From the previous exact expressions (37) in terms of theta functions, one can obtain the series
expansions of the gn(t)’s in the t variable and try to see if these gn(t)’s are solutions of linear
differential operators.

From these expansions (37), rewritten in t, one can get large enough series in t to see that
g1(t) is in fact solution of an order-six linear differential operator L6 which is actually the
direct sum (LCLM) of an order-four linear differential operator L4 and of the order-two linear
differential operator LE havingE= 2F1([

1
2 ,−

1
2 ], [1], t) as a solution. Furthermore one finds that

this order-four linear differential operator L4 is homomorphic to the symmetric third power of
this order-two linear differential operator LE, with an intertwiner reading:

3
8
R1 = (t− 1) · t3 ·D3

t +
3
2
· (t− 1) · t2 ·D2

t −
1
4
· (3t+ 1) · t ·Dt+

3
8
· t

2 + 1
t− 1

. (39)

One finally finds that the series expansion (32) is exactly the linear combination of E and the
order-three linear differential operator (39) acting on E3:

g1(t) =
1
24

·E+ 1
24

·R1(E
3) =

1
24

·E− 1
8
·KE2 − t− 1

12
·K3. (40)

Similar calculations can be performed for g2(t). The series g2(t) can also be seen to be D-
finite, being solution of an order-twelve linear differential operator which turns out to be the
direct-sum (LCLM) of the previous order-two linear differential operator LE, of the previous
order-four L4, and of an order-six linear differential operator homomorphic to the symmetric
fifth power of LE with the following order-five intertwiner:

−5
8
R2 =

4
3
· (t− 1) · (t− 2) · t5 ·D5

t +
5
2
· (t− 1) · (4t− 9) · t4 ·D4

t

+ 5 · (2t− 3) · (t− 3) · t3 ·D3
t −

5
24

24t3 − 122t2 + 59t+ 103
t− 1

· t2 ·D2
t

+
1
24

· 90t
4 − 488t3 − 7t2 + 774t− 1

(t− 1)2
· t ·Dt

− 5
96

· 36t
5 − 205t4 − 59t3 + 409t2 + 23t− 12

(t− 1)3
. (41)

One finally finds that the series expansion for g2(t) is exactly the linear combination of E,
of the order-three linear differential operator (39) acting on E3, and of the order-five linear
differential operator (41) acting on E5:

g2(t) =
3

640
·E+ 1

192
·R1(E

3)+
1

1920
·R2(E

5)

=
3

640
·E− 1

64
·E2K− t− 1

96
·K3

+
1

128
·E3K2 +

t− 1
64

·EK4 +
(t− 1)(t− 2)

240
·K5. (42)

Similar calculations can be performed for g3(t). They are displayed in appendix A.
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Remark 1. All these R1(E3), R2(E5), . . .which are homogeneous polynomials in the complete
elliptic integrals E and K, can be directly expressed in terms of simple ratios of theta functions:

R1(E
3) =− θ

(4)
2 (0,q)

θ2(0,q) · θ3(0,q)2
, R2(E

5) =− θ
(6)
2 (0,q)

θ2(0,q) · θ3(0,q)2
,

R3(E
7) =− θ

(8)
2 (0,q)

θ2(0,q) · θ3(0,q)2
, · · · (43)

where θ (n)
2 (u,q) denote the nth derivative of θ2(u,q) with respect to u.

One can conjecture the following expression for (11):

CM(1,1;M) = E+M · (c(1)1 ·E+ c(1)2 ·R1(E
3))

+M2 · (c(2)1 ·E+ c(2)2 ·R1(E
3)+ c(2)3 ·R2(E

5))

+M3 · (c(3)1 ·E+ c(3)2 ·R1(E
3)+ c(3)3 ·R2(E

5)+ c(3)4 ·R3(E
7))+ · · ·

= (1+ c(1)1 ·M+ c(2)1 ·M2 + c(3)1 ·M3 + · · ·) ·E

+(c(1)2 ·M+ c(2)2 ·M2 + c(3)2 ·M3 + · · ·) ·R1(E
3)

+ (c(2)3 ·M2 + c(3)3 ·M3 + · · ·) ·R2(E
5)+ (c(3)4 ·M3 + · · ·) ·R3(E

7)

+ · · · (44)

where the c( j)i ’s are constants obtained from equations (37) and (43) (see (40) and (A.3)). One
can encapsulate these results in the following closed formula, deduced from (34) and its Taylor
expansion (see also (35)):

CM(1,1;M) =− 2√
M

·
θ ′
2

(
arcsin

√
M
2 ,q

)
θ2(0,q) · θ3(0,q)2

=− 2√
M

·
∞∑
p=0

(
arcsin

√
M
2

)(2p+1)

· θ
(2p+2)
2 (0,q)

θ2(0,q) · θ3(0,q)2 · (2p+ 1)!

=
2√
M

·
∞∑
p=0

(
arcsin

√
M
2

)(2p+1)

·
Rp(E(2p+1))

(2p+ 1)!
. (45)

4. Lambda-extensions and globally bounded series

Let us consider the series expansion (11) for values of the parameter M ̸= 0 not yielding the
previous algebraic function series (i.e.M ̸= 4 · sin2(πm/n)wherem and n are integers). These
series are10 differentially algebraic [11]: is it possible that such series could be D-finite for
selected values of M?

Let us change t into 16 t in the series expansion (11). One gets the following expansion:

1− 4t− (12+ 3M) · t2 − (80+ 36M) · t3 − (700+ 441M) · t4

− (7056+ 5628M) · t5 − (77616+ 74248M− 5M2) · t6

− (906048+ 1004960M− 220M2) · t7

10 They are solutions of a non-linear ODE, the sigma-form of Painlevé VI.

10
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− (11042460+ 13877397M− 6255M2) · t8

− (139053200+ 194712812M− 146500M2) · t9

− (1796567344+ 2767635832M− 3079025M2) · t10 + · · · . (46)

One sees immediately that this (generically) differentially algebraic series provides, for any
integer M, an infinite number of series with integer coefficients. In fact one can see that the
series expansion (11) (or the series expansion (46)) is a globally bounded series11 when M is
any rational number. One thus obtains the quite puzzling result that an infinite number of (at
first sight . . .) differentially algebraic series can be globally bounded series.

Quite often we see the emergence of globally bounded series [12] as solutions of D-finite
linear differential operators, and more specifically as diagonals of rational functions [12–15]
(this is related to the so-called Christol’s conjecture [22]). Along this line it is tempting to
imagine that such globally bounded situation could correspond to cases where the globally
bounded series are in fact D-finite. If this is not the case, it will thus be tempting to imagine
that such globally bounded situation could correspond to particular ratio of D-finite functions,
namely ratio of diagonals of rational functions (or even rational functions of diagonals).

4.1. The M=5 case

Let us restrict to simple integer values of M and see whether the corresponding globally
bounded series (11) are D-finite.

Let us consider an integer M different from M= 0 (the D-finite solution C(1,1)), and dif-
ferent from M= 1,2,3,4, which correspond to algebraic functions. For simplicity we will
consider the integer coefficient series (46) for M= 5. The M= 5 series (46) reads:

1− 4t− 27t2 − 260 t3 − 2905 t4 − 35196 t5 − 448731 t6 − 5925348 t7

− 80273070 t8 − 1108954760 t9 − 15557770879 t10 − 220998916404 t11

− 3171743667652 t12 − 45915042520880 t13 + · · · . (47)

One finds that this series (47) does not seem to be D-finite: one does not find any linear
differential operator even with a thousand coefficients. Let us recall the strategy we have
used in [11]: we study the series with integer coefficients modulo small increasing primes
p= 3,5,7,11,13, · · · and seek for the linear differential operator annihilating these series mod-
ulo such a prime.

For the prime p= 3 the series (47) mod. 3 is solution of an order-one linear differential
operator (of degree one in t):

2t+(t+ 2) · tDt. (48)

For the prime p= 5 the series (47) mod. 5 is solution of an order-one linear differential operator
(of degree two in t):

3 · t · (t+ 1)+ (t2 + 2t+ 2) · tDt. (49)

These series mod. 3 or 5, are not only D-finite, they are in fact algebraic series mod. 3 or 5:

p= 3,F16 + 2 · (t2 + t+ 1) ·F 8 +(t+ 2) · t6 = 0, (50)

p= 5,(t2 + 4t+ 1)5 ·F 4 + 4 · (t+ 3)4 · (t+ 4)4 = 0. (51)

11 A series with rational coefficients and non-zero radius of convergence is a globally bounded series [12] if it can be
recast into a series with integer coefficients with one rescaling t→ Nt where N is an integer.

11
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For the prime p= 7 the series (47) mod. 7 is solution of an order-three linear differential
operator (of degree three in t):

2 · t · (t+ 2)+ (9t3 + 13t2 + 4t+ 9) · tDt+(5t3 + 16t2 + 9t+ 19) · t2D2
t

+(t3 + 4t2 + 3t+ 6) · t3D3
t . (52)

This mod. 7 series is also algebraic, but finding the corresponding characteristic polynomial
equation (like (52) previously) requires more than one thousand coefficients.

For the next primes we get more and more involved linear differential operators of increas-
ing orders and degrees of the polynomials in t. One finds for the prime p= 11 an order 5 and
a degree in t also equal to five, and one gets for the following primes

p= 13,order= degree= 6, p= 17,order= degree= 8,

p= 19,order= degree= 9, p= 23,order= degree= 11,

p= 29,order= degree= 14, p= 31,order= degree= 15,

p= 37,order= degree= 18, p= 41,order= degree= 20, · · · .

An inspection of the corresponding linear differential operators strongly suggests that the
orders and degrees of the polynomials in t of the linear differential operator grow (linearly)
with the prime p according to the formula:

order= degree=
p− 1
2

. (53)

These results have to be compared with the same mod. prime calculations for the D-finite
(possibly algebraic) series (46) for M= 0,1,2,3,4. In that case, since there is a linear differ-
ential operator (in characteristic zero), the series modulo a prime is solution of the mod. prime
reduction of that linear differential operator, however for small primes the series modulo a
prime can be solution of a linear differential operator of smaller order (order one, . . .). There-
fore the previous analysis modulo increasing primes provides linear differential operators of
increasing orders, but very quickly saturating to the order of the linear differential operator in
characteristic zero.

These calculations, thus, strongly suggest that the integer coefficient series (47) is not
D-finite but is only differentially algebraic.

Similar calculations can be performed for any integerM⩾ 5 (or any integerM⩽−1) with
similar results. Similar calculations can be performed for any rational number M with similar
results ruling out D-finiteness. Let us display miscellaneous algebraic equation for the series
for various M and modulo various primes:

M= 6, p= 3, (t3 + 1) ·F 2 + 2 · (t2 + t+ 1) = 0,

M= 7, p= 3, F 4 +(t+ 2) = 0,

M= 7, p= 7, (t+ 1)7 · (t+ 3)7 · (t+ 5)7 ·F 6

+ 6 · (t+ 6)6 · (t2 + 2t+ 5)6 = 0,

M= 11, p= 3, F16 + 2 · (t2 + t+ 1) ·F 8 +(t+ 2) · t6 = 0.

All these calculations suggest that the infinite number of integer coefficient series (46),
for any integer M⩾ 5 (or any integer M⩽−1), are not D-finite, as well as the infinite num-
ber of globally bounded series (11) or (46) when M is any rational number, thus providing
an infinite set of globally bounded differentially algebraic series (far beyond the D-finite

12
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diagonals of rational functions [12–15] providing so many globally bounded series, see Chris-
tol’s conjecture [22]).

The question to see whether these globally bounded series could be ratio of particular
D-finite functions, namely ratio of diagonals of rational functions12 remains open.

Remark 2. Finding that a series is actually the ratio of particular D-finite functions can be a
difficult task, possibly some tour-de-force, requiring a lot of (guessing) intuition. Conversely,
there are very few papers, in the literature, addressing the question of ruling out the possibility
that a series can be the ratio of D-finite functions, or even ruling out the possibility that a series
can be DD-finite [9]. Here we have a prejudice that the series (46) for integer valuesM⩾ 5 are
not ratio of diagonals of rational functions, but we are not able to prove such a no-go result,
even for specific integer vales of M.

5. Other one-parameter deformations: deformations of algebraic functions

The ‘form factor’ expansion (5) (see (9) in [1]) amounts to seeing the lambda-extension of the
correlation function C−(N,N;λ) as a deformation of the algebraic solution (1− t)1/4. With
section (2.1) we have seen that there are many other (algebraic) values of the parameter λ for
which the lambda-extension C−(N,N;λ) becomes an algebraic function [1]. Let us consider
‘form factor’ expansions [1] similar to (6), but corresponding to seeing the lambda-extension
as a deformation around these other algebraic functions (see (22), (25) and (29)).

Recalling the exact expressions of the gn(t)’s in terms of theta functions displayed in (37)
and (38), it is worth noticing that similar expressions can also be obtained for the form factors
f(2n)1,1 . One gets respectively (with13 f(0)1,1 = 1):

(1− t)1/4 · f(0)1,1 =
θ
(1)
1 (0;q)

θ2(0,q) · θ3(0,q)2
,

(1− t)1/4 · f(2)1,1 =
1
2
· θ

(3)
1 (0,q)+ θ

(1)
1 (0,q)

θ2(0,q) · θ3(0,q)2
,

(1− t)1/4 · f(4)1,1 =
1
24

· θ
(5)
1 (0,q)+ 10 · θ (3)

1 (0,q)+ 9 · θ (1)
1 (0,q)

θ2(0,q) · θ3(0,q)2
,

(1− t)1/4 · f(6)1,1 =
1

720
· θ

(7)
1 (0,q)+ 35 · θ (5)

1 (0,q)+ 259 · θ (3)
1 (0,q)+ 225 · θ (1)

1 (0,q)
θ2(0,q) · θ3(0,q)2

,

(1− t)1/4 · f(8)1,1 =
1

40320
· N9

θ2(0,q) · θ3(0,q)2
,

(1− t)1/4 · f(10)1,1 =
1

3628800
· N11

θ2(0,q) · θ3(0,q)2
,

(1− t)1/4 · f(12)1,1 =
1

479001600
· N13

θ2(0,q) · θ3(0,q)2
, · · · (54)

12 Or more generally rational functions of diagonals of rational functions.
13 Note that (1− t)1/4 = θ4(0,q)/θ3(0,q)with θ ′

1 (0,q) = θ2(0,q)θ3(0,q)θ4(0,q).
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where

N9 = θ
(9)
1 (0,q)+ 84 · θ (7)

1 (0,q)+ 1974 · θ (5)
1 (0,q)

+ 12916 · θ (3)
1 (0,q)+ 11025 · θ (1)

1 (0,q),

N11 = θ
(11)
1 (0,q)+ 165 · θ (9)

1 (0,q)+ 8778 · θ (7)
1 (0,q)+ 172810 · θ (5)

1 (0,q)

+ 1057221 · θ (3)
1 (0,q)+ 893025 · θ (1)

1 (0,q),

N13 = θ
(13)
1 (0,q)+ 286 · θ (11)

1 (0,q)+ 28743 · θ (9)
1 (0,q)+ 1234948 · θ (7)

1 (0,q)

+ 21967231 · θ (5)
1 (0,q)+ 128816766 · θ (3)

1 (0,q)+ 108056025 · θ (1)
1 (0,q),

and where θ (2n+1)
1 (u,q) denotes the (2n+ 1)th partial derivative of the Jacobi theta function

θ1(u,q) with respect to u. Let us remark that these terms can be obtained similarly to (37)
and (38), using now the expansion of f(arccos(λ))/

√
1−λ2 around λ= 0, which corresponds

to u= π/2, and, then, use θodd2 (π/2,q) =−θodd1 (0,q) and θeven2 (π/2,q) = 0.

Remark 1. Similarly to (45) one can encapsulate the previous results in the following closed
formula, deduced from (34) and its Taylor expansion:

C−(1,1;λ) =− θ ′
2 (arccosλ,q)√

1−λ2 · θ2(0,q) · θ3(0,q)2

=
1√

1−λ2
·

∞∑
p=0

(arcsinλ)(2p) · θ
(2p+1)
1 (0,q)

θ2(0,q) · θ3(0,q)2 · (2p)!
. (55)

Remark 2. Introducing ratios of theta functions S(2n+1) by:

S(2n+1) =
θ
(2n+1)
1 (0,q)

θ
(1)
1 (0,q)

, (56)

and the quantities κ(2n+1)’s related to the form factors f(2n)1,1 ’s introduced in (6):

f(2n)1,1 = (2n+ 1) ·κ(2n+1), (57)

one can deduce, from the previous relations (54), the expression of the S(2n+1)’s in terms of
these κ(2n+1)’s:

S(1) = κ(1),

S(3)

3!
= κ(3) − 1

6
·κ(1),

S(5)

5!
= κ(5) − 1

2
·κ(3) +

1
120

·κ(1),

S(7)

7!
= κ(7) − 5

6
·κ(5) +

13
120

·κ(3) − 1
5040

·κ(1),

S(9)

9!
= κ(9) − 7

6
·κ(7) +

23
72

·κ(5) − 41
3024

·κ(3) +
1

362880
·κ(1), · · · . (58)
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The coefficients in these linear combinations (58) correspond exactly to the linear combina-
tions we had to introduce for the (n-fold integrals) χ̃(2n+1)’s in the analysis of the susceptibility
of the square Ising model, see for instance equation (8) in [23], but in the high temperature
regime:

Φ(5) = χ̃(5) − 1
2
· χ̃(3) +

1
120

· χ̃(1). (59)

Along these lines we give, in B, a Taylor expansion similar to (55) but for the lambda exten-
sion of C(0,0,λ), instead of C(1,1,λ) in (55). From these expansions one deduces linear com-
binations (B.3) (similar to (58)), corresponding exactly to the linear combinations we had to
introduce for the (n-fold integrals) χ̃(2n)’s in the analysis of the susceptibility of the square
Ising model, see for instance Equation (26) in [23], in the low temperature regime:

Φ(6) = χ̃(6) − 2
3
· χ̃(4) +

2
45

· χ̃(2). (60)

5.1. Other one-parameter deformations: deformation of M=2 (i.e. u= π/4)

Recalling that one finds that (11) is actually, for M= 2, the series expansion of an algebraic
function (22), one can try to write the series (11) as a deformation of this M= 2 algebraic
function (22):

Cρ(1,1;ρ) = G0(t)+ ρ ·G1(t)+ ρ2 ·G2(t)+ · · · (61)

where

G0(t) = (1− t)1/16 ·
(
1+(1− t)1/2

2

)3/4

(62)

= 1− 1
4
· t− 9

128
· t2 − 19

512
· t3 − 791

32768
· t4 − 2289

131072
· t5

− 56523
4194304

· t6 − 182193
16777216

· t7 + · · · (63)

and where ρ=M− 2.
Let us introduce

G0(t) =−
√
2 · θ

(1)
2 (π/4,q)

θ2(0,q) · θ3(0,q)2
, (64)

which actually coincides with the algebraic expression (62). Let us also introduce the Sn’s
defined as

Sn =
θ
(n)
2 (π/4,q)
θ ′
2(π/4,q)

, (65)

where θ (n)
2 (u,q) denotes the nth partial derivative with respect to u of θ2(u,q). Similarly to (45)

one can write (61) as

Cρ(1,1;ρ) =

√
2 ·G0(t)√
ρ+ 2

·
∞∑
p=0

(
arcsin

(√
ρ+ 2
2

)
− π

4

)(p−1)

·
Sp

(p− 1)!
. (66)
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Again one can ask whether the Gn(t)’s in (61) are D-finite, and, again, polynomials in the
complete elliptic integrals E and K. One can find that (61), or (66), can be written as

Cρ(1,1;ρ)
G0(t)

= 1+ ρ ·
(
1
4
· S2 −

1
4

)
+ ρ2 ·

(
1
32

· S3 −
1
16

· S2 +
3
32

)
+ ρ3 ·

(
1

384
· S4 −

1
128

· S3 +
13
384

· S2 −
5

128

)
+ ρ4 ·

(
1

6144
· S5 −

1
1536

· S4 +
17

3072
· S3 −

19
1536

· S2 +
35

2048

)
+ ρ5 ·

(
1

122880
· S6 −

1
24576

· S5 +
7

12288
· S4 −

23
12288

· S3

+
263

40960
· S2 −

63
8192

)
+ · · · (67)

where the Sn’s are defined by (65). It is crucial to note that all these ratio (65) are actually
polynomial expressions in the complete elliptic integrals E and K. The first Sn’s read:

S2 =
2
t
·
(
1− (1− t)1/2

)
·E− 1

2t
·
(
(t− 4) · (1− t)1/2 − (3t− 4)

)
·K,

S3 =
1
4
·
(
6 · (1− t)1/2 − (t− 2)

)
·K2 − 3EK,

S4 =
3
t
·
(
(t− 4) · (1− t)1/2 − (3t− 4)

)
·EK2 − 6

t
· (1− (1− t)1/2) ·E2K

+
1
8t

·
(
(t2 − 28t+ 48) · (1− t)1/2 − (21t2 − 68t+ 48)

)
·K3,

S5 = 15E2K2 − 5
2
·
(
6 · (1− t)1/2 − (t− 2)

)
·EK3

− 1
16

·
(
60 · (t− 2) · (1− t)1/2 − (t2 + 24t− 24)

)
·K4,

S6 =− 1
32t

·
(
(t3 − 168t2 + 944t− 960) · (1− t)1/2 − (183t3 − 1160t2 + 1936t− 960)

)
·K5

− 15
8t

·
(
(t2 − 28t+ 48) · (1− t)1/2 − (21t2 − 68t+ 48)

)
·EK4

− 45
2t

·
(
(t− 4) · (1− t)1/2 − (3t− 4)

)
·E2K3

+
30
t
·
(
1− (1− t)1/2

)
·E3K2. (68)

Let us note that these selected ratio of theta functions (65) are not only polynomials in E andK,
but homogeneous polynomials in E and K. TheGn(t)’s will be D-finite, and again polynomials
in E and K, as a consequence of the fact that the Sn’s are polynomial expressions of E and K.
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The expansion of G1(t) reads:

G1(t) =− 3
256

t2 − 9
1024

t3 − 441
65536

t4 − 1407
262144

t5 − 18557
4194304

t6

− 62755
16777216

t7 − 13852377
4294967296

t8 − 48531703
17179869184

t9 + · · · . (69)

The first G1(t) reads

G1(t) = G0(t) · G̃1(t) where:

G̃1(t) =
1
4
· S2 −

1
4

=−1
4
+

(
1− (1− t)1/2

2t

)
·E− (t− 4) · (1− t)1/2 − (3t− 4)

8t
·K (70)

=−1
4
+
E
2t

+
(3t− 4)

8t
·K− (1− t)1/2 ·

(
E
2t

+
(t− 4)

8t
·K
)

=− 3
256

· t2 − 3
256

· t3 − 687
65536

· t4 − 303
32768

· t5 − 34355
4194304

· t6

− 30681
4194304

· t7 − 28298151
4294967296

· t8 − 6422951
1073741824

· t9 + · · · (71)

and the next two read

G2(t) = G0(t) · G̃2(t) =
5

16777216
· t6 + 55

67108864
· t7 + 6255

4294967296
· t8

+
36625

17179869184
· t9 + 3079025

1099511627776
· t10 + 15116115

4398046511104
· t11 + · · · (72)

where

G̃2(t) =
1
32

· S3 −
1
16

· S2 +
3
32

=
3
32

− 1− (1− t)1/2

8t
·E− (t− 4) · (1− t)1/2 − (3t− 4)

32t
·K

− 3
32

·EK+
6 · (1− t)1/2 − (t− 2)

128t
·K2

=
5

67108864
· t6 + 15

67108864
· t7 + 7305

17179869184
· t8 + 2825

4294967296
· t9

+
3978105

4398046511104
· t10 + 5075805

4398046511104
· t11 + 1575278229

1125899906842624
· t12 + · · ·

and

G3(t) = G0(t) · G̃3(t)

=− 7
281474976710656

· t12 − 161
1125899906842624

· t13

− 33789
72057594037927936

· t14 − 332703
288230376151711744

· t15

− 43793127
18446744073709551616

· t16 − 318184713
73786976294838206464

· t17 + · · · (73)
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where:

G̃3(t) =
1

384
· S4 −

1
128

· S3 +
13
384

· S2 −
5

128

=− 5
128

+
13
192

· 1− (1− t)1/2

t
·E

− 13
768

· (t− 4) · (1− t)1/2 − (3t− 4)
t

·K+
3

128
·EK− 6 · (1− t)1/2 − (t− 2)

512
·K2

− 1− (1− t)1/2

64t
·E2K+

(t− 4) · (1− t)1/2 − (3t− 4)
128t

·EK2

+
(1− t)1/2 · (t2 − 28t+ 48)− (21t2 − 68t+ 48)

3072t
·K3

=− 7
281474976710656

· t12 − 21
140737488355328

· t13

− 36603
72057594037927936

· t14 − 93149
72057594037927936

· t15 + · · · . (74)

We have obtained similar results for the next Gn(t)’s, namely polynomial expressions in E
and K with algebraic function coefficients.

Similar results can be obtained for the other values λ= cos(πm/n) (m and n integers)
yielding algebraic functions for the lambda-extension C(1,1;λ). Again, the (form-factor-like)
expansion (61) around each of these algebraic functions can be written in a similar way as (68)
in terms of the corresponding ratio of theta functions

Sn =
θ
(n)
2 (πm/n,q)
θ ′
2(πm/n,q)

, (75)

where θ
(n)
2 (u,q) denotes the nth partial derivative with respect to u of θ2(u,q). It becomes

much more difficult to see whether these new Sn’s are actually polynomial expressions in E
and K with more and more involved algebraic coefficients. One finds that these new Sn’s are
D-finite, but the reduction to polynomial expressions in E and K becomes a difficult task, in
general. Let us display a few examples.

5.2. Other one-parameter deformations: deformation of u= π/6

For u= π/6 we find that the corresponding S2

1√
3
· S2 =

1√
3
· θ

(2)
2 (π/6,q)
θ ′
2(π/6,q)

= 1− 3
128

· t2 − 3
128

· t3 − 339
16384

· t4 + · · · (76)

is solution of an order-eight linear differential operator which is the LCLM (direct-sum) of
two order-four linear differential operators L4 and M4. The first order-four linear differential
operator L4 is the symmetric product14 of the two order-two linear differential operators

14 This paper belonging to the symbolic computation literature and not pure mathematics, we use the standard Maple
(DEtools) terminology of symmetric powers and symmetric products of linear differential operators [24]. Note that
“symmetric product” is not a propermathematical name for this construction on the solution space; it is a homomorphic

18



J. Phys. A: Math. Theor. 56 (2023) 085201 S Boukraa and J-M Maillard

D2
t +

1
3
· 10t

3 − 15t2 + 9t− 2
(t2 − t+ 1)t(t− 1)

·Dt+
1
12

· 11t
6 − 33t5 + 47t4 − 39t3 + 3t2 + 11t− 5

t2(t− 1)2(t2 − t+ 1)2
,

D2
t +

1
4
· t

6 − 3t5 + 15t4 − 25t3 + 15t2 − 3t+ 1
t2(t− 1)2(t2 − t+ 1)2

, (77)

having, respectively, the two hypergeometric solutions:

t5/6 · (1− t)5/6 · (t2 − t+ 1)−1/2 · 2F1

([
7
6
,
5
2

]
,

[
7
3

]
, t

)
, (78)

t1/2 · (1− t)1/2 · (t2 − t+ 1)−1/4 · 2F1

([
− 1

12
,
7
12

]
, [1],

27
4

t2 · (1− t)2

(1− t+ t2)3

)
. (79)

Let us first note that the first hypergeometric function H= 2F1([7/6,5/2], [7/3], t) is actually
an algebraic function. It is solution of the polynomial equation:

321 · t8(t− 1)8 ·H8 + 217 · 311 · t4 · (t2 − t+ 1) · (t− 1)4 ·H4

+ 226 · (t− 2) · (2t− 1) · (t+ 1) · (32t6 − 96t5 + 219t4 − 278t3

+ 219t2 − 96t+ 32) ·H2 − 232 · (t2 − t+ 1)2 = 0. (80)

For the second solution (79), we use the identities

2F1

([
− 1

12
,
7
12

]
, [1],

27
4

t2 · (1− t)2

(1− t+ t2)3

)
=−6 · t · (t− 1)

(t2 − t+ 1)1/2
· dH2

dt
+

1
2
(2t− 1) · (t2 − t− 2)

(t2 − t+ 1)3/2
·H2, (81)

where the pullbacked hypergeometric function H2 reads:

H2 = 2F1

([
1
12

,
5
12

]
, [1],

27
4

t2 · (1− t)2

(1− t+ t2)3

)
= (t2 − t+ 1)1/4 · 2F1

([
1
2
,
1
2

]
, [1], t

)
. (82)

Consequently, the relevant solution of the order-four linear differential operator L4 will be a
linear combination α(t) ·E+β(t) ·K of the two complete elliptic integrals E, K, α(t) and β(t)
being (quite) involved algebraic functions.

The other order-four linear differential operator M4 is, at first sight, slightly more difficult
to analyze. In fact we are in the typical situation of an absolute factorization15 of this order-
four linear differential operator, and this can be seen performing the exterior square of that
order-four linear differential operator [25]. Some calculations are displayed in appendix C.
These calculations strongly suggest that the relevant solution of the order-four linear differen-
tial operator M4 will also be of the form α(t) ·E+β(t) ·K, the functions α(t) and β(t) being
(very) involved algebraic functions of t.

Fortunately, one can get that result in a much more straight way, if one remarks that the two
order-four linear differential operators L4 and M4 are actually (non-trivially) homomorphic.
Introducing ρ= t2/3 · (1− t)2/3, one finds that a conjugate of M4 is actually homomorphic to
the first order-four linear differential operator L4:

L4 · I3 = J3 ·
(
1
ρ
·M4 · ρ

)
, (83)

image of the tensor product. The (Maple/DEtools) reason for choosing the name symmetric_product is the resemb-
lance with the function symmetric_power.
15 A linear differential operator L ∈ C(x)[d/dx] is called absolutely reducible [25] if it admits a factorization over an
algebraic extension of C(x).

19



J. Phys. A: Math. Theor. 56 (2023) 085201 S Boukraa and J-M Maillard

where I3 and J3 are (slightly involved) order-three intertwiners.
Therefore we have shown that the relevant solution of the order-eight linear differential

operator will be of the form α(t) ·E+β(t) ·K, α(t) and β(t) being (quite) involved algebraic
functions of t.

Again, one finds that S2 is D-finite, but the reduction to polynomials in the complete elliptic
integrals E and K is far from obvious.

5.2.1. Deformation of u= π/6: the S3 term. The next Sn, namely

S3 =
θ
(3)
2 (π/6,q)
θ ′
2(π/6,q)

, (84)

is solution of a linear differential operator of order twelve with coefficient polynomials in t of
degree 67. This is a quite large order (twelve) linear differential operator, that we will not give
here. This order-twelve linear differential operator is actually the direct sum of an order-three
operator and an order-nine operator L9. The order-three linear differential operator L3 reads

L3 = D3
t + 6 · q12

q6 · (t− 1) · (t+ 1) · (t− 2) · (2t− 1) · (t2 − t+ 1) · t
·D2

t

+
r12

q6 · (t− 1)2 · (t+ 1) · (t− 2) · (t2 − t+ 1) · t2
·Dt

+
3
2
· r6
q6 · (t− 1) · (t+ 1) · (t− 2) · (2t− 1) · t

, (85)

where:

q12 = t12 − 6t11 + 2536t10 − 12625t9 + 18414t8 + 2028t7 − 31302t6

+ 33849t5 − 16458t4 + 4084t3 − 528t2 + 7t− 1,

q6 = t6 − 3t5 + 1518t4 − 3031t3 + 1518t2 − 3t+ 1,

r12 = t12 − 6t11 + 4881t10 − 24350t9 + 24459t8 + 48198t7 − 120498t6

+ 90597t5 − 20496t4 − 5105t3 + 2304t2 + 15t− 2,

r6 = 59t6 − 177t5 + 4512t4 − 8729t3 + 4512t2 − 177t+ 59. (86)

Let us denote LK the order-two linear differential operator annihilating the complete elliptic
integral of the first kind K= 2F1([1/2,1/2], [1], t):

LK = D2
t +

2t− 1
t · (t− 1)

·Dt+
1

4t · (t− 1)
. (87)

This order-three linear differential operator (85) is actually homomorphic to the symmetric
square of operator LK , with order-two intertwiners. Consequently the solutions of L3 are (quad-
ratic) homogeneous polynomials in E and K. Actually one finds that the solution of L3 given
by (85) reads:

Sol(L3) =
(t− 2)3

(t2 − t+ 1)
·K2 + 9 ·EK

= 1+
177
32

t2 +
177
32

t3 +
1095
8192

t4 − 21561
4096

t5 − 1384095
262144

t6 +
22467
262144

t7

+
2927958291
536870912

t8 +
730823955
134217728

t9 + · · · . (88)

The order-nine linear differential operator L9 can be seen to be the symmetric product of an
order-three linear differential operator A3, and of the order-three linear differential operator,
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which is the symmetric square of the order-two linear differential operator LK annihilating
K=2F1([1/2,1/2], [1], t)

L9 = SymProd
(
Sym2(LK),A3

)
. (89)

The order-three linear differential operator A3 reads

A3 = D3
t +

r8 · (2t− 1)
q6 · t · (t− 1) · (t2 − t+ 1)

·D2
t −

5
9
· r6 · (t

2 − t+ 1)
q6 · t2 · (t− 1)2

·Dt+
5
18

· r ′6 · (2t− 1)
q6 · t2 · (t− 1)2

, (90)

where:

r6 = 52− 156t− 3009t2 + 6278t3 − 3009t4 − 156t5 + 52t6,

r ′6 = r6 − 2106 · t · (t− 1) · (t− 2) · (t+ 1),

q6 = 5r6 + 16038 · t2 · (t− 1)2,

r8 = 5r6 · (t2 − t+ 1)+ 17172 · t2 · (t− 1)2 + 15471 · t3 · (t− 1)3. (91)

The solutions of this order-three linear differential operator A3 are actually algebraic functions
satisfying

432 · (t2 − t+ 1)4 ·F 4 − 72 ·P6 · (t2 − t+ 1)2 ·F 2

− 16 · (t− 2) · (2t− 1) · (t+ 1) · (t2 − t+ 1) ·
(
P6 + 972 · t2 · (t− 1)2

)
·F

+ 6480 · t2 · (t− 1)2 · (t2 − t+ 1)3 −P2
6 = 0, (92)

where the polynomial P6 reads:

P6 = 4 · (t2 − t+ 1)3 − 243 · t2 · (1− t)2. (93)

The well-suited solution of the order-three linear differential operator A3 reads:

Sol(A3) = 1− 1
2
t− 165

64
t2 − 165

128
t3 +

26655
16384

t4 +
101085
32768

t5 +
6546741
4194304

t6

− 12198135
8388608

t7 − 3182706057
1073741824

t8 − 3159215679
2147483648

t9 + · · · . (94)

The solution of the order-nine linear differential operator L9 reads:

Sol(L9) = Sol(A3) ·K2 = 1− 159
64

t2 − 159
64

t3 +
2973
16384

t4 +
23325
8192

t5

+
11858901
4194304

t6 +
510591
4194304

t7 − 2771276211
1073741824

t8 − 695778099
268435456

t9 + · · · . (95)

The series expansion of (84) reads:

−S3 = − θ
(3)
2 (π/6,q)
θ ′
2(π/6,q)

= 1+
3
16
t2 +

3
16
t3 +

339
2048

t4 +
147
1024

t5

+
262047
2097152

t6 +
230109
2097152

t7 +
1632105
16777216

t8 +
365061
4194304

t9 + · · · . (96)

Recalling the series expansions (88) and (95), one actually finds that this series (96) is exactly:

−S3 =−θ
(3)
2 (π/6,q)
θ ′
2(π/6,q)

=
1
3
·Sol(L3)+

2
3
·Sol(L9)

=
1
3
·
(

(t− 2)3

(t2 − t+ 1)
·K2 + 9 ·EK

)
+

2
3
·Sol(A3) ·K2. (97)
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Remark 3. More generally, for u= π/6, one has

Cρ(1,1;ρ) =−2 ·
θ ′
2

(
π
6 ,q

)
√
ρ+ 1 · θ2(0,q) · θ3(0,q)2

×
∞∑
p=0

(
arcsin

(√
ρ+ 1
2

)
− π

6

)p

·
S(p+1)

(p)!
, (98)

where:

Sn =
θ
(n)
2 (π/6,q)
θ ′
2(π/6,q)

. (99)

5.3. Other one-parameter deformations: deformation of u= π/3

Note: To avoid any confusion with the linear differential operators introduced in the u= π/3
case (see sections 5.2 and C.2) we will add an extra (3) subscript for the linear differential
operators of this u= π/3 case.

For u= π/3 we also find that

√
3 · S2 =

√
3 · θ

(2)
2 (π/3,q)
θ ′
2(π/3,q)

= 1− 9
128

· t2 − 9
128

· t3 − 261
4096

· t4 + · · · (100)

is actually D-finite: it is solution of a (slightly involved) order-eight linear differential oper-
ator L(3)

8 . In fact, revisiting the calculations performed in section 2.2, but this time with a
perturbation around an algebraic solution A(t) (see (29)), one easily finds, using the sigma-
form of Painlevé VI non-linear differential equation (3), that the first correction term G1(t) is
solution of an order-three linear differential operator, with very involved algebraic coefficients
depending on the algebraic solution A(t) and its derivatives. This provides lower order linear
differential operators, but with a price to pay, namely very involved algebraic coefficients. In
fact one can study directly the previous order-eight linear differential operator.

If one conjugates this order-eight linear differential operator L(3)
8 by t4/3, changing L(3)

8 into

L̃(3)
8 = t−4/3 ·L(3)

8 · t4/3, one can easily see that this new order-eight linear differential oper-

ator L̃(3)
8 is actually the direct-sum (LCLM) of two order-four linear differential operators:

L̃(3)
8 = LCLM(L(3)

4 ,M(3)
4 ) = L(3)

4 ⊕M(3)
4 . Furthermore, one finds that these two order-four lin-

ear differential operators are non-trivially homomorphic, after performing a conjugation of one
of the two linear differential operator by ρ= t1/3 · (1− t)1/3

M(3)
4 · I3 = J3 ·

(
1
ρ
·L(3)

4 · ρ
)
, (101)

where I3 and J3 are order-three intertwiners. Let us focus on the simplest order-four linear
differential operator, namely L(3)

4 :

L(3)
4 = D4

t +
4
3
· 9t− 5
(t− 1) · t

·D3
t +

1
9
· 337t

2 − 373t+ 73
(t− 1)2 · t2

·D2
t

+
1
54

· 1590t
3 − 2627t2 + 1085t− 42

(t− 1)3 · t3
·Dt+

1
162

· 350t
3 − 769t2 + 485t− 84

(t− 1)4 · t3
. (102)

We have a prejudice that this order-four linear differential operator could correspond to an
absolute factorization [25], and could be written16 as a symmetric product of two order-two

16 This prejudice comes from section (5.2), see (77).
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linear differential operators (see also appendix C). In order to check this scenario, let us cal-
culate the exterior square of that order-four linear differential operator. One finds that it is
actually the direct-sum (LCLM) of two order-three linear differential operators

Ext2
(
L(3)
4

)
= LCLM(A(3)

3 ,B(3)
3 ) = A(3)

3 ⊕B(3)
3 , (103)

where the second order-three linear differential operator B(3)
3 is exactly the symmetric square

of an order-two linear differential operator A(3)
2

A(3)
2 = D2

t +
2
3
· 7t− 4
t · (t− 1)

·Dt+
1
36

· 117t
2 − 133t+ 21
t2 · (t− 1)2

, (104)

which has the two algebraic function solutions:

t−1/2 · (1− t)−1/6 ·2F1

([
5
6
,
3
2
], [

5
3

]
, t

)
, t−7/6 · (1− t)−1/6 ·2F1

([
1
6
,
5
6

]
,

[
1
3

]
, t

)
.

Recalling (105) the order-two linear differential operator LK annihilating the complete elliptic
integral of the first kind K=2F1([1/2,1/2], [1], t), let us consider the symmetric product of the
order-two linear differential operator A2 and of LK . One finds that this symmetric product is
non-trivially homomorphic to some conjugate of L4

SymProd(A(3)
2 ,LK) · I2 = J2 ·

(
1
ρ
·L(3)

4 · ρ
)
, (105)

where ρ= t1/6 · (1− t)1/6, and where I2 and J2 are order-two intertwiners. This shows that the
solution of L(3)

4 (and thusM(3)
4 ), and therefore the solution of the order-eight linear differential

operator L(3)
8 , are actually of the form α(t) ·E+β(t) ·K where α(t) and β(t) are algebraic

functions.

Remark 4. Note, eventually, that these two order-four linear differential operators L(3)
4 and

M(3)
4 can, in fact, be seen to be (non-trivially) homomorphic to some well-suited conjugates

of the two order-four operators L4 andM4 emerging for u= π/6 in the previous section (5.2).

5.3.1. Deformation of u= π/3: the S3 term. The next Sn, namely

S3 =
θ
(3)
2 (π/3,q)
θ ′
2(π/3,q)

, (106)

is solution of a linear differential operator of order twelve with coefficient polynomials in t of
degree 52. This is a quite large order twelve linear differential operator, that we will not give
here. This order twelve linear differential operator is actually the direct sum of an order-three
operator and an order-nine linear differential operator L9. The order-three linear differential
operator L3 reads:

L(3)
3 = D3

t +
6 · (64t4 − 170t3 + 40t2 + 3t− 1)
(128t2 + t− 1) · (t− 1) · (t− 2) · t

·D2
t

+
(128t5 − 410t4 − 55t3 + 218t2 − 11t+ 2)

(128t2 + t− 1) · (t− 1)2 · (t− 2) · t2
·Dt

− 3 · (32t2 + 5t− 5)
2 · (128t2 + t− 1) · (t− 1)2 · (t− 2) · t

. (107)
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This order-three linear differential operator (107) is actually homomorphic to the symmetric
square of the order-two linear differential operator LK , annihilating K= 2F1([1/2,1/2], [1], t),
with order-two intertwiners. Consequently the solutions of L3 are (quadratic) homogeneous
polynomials in E and K. Actually one finds that the solution of L(3)

3 given by (107) reads:

Sol(L(3)
3 ) = 4 · (t− 2) ·K2 + 9 ·EK

= 1− 15
32
t2 − 15

32
t3 − 3513

8192
t4 − 1593

4096
t5 − 92895

262144
t6 − 85245

262144
t7

− 161330925
536870912

t8 − 37507821
134217728

t9 + · · · . (108)

The order-nine linear differential operator L(3)
9 can be seen to be the symmetric product of an

order-three linear differential operator A(3)
3 and of the order-three linear differential operator

which is the symmetric square of the order-two linear differential operator LK annihilating
K= 2F1([1/2,1/2], [1], t):

L(3)
9 = SymProd

(
Sym2(LK),A

(3)
3

)
. (109)

The order-three linear differential operator A3 reads:

A(3)
3 = D3

t +
16t3 − 94t2 + 165t− 55

t · (t− 1) · (16t2 − 55t+ 55)
·D2

t

+
32t4 − 130t3 + 75t2 + 110t− 55
9 · t2 · (t− 1)2 · (16t2 − 55t+ 55)

·Dt−
64t3 − 240t2 + 165t+ 55

18 · t2 · (t− 1)2 · (16t2 − 55t+ 55)
.

(110)

The solutions of this order-three linear differential operator A(3)
3 are actually algebraic

functions satisfying the algebraic equation:

27 ·F 4 − 18 · (16t2 − t+ 1) ·F 2 − 4(t− 2) · (128t2 + t− 1) ·F
− (256t4 − 752t3 + 753t2 − 2t+ 1) = 0. (111)

The well-suited solution of the order-three linear differential operator A3 reads:

Sol(A(3)
3 ) = 1− 1

2
t+

9
64
t2 +

9
128

t3 +
747

16384
t4 +

1089
32768

t5 +
108603
4194304

t6

+
176679
8388608

t7 +
18959247

1073741824
t8 +

32508009
2147483648

t9 + · · · . (112)

The solution of the order-nine linear differential operator reads:

Sol(L(3)
9 ) = Sol(A(3)

3 ) ·K2 = 1+
15
64
t2 +

15
64
t3 +

3513
16384

t4 +
1593
8192

t5

+
743115
4194304

t6 +
681825
4194304

t7 +
161265045
1073741824

t8 +
37482261
268435456

t9 + · · · .(113)

The series expansion of (106) reads:

−S3 = − θ
(3)
2 (π/3,q)
θ ′
2(π/63q)

= 1− 15
2097152

t6 − 45
2097152

t7 − 2745
67108864

t8

− 1065
16777216

t9 − 3011265
34359738368

t10 − 3858885
34359738368

t11 + · · · . (114)
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Recalling the series expansions (108) and (113), one actually finds that this series (114) is
exactly

−S3 =−θ
(3)
2 (π/3,q)
θ ′
2(π/3,q)

=
1
3
·Sol(L(3)

3 )+
2
3
·Sol(L(3)

9 )

=
1
3
·
(
4 · (t− 2) ·K2 + 9 ·EK

)
+

2
3
·Sol(A(3)

3 ) ·K2. (115)

Remark 1. Let us recall the hypergeometric function t−7/6 · (1− t)−1/6 ·2F1([5/6,1/6],
[1/3], t) which is an algebraic function and its order-two linear differential operator A(3)

2
(see (104)). Let us also recall the order-two linear differential operator LK annihilating K=

2F1([1/2,1/2], [1], t). Let us consider the order-three linear differential operators correspond-
ing to the symmetric square of these two order-two linear differential operators, and let us
consider the symmetric product of these two symmetric squares. One gets that way an order-
nine linear differential operator:

Ω9 = SymProd
(
Sym2(LK),Sym

2(A(3)
2 )
)
. (116)

This order-nine linear differential operator Ω9 has a structure of solutions very similar to the
one of the order-nine linear differential operator L9. One finds, in fact, that this order-nine
linear differential operator (116) is actually non-trivially homomorphic to the order-nine linear
differential operator L9:

I8 ·
(
t−7/3 ·Ω9 · t7/3

)
= L(3)

9 · J8, (117)

where I8 and J8 are order-eight intertwiners. In conclusion the solution of the order-twelve
operator corresponding to S3 and thus annihilating (106), is a homogeneous (quadratic) poly-
nomial of E and K with involved algebraic coefficients.

Remark 2. More generally, for u= π/3 one has:

Cρ(1,1;ρ) =−2 ·
θ ′
2

(
π
3 ,q
)

√
ρ+ 3 · θ2(0,q) · θ3(0,q)2

×
∞∑
p=0

(
arcsin

(√
ρ+ 3
2

)
− π

3

)p

·
S(p+1)

p!
,

(118)

where:

Sn =
θ
(n)
2 (π/3,q)
θ ′
2(π/3,q)

. (119)

6. λ corresponds to the critical exponent at t=1

The lambda extensions C(1,1;λ) are a one-parameter family of solutions of the Okamoto-
Painlevé VI equation (3). It is worth noticing that the parameter lambda cannot be seen in the
non-linear ODE (3). It is not a parameter of the non-linear ODE (3). The parameter lambda
actually fixes the critical exponent at t= 1 of the solution C(1,1;λ).
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Paper [26] gives, in equation (13) and (14), the behavior of the lambda extensionsC(N,N,λ)
near17 t= 1:

C(N,N,λ)≃ K(N,σ) · (1− t)σ
2/4 where: σ =

2
π
· arccos(λ), (120)

or denoting λ= cos(u):

C(N,N,λ)≃ K(N,σ) · (1− t)(u/π)
2

. (121)

One verifies that this power-law formula18 (121) is actually valid for all the algebraic expres-
sions displayed in section 2.1.1 (see (22)), section 2.1.2 (see (25)) and section 2.1.3 (see (29)):

• For λ= 0, i.e. u= π/2 one has a (1− t)1/4 behavior.
• For λ= 1/

√
2, i.e. u= π/4 one has a (1− t)1/16 behavior (see (22) and (62)).

• For λ=
√
3/2, i.e. u= π/6 one has a (1− t)1/36 behavior: from (25) one actually gets:

S(t) = 28/9/3 · (1− t)1/36 + · · · .
• For λ= 1/2, i.e. u= π/3, one has a (1− t)1/9 behavior: from (29) one actually gets:
S(t) = 214/9 · 3−3/2 · (1− t)1/9 + · · · .

7. Comments and speculations

All these calculations, displayed on the low-temperature correlation function C(1,1), illus-
trate the extremely rich structures of the lambda extensions of the two-point square19 Ising
correlation functions C(M,N). For an infinite set of values of lambda (λ= cos(πm/n), m and
n integers) these lambda extensions become algebraic functions and for another infinite set of
values of lambda (λ= (m/n)1/2, m and n integers) the series expansions of the lambda exten-
sion are globally bounded series [12] that are not D-finite20 but only differentially algebraic
(the corresponding σ are solutions of a sigma-form of Painlevé VI).

Furthermore we have seen, in section 2, that the ‘form-factor-like’ expansions (10) around
the (D-finite) two-point correlation function C(1,1) = E, yield new ‘form factors’ gn(t)’s
which, at first sight, should be DD-finite expressions (see section (2.2)), are, actually, D-finite
expressions. The gn(t)’s are, in fact, polynomial expressions in E and K.

The ‘form-factor-like’ [1] expansions around the infinite set of algebraic functions at
λ= cos(πm/n) yield new ‘form factors’ Gn(t)’s (see (61)) which turned out to be D-finite
expressions: they are solutions of linear differential operators with (quite involved) algebraic
functions coefficients. We showed that the first Gn(t)’s are actually polynomial expressions in
E and K and, hopefully, one can expect that all these Gn(t)’s are polynomial expressions in E
and K (with involved algebraic functions coefficients).

These results correspond to the (quite puzzling) fact that rational expressions of the deriv-
atives (at selected values of u) of Jacobi theta functions (like (37)) can, in fact, be expressed
as polynomial expressions in E and K, thus providing an infinite set of remarkable iden-
tities between theta functions and complete elliptic integrals of the first and second kind21.

17 Here σ is an exponent, which has nothing to do with the σ functions (1) or (2). Painlevé papers are famous for their
terrible notations.
18 It is very hard to get this result from the exact expression (34) of C(1,1;λ) in terms of theta functions.
19 One has similar results for the triangular, honeycomb, . . .lattices. One has similar results for the high-temperature
correlation functions. One has similar results for the anisotropic correlation functions C(M,N) for ν =−k.
20 Except when λ= 0,1/

√
2,3/

√
2,1 where λ is also of the form λ= cos(πm/n).

21 For identities on products of ratio of Jacobi theta functions see for instance [27].
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Such calculations provide an infinite set of new D-finite expressions on the two-dimensional
Ising model that will join together with all the previous D-finite expressions we have already
encountered on the two-dimensional Ising model as n-fold integrals that are diagonals of
rational functions [12–15]. This corresponds to the kind of holonomic (i.e. D-finite) studies we
are used to perform on the two-dimensional Ising model [1, 28] in the variable t= k2. These
D-finite expressions emerge from form factor-like perturbation theory (the kind of perturba-
tion theory physicists are used to with Feynman diagrams, Periods of algebraic varieties, . . .).
However, we also see that the lambda extension C(1,1;λ) which is differentially algebraic
(solution of a non-linear ODE (3) with the Painlevé property of fixed critical points [29]),
can be understood ‘holistically’, globally, and not using the bread and butter perturbative
physicist’s approach, if one switches to a description in terms of the nome q (or the ratio
τ of the two periods of the elliptic function) requiring to introduce intensively Jacobi theta
functions [1, 8, 29]. With that alternative holistic description one has a rather simple exact
closed formula for the lambda extension (see (34)). The ‘price to pay’ is that this exact and
elegant holistic expression of the lambda extension (like (34)) is solution of a non-linear
ODE (3) and, for instance, the emergence of all the D-finite expressions, displayed in this
paper, is not obvious from that non-linear differential equations or Jacobi theta functions
viewpoint [30].

7.1. Painlevé VI transcendentals as deformations of elliptic functions and why theta functions
are well-suited: Jacobi forms

The occurrence of Jacobi theta functions [31, 32] for the exact closed expression (37) of the
lambda extension solution of sigma-form of Painlevé VI is, in fact, highly relevant as far as all
the symmetries of the model are concerned.

Let us first recall that Painlevé VI transcendents should be seen as deformations of elliptic
functions [33]. Along this line it is worth recalling Manin’s idea [33] that the Painlevé VI
equation for a particular choice of the four Okamoto parameters, can be written extremely
simply in terms of the ratio of periods τ . Let us denote P(z, τ) the P-Weierstrass function
and Pz(z, τ) =

∂P(z,τ)
∂z . Manin’s result means that the Painlevé VI equation can be written in

a form (see equation (1.16) in [33]):

d2z(τ)
dτ 2

=

(
1
2πi

)2

·
3∑
i=0

αi · Pz

(
z+

Ti
2
, τ

)
. (122)

In previous studies of the C(M,N) correlation functions and their non-linear Painlevé ODEs,
we have underlined the fundamental role of Landen transformations [29]. The crucial role
of Landen transformations is underlined in [16, 29, 33]. It is also worth recalling that the
Weierstrass P-function is simply related to theta functions. The Weierstrass P-function is
related22 to the second log derivative of θ1(u,q):

P(u, τ) =−∂2 ln(θ1(u, τ))
∂u2

+ c=−∂2 ln(θ1(u, τ))
∂u2

+
1
3
θ ′ ′ ′
1 (0,q)
θ ′
1(0,q)

. (123)

The closed expressions (37) for the lambda-extension C(1,1;λ) underlines the occurrence of
the partial derivative with respect to the u-deformation parameter (or equivalently the lambda

22 The constant c is defined so that the Laurent expansion of P(u, τ) at u= 0 has zero constant term (θ ′
1 (0,q) is the

derivative with respect to u), see (B.7), (B.8) in [34]. See for instance https://handwiki.org/wiki/Theta_function in the
paragraph Relation to the Weierstrass elliptic function. See also [35].
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parameter). Along this line one can recall another interesting property of the theta functions.
They are solutions of the heat equation:

∂θ(u, τ)
∂τ

= q · ∂θ(u,q)
∂q

=
∂2θ(u,q)

∂u2
. (124)

Consequently, and to some extent, the partial derivatives in u can be replaced by partial
derivatives in τ .

It is also worth mentioning the modular group relations on the Weirstrass P-functions as
well as the similar ‘modular group transformations’ on the theta functions [36, 37]:

P
(

z
cτ + d

,
aτ + b
cτ + d

)
= (cτ + d)2 · P(z, τ), (125)

Pz

(
z

cτ + d
,
aτ + b
cτ + d

)
= (cτ + d)3 · P(z, τ), (126)

and23

κ · (cτ + d)1/2 · θα(u, τ) = exp

(
−iπ cu2

cτ + d

)
· θβ
(

u
cτ + d

,
aτ + b
cτ + d

)
, (127)

where κ is a constant, and where the integers a,b,c,d are such that ad− bc= 1. For u= 0 the
previous modular group transformations (125) and (127) is reminiscent of the modular forms
of weight k:

(cτ + d)k · f(τ) = f

(
aτ + b
cτ + d

)
. (128)

With some abuse of language we could say that the theta functions are ‘some kind’ of ‘modular
forms of weight 1/2’.

Recalling the relation (34) between λ and u, the theta functions thus provide, because of
(127), some natural u-extension, and thus lambda-extension, of the modular forms (Jacobi
forms). From the closed expression (37) it is clear that the lambda-extension will naturally
inheritate from (127), some symmetry properties with respect to the modular group. This kind
of global (holistic) symmetry is almost impossible to see in the holonomic (D-finite) world of
the linear differential operators in the variable t. Conversely all the D-finite results, we have
displayed in this paper, are not an obvious consequence of the emergence of θ ′

2(u,q) in (37).
All these D-finite results are ‘hidden’ in the theta functions (considered at selected values of u).
This is similar to the situation one encounters with modular forms [14, 38, 39] where the fact
that they are D-finite in the variable t is not totally straightforward24.

8. Conclusion

The lambda-extensions of the two-point correlation functions C(M,N) of the square Ising
model are a good illustration of the mirror-map t↔ q duality in mirror symmetries [42–44],
where all the holonomic (D-finite) structures are well seen in the t variable but are hard
to see in the nome [8, 10] q (or in the ratio of periods τ ), and conversely the modular

23 See equation (2.16) in [36].
24 See in particular proposition 21 page 61 in [40]. One can find in [41] why automorphic forms are solutions of linear
differential equations
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group, modular forms structures are easily seen in the nome q variable (or in the ratio of
periods τ ) but are very hard to see in the original t variable. In the t variable the per-
turbative approach provides a large set of D-finite expressions which are n-fold integrals
(and in fact diagonals of rational functions [12]), when the description in the nome vari-
able (or the τ variable) provides a holistic understanding (see (34)) which makes crys-
tal clear modular group symmetries and the emergence of Landen transformations [16,
29], and of modular forms [14, 35, 38], but requires to consider non-linear ODEs [29,
38, 39]. Both descriptions are complementary and necessary to describe efficiently these
lambda-extensions.

Focusing, for pedagogical reasons, on a very simple example of lambda-extension, namely
C(1,1;λ), we have considered the series expansion in t as different form-factor-like expansions
around the D-finite subcaseC(1,1) = E or a large set of algebraic functions subcases (see (15),
(22), (25) and (29)). For the first form-factor-like expansion (10), the corresponding form-
factors gn(t), which should, at first sight, be DD-finite, turn out to be D-finite and simple
polynomials of the complete elliptic integrals of the first and second kindK and E. On the other
hand, the form-factors Gn(t), corresponding to a deformation around the algebraic functions
subcases of the lambda-extension, have been seen to be D-finite, and, either, shown to be
polynomials of K and E, or can be very reasonably conjectured to be polynomials of K and
E. These results can be seen as remarkable, non-trivial (and rather unexpected . . .), identities
between ratio of Jacobi theta functions and the complete elliptic integrals of the first and second
kind K and E.

These identities are a nice illustration of this complementary description of the D-finite
t-variable (elliptic integrals) viewpoint and the non-linear (modular group, Jacobi theta
functions [1, 8, 35]) nome viewpoint.
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Appendix A. Calculation of the coefficient g3(t)

The series g3(t) can also be seen to be D-finite, being solution of an order-twelve linear differ-
ential operator which turns out to be the direct-sum (LCLM) of the previous order-two linear
differential operator LE, of the previous order-four L4, of the previous order-six linear differ-
ential operator homomorphic to the symmetric fifth power of LE, and of an order-eight linear
differential operator homomorphic to the symmetric seventh power of LE, with the following
order-seven intertwiner
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256
315

·R3 =
1
8
· (t− 1) · (8t2 − 33t+ 33) · t7 ·D7

t

+
7
16

· (t− 1) · (40t2 − 173t+ 181) · t6 ·D6
t

+
7
32

· (360t3 − 2077t2 + 3795t− 2166)) · t5 ·D5
t

+
35
64

· 120t
4 − 975t3 + 2968t2 − 3933t+ 1900

t− 1
· t4D4

t −
7

128
· q5
(t− 1)2

· t3D3
t

+
7

256
· q6
(t− 1)3

· t2 ·D2
t −

1
512

· q7
(t− 1)4

· t ·Dt+
7

1024
· q8
(t− 1)5

, (A.1)

where the qn polynomials read:

q5 = 600t5 − 5379t4 + 16550t3 − 15061t2 − 8708t+ 13854,

q6 = 1080t6 − 10287t5 + 30197t4 − 9695t3 − 59739t2 + 51338t+ 4402,

q7 = 12600t7 − 125991t6 + 346295t5 + 108127t4 − 1210745t3

+ 868060t2 + 142022t+ 4016,

q8 = 1800t8 − 18801t7 + 47986t6 + 43466t5 − 233350t4 + 147125t3

+ 40936t2 + 1378t+ 180. (A.2)

One finally finds that the series expansion for g3(t) is exactly the linear combination of E, of
the order-three linear differential operator (39) acting on E3, of an order-five linear differential
operator (41) acting on E5 and the order-seven linear differential operator (A.1) acting on E5:

g3(t) =
5

7168
·E+ 37

46080
·R1(E

3)− 1
9216

·R2(E
5)+

1
322560

·R3(E
7)

=
5

7168
·E− 37

15360
·KE2 − 37

23040
· (t− 1) ·K3

+
5

3072
·K2E3 +

5
1536

· (t− 1) ·K4E+
1

1152
· (t− 1) · (t− 2) ·K5

− 1
3072

·K3E4 − 1
768

· (t− 1) ·K5E2 − 1
1440

· (t− 1) · (t− 2) ·K6E

− 1
80640

· (t− 1) · (8t2 − 33t+ 33) ·K7. (A.3)

Appendix B. Low temperature lambda extension C−(0,0,λ)

Similarly to the Taylor expansion (55), we can write a similar identity for the lambda extension
C(0,0,λ). Introducing

Sn =
θ
(n)
4 (0,q)
θ4(0,q)

, (B.1)

30



J. Phys. A: Math. Theor. 56 (2023) 085201 S Boukraa and J-M Maillard

the lambda extension C−(0,0,λ) can be written

C−(0,0;λ) =
θ3(arccosλ,q)

θ3(0,q)

= (1− t)1/4 ·
∞∑
p=0

(arcsinλ)2p ·
S2p
(2p)!

= (1− t)1/4 ·
(
1+

S2
2
·λ2 +

(
S2
6
+
S4
24

)
·λ4 +

(
4S2
45

+
S4
36

+
S6
720

)
·λ6

+

(
2S2
35

+
7S4
360

+
S6
720

+
S8

40320

)
·λ8 + · · ·

)
= (1− t)1/4 ·

∞∑
p=0

κ(2p) ·λ2p, (B.2)

where κ(2p) = f(2p)0,0 . From (B.2) one can deduce the expression of the S2p’s in terms of the

κ(2p)’s:
S2
2!

= κ(2),

S4
4!

= κ(4) − 1
3
κ(2),

S6
6!

= κ(6) − 2
3
κ(4) +

2
45

κ(2),

S8
8!

= κ(8) −κ(6) +
1
5
κ(4) − 1

315
κ(2),

S10
10!

= κ(10) − 4
3
κ(8) +

7
15

κ(6) − 34
945

κ(4) +
2

14175
κ(2), · · · (B.3)

Appendix C. Exterior squares and absolute factorization

C.1. Absolute factorization

Let us recall a simple example of an absolute factorization of an order-four linear differential
operator given in [25]:

A4 = D4
t −

1
t
·D3

t +
3
4t2

·D2
t − t=

(
D2
t −

1
t
·Dt+

3
4t2

+
√
t

)
·
(
D2
t −

√
t
)
. (C.1)

The fact that such a factorization over an algebraic extension ofC(t) exists can be deduced [25]
from the fact that one has a direct-sum (LCLM) decomposition of the (order-five) exterior
square of the order-four linear differential operator A4:

Ext2(A4) = Dt⊕
(
D4
t −

3
2t

·D3
t +

9
4t2

·D2
t −

15
8t3

·Dt+ 4t

)
. (C.2)

C.2. Exterior square of M4 and absolute factorization of M4

Let us now study here the order-four linear differential operator M4 occurring in section 5.2
for the deformations of u= π/6.
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The order-four linear differential operator M4 is slightly more difficult to analyze than the
first order-four linear differential operator L4 in (5.2). We seem to have a solution of this order-
four linear differential operator M4 of the form α(t) ·E+β(t) ·K, α(t) and β(t) being (very)
involved algebraic functions, however finding a symmetric product form, like in the previous
order-four linear differential operator L4, is difficult. Let us show, in a quite indirect way, that
this is probably the case. Let us consider the exterior square of this order-four linear differential
operator M4. This is an order-six linear differential operator M6, which is actually the direct-
sum (LCLM) of two order-three linear differential operators A3 and B3

M6 = Ext2(M4) = LCLM(A3,B3) = A3 ⊕B3, (C.3)

where one finds easily that the first order-three linear differential operator A3 corresponds to
algebraic solutions associated with the polynomial equation:

(16t17 − 184t16 − 135149t15 + 1128329t14 − 6708683t13 + 26956928t12

− 65809991t11 + 96341783t10 − 88006226t9 + 63929329t8 − 60215242t7

+ 59165527t6 − 37633087t5 + 12783832t4 − 1787515t3 − 7679t2 − 1957t− 32)

+ 4(t− 1)(t2 − t+ 1)(20t15 − 186t14 − 20481t13 + 138367t12 − 473685t11

+ 1069635t10 − 1516399t9 + 1115037t8 − 53199t7 − 617857t6 + 547761t5

− 255237t4 + 78967t3 − 12885t2 + 156t− 16) · y(t)
+ 18 · (8t6 − 33t5 − 447t4 + 943t3 − 447t2 − 33t+ 8)(t− 1)2(t2 − t+ 1)5t · y(t)2

+ 108 · (t− 1)4(t2 − t+ 1)7 · y(t)3 + 27t3(t− 1)4(t2 − t+ 1)7t2 · y(t)4 = 0. (C.4)

The second order-three linear differential operator B3 is homomorphic25 to the symmetric
square of an order-two linear differential operator L2 which is simply conjugated to the order-
two linear differential operator LK annihilating the complete elliptic integral of the first kind
K= 2F1([1/2,1/2], [1], t)

B3 · I2 = J2 ·Sym2(L2), where: (C.5)

L2 =
1

ρ(t)
·LK · ρ(t) = D2

t +
4
3
· 2t− 1
t(t− 1)

·Dt+
25t2 − 25t+ 1
36t2(t− 1)2

, (C.6)

where ρ(t) = t1/6 · (1− t)1/6. It is worth comparing these results with similar calculations
(see C.3 for a general identity on exterior square of symmetric products and direct sum of
symmetric square) for the first order-four linear differential operator L4 in section 5.2 which
was the direct-sum of two linear differential operators (77). In that case the exterior square of
L4 is an order-six linear differential operator

L6 = Ext2(L4) = LCLM(Ã3, B̃3) = Ã3 ⊕ B̃3, (C.7)

where the two order-three linear differential operators Ã3 and B̃3 are both symmetric squares
of order-two linear differential operators having respectively the solutions

t5/6 · (1− t)5/6 · (t2 − t+ 1)−1/2 · 2F1

(
[
7
6
,
5
2
], [

7
3
], t

)
, (C.8)

t1/6 · (1− t)1/6 · (t2 − t+ 1)−3/4 · 2F1

(
[− 1

12
,
7
12

], [1],
27
4

t2 · (1− t)2

(1− t+ t2)3

)
,

totally reminiscent of the two solutions (78) and (79).

25 With order-two intertwiners I2 and J2.
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According to [25] the direct-sum decomposition (C.7) means that the order-four operator
M4 is absolutely reducible, i.e. it admits a factorization over an algebraic extension of C(t).
This is confirmed by relation (83) in section 5.2

L4 · I3 = J3 ·
(
1
ρ
·M4 · ρ

)
with: ρ= t2/3 · (1− t)2/3, (C.9)

where I3 and J3 are order-three intertwiners and where the order-four operator L4 is a sym-
metric product of two order-two linear differential operators (77).

C.3. Exterior square of symmetric products and direct sum of symmetric squares

Let us consider two order-two linear differential operators

L2 = D2
t −

1
wL(t)

· dwL(t)
dt

·Dt+ l(t),

M2 = D2
t −

1
wM(t)

· dwM(t)
dt

·Dt+m(t), (C.10)

where wL(t) is the Wronskian of L2 and wM(t) is the Wronskian ofM2. We have the following
identity between the exterior square of symmetric product of these two linear differential oper-
ators and the LCLM (i.e. direct sum) of the symmetric squares of these two linear differential
operators26:

Ext2 (SymProd(L2,M2)) =

(
wM(t) ·Sym2(L2) ·

1
wM(t)

)
⊕
(
wL(t) ·Sym2(M2) ·

1
wL(t)

)
.

(C.11)

In a more general framework, like in (C.5), we do not have an identity but an equivalence
(homomorphisms) between the LHS and the RHS: see for instance Lemma 8 in [25].
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