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Abstract
We present Painlevé VI sigma form equations for the general Ising low and
high temperature two-point correlation functions C(M, N) with M � N in the
special case ν = −k where ν = sinh 2Eh/kBT/sinh 2Ev/kBT . More specifi-
cally four different non-linear ODEs depending explicitly on the two integers
M and N emerge: these four non-linear ODEs correspond to distinguish respec-
tively low and high temperature, together with M + N even or odd. These four
different non-linear ODEs are also valid for M � N when ν = −1/k. For the
low-temperature row correlation functions C(0, N) with N odd, we exhibit again
for this selected ν = −k condition, a remarkable phenomenon of a Painlevé VI
sigma function being the sum of four Painlevé VI sigma functions having the
same Okamoto parameters. We show in this ν = −k case for T < Tc and also
T > Tc, that C(M, N) with M � N is given as an N × N Toeplitz determinant.

Keywords: Ising correlation functions, sigma form of Painlevé VI, Okamoto
parameters

1. Introduction

The anisotropic Ising model on the square lattice is defined by the interaction energy

E = −
∑

j,k

{Evσ j,kσ j+1,k + Ehσ j,kσ j,k+1}, (1)

where σ j,k = ±1 is the spin at row j and column k and the sum is over all lattice sites. The free
energy in the thermodynamic limit was computed by Onsager [1] in 1944.

The investigation of the correlation functions was initiated by Kaufman and Onsager [2] in
1949 and in 1963 Montroll, Potts and Ward [3] extended and simplified these results to show
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that all correlations can be written as determinants in an infinite number of ways. The simplest
of these cases is the row correlation

C(0, N) = 〈σ0,0σ0,N〉 =

∣∣∣∣∣∣∣∣∣

a0 a−1 · · · a−N+1

a1 a0 · · · a−N+2
...

...
...

aN−1 aN−2 · · · a0

∣∣∣∣∣∣∣∣∣
, (2)

with

an =
1

2π

∫ 2π

0

[
(1 − α1 eiθ) (1 − α2 e−iθ)
(1 − α1 e−iθ) (1 − α2 eiθ)

]1/2

einθ dθ, (3)

where

α1 = e−2Ev/kBT tanh Eh/kBT, α2 = e−2Ev/kBT coth Eh/kBT, (4)

and the diagonal correlation C(N, N) also given by (2) and (3) with

α1 = 0, α2 = k = (sinh 2Ev/kBT sinh 2Eh/kBT)−1. (5)

Both the free energy and the correlations have singularites at the critical temperature Tc defined
by

k = (sinh 2Ev/kBTc sinh 2Eh/kBTc)−1 = 1. (6)

In 1976 Wu, McCoy, Tracy and Barouch [4] discovered, in the scaling limit T → Tc with
N · (T − Tc) fixed, that the diagonal correlation C(N, N) is given by a Painlevé III function.
This was generalized in 1980 by Jimbo and Miwa [5] who defined for T < Tc

σ = t · (t − 1) · d
dt

ln C(N, N) − t
4

with t = k2, (7)

and for T > Tc

σ = t · (t − 1) · d
dt

ln C(N, N) − 1
4

with t = k−2, (8)

and in both cases derived:(
t · (t − 1) · d2σ

dt2

)2

= N2 ·
(

(t − 1) · dσ
dt

− σ

)2

− 4 · dσ
dt

·
(

(t − 1) · dσ
dt

− σ − 1
4

)
·
(

t
dσ
dt

− σ

)
. (9)

For T < Tc the boundary condition for (9) at t = 0 is

C(N, N; t) = (1 − t)1/4 ·
[

1 + λ2 · (1/2)N (3/2)N

4[(N + 1)!]2
· tN+1 · (1 + O(t))

]
, (10)

with λ = 1, (a)n = a(a + 1) · · · (a + n − 1) and (a)0 = 1. For T > Tc the boundary condition
at t = 0 is

2
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C(N, N; t) = (1 − t)1/4 · tN/2 ·
[

(1/2)N

N!
· 2F1

(
[
1
2

, N +
1
2

], [N + 1], t

)

+ λ2 · (1/2)N ((3/2)N)2

16 (N + 1)! (N + 2)!
· tN+2 · (1 + O(t))

]
, (11)

with λ = 1.
We note for both cases of T < Tc and T > Tc that there are solutions of (9) with boundary

condition where λ �= 1. Those solutions do not correspond to the determinants for C(N, N) but
rather for the lambda extended Fredholm determinants obtained from the form factor expan-
sions [6, 7]. We also remark that for T > Tc the term in (10) with λ = 0 is by itself an exact
solution of (9) even though it is not a correlation function of the Ising model.

It is an outstanding open question to generalize (9) to the general two-point correlation
functions C(M, N) = 〈σ0,0σM,N〉.

In this paper we consider the correlation C(M, N) with anisotropy

ν =
sinh 2Eh/kBT
sinh 2Ev/kBT

, (12)

for the special case

ν = −k, (13)

which corresponds to

sinh 2Eh/kBT = ±i, k = ∓ i
sinh 2Ev/kBT

. (14)

Because k → 0 as T → 0 we refer to this case as T < Tc for ν and k real even though Ev and
Eh are complex (and hence unphysical).

We also consider the special case

ν = −1/k = −k>, (15)

where

sinh 2Ev/kBT = ±i, k> = ∓i sinh 2Eh/kBT (16)

and because k> → 0 corresponds to T →∞ we refer to this case as T > Tc. In both cases we
find that there is indeed a generalization of (9).

For concreteness we consider M � 0 and N � 0. We note that the formalism for M � N
and M � N is different but, in the general, the symmetry under M ↔ N and Ev ↔ Eh yields
the relation:

C(M, N; k, ν) = C(N, M; k, 1/ν). (17)

However the restrictions (13) and (15) are not preserved by (17) and we have instead:

C(M, N; ν = −k) = C(N, M; ν = −1/k). (18)

In this paper we consider only M � N with some remarks about M � N at the end of
subsection 3.3 and in the discussion section 7.

3
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We recall previous results [8] on C(M, N) in section 2. In section 3 we use the pro-
gram guessfunc developed by Jay Pantone [9] to find, from large series expansion, nonlinear
differential equations for C(M, N) with M � N, both for T < Tc (see equation (71) below)
and for T > Tc (see equations (73) and (79) below). In section 4 we transform these nonlin-
ear differential equations into the canonical form of Okamoto [10] for sigma form of Painlevé
VI. In section 5 we compare our equations with the ones obtained by Forrester and Witte for
determinants [11] as given in [12] and show in (125), for ν = −k and T < Tc, that C(M, N)
for M � N is expressed as an N × N Toeplitz determinant. Appendix C shows when T > Tc

that C(M, N) can also be expressed as an N × N Toeplitz determinant. In section 6 we show
for T < Tc, ν = −k and M + N odd that C(M, N), M � N, factors, and for C(0, N) that these
factors also satisfy an Okamoto sigma form of Painlevé VI equation. We conclude in section 7
with a discussion of several open questions. In appendix B we give examples of C(M, N) with
ν = −k for both T < Tc and T > Tc. In appendix D we present the one parameter family of
boundary conditions for the general Painlevé VI sigma Okamoto form which are analytic at
k = 0.

2. The correlation C(M, N) for ν = −k

In [8] it was shown for all M, N that the correlation C(M, N) with M � N can be written for all
M, N as a homogeneous polynomial in the three elliptic integrals

K̃(k) =
2
π

∫ π/2

0

dθ

(1 − k2 sin2 θ)1/2
= 2F1

(
[
1
2

,
1
2

], [1], k2

)
, (19)

Ẽ(k) =
2
π

∫ π/2

0
dθ (1 − k2 sin2 θ)1/2 = 2F1

(
[
1
2

,−1
2

], [1], k2

)
, (20)

Π̃(−kν, k) =
2
π

∫ π/2

0

dθ
(1 + k ν sin2 θ) (1 − k2 sin2 θ)1/2

, (21)

where

k = (sinh 2Ev/kT sinh 2Eh/kT)−1 = (sv sh)−1 =
α2 − α1

1 − α1α2
, (22)

ν =
sinh 2Eh/kT
sinh 2Ev/kT

=
sh

sv
=

4α1α2

(α2 − α1)(1 − α1α2)
, k ν =

1
s2
v

, (23)

which are valid for

0 � k � 1 and − 1 � k ν, (24)

2F1([a, b], [c], z) being the hypergeometric function.

2.1. C(0, 1) for ν = −k

It was shown in [1, 2], for T < Tc where α1 < α2 < 1, that

C(0, 1) =
√

1 + νk ·
[(

1 +
k
ν

)
· Π̃(−νk, k) − k

ν
· K̃(k)

]
, (25)

which is conveniently rewritten as

C(0, 1) =
√

1 + νk · 2
π

∫ π/2

0
dθ · (1 − k2 sin2 θ)1/2

1 + kν sin2 θ
. (26)

4
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For T > Tc where 1 < α2 and k> = 1/k

C(0, 1) =
1
ν
·
√

1 + ν/k> ·
[
(1 + νk>) · Π̃(−νk>, k>) − K̃(k>)

]

= k> ·
√

1 + ν/k> · 2
π

∫ π/2

0

1 − sin2 θ

(1 + k>ν sin2 θ) (1 − k2
> sin2 θ)1/2

· dθ. (27)

In general C(M, N) depends on two (complex) variables through the elliptic integral
Π̃(−kν, k). However, as is seen in (2) and (3) the row correlation C(0, N) reduces to C(N, N)
whenα1 = 0 (which from (23) is equivalent to ν = 0) because Π̃(−kν, k) degenerates to K̃(k).

There are two other special cases where Π̃(−kν, k) reduces to combinations of K̃(k) and
Ẽ(k). One case is the isotropic case ν = 1 where

Π̃(−k, k) =
1
2
· K̃(k) +

1
2 · (1 + k)

. (28)

Many examples of this reduction of C(M, N) have been given by Shrock and Ghosh [13, 14].
Another case of reduction of Π̃(−kν, k) is

ν = −k, (29)

where

Π̃(k2, k) =
Ẽ(k)

1 − k2
, (30)

and the C(M, N), M � N are reduced to homogeneous polynomials of the two ellptic integrals
Ẽ(k) and K̃(k). For example for T < Tc when ν = −k we see from (26) that

C(0, 1) =
√

1 − k2 · 2
π

∫ π/2

0

1

(1 − k2 sin2 θ)1/2
· dθ =

√
1 − k2 · K̃(k).

(31)

For T > Tc from (27) when ν = −k> = −1/k

C(0, 1) = 0, (32)

because of the vanishing of the square root factor. If we remove this factor by writing for
T > Tc

C(0, 1) =
√

1 + ν/k> · C̃(0, 1), (33)

we find, in the special case ν = −k>, that

C̃(0, 1) =
k>
2

· 2F1([
3
2

,
1
2

], [2], k2
>) =

K̃(k>) − Ẽ(k>)
k>

. (34)

2.2. C(0, N) for T < Tc at ν = −k

More generally for T < Tc we find, from (22) and (23), that if ν = −k then

α2 = −α1 = α and k =
2α

α2 + 1
, sh = i, sv = − i

k
, (35)

5



J. Phys. A: Math. Theor. 53 (2020) 465202 S Boukraa et al

where, for simplicity, we have defined α = α2. Thus for ν = −k the an matrix elements (3)
reduce to

an =
1

2π

∫ 2π

0

1 − α2 + α (eiθ − e−iθ)
{(1 − α2 e2iθ) (1 − α2 e−2iθ)}1/2

· einθ · dθ, (36)

which, by sending α→−α and θ →−θ has the symmetry:

a−n(k) = an(−k). (37)

By considering invariance under θ → θ + π and setting 2θ = φ, we see that

a2m =
1

2π

∫ 2π

0

1 − α2

{(1 − α2 eiφ) (1 − α2 e−iφ)}1/2
· ei|m|φ · dφ, (38)

and:

a±(2|m|+1) =
±
2π

∫ 2π

0

α(eiφ − 1)
{(1 − α2 eiφ) (1 − α2e−iφ)}1/2

· ei|m|φ · dφ. (39)

We may reduce a2m to a hypergeometric function as

a2m = (1 − α2) · α2|m| · Γ(|m|+ 1/2)
π1/2|m|! · 2F1

(
[|m|+ 1

2
,

1
2

], [|m|+ 1], α4

)
, (40)

which may be rewritten in terms of k using (5) of page 111 of [15]:

2F1

(
[m +

1
2

, m +
1
2

], [, 2m + 1], k2

)
= (1 + α2)2m+1 · 2F1

(
[m +

1
2

,
1
2

], [m + 1], α4

)
.

(41)

We find that:

a2m =

(
α

1 + α2

)2|m| 1 − α2

1 + α2
· Γ(|m|+ 1/2)

π1/2|m|! · 2F1

(
[|m|+ 1

2
, |m|+ 1

2
], [2 |m|+ 1], k2

)

=

(
k
2

)2|m|
·
√

1 − k2 · Γ(|m|+ 1/2)
π1/2|m|! · 2F1

(
[|m|+ 1

2
, |m|+ 1

2
], [2 |m|+ 1], k2

)
.

(42)

Similarly:

a2m+1 =

(
k
2

)2m+1
Γ(m + 1/2)
π1/2 m!

·
[(

k
2

)2 m + 1/2
m + 1

· 2F1

(
[m +

3
2

, m +
3
2

], [2m + 3], k2

)

− 2F1

(
[m +

1
2

, m +
1
2

], [2m + 1], k2

)]
. (43)

The two hypergeometric functions in (43) combine and thus, with the symmetry (37), give the
final result:

a±(2m+1) = ∓
(

k
2

)2|m|+1

· Γ(|m|+ 1/2)
π1/2|m|! · 2F1

(
[|m|+ 1

2
, |m|+ 1

2
], [2 |m|+ 2], k2

)
.

(44)

6
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2.3. C(0, N) for T > Tc at ν = −k> = −1/k

In the following we will simply denote K̃(k), Ẽ(k) and Π̃(−kν, k) (see (19), (20), (21)) by K̃,
Ẽ and Π̃. For T > Tc we find, from (22) and (23), that if ν = −k> = −1/k then

α1 = −α−1
2 = −α, and k> =

2α
α2 + 1

, sh = −ik>, sv = i, (45)

and we find the matrix elements (3) reduce to

an = − 1
2π

∫ 2π

0

[
1 − α2 e2iθ

1 − α2 e−2iθ

]1/2

· e(n−1)iθ · dθ. (46)

By sending θ → θ + π we see that an = (−1)n−1an, and thus

a2n = 0, (47)

and

a2n+1 = − 1
2π

∫ 2π

0

[
1 − α2 e2iθ

1 − α2 e−2iθ

]1/2

· e2niθ · dθ

= − 1
2π

∫ 2π

0

[
1 − α2 eiφ

1 − α2 e−iφ

]1/2

· eniφ · dφ, (48)

which we recognize as the matrix elements a−n of the diagonal correlation (3) for T < Tc with
α1 = 0 and α2 → α2.

We further recognize because of (47) that

C(0, 2N + 1) = 0, (49)

and that the 2N × 2N determinants for C(0, 2N) factorize as:

C(0, 2N) =

∣∣∣∣∣∣∣∣∣

a−1 a1 · · · a2N−3

a−3 a−1 · · · a2N−5
...

...
...

a−(2N−1) a−(2N−3) · · · a−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

a1 a3 · · · a2N−1

a−1 a1 · · · a2N−3
...

...
...

a−(2N−3) a−(2N−5) · · · a1

∣∣∣∣∣∣∣∣∣
.

(50)

For 2n + 1 > 0 we express (48) in terms of hypergeometric functions as

a2n+1 = α2n · Γ(n + 1/2)√
πn!

· 2F1

(
[−1

2
, n +

1
2

], [n + 1], α4

)
, (51)

and:

a−(2n+1) = α2n+2 · Γ(n + 1/2)
2
√
π(n + 1)!

· 2F1

(
[
1
2

, n +
1
2

], [n + 2], α4

)
. (52)

7
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As a special case we note from (56) of [8] by use of (45) for ν = −k> that

C(0, 2) = k−2
> ·

(
Ẽ2 − (1 − k2

>) · K̃2
)

= k−2
> ·

(
Ẽ −

√
1 − k2

> · K̃

)
·
(

Ẽ +
√

1 − k2
> · K̃

)
, (53)

which illustrates the factorization property of C(0, 2N). For small k we have

C(0, 2) =
1
8

k2
> +

1
16

k4
> +

39
1024

k6
> +

53
2048

k8
> +

1235
65 536

k10
>

+
1887

131 072
k12
> +

382 291
33 554 432

k14
> + O(k16), (54)

which using (45) is rewritten in terms of α as

C(0, 2) =
1
2
α2 − 1

16
α6 − 1

64
α10 − 13

2048
α14 + O(α18). (55)

Using maple we find

Ẽ +
√

1 − k2
> · K̃ =

2
1 + α2

· a1 (56)

1
k2
>

·
(

Ẽ −
√

1 − k2
> · K̃

)
=

1 + α2

2
· a−1, (57)

or equivalently using

α =
1 −

√
1 − k2

>

k>
, (58)

we have:

a1 =
1 −

√
1 − k2

>

k2
>

·
(

Ẽ +
√

1 − k2 · K̃
)

, (59)

a−1 =
1 +

√
1 − k2

>

k2
>

·
(

Ẽ −
√

1 − k2
> · K̃

)
. (60)

To generalize and derive (59) and (60) we treat a2n+1/α and αa−(2n+1) separately. These
calculations are detailed in appendix A.

2.4. Quadratic difference equations for C(M, N)

In general for M �= 0 the correlation C(M, N) with M < N can be written as an N × N deter-
minant which is not Toeplitz. We will not use this determinant representation but, instead, use
quadratic difference equations [16–19] which relate the (high-temperature) correlation func-
tions C(M, N) for T > Tc to the dual correlation Cd(M, N) for T > Tc, defined as the low
temperature correlation with the replacement: sv → 1/sh and sh → 1/sv

8
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s2
h · [Cd(M, N)2 − Cd(M, N − 1) · Cd(M.N + 1)]

+[C(M, N)2 − C(M − 1, N) · C(M + 1, N)] = 0, (61)

s2
v · [Cd(M, N)2 − Cd(M − 1, N) · Cd(M + 1, N)]

+ [C(M, N)2 − C(M, N − 1) · C(M, N + 1)] = 0, (62)

svsh · [Cd(M, N) · Cd(M + 1, N + 1) − Cd(M, N + 1) · Cd(M + 1, N)]

= C(M, N) · C(M + 1, N + 1) − C(M, N + 1) · C(M + 1, N), (63)

which hold for all M and N, except M = 0, N = 0, where we have:

C(1, 0) = (1 + s2
h)1/2 − sh · Cd(0, 1), (64)

C(0, 1) = (1 + s2
v)1/2 − sv · Cd(1, 0). (65)

with sh = sinh 2Eh/kT and sv = sinh 2Ev/kT.
From these quadratic difference equations we find [8] for example for T < Tc where

k = (svsh)−1:

C(1, 2) = s2
v · (s−2

v + 1)1/2 ·
(

s−2
h · (s−2

v s−2
h − 1) · K̃2 + (s−2

h − 1) · Ẽ K̃ + E2

+ (s−2
v − 1) (s−2

h + 1) · Ẽ Π̃ − (s−2
h + 1) · (s−2

v s−2
h − 1) · K̃ Π̃

)
, (66)

and for T > Tc where k> = svsh:

C(1, 2) =
(s2

v + 1)1/2

s2
hsv

·
(
Ẽ2 − (s2

h s2
v − 1) · K̃2 + (s2

h s2
v + s2

v − 2) · Ẽ K̃

+ (s2
h + 1) · (s2

v − 1) · Ẽ Π̃ + (s2
h + 1) · (s2

hs2
v − 1) · K̃ Π̃

)
. (67)

For T < Tc and ν = −k, where sh = i, sv = −i/k, one has:

C(1, 2) = −(1 − k2)1/2 · k−2 ·
(
(1 − k2) · K̃2 − 2 · Ẽ K̃ + Ẽ2

)
. (68)

For T > Tc and ν = −k> where sh = −ik>, sv = i one gets:

C(1, 2) = 0. (69)

Further special cases are given in appendix B.

3. Two-parameter family of nonlinear differential equations for C(M, N) for
ν = −k

We have obtained a nonlinear equation with the Painlevé property (i.e. fixed critical points)
which is satisfied by C(M, N) for ν = −k by using the program guessfunc developed by J
Pantone [9]. This program searches for nonlinear equations satisfied by series expansions. We
have applied this program for many values of the integers M, N for the series expansions of
C(M, N) at ν = −k obtained from either the Toeplitz determinants for C(0, N) of section 2, or
from expressions deduced from the quadratic recursion relations of section 2.4. The results are
as follows.

9
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3.1. Nonlinear differential equations for C(M, N) for ν = −k and M � N: the low-temperature
case

For T < Tc and ν = −k with t = k2 and

σ = t · (t − 1) · d ln C(M, N)
dt

− t
4

, (70)

we have:

[t · (t − 1) · σ′′]2 + 4 · {σ′ · (t σ′ − σ) · ((t − 1)σ′ − σ)}

− M2 · (t σ′ − σ)2 − N2 · σ′2

+ [M2 + N2 − 1
2

(1 + (−1)M+N)] · σ′ · (t σ′ − σ) = 0. (71)

Note that when M = N the diagonal correlation C(N, N) does not depend on the anisotropy
variable ν. There is no difference between the diagonal correlation functions C(N, N) for
ν = −k and for arbitrary ν. As expected the two-parameters (M, N)-family of nonlinear differ-
ential equation (71) actually reduces when M = N to the Jimbo–Miwa nonlinear differential
equation (9) for the diagonal correlation C(N, N) for T < Tc.

3.2. Nonlinear differential equations for C(M, N) for ν = −k, M � N and M + N even: the
high-temperature case

For T > Tc and ν = −k> with M � N and M + N even with t = k2
> and

σ = t · (t − 1) · d ln C(M, N)
dt

− 1
4

, (72)

we have:

[t · (t − 1) · σ′′]2 + 4 · {σ′ · (t σ′ − σ) · ((t − 1)σ′ − σ)}

− M2 · (t σ′ − σ)2 + (N2 + M2 − 1) · σ′ · (t σ′ − σ)

− N2 · σ′2 − 1
4

(N2 − M2) · (t σ′ − σ)

− 1
4
· (N2 − M2) · σ′ − 1

16
· (N2 − M2)2 = 0. (73)

As expected, when M = N, the two-parameters (M, N)-family of nonlinear differential
equation (73) also reduces to the Jimbo–Miwa nonlinear differential equation (9) for the
diagonal correlation C(N, N) for T > Tc.

3.3. Nonlinear differential equation for C(M, N) for ν = −k>, M < N and M + N odd: the high
temperature case

For T > Tc and ν = −k> we found in (49) that C(0, 2N + 1) = 0. For C(0, 1) this vanishing
occurs because of the vanishing of the factor

√
1 + ν/k> in (27) and we found, for instance

in (34), that:

lim
ν→−k>

(
1 +

ν

k>

)−1/2

· C(0, 1) =
K̃ − Ẽ

k>
. (74)

10
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We have examined this phenomenon more generally by considering C(M, N) for low values of
M, N and find that for M + N odd

C(M, N) = 0, (75)

and that the limit

lim
ν→−k>

(
1 +

ν

k>

)−1/2

· C(M, N) = C̃(M, N), (76)

exists and is nonzero. For example

C̃(0, 3) =
4

k5
>

·
[
(k2

> − 1)2 · K̃3 − (2k2
> − 3) · (k2

> − 1) · K̃2 Ẽ

− (2k2
> − 3) · K̃ Ẽ2 − (k2

> + 1) · Ẽ3
]
. (77)

We define

σ = t · (t − 1) · d ln C̃(M, N)
dt

− 1
4

, (78)

and find:

[t · (t − 1) · σ′′]2 + 4 · {σ′ · (t σ′ − σ) · ((t − 1)σ′ − σ)}

− M2 · (t σ′ − σ)2 + (N2 + M2 − 2) · σ′ · (t σ′ − σ)

− N2 · σ′2 − 1
4
· (N2 − M2 − 1) · (t σ′ − σ) − 1

4
· (N2 − M2 + 1) · σ′

− 1
16

· (N2 − M2)2 +
1
8
· (M2 + N2 − 1) = 0. (79)

Remark: All the previous sigma non-linear ODEs (71), (73) and (79) are valid for ν = −k
and M � N. However recalling the symmetry relations (17) and especially (18), C(M, N;
ν = −k) = C(N, M; ν = −1/k), it is straightforward to see that these sigma non-linear ODEs
(71), (73) and (79) are also valid for the C(M, N) correlation functions for M � N but when
ν = −1/k.

3.3.1. A Kramers–Wannier formal symmetry. In [7] a representation of the Kramers–Wannier
duality on σ has been introduced4:

(t, σ, σ′σ′′) −→
(

1
t

,
σ

t
, σ − t · σ′, t3 · σ′′

)
. (80)

It had been noticed that this involutive transformation (80) preserves the sigma form of Painlevé
VI equation (9). This transformation just amounts to saying, for any function F(t), that the
change of variable t → 1/t changes

σ = t · (t − 1) · d ln(F(t))
dt

− 1
4

, (81)

4 See equation (16) page 78 of [7].
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into σ̃/t where:

σ̃ = t · (t − 1) · d ln(F(t))
dt

− t
4
. (82)

and vice-versa.

• One first remarks that this involutive transformation (80) actually transforms the (low-
temperature) nonlinear differential equation (71) into itself where M and N are permuted.

• One then remarks that this involutive transformation (80) also transforms the (high-
temperature, M + N even) non-linear differential equation (73) into itself where M and N
are permuted.

• One finally remarks that this involutive transformation (80) also transforms the (high-
temperature, M + N odd) non-linear differential equation (79) into itself where M and N
are permuted.

These three results must be seen as mathematical symmetries: the question of the physical
interpretation of the non-linear differential equations (71), (73) and (79) when M and N are
permuted, remains an open question.

Note that ν is left invariant by the Kramers–Wannier duality5, in contrast with k which
becomes its reciprocal k → 1/k. Consequently, the selected condition ν = −k is not left
invariant by the Kramers–Wannier duality. The high-temperature non-linear differential
equations (73) and (79), valid at ν = −k have no reason to be deduced from the low-
temperature non-linear differential equation (71), valid at ν = −k, using a Kramers–Wannier-
like duality (80).

Along this line, let us note, for M + N even, that one can change the low-temperature non-
linear differential equation (71) into the high-temperature non-linear differential equation (73)
using the involutive transformation:

(σ, σ′, σ′′, M, N) −→
(
σ +

N2 − M2

4
· (t − 1), σ′ +

N2 − M2

4
, σ′′, N, M

)
. (83)

4. Sigma form of Painlevé VI: Okamoto parameters

The search for nonlinear differential equations with the Painlevé property is an ongoing field
of research [20] and is far from being complete even for equations of second order. However
for equations of the form

(y′′)2 = F(y, y′, x), (84)

with fixed singularities at x = 0, 1,∞, a solution was given by Cosgrove and Scoufis in (4.9)
of [21] where it is shown that the non-linear differential equation with six parameters

(x · (x − 1) · y′′)2 + 4 ·
{

y′ · (xy′ − y)2 − y′2 · (xy′ − y)

+ c5 · (xy′ − y)2 + c6 · y′ · (xy′ − y) + c7 · (y′)2

+ c8 · (xy′ − y) + c9 · y′ + c10} = 0, (85)

5 The Kramers–Wannier duality changes sh → s∗v = 1/sv , sv → s∗h = 1/sh and thus sh/sv → sh/sv .
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has the Painlevé property6 and is birationally equivalent to Painlevé VI. Both equations (71) and
(79) are of the form (85) and hence are sigma forms of Painlevé VI. The non-linear differential
equation (85) is invariant in form under the transformation

y = ȳ + A · x + B, (86)

which transforms the six parameters ck into new parameters c̃k as follows

c̃5 = c5 + A, c̃6 = c6 − 2B − 2A, (87)

c̃7 = c7 + B, c̃8 = c8 − 2AB − A2 − 2B · c5 + A · c6, (88)

c̃9 = c9 + B2 + 2AB − B · c6 + 2A · c7, (89)

c̃10 = c10 + AB2 + A2B + B2 · c5 − AB · c6 + A2 · c7 − B · c8 + A · c9.

(90)

The canonical form of sigma Painlevé VI given by Okamoto [10] which depends on four
parameters n1, n2, n3, n4 reads

h′ · {t · (t − 1) · h′′}2 + {h′ · (2h − (2t − 1) h′) + n1n2n3n4}2

− (h′ + n2
1) · (h′ + n2

2) · (h′ + n2
3) · (h′ + n2

4) = 0, (91)

which when expanded and removing the common factor of h′ reads

{t · (t − 1) · h′′}2 + 4 h′ · (t h′ − h) · ((t − 1) h′ − h)

+ 4 c10 + 4 c9 · h′ + 4 c8 · (t · h′ − h) + 4 c7 · h′2 = 0, (92)

which is of the Cosgrove form (85) with

c7 = −(n2
1 + n2

2 + n2
3 + n2

4)/4, c8 = −n1n2n3n4, (93)

c9 = −(n2
1n2

2 + n2
1n2

3 + n2
1n2

4 + n2
2n2

3 + n2
2n2

4 + n2
3n2

4 − 2n1n2n3n4)/4, (94)

c10 = −(n2
1n2

2n2
3 + n2

1n2
2n2

4 + n2
1n2

3n2
4 + n2

2n2
3n2

4)/4. (95)

We see from (87) if we choose

A = −c5, B =
c6

2
+ c5, (96)

that

c̃5 = c̃6 = 0, (97)

and thus the general non-linear differential equation (85) is reduced to the Okamoto form with
the Okamoto parameters determined from (93)–(95).

6 Namely has fixed critical points.
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4.1. Okamoto parameters for T < Tc and ν = −k

For T < Tc and ν = −k we obtain the Okamoto parameters for (71) with the parameters which
shift from (71) to the canonical Okamoto form determined from (96), to be

A =
M2

4
, B =

1
8
·
(

N2 − M2 − 1 + (−1)M+N

2

)
. (98)

Thus we find from (88)–(90) that

c̃7 = −1
8
·

(
N2 + M2 +

1 + (−1)M+N

2

)
, c̃8 =

M2

16
·

(
N2 − 1 + (−1)M+N

2

)
,

c̃9 = − 1
64

·
(

N2 − M2 − 1 + (−1)M+N

2

)2

− N2M2

8
,

c̃10 = − M2

128
·
[(

N2 − M2 − 1 + (−1)M+N

2

)
·
(

N2 − 1 + (−1)M+N

2

)
+ 2 M2N2

]
,

(99)

and thus, from (93)–(95), we obtain the Okamoto parameters (unique up to permutations and
the change of an even number of signs)

n1 =
1
2
·

(
N − 1 + (−1)M+N

2

)
, n2 =

1
2
·

(
N +

1 + (−1)M+N

2

)
,

n3 =
M
2

, n4 = −M
2

, (100)

with

h = t · (t − 1) · d ln C(M, N)
dt

− M2 + 1
4

· t − 1
8
·

(
N2 − M2 − 1 + (−1)M+N

2

)
, (101)

where t = k2.

4.2. Okamoto parameters for T > Tc, ν = −k> and M + N even

For T > Tc, ν = −k> and M + N even we find for (73), from (96), that:

A =
M2

4
, B =

1
8
· (N2 − M2 − 1). (102)

Thus with t = k2
>

h = t · (t − 1) · d ln C(M, N)
dt

− M2

4
· t − 1

8
·
(
N2 − M2 + 1

)
, (103)

satisfies (91) with the Okamoto parameters:

n1 =
M − 1

2
, n2 =

M + 1
2

, n3 =
N
2

, n4 = −N
2
. (104)
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4.3. Okamoto parameters for T > Tc, ν = −k>, M < N and M + N odd

For T > Tc we find for (79), from (96), that

A =
M2

4
, B =

1
8
· (N2 − M2 − 2). (105)

Thus with t = k2
>

h = t · (t − 1) · d
dt

ln C̃(M, N) − M2

4
· t − 1

8
· (N2 − M2), (106)

satisfies the Okamoto equation (91) with:

n1 =
M − 1

2
, n2 =

M + 1
2

, n3 =
N + 1

2
, n4 = −N − 1

2
. (107)

4.4. Boundary conditions

In order to complete the specification ν = −k of C(M, N) we must specify the boundary con-
ditions for the nonlinear equations (71), (73) and (79). This is most systematically done by
first determining the allowed boundary conditions on the canonical equation of Okamoto (91)
which are analytic at t = 0. A detailed and explicit analysis of these boundary conditions is
performed in appendix D.

5. Relation to the determinants of Forrester–Witte

These results should be compared with the results of Forrester–Witte [11] as given in [12] as

D(p,p ′ ,η,ξ)
N (t) = det

[
A(p,p ′ ,η,ξ)

j−k (t)
]N−1

j,k=0
, (108)

where

A(p,p ′,η,ξ)
m (t) =

Γ(1 + p′) t(η−m)/2 (1 − t)p

Γ(1 + η − m)Γ(1 − η + m + p′)
· 2F1

(
[−p, 1 + p′], [1 + η − m],

t
t − 1

)

+
ξ · Γ(1 + p)t(m−η)/2 (1 − t)p ′

Γ(1 − η + m)Γ(1 + η − m + p)
· 2F1

(
[−p′, 1 + p], [1 − η + m],

t
t − 1

)
,

(109)

which, using the identity (6) on page 109 of [15]

2F1([a, b], [c], t) = (1 − t)−a · 2F1

(
[a, c − b], [c],

t
t − 1

)
, (110)

is rewritten as:

A(p,p ′,η,ξ)
m (t) =

Γ(1 + p′) t(η−m)/2

Γ(1 + η − m)Γ(1 − η + m + p′)
· 2F1([−p,−p′ + η − m], [1 + η − m], t)

+
ξ · Γ(1 + p) t(m−η)/2

Γ(1 − η + m)Γ(1 + η − m + p)

· 2F1([−p′,−p− η + m], [1 − η + m], t). (111)
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From (2,27) of [12]

h = t · (t − 1) · d
dt

ln
(

t(θ2
0+θ2

t −θ2
1−θ2

∞)/2 · (1 − t)(θ2
t +θ2

1−θ2
0−θ2

∞)/2 · τ (t)
)

= t · (t − 1) · d
dt

ln
(

t(n1n2+n3n4)/2 · (1 − t)(n1n2−n3n4)/2τ (t)
)

, (112)

with

τ (p,p ′ ,η,ξ)
N (t) = (1 − t)−N· (N+p+p ′)/2 · D(p,p ′ ,η,ξ)

N = (1 − t)(n1+n2)(n3−n4)/2 · D(ν,ν′,η,ξ)
N , (113)

satisfies the Okamoto equation (91) with

n1 = θt − θ∞, n2 = θt + θ∞, n3 = θ0 − θ1, n4 = θ0 + θ1, (114)

where

(θ0, θt, θ1, θ∞) =
1
2
· (η, N, −N − p− p′, p − p′ + η), (115)

are the eigenvalues of the linear system for isomonodromic deformation

dY
dz

=

(
A0

z
+

At

z − t
+

A1

z − 1

)
Y, (116)

where Ai are traceless 2 × 2 matrices and:

A∞ = −A0 − At − A1. (117)

Using (115) in (114) we have:

n1 = (N − p+ p′ − η)/2, n2 = (N + p− p′ + η)/2,

n3 = (η + N + p+ p′)/2, n4 = (η − N − p− p′)/2. (118)

Thus we see, for M + N even, that the parameters nk of (100) agree with the parameters nk

(118) if

η = 0, p =
M − N + 1

2
, p′ =

M − N − 1
2

(119)

and for M + N odd the parameters nk of (100) agree with the parameters nk (118) if:

η = 0, p = p′ =
M − N

2
. (120)

For either choice we see that (113) reduces to:

τN = (1 − t)−MN/2 · DN . (121)
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5.1. The case M = 0, N = 1

When M = 0 and N = 1 we see from (111) with ξ = 0 that:

D1 = A0(t) = 2F1

(
[
1
2

,
1
2

], [1], t

)
. (122)

Thus from (31) and (121)

C(0, 1) = (1 − t)1/2 · D1 = (1 − t)1/2 · τ1, (123)

and (112) reduces to

h = t · (t − 1) · d
dt

ln
(

t1/8 · (1 − t)1/8 · (1 − t)−1/2 · C(0, 1)
)

= t · (t − 1) · d
dt

ln C(0, 1) − t
4

− 1
8

, (124)

which agrees with (101) as required.

5.2. The general case

For C(M, N) for ν = −k the special case (123) generalizes to:

C(M, N) = (1 − t)[(N−M)2+1−(1+(−1)M+N)/2]/4 · DN . (125)

To verify (125) we use (121) to write:

C(M, N) = (1 − t)[N2+M2+1−(1+(−1)M+N)/2]/4 · τN = (1 − t)n1n2−n3n4+1/4 · τN . (126)

Thus, substituting into (112) we find

h = t · (t − 1) · d
dt

ln
(

C(M, N) t(n1n2+n3n4)/2 (1 − t)−(n1n2−n3n4)/2−1/4
)

= t · (t − 1) · d
dt

ln C(M, N) + (n3n4 − 1
4

) · t − 1
2
· (n1n2 + n3n4)

= t · (t − 1) · d
dt

ln C(M, N) − M2 + 1
4

· t − 1
8
·

(
N2 − M2 − 1 + (−1)M+N

2

)
,

(127)

which agrees with (101) as required.
Finally it may be verified that (125) satisfies the boundary condition (D.40).

5.3. Specialization of DN

It remains to specialize the matrix elements Am of (111) to the special cases (119) and (120).
For m � 0 we may directly set η = 0 in (111) and use the identity

Γ(1 + p′) · Γ(−p′)
Γ(1 + m + p′) · Γ(−p′ − m)

= (−1)m, (128)

to find:

A−]m] =
Γ(|m| − p′) · (−1)|m| · t|m|/2

|m|! · Γ(−p′)
· 2F1([−p,−p′ + |m|], [1 + |m|], t). (129)

17



J. Phys. A: Math. Theor. 53 (2020) 465202 S Boukraa et al

For m � 1 the factor Γ(1 + η − m) in the denominator diverges for η → 0 and consequently
the limit η → 0 must be taken carefully. Then, using the identity (128), we find for m � 1 as
η → 0:

Am =
Γ(−p+ m) · (−1)m · tm/2

Γ(−p) · m!
· 2F1([m − p,−p′], [m + 1], t). (130)

For M + N even we thus use (119) in (129) for m � 0 to find

A−|m| =
Γ(|m|+ N−M+1

2 ) · (−1)m · t|m|/2

Γ( N−M+1
2 ) · |m|!

× 2F1

(
[
N − M − 1

2
,

N − M + 1
2

+ |m|], [1 + |m|], t

)
, (131)

and for m � 1 we use (119) in (130) to find:

Am =
Γ(m + N−M−1

2 ) · (−1)m · tm/2

Γ( N−M−1
2 ) · m!

· 2F1

(
[
N − M + 1

2
,

N − M − 1
2

+ m], [1 + m], t

)
.

(132)

For M + N odd we use (120) in (129) and (130) to obtain:

A−m = Am =
Γ(m + N−M

2 ) · (−1)m · tm/2

Γ( N−M
2 ) · |m|! 2F1([

N − M
2

,
N − M

2
+ m], [1 + m], t). (133)

Similar Toeplitz elements can be found for the correlation functions obtained for T > Tc and
ν = −k>. The expressions of Am for this case are given in appendix C.

We note that from (4.35) of [12] that for η = 0 that the matrix elements are obtained from:

Am =
1

2π

∫ 2π

0
dθ eimθ · (1 − k eiθ)p (1 − k e−iθ)p ′

. (134)

5.4. Direct proof for C(0, 2) when ν = −k

The relation of C(M, N) for ν = −k to the determinant DN (125) was obtained from the non-
linear equations for C(M, N) for ν = −k and DN . In this section we give a direct proof of (125)
for C(0, 2), when ν = −k, by use of contiguous relations for hypergeometric functions. This
provides a proof of the Okamoto equation (91) with (100) and (101) for C(0, 2) for ν = −k for
T < Tc. The relation for C(0, 1) has already been shown in section 5.1.

To prove (125) for C(0, 2) we need to prove the following identity between the 2 × 2 deter-
minants for C(0, 2) and D2 obtained by using (42) and (44) for C(0, 2) and (131) and (132) for
D2∣∣∣∣∣∣∣
√

1 − t · 2F1([
1
2

,
1
2

], [1], t) − t1/2

2
· 2F1([

1
2

,
1
2

], [2], t)

t1/2

2
· 2F1([

1
2

,
1
2

], [2], t)
√

1 − t · 2F1([
1
2

,
1
2

], [1], t)

∣∣∣∣∣∣∣

= (1 − t) ·

∣∣∣∣∣∣∣
2F1([

1
2
.
3
2

], [1], t) − t1/2

2
· 2F1([

3
2

,
3
2

], [2], t)

−3 t1/2

2
· 2F1([

1
2

,
5
2

], [2], t) 2F1([
1
2

,
3
2

], [1], t)

∣∣∣∣∣∣∣ , (135)
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which we rewrite∣∣∣∣∣∣∣
2F1([

1
2

,
1
2

], [1], t)
t
2
· 2F1([

1
2

,
1
2

], [2], t)

−1
2
· 2F1([

1
2

,
1
2

], [2], t) (1 − t) · 2F1([
1
2

,
1
2

], [1], t)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(1 − t) · 2F1([

1
2
.
3
2

], [1], t)
t (1 − t)

2
· 2F1([

3
2

,
3
2

], [2], t)
3
2
· 2F1([

1
2

,
5
2

], [2], t) 2F1([
1
2

,
3
2

], [1], t)

∣∣∣∣∣∣∣ . (136)

We then use (41) on page 103 of [15]

(1 − t) · 2F1

(
[
1
2

,
3
2

], [1], t

)

= (1 − t) · 2F1

(
[
1
2

,
1
2

], [1], t

)
+

t
2
· 2F1

(
[
1
2

,
1
2

], [2], t

)
, (137)

to rewrite the (1,1) element of the right-hand side of (136) and we use (33) on page 103 of [15]
with a = 1/2, b = 3/2, c = 2

(1 − t) · 2F1

(
[
3
2

,
3
2

], [2], t

)
= 2F1

(
[
1
2

,
1
2

], [2], t

)
, (138)

to rewrite the (1,2) element on the right-hand side. Then we subtract column 2 from column 1
to find that the right-hand side of (136) becomes:∣∣∣∣∣∣∣

(1 − t) · 2F1([
1
2

,
1
2

], [1], t)
t
2
· 2F1([

1
2

,
1
2

], [2], t)
3
2
· 2F1([

1
2

,
5
2

], [2], t) − 2F1([
1
2

,
3
2

], [1], t) 2F1([
1
2

,
3
2

], [1], t)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2F1([

1
2

,
1
2

], [1], t)
t
2
· 2F1([

1
2

,
1
2

], [2], t)
3
2
· 2F1([

1
2

,
5
2

], [2], t) − 2F1([
1
2

,
3
2

], [1], t) (1 − t) · 2F1([
1
2

,
3
2

], [1], t)

∣∣∣∣∣∣∣ .
(139)

We then rewrite the (2,2) element on the right-hand side (139) using (137) and subtract row 1
from row 2 to obtain:
∣
∣
∣
∣
∣
∣
∣

2F1([
1
2

,
1
2

], [1], t)
t
2
· 2F1([

1
2

,
1
2

], [2], t)
3
2
· 2F1([

1
2

,
5
2

], [2], t) − 2F1([
1
2

,
3
2

], [1], t) − 2F1([
1
2

,
1
2

], [1], t) (1 − t) · 2F1([
1
2

,
1
2

], [1], t)

∣
∣
∣
∣
∣
∣
∣

.

Then we note that if

3
2
· 2F1

(
[
1
2

,
5
2

], [2], t

)
− 2F1

(
[
1
2

,
3
2

], [1], t

)
− 2F1

(
[
1
2

,
1
2

], [1], t

)

= −1
2
· 2F1

(
[
1
2

,
1
2

], [2], t

)
, (140)
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then (140) agrees with the left-hand side of (136) as required. To prove (140) we use (43)
on page 104 of [15] (with a missing factor of z restored in the last term) with a = 1/2,
b = 5/2, c = 1

1 − t
2

· 2F1

(
[
1
2

,
5
2

], [1], t

)
− 2F1

(
[
1
2

,
3
2

], [1], t

)
+

t
2
· 2F1

(
[
1
2

,
5
2

], [2], t

)
= 0,

(141)

and (41) on page 103 with a = 1/2, b = 1/2, c = 1

1 − t
2

· 2F1

(
[
1
2

,
1
2

], [1], t

)
− 1 − t

2
· 2F1

(
[
1
2

,
3
2

], [1], t

)
+

t
4
· 2F1

(
[
1
2

,
1
2

], [2], t

)
= 0,

(142)

to eliminate 2F1([ 1
2 , 5

2 ], [2], t) and 2F1([ 1
2 , 1

2 ], [2], t). The desired result is then obtained by
use of (29) on page (103) of [15] with a = 1/2, b = 3/2, c = 1:

1
2
· 2F1

(
[
1
2

,
1
2

], [1], t

)
+ (2 − t) · 2F1

(
[
1
2

,
3
2

], [1], t

)

− 3
2
· (1 − t) · 2F1

(
[
1
2

,
5
2

], [1], t

)
= 0. (143)

6. Factorizations

All symmetric N × N Toeplitz determinants can be factored into the product of two determi-
nants by use of the procedure used by Wilf [22] for determinants with N even of subtracting
column j from column N + 1 − j for 1 � j � N/2 and then adding row N + 1 − j to row j
for 1 � j � N/2. Thus, for example, we find:

D2 = (A0 − A1) · (A0 + A1), (144)

D3 = (A0 − A2) ·
∣∣∣∣A0 + A2 2A1

A1 A0

∣∣∣∣ , (145)

D4 =

∣∣∣∣A0 + A3 A1 + A2

A1 + A2 A0 + A1

∣∣∣∣ ·
∣∣∣∣A0 − A1 A1 − A2

A1 − A2 A0 − A3

∣∣∣∣ , (146)

D5 =

∣∣∣∣∣∣
A0 + A4 A1 + A3 2A2

A1 + A3 A0 + A2 2A1

A2 A1 A0

∣∣∣∣∣∣ ·
∣∣∣∣A0 − A2 A1 − A3

A1 − A3 A0 − A4

∣∣∣∣ . (147)

where the Dn’s and An’s are given by (108) and (109). Thus for the special case (133) when
T < Tc with M + N odd and M �= 0, one finds that C(M, N) factors into two terms.

Note that the factors D2, D3, D4 can be put into a Toeplitz form.
For the special case (133) when T < Tc with M + N odd, we find when M = 0, that D3

further factors into three factors so that

C(0, 3) = −4 · (1 − t)1/2 · t−2 · Ẽ · (Ẽ − K̃) · (Ẽ − (1 − t) · K̃), (148)

and DN with N odd, N � 5, factors into four factors, so that

C(0, N) = constant · (1 − t)1/2 · t(1−N2)/4 · f1 f2 f3 f4, (149)
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For example, for C(0, 5), the f i’s read:

f1 = (2t − 1) · Ẽ + (1 − t) · K̃, f2 = (1 + t) · Ẽ − (1 − t) · K̃, (150)

f3 = (t − 2) · Ẽ + 2 · (1 − t) · K̃, f4 = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1 − t) · K̃2.

(151)

We have studied these four factors of C(0, N) with N odd by the process previously described
and found that all four factors satisfy the equation (91) with the identical Okamoto parameters

n1 =
N − 1

4
, n2 =

N + 1
4

, n3 = −1
2

, n4 = 0, (152)

where the relation of the factors f j to h is given by:

h1 = t · (t − 1) · d ln f1

dt
− N2 + 3

16
· t +

N2 + 3
32

, (153)

h2 = t · (t − 1) · d ln f2

dt
− N2 − 1

16
· t +

N2 + 3
32

, (154)

h3 = t · (t − 1) · d ln f3

dt
− N2 − 1

16
· t +

N2 − 5
32

, (155)

h4 = t · (t − 1) · d ln f4

dt
− N2 − 5

16
· t +

N2 − 5
32

. (156)

By comparing (153)–(156) for C(0, 5) with the four cases of boundary conditions in appendix
D, we see that the factors f1 and f2 are in case 1 with c(1)

0 and c(1)
1 given by (D.4) and (D.8)

and from (D.20) the coefficient of t(N+3)/2 is a constant which must be specified separately
for f1 and f2. Similarly the factors f3 and f4 are in case 4 with c(4)

0 and c(4)
1 given by (D.7)

and (D.11) and from (D.23) the coefficient of tN+1/2 is a constant which must be specified
separately for f3 and f4.

7. Discussion

In this paper we have discovered for the special case ν = −k and for arbitrary positive inte-
gers M � N, that the correlation C(M, N) satisfies an Okamoto sigma form of the Painlevé
VI equation (91) with parameters (100) for T < Tc and (104), and (107) for T > Tc. These
non-linear differential equations have been obtained using extensively Pantone’s program and
checked with a large set of exact expressions of the C(M, N) in terms of Ẽ and K̃. Moreover the
nonlinear differential equation for T < Tc is the same equation satisfied by a particular case of
the N × N Toeplitz determinants of Forrester–Witte [11] and Gamayun, Igorov and Lisovyy
[12]. This is perhaps surprising because no Toeplitz form for C(M, N) is in the literature except
for M = 0, M = N and the results of Au-Yang and Perk [23] for C(N − 1, N). We have also
investigated in appendix D the boundary conditions which must be applied to the nonlinear
differential equations to obtain solutions which are analytic at k = 0.

In the course of this investigation we have found several open questions:
1) We have seen that all the correlations C(M, N) considered are members of a one parameter

family of Painlevé VI functions but the principle for determining the specific value of the
boundary condition is not known.
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2) In section 6 we exhibited, for the row correlation functions, a remarkable phenomenon
of a Painlevé VI sigma function which satisfies an equation with one set of Okamoto param-
eters and a specific boundary condition constant is equal to a sum of four7 Painlevé VI sigma
functions which all have the same Okamoto parameters (which are different from the previous
set) and have four specific boundary condition constants. One would like to find the conditions
yielding such a remarkable phenomenon.

3) We also saw in section 6 for T < Tc, M + N odd and M � N, that C(M, N) with M �= 0,
always factors into two terms. It is not known if these terms have the Painlevé property of
having no movable critical points and, if they do have this property, are they expressible as
known Painlevé functions ? These factorizable cases need much further study.

4) The case M � N with ν = −k remains to be understood. By (18) this is equivalent to
M � N with ν = −1/k and, when this constraint holds, we see from (21) that Π̃(−ν k, k)
becomes singular. This has the effect that some (but not all) correlations for M � N are no
longer homogeneous polynomials in K̃ and Ẽ. For example for T < Tc

C(2, 0) = 1 − t + (1 − t) · K̃2 − 2 · (1 − t) · ẼK̃ + Ẽ2, (157)

C(3, 0) =
√

1 − t ·
[
(1 − t)2

+ 2 · (t − 1)2 · K̃2 + 4 · (t − 1) · ẼK̃ + 2 · (1 + t) · Ẽ2
]
. (158)

Consequently the corresponding non-linear ODEs are much more involved than Okamoto
sigma form of Painlevé VI equations. It is not even clear that all these non-linear ODEs can
be encapsulated in closed formulae depending on M and N, like this was the case with the
two-parameters families of equations (71), (73) and (79).

More generally, the discovery of these four two-parameters families of Okamoto sigma
form of Painlevé VI equations is a strong incentive to find non-linear ODEs with the Painlevé
property, for two-point correlation functions C(M, N) that are not restricted to selected
conditions like ν = −k or ν = −1/k for the anisotropic model.
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Appendix A. Calculations of the an’s

For a2n+1 of (51) we first use (36) on page 103 of [15] to write

2F1

(
[n +

1
2

,−1
2

], [n + 1], α4

)
=

1
2
·
[

2F1

(
[n − 1

2
,−1

2
], [n + 1], α4

)

+ (1 − α4) · 2F1

(
[n +

1
2

,
1
2

], [n + 1], α4

)]
, (A.1)

7 A similar phenomenon for Painlevé V with a sigma function being the sum of two (see equation (6.23) in [24]) sigma
functions was found by Tracy and Widom [24].
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and then by use of (5) on page 111 of [15] and

k> =
2α

1 + α2
, (A.2)

we find:

2F1

(
[n +

1
2

,−1
2

], [n + 1], α4

)
=

1
2 · (1 + α2)2n−1

· 2F1

(
[n − 1

2
, n +

1
2

], [2n + 1], k2
>

)

+
1 − α4

2 · (1 + α2)2n+1
· 2F1

(
[n+

1
2

, n+
1
2

], [2n+1], k2
>

)
.

(A.3)

Using (A.3) in (51) we obtain:

a2n+1

α
=

Γ(n + 1
2 )

2
√
πn!

·
[(

α

1 + α2

)2n−1

· 2F1

(
[n − 1

2
, n +

1
2

], [2n + 1], k2
>

)

+

(
α

1 + α2

)2n+1

(α−2 − α2) · 2F1

(
[n +

1
2

, n +
1
2

], [2n + 1], k2
>

)]
. (A.4)

Thus, by using (A.2) and the inverse

α±2 =
2 − k2

> ∓ 2
√

1 − k2
>

k2
>

, (A.5)

we obtain the final result:

a2n+1 =
Γ(n + 1

2 )√
πn!

·
(

k>
2

)2(n−1)

· 4 · (1 −
√

1 − k2
>)

×
[

2F1

(
[n − 1

2
, n +

1
2

], [2n + 1], k2
>

)
+

√
1 − k2

>

· 2F1

(
[n +

1
2

, n +
1
2

], [2n + 1], k2
>

)]
. (A.6)

For αa−(2n+1) (see (52)) we proceed in a similar fashion, and use (33) on page 103 of [15] to
write:

2F1

(
[n +

1
2

,
1
2

], [n + 2], α4

)
=

(
n +

n
2

)
· 2F1

(
[n +

1
2

,−1
2

], [n + 2], α4

)

−
(

n+
1
2

)
· (1−α4) · 2F1

(
[n+

3
2

,
1
2

], [n + 2], α4

)
.

(A.7)

Then we use (5) on page 111 of [15] to obtain
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2F1

(
[n +

1
2

,
1
2

], [n + 2], α4

)
,

=

(
n +

3
2

)
· (1 + α2)−2n−1 · 2F1

(
[n +

1
2

, n +
3
2

], [2n + 3], k2
>

)

−
(

n +
1
2

)
· 1 − α4

(1 + α2)2n+3
· 2F1

(
[n +

3
2

, n +
3
2

], [2n + 3], k2
>

)
, (A.8)

and thus

α a−(2n+1) = α2 · Γ(n + 1
2 )

2
√
π(n + 1)!

·

×
[(

α

1 + α2

)2n+1

·
(

n +
3
2

)
· 2F1

(
[n +

1
2

, n +
3
2

], [2n + 1], k2
>

)

−
(

α

1 + α2

)2n+3

·
(

n +
1
2

)
· (α−2 − α2)

· 2F1

(
[n +

3
2

, n +
3
2

], [2n + 3], k2
>

)]
, (A.9)

which by use of (A.2) and (A.5) becomes:

α a−(2n+1) =
Γ(n + 1

2 )
2
√
π

·
(

k>
2

)2n+1

·
(

2 − k2 − 2
√

1 − k2
>

k2
>

)
,

×
[(

n +
3
2

)
· 2F1

(
[n +

1
2

, n +
3
2

], [2n + 3], k2
>

)

−
(

n +
1
2

)
·

√
1 − k2 · 2F1

(
[n +

3
2

, n +
3
2

], [2n + 3], k2
>

)]
. (A.10)

To obtain the final desired result we first carry out the multiplication to write

α · a−(2n+1) =
Γ(n + 1

2 )
8
√
π(n + 1)!

·
(

k>
2

)2n−1

·
(

T1 −
√

1 − k2
> · T2

)
, (A.11)

with

T1 = (2 − k2
>) ·

(
n +

3
2

)
· 2F1

(
[n +

1
2

, n +
3
2

], [2n + 3], k2
>

)

+ 2 · (1 − k2) ·
(

n +
1
2

)
· 2F1

(
[n +

3
2

, n +
3
2

], [2n + 3], k2
>

)
, (A.12)

and

T2 = 2 ·
(

n +
3
2

)
· 2F1

(
[n +

1
2

, n +
3
2

], [2n + 3], k2
>

)

+ (2 − k2
>) ·

(
n +

1
2

)
· 2F1

(
[n +

3
2

, n +
3
2

], [2n + 3], k2
>

)
, (A.13)
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and then note the identities which may be discovered by use of series expansions on Maple
and then proven by the use of contiguous identities

T1 = 4 · (n + 1) · 2F1

(
[n − 1

2
, n +

1
2

], [2n + 1], k2
>

)
, (A.14)

T2 = 4 · (n + 1) · 2F1

(
[n +

1
2

, n +
1
2

], [2n + 1], k2
>

)
, (A.15)

to find the desired result

a−(2n+1) =
Γ(n + 1

2 )√
πn!

·
(

k>
2

)2(n−1)

· 4 · (1 +
√

1 − k2
>)

×
[

2F1

(
[n − 1

2
, n +

1
2

], [2n + 1], k2
>

)
−

√
1 − k2

>

· 2F1

(
[n +

1
2

, n +
1
2

], [2n + 1], k2
>

)]
, (A.16)

which is to be compared with the result for a2n+1 of (A.6).

Appendix B. Examples of C(M, N) and C̃(M, N) for ν = −k

For T < Tc

C(0, 2) =
1
t
·

[
Ẽ2 − 2 · (1 − t) · ẼK̃ + (1 − t) · K̃2

]
, (B.1)

C(0, 3) = −4
√

1 − t
t2

· Ẽ · (Ẽ − K̃) · (Ẽ + (t − 1) · K̃) (B.2)

C(1, 3) =
4

3 t2
·
[
(2 − t) · Ẽ3 − 5 · (1 − t) · Ẽ2 K̃

+ (1 − t) · (2 − t) · ẼK̃2 − (1 − t)2 · K̃3
]

, (B.3)

C(0, 5) =
256

√
1 − t

81 t6
·

[
(1 + t) · Ẽ + (t − 1) · K̃

]
·
[
(t − 2) · Ẽ + 2 (1 − t) · K̃

]
×

[
(2t − 1) · Ẽ + (1 − t) · K̃

]
·
[
3 Ẽ2 + (2t − 4) · Ẽ K̃ + (1 − t) · K̃2

]
.

(B.4)

For T > Tc

C(1, 3) = − 4
3 t5/2

·
[
(1 − 2t) · Ẽ3 − (1 − t) · (3 − t) · Ẽ2 K̃,

+ (1 − t) · (3 − t) · Ẽ K̃2 − (1 − t)2 · K̃3
]

, (B.5)

C(0, 4) = − 16
9 t4

·
[
(5 − 5t − t2) · Ẽ4 − 8 · (2 − t) · (1 − t) · Ẽ3 K̃ + (1 − t)3 · K̃4

+ 2 · (1 − t) · (3 − t) · (3 − 2t) · Ẽ2 K̃2 − 4 · (2 − t) · (1 − t)2 · Ẽ K̃3
]

=
16

9 t4
· C+ · C−, where: (B.6)
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C± =
(

2 − t ± 3 · (1 − t)1/2
)
· Ẽ2 ± (1 − t)3/2 · K̃2

−
(

2 · (1 − t) ± 2 · (2 − t) · (1 − t)1/2
)
· Ẽ K̃. (B.7)

For T > Tc with M + N odd examples of C̃(M, N) of (76):

C̃(1, 2) =
1
t
·

[
(t − 1) · K̃2 − 2 · (t − 2) · K̃ Ẽ − 3 · Ẽ2

]
, (B.8)

C̃(1, 4) =
16

9 t4
·
[
5 · (t − 1)3 · K̃4 − 12 · (t − 2) · (t − 1)2 · ẼK̃3 − 4 · (t − 2)3

× · Ẽ3 K̃ + 6 · (t − 1) · (t2 − 7t + 7) · Ẽ2 K̃2 − 9 · (1 − t + t2) · Ẽ4
]

, (B.9)

C̃(2, 3) =
4

9 t5/2
·

[
(3t − 1) · (t − 1)2 · K̃3 − (t − 1) · (6t2 − 17t + 3) · Ẽ K̃2

− (20t2 − 31t + 3) · Ẽ2 K̃ + (t2 − 16t + 1) · Ẽ3
]
. (B.10)

Appendix C. Correlation functions as Toeplitz determinants for T > Tc

We have shown in section 5 that the correlation functions for T < Tc and ν = −k are given
in terms of Toeplitz determinants (see equations (125), (131)–(133)) using the results of
Forrester–Witte [11].

Using the same method, one can easily generalise these equations to T > Tc and ν = −k>.
One verifies that

• For T > Tc and M + N even

C(M, N) = (−1)(N−M)/2 · (1 − t)(N−M)2/4 · DN , (C.1)

the Toeplitz matrix elements are given for m � 1 by:

Am =
Γ( N−M−1

2 + m)

Γ( N−M+1
2 ) (m − 1)!

· (−1)m−1 · t(m−1)/2

× 2F1

(
[
N − M − 1

2
,

N − M − 1
2

+ m], [m], t

)
(C.2)

and for m < 1 by

Am =
Γ( N−M+1

2 − m)

Γ( N−M−1
2 ) (1 − m)!

· (−1)m−1 · t(1−m)/2

× 2F1

(
[
N − M + 1

2
,

N − M + 1
2

− m], [2 − m], t

)
. (C.3)

• For T > Tc and M + N odd, we know that C(M, N) = 0. After removing the vanishing
factor (1 + ν/k>)1/2, one obtains:

C̃(M, N) = (−1)(N−M+1)/2 · (M + N) · (1 − t)((N−M)2−1)/4 · DN (C.4)
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The Toeplitz matrix elements for m � 1 are

Am =
Γ( N−M

2 − 1 + m)
Γ( N−M

2 ) (m − 1)!
· (−1)m−1 · t(m−1)/2

× 2F1([
N − M

2
,

N − M
2

− 1 + m], [m], t), (C.5)

and for m < 1

Am =
Γ( N−M

2 + 1 − m)
Γ( N−M

2 ) (1 − m)!
· (−1)m−1 · t(1−m)/2

× 2F1

(
[
N − M

2
,

N − M
2

+ 1 − m], [2 − m], t

)
. (C.6)

One verifies that these expressions for the correlation functions are totally compatible
with the ones given in appendix B obtained by the quadratic difference equations (see
section 2.4).

Appendix D. Boundary conditions

The study of solutions of PVI analytic at t = 0 was first done be Kaneko [25] for generic param-
eters in the Hamiltonian formalism where four solutions were found. Here we concentrate on
the non-generic cases which allow one parameter families of solutions. This is most system-
atically done by determining the allowed boundary conditions on the canonical equation of
Okamoto (91) which are analytic at t = 0. Thus we set in (91)

h(t) =
∑
n=0

cn · tn. (D.1)

From the constant term we find

n2
1n2

2n2
3 + n2

1n2
2n2

4 + n2
1n2

3n2
4 + n2

2n2
3n2

4 − 4 c0 · n1n2n3n4

+ c1 · (n2
1n2

2 + n2
1n2

3 + n2
1n2

4 + n2
2n2

3 + n2
2n2

4 + n2
3n2

4 − 2 n1n2n3n4)

+ c2
1 · (n2

1 + n2
2 + n2

3 + n2
4) − 4 · c0c1 · (c0 + c1) = 0, (D.2)

and from the t term:

− 2 · c2 ·
[
4 c2

0 + 8 c0c1 − 2 c1 · (n2
1 + n2

2 + n2
3 + n2

4)

− n2
1n2

2 − n2
1n2

3 − n2
1n2

4 − n2
2n2

3 − n2
2n2

4 − n2
3n2

4 + 2 n1n2n3n4
]

= 0. (D.3)

We solve (D.3) for c1 in terms of c0 and nk by setting the term in brackets to zero and using
this in (D.2) we find that the resulting fourth order equation in c0 factors into four factors linear
in c0 and thus we have the four solutions for c0 of

c(1)
0 = (−n1n2 − n3n4 + (n1 + n2) (n3 + n4)) /2, (D.4)

c(2)
0 = (n1n2 + n3n4 + (n1 − n2) (n3 − n4)) /2, (D.5)

c(3)
0 = (n1n2 + n3n4 − (n1 − n2) (n3 − n4)) /2, (D.6)
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c(4)
0 = (−n1n2 − n3n4 − (n1 + n2) (n3 + n4)) /2, (D.7)

and thus for c1 the companion values are:

c(1)
1 =

(n1 + n2) · n3n4 − n1n2 · (n3 + n4)
n1 + n2 − n3 − n4

, (D.8)

c(2)
1 =

(n1 − n2) · n3n4 − n1n2 · (n3 − n4)
−n1 + n2 + n3 − n4

, (D.9)

c(3)
1 =

(n1 − n2) · n3n4 + n1n2 · (n3 − n4)
−n1 + n2 − n3 + n4

, (D.10)

c(4)
1 =

(n1 + n2) · n3n4 + n1n2 · (n3 + n4)
n1 + n2 + n3 + n4

. (D.11)

Case 4 is invariant under all permutations of the nk. Case 1 is obtained from case 4 by changing
the signs of n3 and n4. Case 2 is obtained from case 4 by changing the signs of n1 and n4. Case 3
is obtained from case 4 by changing the signs of n2 and n4. These sign changes are symmetries
of the equation but not of the solutions.

The values of c0 and c1 for each of the four solutions may now be used to compute the term
of order t2 in the series expansion of (91) and we find that (91) holds if c2 satisfies a linear
equation. Thus we obtain:

c(1)
2 = − (n1 + n2)(n1 − n3)(n1 − n4)(n2 − n3)(n2 − n4)(n3 + n4)

(n1 + n2 − n3 − n4)2(n1 + n2 − n3 − n4 + 1)(n1 + n2 − n3 − n4 − 1)
, (D.12)

c(2)
2 = − (n1 − n2)(n1 − n3)(n1 + n4)(n2 + n3)(n2 − n4)(n3 − n4)

(n1 − n2 − n3 + n4)2(n1 − n2 − n3 + n4 + 1)(n1 − n2 − n3 + n4 − 1)
, (D.13)

c(3)
2 =

(n1 − n2)(n1 + n3)(n1 − n4)(n2 − n3)(n2 + n4)(n3 − n4)
(n1 − n2 + n3 − n4)2(n1 − n2 + n3 − n4 + 1)(n1 − n2 + n3 − n4 − 1)

, (D.14)

c(4)
2 =

(n1 + n2)(n1 + n3)(n1 + n4)(n2 + n3)(n2 + n4)(n3 + n4)
(n1 + n2 + n3 + n4)2(n1 + n2 + n3 + n4 + 1)(n1 + n2 + n3 + n4 − 1)

. (D.15)

Continuing the recursive procedure we find from the t3 term in (91)

c(1)
3 = 2 · N(1)

3 · c(1)
2

(n1 + n2 − n3 − n4) (n1 + n2 − n3 − n4 + 2) (n1 + n2 − n3 − n4 − 2)
,

N(1)
3 = n2

1n2 − n2
1n3 − n2

1n4 − n2
2n3 − n2

2n4 − n2
3n4

+ n1n2
2 + n1n2

3 + n1n2
4 + n2n2

3 + n2n2
4 − n3n2

4

− n1n2n3 − n1n2n4 + n1n3n4 + n2n3n4 − n1 − n2 + n3 + n4, (D.16)

c(2)
3 = −2 · N(2)

3 · c(2)
2

(n1 − n2 − n3 + n4)(n1 − n2 − n3 + n4 + 2)(n1 − n2 − n3 + n4 − 2)
,

N(2)
3 = n2

1n2 + n2
1n3 − n2

1n4 + n2
2n3 − n2

2n4 − n2
3n4

− n1n2
2 − n1n2

3 − n1n2
4 + n2n2

3 + n2n2
4 + n3n2

4

− n1n2n3 + n1n2n4 + n1n3n4 − n2n3n4 + n1 − n2 − n3 + n4, (D.17)
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c(3)
3 = −2 · N(3)

3 · c(3)
2

(n1 − n2 + n3 − n4) (n1 − n2 + n3 − n4 + 2) (n1 − n2 + n3 − n4 − 2)
,

N(3)
3 = n2

1n2 − n2
1n3 + n2

1n4 − n2
2n3 + n2

2n4 + n2
3n4

− n1n2
2 − n1n2

3 − n1n2
4 + n2n2

3 + n2n2
4 − n3n2

4

+ n1n2n3 − n1n2n4 + n1n3n4 − n2n3n4 + n1 − n2 + n3 − n4, (D.18)

c(4)
3 = 2 · N(4)

3 · c(4)
2

(n1 + n2 + n3 + n4) (n1 + n2 + n3 + n4 + 2) (n1 + n2 + n3 + n4 − 2)
,

N(4)
3 = n2

1n2 + n2
1n3 + n2

1n4 + n2
2n3 + n2

2n4 + n2
3n4

+ n1n2
2 + n1n2

3 + n1n2
4 + n2n2

3 + n2n2
4 + n3n2

4

+ n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4 − n1 − n2 − n3 − n4. (D.19)

This recursive solution may be extended to arbitrary order and for the general case c(i)
n+1 will

have factors in the denominator of

c(1)
n+1 : n1 + n2 − n3 − n4 ± n, (D.20)

c(2)
n+1 : n1 − n2 − n3 − n4 ± n, (D.21)

c(3)
n+1 : n1 − n2 + n3 − n4 ± n, (D.22)

c(4)
n+1 : n1 + n2 + n3 + n4 ± n. (D.23)

We thus conclude that as long as there are no vanishing factors in the denominator there are
four distinct solutions of the equation (91) which are analytic at t = 0 and have no arbitrary
constants. These form a four dimensional representation of the symmetry group of the equation.
The statement that the solution is analytic at t = 0 is the boundary condition. This corresponds
to the case (18) on page 7 of [26] where the subgroup of the monodromy group generated by
M0Mt and M1 is reducible.

D.1. Arbitrary constants

This recursive solution will break down at an order n where c(i)
n has a zero in the denominator.

This will give a solution only if there is a corresponding zero in the numerator which indi-
cates that the corresponding recursive equation is automatically satisfied independently of the
value of c(i)

n which now becomes an arbitrary parameter that must be specified as an additional
boundary condition.

There are two ways in which these vanishing factors in the numerator can happen. Either
c(i)

2 = 0 or N(i)
n = 0. In this paper we will apply this analysis to the correlations C(M, N) with

ν = −k. The behaviors of solutions of cases 1 and 4 are quite different from cases 2 and 3 and
we treat them separately.

D.1.1. Cases 1 and 4 for T < Tc. For T < Tc the Okamoto parameters for C(M, N) are given
by (100) so that

n1 + n2 = N, and n3 + n4 = 0, (D.24)
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and thus from (D.4) and (D.7)

c(1)
0 = c(4)

0 = −1
8
·
(

N2 − M2 − 1 + (−1)M+N

2

)
, (D.25)

and from (D.8) and (D.11):

c(1)
1 = c(4)

1 = −M2

4
. (D.26)

Furthermore we see, from (D.12), (D.15), (D.16) and (D.19), that, because of the factor of
n3 + n4, the recursive solutions for cases 1 and 4, c(1)

k and c(4)
k , will always vanish unless there

is also a vanishing factor in the denominator. When for some k the denominator in c(1,4)
k does

vanish then c(1,4)
k for that k is not determined from the recursive procedure and is an arbitrary

constant. For k = 2 and T < Tc we explicitly see from (D.12) and (D.15), and for k = 3 from
(D.16) and (D.19), that the factor in the denominator

n1 + n2 ± (n3 + n4) − k + 1 = N + 1 − k, (D.27)

vanishes for k = N + 1. This pattern continues for all k and thus

c(1)
k = c(4)

k = 0 for 2 � k � N, (D.28)

and the coefficients c(1)
N+1 and c(4)

N+1 are arbitrary.

To compute the coefficients c(1,4)
k for k > N + 1 a new recursive solution must be computed

which uses the term cN+1 · tN+1 as input.
Thus for t → 0

h = −1
8
·

(
N2 − M2 − 1 + (−1)M+N

2

)

− M2

4
· t + cN+1 · tN+1 + O(tN+2) (D.29)

Thus from (101) we find for t → 0

C(M, N) = (1 − t)1/4 + K(M, N) · tN+1 + O(tN+2), (D.30)

which agrees with the series expansions of C(M, N) for T < Tc.

D.1.2. Cases 2 and 3 for T > Tc with M + N even. For T > Tc with M + N even we see with
the Okamoto parameters for C(M, N) of (104) that for cases 2 and 3 we have from (D.5) and
(D.6)

c(2)
0 =

1
8
· (M2 − N2 − 1) − N

2
, c(3)

0 =
1
8
· (M2 − N2 − 1) +

N
2

, (D.31)

and from (D.9) and (D.10)

c(2)
1 =

N
4
· N + 1 − M2

1 + N
, c(3)

1 =
N
4
· N − 1 + M2

1 − N
. (D.32)

Furthermore the denominator in c(2)
n vanishes when n = N + 2 and the denominator of c(3)

n

vanishes when n = N and thus c(2)
N+2 and c(3)

N are arbitrary. By using the definition of h in
(103) and comparing with the series expansions of C(M, N) we see for T > Tc and M + N
even that C(M, N) is in case 2.
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D.1.3. Cases 2 and 3 for C̃(M, N) for T > Tc with M + N odd. For T > Tc and M + N odd we
see with the Okamoto parameters of (107) that for cases 2 and 3 we have from (D.5) and (D.6)

c(2)
0 =

1
8
· (M2 − N2) − N

2
, c(3)

0 =
1
8
· (M2 − N2) +

N
2

, (D.33)

and from (D.9) and (D.10)

c(2)
1 =

N2 − 1 − (M2 − 1)N
4 · (1 + N)

, c(3)
1 =

N2 − 1 + (M2 − 1)N
4 · (1 − N)

. (D.34)

Furthermore the denominator in c(2)
n also vanishes when n = N + 2 and the denominator of

c(3)
n vanishes when n = N and thus c(2)

N+2 and c(3)
N are arbitrary. By using the definition of h

in (106) and comparing with the series expansions of C̃(M, N) we see for T > Tc and M + N
odd that C̃(M, N) is in case 2.

D.2. Determination of λ when ν = −k

It remains to determine the values of the arbitrary parameter which are appropriate for C(M, N)
when ν = −k. To do this we first examine the behavior C(M, N) at t → 0 for several values of
M and N. We consider T < Tc and T > Tc separately.

D.2.1. T < Tc. For T < Tc the correlations are in case 1 = 4 where the arbitrary constant is
at order tN+1. Several examples are

C(0, 1; λ) = (1 − t)1/4 ·
[

1 − λ2 ·
(

1
26

t2 + O(t3)

)]
, (D.35)

C(0, 2; λ) = (1 − t)1/4 ·
[

1 + λ2 ·
(

1
28

t3 + O(t4)

)]
, (D.36)

C(1, 2; λ) = (1 − t)1/4 ·
[

1 − λ2 ·
(

1
28

t3 + O(t4)

)]
, (D.37)

C(0, 3; λ) = (1 − t)1/4 ·
[

1 − λ2 ·
(

9
214

t4 + O(t5)

)]
, (D.38)

C(1, 3; λ) = (1 − t)1/4 ·
[

1 + λ2

(
3 · 5
214

t4 + O(t5)

)]
, (D.39)

where λ is chosen so that λ = 1 agrees with C(M, N).
In general one has:

C(M, N; λ) = (1 − t)1/4 ·
[
1 + (−1)M+N · λ2 ·

(
KM,N tN+1 + O(tN+2)

)]
. (D.40)

We note for λ = 0 that

C(M, N; 0) = (1 − t)1/4, (D.41)

is an exact solution to the non-linear differential equation.
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D.2.2. T > Tc for M + N even. These correlations are in the class 2 where the arbitrary
constant is at order t3N/2+2. Several examples are

C(0, 2; λ) = (1 − t)1/4 · t
8
·

[
1 +

3
4

t +
3 · 52

27
t2 +

5 · 72

29
t3 + λ̃2 3309

213
t4 + O(t5)

]

= (1 − t)1/4 · t
8
·

[
2F1

(
[
3
2

,
3
2

], [3], t

)
+ λ2 ·

(
3

214
t4 + O(t5)

)]
, (D.42)

C(1, 3; λ) = (1 − t)1/4 · t3/2 · 1
16

·
[

1 +
3 · 5
24

t +
3 · 5 · 7

27
t2 +

3 · 5 · 72

210
t3,

+
33 · 5 · 7 · 11

214
t4 + λ̃2 297 315

219
t5 + O(t6)

]

= (1 − t)1/4 · t3/2 · 1
24

·
[

2F1

(
[
3
2

,
5
2

], [4], t

)
+ λ2

(
3

218
t5 + O(t6)

)]

(D.43)

C(0, 4; λ) = (1 − t)1/4 · t2 · 3
27

·
[

1 +
5
22

t +
5 · 72

3 · 26
t2 +

32 · 5 · 7
28

t3

+
32 · 5 · 7 · 112

215
t4 +

7 · 112 · 132

217
t5 + λ̃2 · 5 · 429 431

221
t6

]

= (1 − t)1/4 · t2 · 3
27

·
[

2F1

(
[
5
2

,
5
2

], [5], t

)
+ λ2 ·

(
5

220
t6 + O(t7)

)]
,

(D.44)

where both λ and λ̃ are chosen such that, when λ = 1 and λ̃ = 1, there is agreement with
C(M, N). In general:

C(M, N; λ) = (1 − t)1/4 · tN/2 · K(1)
M,N ·

[
2F1

(
[
N − M + 1

2
,

N + M + 1
2

], [N + 1], t

)

+ λ2 ·
(

K(2)
M.N · tN+2 + O(tN+3)

)]
. (D.45)

We note that λ̃ and λ are not the same. When λ̃ = 0 the term O(tN+3) does not in general
vanish. This is in contrast with the case λ = 0 where, for some constant ρ

C(M, N; 0) = ρ · (1 − t)1/4 · tN/2 · 2F1

(
[
N − M + 1

2
,

N + M + 1
2

], [N + 1], t

)
,

(D.46)

is an exact solution to the nonlinear differential equation. The constant K(1)
M,N is a normalization

constant which cannot be determined from the non linear equation.
In the specific examples (D.35)–(D.39), (D.42)–(D.44) the numerical coefficient of λ2 has

been chosen so thatλ = 1 is the desired correlation where C(M, N) is given as a finite homogen-
erous polynomial in K̃ and Ẽ, and in the case of C(0, N) as an N × N Toeplitz determinant.
However, in general no explicit formula for KM,N or K(2)

M,N is known which allows λ = 1 to
reduce to the desired result C(M, N).
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D.2.3. T > Tc for M + N odd. Similarly, one can see that

C̃(M, N; λ) = (1 − t)−1/4 · tN/2 · K(1)
M,N ·

[
2F1

(
[
N − M

2
,

N + M
2

], [N + 1], t

)

+ λ2 ·
(

K(2)
M.N · tN+2 + O(tN+3)

)]
, (D.47)

and, for some constant ρ, that

C̃(M, N; 0) = ρ · (1 − t)−1/4 · tN/2 · 2F1

(
[
N − M

2
,

N + M
2

], [N + 1], t

)
, (D.48)

is an exact solution to the nonlinear differential equation (79).
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random matrices: PVI, the JUE, CyUE, cJUE and scaled limits Nagoya Math. J. 174 29–114
[12] Gamayun O, Iorgov N and Lisovyy O 2013 How instanton combinatorics solves Painlevé VI, V and
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