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Abstract

We consider some two-dimensional birational transformations. One of them
is a birational deformation of the Hénon map. For some of these birational
mappings, the post-critical set (i.e. the iterates of the critical set) is infinite and
we show that this gives straightforwardly the algebraic covariant curves of the
transformation when they exist. These covariant curves are used to build the
preserved meromorphic 2-form. One may also have an infinite post-critical
set yielding a covariant curve which is not algebraic (transcendental). For
two of the birational mappings considered, the post-critical set is finite and we
claim that there is no algebraic covariant curve and no preserved meromorphic
2-form. For these two mappings with finite post-critical sets, attracting sets
occur and we show that they pass the usual tests (Lyapunov exponents and the
fractal dimension) for being strange attractors. The strange attractor of one of
these two mappings is unbounded.

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

The study of dynamical systems uses the notion of sensitivity to initial conditions as a criterion
of the chaotic behavior. A large set of the results of the theory of dynamical systems has been
proven for hyperbolic systems (sometimes with the introduction of symbolic dynamics).
Otherwise, the study of a chaotic mapping is performed using various phenomenological
and/or probabilistic approaches. In this dominant approach of dynamical systems the focus is
on the system seen as a transformation of real variables, the analysis being dominated besides
computer experiments, by functional analysis and differential geometry. The study consists
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of orbits generated on computers, phase portraits, bifurcation analyses and computation of the
Lyapunov exponents. If the attracting set is not a manifold, the fractal dimension is introduced.
This phenomenological and/or probabilistic viewpoint corresponds to the mainstream approach
of dynamical systems. Most of the examples studied in the literature correspond to the iteration
of polynomial or rational mappings. Another drastically different approach can be introduced
and corresponds to an algebraic and topological approach of a dynamical system. The
mapping is seen as a dynamical system of complex variables (complex projective space) and is
studied in the framework [1–3] of a cohomology of curves in complex projective spaces. In this
topological viewpoint, one counts integers (fixed points, degrees) and deals with singularities
with blow-up of points and blow-down of curves [4]. The matching of these two drastically
different descriptions of discrete dynamical systems is far from being a simple question.

Consider a two-dimensional reversible mapping K:

K : (u, v) −→ (Ku(u, v),Kv(u, v)). (1)

The components Ku(u, v), Kv(u, v) may be polynomials or rational. Even if both components
are polynomials, the inverse transformation K−1 may have rational components.

In studying the dynamics of a mapping having rational components, one quickly
encounters the fact that the mapping is ill-defined as a continuous one because of the existence
of a finite set of indeterminacy points. The indeterminacy set I(K) of mapping K is the finite
set of points for which a component of K(u,v) has form 0/0. Polynomial mappings have, of
course, no indeterminacy set.

The critical set consists of those algebraic varieties that cancel the Jacobian J [K](u, v)

of the mapping K. Including also the algebraic varieties such that J [K](u, v) = ∞ introduces
the exceptional locus. We denote both of them by E(K). Mappings with constant Jacobian
have, of course, no critical set.

For reversible two-dimensional mappings, one may want to distinguish between bi-
polynomial3 transformations, such as the Hénon mapping [5], polynomial mappings that have
a rational inverse, such as those studied in [6] from the point of view of bifurcations due
to contact of phase curves (basin of boundaries, saddles) with the indeterminacy set and
exceptional locus4, and birational mappings.

For birational mappings generally, the iterates of E(K) are not curves but blow-down into
points:

Kn(E(K)) −→ (un, vn), n = 1, 2, . . . . (2)

These points (un, vn) form the post-critical set [10] (that we denote PC).
Knowing the full orbit (2) may not be easy. For instance, in [9] the orbits Kn(E(K))

have simple closed expressions. The orbits Kn(E(K)) may have algebraic expressions with
exponentially growing degrees in the parameters [10]. For these examples and generically
for a birational mapping, the PC [10] is ‘long’ (or infinite) which means that, as the iteration
proceeds, an infinite set of new points (un, vn) is obtained.

The PC orbit may also be ‘short’ (or finite) by which it is meant that, after a finite number
of iterations, the point (un, vn) settles in a fixed finite point, or in (∞,∞), and does not leave
it.

In the framework [1, 2] of a cohomology of curves in complex projective spaces, Diller
and Favre have presented a method [1] that gives the conditions on the parameters for which
the mapping gets a complexity [11] lower than that of the generic case. This method amounts
to matching the iterates of E(K) to the points of I(K). The conditions Kn(E(K)) ∈ I(K)

3 Their inverse is also polynomial transformations.
4 In [6, 7], the notions of a set of non-definition, prefocal curve and focal point are used. See also [8].
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(or K(−n)(E(K−1)) ∈ I(K−1)) give the value of the parameter for which the mapping gets
a lower complexity than that of the generic case [1, 2, 11]. In other words the complexity
reduction, which breaks the analytically stable [1] character of the mapping, will correspond
to situations where some points of the orbit of the exceptional locus (Kn(E(K))) encounter
the indeterminacy set I(K).

By ‘complexity’ is meant many quantities. When one considers the degree d(n) of
the numerators (or denominators) of the successive nth iterate by mapping K of a rational
expression, the growth of this degree is (generically) exponential with n: d(n) ∼ λn. The
constant λ has been called the ‘growth complexity’ [11] and for CP2, it is closely related to the
Arnold complexity [12, 13]. Let us also recall that two universal (or ‘topological’) measures
of the complexities were found to identify for many examples of birational transformations
[14, 15], namely the previous (degree) growth complexity [11], Arnold complexity [12, 13,
15, 16] and the (exponential of the) topological entropy [14–17]. The topological entropy is
related to the growth rate, for increasing n, of the number of fixed points of Kn [1, 14, 15, 18].
For birational mappings, it is given by the (roots of the) denominator of a rational generating
function through the dynamical zeta function [19]

ζ(t) = exp

( ∞∑
n=1

#fix(Kn) · tn

n

)
, (3)

where # fix(Kn) denotes the number of fixed points at order n.
All the examples we have studied are birational mappings [14, 15, 17, 20, 21], and we

encountered the apparent discrepancy for a mapping to have non-zero (degree growth [17, 11]
or Arnold growth rate [14]) complexity, or topological entropy [15], while the orbits (almost)
always look like curves having non-positive Lyapunov exponents. The regions where the chaos
[22–24] (Smale’s horseshoe, homoclinic tangles, etc) is ‘hidden’ should be concentrated in
extremely narrow regions. Note that Bedford and Diller [25] showed, for the mapping of
[15, 16], how to build the invariant measure corresponding to non-zero positive Lyapunov
exponents, which corresponds to a very slim Cantor set. Note that this invariant real measure
is drastically different from the complex-measure meromorphic 2-form of the mapping.

Furthermore, in a previous paper [10], we reported on two birational mappings presenting
very similar characteristics as far as topological concepts are concerned. They share the
same identification between the Arnold complexity growth rate and the (exponential of the)
topological entropy [15]. The complexity reduction corresponds to the same algebraic numbers
given by the same family of polynomials with integer coefficients. However, if we leave aside
the algebraic-topologic description, then these two mappings show different behavior on other
aspects. One mapping [9] preserves a meromorphic 2-form [10] in the whole parameter space,
while the other [10] does not have a preserved meromorphic 2-form for generic values of the
parameters. However, on some selected algebraic subvarieties of the parameter space, the
second mapping has a meromorphic 2-form. In this case, we showed that the fixed points
of the birational mapping K are such that J [Kn] = 1, where J [Kn] is the Jacobian of Kn

evaluated at the fixed point of Kn. For those cases where a meromorphic 2-form has not been
found, the values of J [Kn] for the fixed points of Kn are different from 1. We concluded that
this mapping has no meromorphic 2-form, since if it had one, then this 2-form would have to
accommodate all these ‘non-standard’ fixed points whose number is infinite.

In addition, we have considered [10] the visualization of the iterates of arbitrary initial
points showing structures which, though similar, do not converge toward the post-critical
set, that is, the iterates of the critical set. No conclusion was drawn on the nature of these
structures. In this respect, one recalls the paper by Bedford and Diller [26] which discusses a
criterion related to close approaches of the post-critical set to the indeterminacy locus.
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In this paper we focus on birational mappings, seizing the opportunity to use, for
this specific class of transformations, the concept of PCs [10], which we show to be
straightforwardly related to algebraic covariant curves and preserved meromorphic 2-forms
when they exist.

We first recall some previously analyzed mappings (K1,K2 and K4) and one mapping K3

taken from the literature and show how to obtain, from the post-critical set [10], the (algebraic)
covariant curves and the preserved meromorphic 2-form. This analysis can be performed on
either the forward mapping or the backward mapping. In both directions, the post-critical set
is long.

A natural question that arises then is whether the post-critical set of a birational mapping
can be ‘short’ in one direction and ‘long’ in the other direction. What kind of structures do
we expect? A birational mapping of this kind would be a good example to study the matching
between the two viewpoints (topological and probabilistic) of the description of discrete
dynamical systems. Our aim is an attempt to link the short/long aspect of the post-critical set
to the forward invariant set occurring in a polynomial mapping with a strange attractor [27].

Unfortunately, and to the best of our knowledge, most [28] of the strange attractors5 in
two-dimensional invertible mappings found in the literature are polynomial transformations.
This stems from the fact that it is common to consider an attracting set as bounded (compact
set). In a typical situation (neither a necessary nor a sufficient condition [30]), these structures
arise when a mapping stretches and folds an open set, and maps its closure inside it. The
unbounded chaotic trajectories that occur naturally in birational mappings are thought to be
divergent orbits.

We want, here, to build a birational (one-parameter) deformation of polynomial mappings.
The first mapping Hc we introduce is a birational deformation of the celebrated Hénon map [5].
The deformed birational mapping depends on a further parameter c which when fixed to zero
gives back the original Hénon map. This continuous deformation will show how the Hénon
strange attractor is modified. From the topological point of view, the deformed Hénon map
has the same degree complexity for generic values of c, while the strange attractor changes
and the fractal dimension of the attractor varies continuously as a function of the deformation
parameter c. For this mapping, the post-critical set is ‘short’ in the forward direction (and
‘long’ in the backward direction). It has no covariant curve and no preserved meromorphic
2-form.

We introduce a second birational mapping K, which will show that boundedness is not
required for the occurrence of an attracting chaotic set6. First, we will compute its degree-
growth complexity [11, 21] and topological entropy [16] to show that the mapping is actually
chaotic. The phase portraits of the mapping show an invariant structure. We will show that
these structures pass the usual tests commonly used to characterize the strange attractor
(positive Lyapunov exponent and fractal dimension). These calculations are carried out even
if the mapping has unbounded orbits. Thanks to the simplicity of the mapping, the fixed points
(computed up to n = 15) are real. These fixed points all lie on the structure. The post-critical
set of K is also ‘short’ (in the forward direction).

This last mapping K falls in a family of maps of two-step recurrences of linear fractional
transformation studied by Bedford and Kim [32] in terms of periodicities and degree-growth
rate [11]. Periodicities in this type of recurrences have been studied in e.g. [33, 34].

5 The literature on strange attractors is too large to be recalled here. Strange attractors are usually described in terms
of periodic points and unstable manifolds, the genesis of the visible attractor being visualized as some kind of random
walk on the union of all periodic points [29]. The relation between the strange attractors and other selected points of
the large literature on chaos, the homoclinic and heteroclinic points is, to our knowledge, not a very clear one.
6 Some authors mention the possibility, or the occurrence, of unbounded attracting sets [7, 31].
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The paper is organized as follows. Section 2 deals with the computation of PCs [10] for
some birational mappings. These mappings being previously published, the aim is to quickly
show the deep relation between the post-critical set and the covariant curves of these known
mappings. In section 3, we introduce a birationally deformed Hénon map. Here also, we
want to benefit from the much studied bipolynomial Hénon map to establish the effect of the
short post-critical set. Section 4 presents the second two-dimensional birational mapping that
has also a short post-critical set and for which the Arnold complexity growth rate and the
(exponential of the) topological entropy identify. In section 5, from the analytical expressions
of the Jacobian at the fixed points of the mapping up to K11, and the proliferation of what
we call ‘non-standard fixed points’ (J [Kn] �= 1), we conclude on the non-existence of a
preserved7 meromorphic (here rational8) 2-form. The phase portraits of the mapping show an
attracting set; section 6 deals with an ergodic analysis. The Lyapunov exponents are computed
and the dimension of the attracting set is given by both the Kaplan–York conjecture and the
box-counting method.

2. The post-critical set and covariant curves

2.1. The birational mapping K1

Consider the mapping K1 analyzed9 in [15, 16, 35]:

K1 : (u, v) −→ (u′, v′) =
(

(u + 1) v

1 − εu
,

u

1 + u − εu

)
. (4)

Its Jacobian reads as

J [K1](u, v) = − u + 1

(1 − εu)(1 + u − εu)2
. (5)

Using the same terminology as in [1], the critical set is given by

E(K1) =
{
(u = −1); (u = 1/ε);

(
u = 1

ε − 1

)}
. (6)

The post-critical set Kn
1 (E(K1)) is given by

(−1, v) −→
(

1 + (−1)n

n − 2 − nε
,

1 − (−1)n

n − 1 − (n + 1)ε

)
,

(1/ε, v) −→
( −1

(n − 1)ε
,

1

1 − (n − 1)ε

)
,

and the orbit Kn
1 (u = 1/(1 − ε)) depends on v.

From the iterates of (u = −1), one sees that an infinite number of points of the post-
critical set lie on u = 0 or v = 0. The elimination of n in the iterates of (u = 1/ε) gives the
algebraic curve v − u + uv = 0. Such algebraic curves are actually covariant 10 under the
action of the birational transformation.
7 We consider here the strict preservation of a 2-form ω (K∗ω = ω), and not the preservation of the 2-form up to a
factor (K∗ω = λω).
8 On all of projective space CP2, meromorphic is actually rational. In C2, meromorphic and rational are two different
notions.
9 The original mapping K1 was written in the variables (1/u, 1/v).
10 Throughout the paper we will, by some abuse of language, say that a curve m(u, v) = 0 is a ‘covariant
curve’ to underline the covariance of the (often polynomial) expression m(u,v) by our birational transformations:
m(u′, v′) = cof(u, v)m(u, v). In such a case, the curve is of course invariant, but we want to focus on the covariance
of the expression m(u,v) and its corresponding cofactor.
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Denoting (u′, v′) = K1(u, v), one verifies that the K1-covariant polynomial m1(u, v) =
uv(v − u + uv) is actually such that

m1(u
′, v′)

m1(u, v)
= J [K1](u, v), (7)

and one immediately deduces [36] that the corresponding meromorphic 2-form

du · dv

m1(u, v)
= du′ · dv′

m1(u′, v′)
(8)

is preserved by the birational transformation K1.
One remarks that as n → ∞, the orbit of the critical set goes to (0, 0) which is a fixed

point of order 1 for K1.

2.2. The birational mapping K2

Now consider the birational mapping K2 analyzed in [9] (see equation (9) in [9]), with
c = 2 − a − b:

K2 : (u, v) −→ (u′, v′) =
(

a uv + (b − 1) · v + cu

(a − 1) · uv + bv + cu
,

a uv + bv + (c − 1) · u

(a − 1) · uv + b v + c u

)
. (9)

The Jacobian is

J [K2](u, v) = uv

((a − 1) · uv + cu + bv)3
, (10)

and the exceptional locus reads as

E(K2) =
{
(u = 0); (v = 0);

(
v = −cu

(a − 1)u + b

)}
. (11)

The successive images of the critical set are (see equation (13) in [9]):

(0, v) −→
(

b − 1

b
, 1

)
−→ · · · −→

(
n(b − 1)

nb − (n − 1)
, 1

)
,

(u, 0) −→
(

1,
c − 1

c

)
−→ · · · −→

(
1,

n(c − 1)

nc − (n − 1)

)
,(

u,
−cu

(a − 1)u + b

)
−→ (∞,∞) −→ · · · −→

(
(n − 1)a − (n − 2)

(n − 1)(a − 1)
,
(n − 1)a − (n − 2)

(n − 1)(a − 1)

)
.

(12)

From these iterates, one notes that an infinite number of points of the post-critical set lie
respectively on v = 1, u = 1 and u = v. These three lines are actually covariant. Introducing
the K2-covariant polynomial m2(u, v) = (u− 1)(v − 1)(u− v), one deduces from the relation
[9, 36] between the Jacobian of K2 and the ratio of m2 evaluated at (u, v) to that at (u′, v′) its
image by K2:

m2(u
′, v′)

m2(u, v)
= J [K2](u, v), (13)

yielding (see (8)) a meromorphic (rational) 2-form preserved by K2.
Here also, as n → ∞, the iterates (12) go to (1, 1) which is a fixed point of order 1 for K2.

6
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2.3. The birational mapping K3

We now consider another example taken from the analysis of strongly regular graphs [37].
The birational mapping reads as

K3 : (u, v) −→ (u′, v′) =
(

1 +
28(v − u)Nuv

uDuv

, 1 +
28(v − 1)Nuv

Duv

)
,

Nuv = 3uv + 3u + v, (14)

Duv = −(c2 + 35) · uv2 + 2(c2 + 7) · uv − 28v2 − (c2 − 49) · u.

The post-critical set is infinite and the orbit is given in a closed form again allowing us to
obtain algebraic covariant curves. To have a preserved meromorphic 2-form, a further covariant
curve needs to consider the post-critical set of the backward mapping. The calculations are
slightly more tedious, but still simple, and are detailed in appendix A. One obtains the
following K3-covariant polynomial, with a relation between the Jacobian of K3 and the ratio
of this K3-covariant polynomial:

m3(u, v) = (u − 1)(v − u)·
v − 1

· ((c2 − 49)v2 − 2(c2 + 49)v + c2 − 49),

m3(u
′, v′)

m3(u, v)
= m3(K3(u, v))

m3(u, v)
= J [K3](u, v),

which, again, enables us to deduce the corresponding meromorphic (rational) 2-form.

2.4. The birational mapping K4, for b = a

The fourth mapping K4 is taken from [10] (see equation (16) in [10]) and reads as (with
c = 2 − a − b)

K4 : (u, v) −→
(

b(v + 1)u + (b − 1)v

(a − 1) · uv + a · (u + v)
,

c(u + 1)v + (c − 1)u

(a − 1) · uv + a · (u + v)

)
, (15)

with the Jacobian

J [K4](u, v) = (a + b + c − 1) · uv

((a − 1) · uv + a · (u + v))3
. (16)

The exceptional varieties of the mapping are

E(K4) = {V1, V2, V3} =
{
(u = 0); (v = 0);

(
u = −av

a + (a − 1) · v

)}
. (17)

For the parameters satisfying b = a, the iterates Kn
4 (V1) are given by (see Appendix E in

[10])

Kn
4 (V1) = (un, vn) with σ1 = 3a2 − 4a + 2

2(2a − 1)
,

un = 2(2a − 1)Tn(σ1) + (5a − 4)a · Un−1(σ1) − 2(2a − 1)

2(2a − 1)Tn(σ1) + (5a − 4)a · Un−1(σ1) + 2(2a − 1)
,

v2n = −2(2a − 1)(5a − 4) · Tn(σ1) − 3(3a − 2)(a − 2)a · Un−1(σ1)

4(2a − 1)2 · Tn(σ1)
,

v2n−1 = 2(2a − 1)(a2 + 2a − 2) · Tn(σ1) − (3a − 2)(a − 2)2a · Un−1(σ1)

−2(2a − 1)2a · Tn(σ1) + (a − 2)(3a − 2)(2a − 1)a · Un−1(σ1)
,

where Tn and Un are Chebyshev polynomials of order n of, respectively, first and second kinds.

7
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We have similar results for the iterates Kn
4 (V3):

Kn
4 (V3) = (un, vn),

un = 2(2a − 1) · Tn(σ1) + (3a − 4)a · Un−1(σ1) + 2

2(2a − 1) · Tn(σ1) + (3a − 4)a · Un−1(σ1) − 2
,

v2n = −4(2a − 1) · Tn(σ1) − 6(a − 1)a · Un−1(σ1)

2(2a − 1) · Tn(σ1) + 3a2 · Un−1(σ1)
,

v2n−1 = −2(2a − 1) · Tn(σ1) − (5a − 4)a · Un−1(σ1)

2(2a − 1)a · Un−1(σ1)
.

The iterates Kn
4 (V2) read as (with σ2 = (3a − 4)/2)

Kn
4 (V2) =

(
1,

2(2a − 1) · Un−1(σ2)

2Tn(σ2) − (5a − 4) · Un−1(σ2)

)
.

From the iterates Kn
4 (V2), one sees that an infinite number of points in the post-

critical set lie on the line u = 1 which is thus covariant by the birational transformation
K4. By inspection, one obtains the fact that the orbits Kn

4 (V1) and Kn
4 (V3) lie on

(2(2a −1)(u+v2)+ (5a −4)(1 +u)v) = 0 and are K4-covariant, introducing the K4-preserved
polynomial of degree 3:

m4(u, v) = (u − 1) · (2(2a − 1)(u + v2) + (5a − 4)(1 + u)v). (18)

From the relation between the Jacobian of K4 and the m4-ratio

m4(u
′, v′)

m4(u, v)
= J [K4](u, v), (19)

one immediately sees that the (rational) 2-form dudv/m4(u, v) is invariant.
Here also, we have for the three components Kn

4 (E(K4)) at the limit n → ∞⎧⎨
⎩

un −→ 1,

vn −→ 5a − 4 ± √
3(a − 2)(3a − 2)

2(1 − 2a)
, (+ : a > 0, − : a < 0)

(20)

for a ∈] − ∞, 2/3] ∪ [2,∞[, a �= 0, 1/2,

which are fixed points of order 1 for the birational mapping K4.

2.5. The birational mapping K4, for generic a and b

From the previous examples, one sees that the post-critical set is an infinite orbit which is
given in a closed form enabling an elimination of the iteration index n, thus yielding an explicit
expression for some algebraic covariant curves. The cofactors associated with these algebraic
covariants are such that a relation like (7) occurs allowing a preserved meromorphic 2-form
to exist. One also remarks that the accumulation of the post-critical set is a fixed point of the
mapping.

We now consider the mapping K4, but for generic values of the parameters a and b. For
this case, the post-critical set for v = 0 (for generic values of a and b and along all E(K4), see
[10]) begins as

(u1, v1) =
(

b

a
,

1 − a − b

a

)
,

(u2, v2) =
(

(b − 1)

(a − 1)

(C + b)

(C + a)
,
(1 − a − b)

(a − 1)

(C − a − b)

(C + a)

)
,

8
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(u3, v3) =
(

f (a, b)

f (b, a)
,
(1 − a − b)g(a, b)

Cf (b, a)

)
,

(u4, v4) = · · ·
with

f (a, b) = (b − 1) · (C2 − (a + 3b) · C + (3b2 + a − b − 2)b),

g(a, b) = C3 − 2(a + b − 2) · C2 − 3(a + b − 2)ab · C − ab,

C = (a2 + ab + b2) − (a + b).

Do note that, in contrast with the situation encountered in the previous examples, the
degree growth of (the numerator or denominator of) these (un, vn) in the parameters a and
b is now actually exponential, and thus one does not expect algebraic closed forms for the
successive iterates (un, vn). If these iterates had been of a closed form and if the elimination
of index n from un and vn were possible, then this would have given a non-algebraic covariant
curve. For this case, this transcendental curve should simply shrink to u − 1 = 0 for b = a.

2.6. Sum up

For the previous examples of birational mappings, we have straightforwardly obtained, from
the post-critical set, the algebraic covariant curves, enabling in a second step to build the
meromorphic 2-forms preserved by the mappings. This has been possible for all cases where
the orbits of the critical set are obtained in closed forms. We have found that this happens
whenever the degree growth in the parameters for the iterates of the critical set is a polynomial.
This concept of ‘degree growth in the parameters of the PC’ has already been introduced in
[10], giving a strong relation between the post-critical set and meromorphic 2-forms (when
they exist).

One may define the PC as ‘integrable’ when the degree growth in the parameters of the
orbits (of the critical set) is a polynomial and ‘non-integrable’ otherwise. For the mappings
K1, K2, K3 and K4 (for b = a), the corresponding PC is integrable and the mappings have
algebraic covariant curves. For the mappings K4 (generic a, b) and K5 (see appendix B), the
iterates of the critical set having an exponential degree growth in the parameters (i.e. the PC
is ‘non-integrable’), we claim that there are no algebraic covariant curves.

Note that the conditions on possible covariant curves for birational mappings have been
considered in some recent works [38–40] in a pure mathematical approach. For instance, a
mapping dependent on two parameters has been studied by Bedford and Kim in [40] where they
produced covariant curves when the parameters of the mapping were restricted to algebraic
curves of genus 0. In appendix C, we consider this mapping to show that the post-critical set
has an exponential degree growth in the parameters and hence no covariant algebraic curves.
When the parameters lie on the algebraic curves given in [40], the post-critical set has indeed
a polynomial degree growth in the parameters. This example illustrates what we have shown
for the mapping K4, but here the subvarieties in the parameter space for which the post-critical
set becomes integrable are rather involved, compared to the simple line b = a for K4.

Since the covariance of curves (if any) should be valid in both directions, the PC should
be ‘long’ in both directions (backward and forward). Furthermore, when the ‘long’ PC is
integrable in one direction, it should be integrable in the other direction. This is the case for
these examples (and similar mappings).

The question whether a PC can be ‘short’ (finite) in one direction and ‘long’ (infinite) in
the backward direction is worth considering. Can the corresponding birational mapping have
algebraic covariant curves? If so, the correspondence, which we have shown in our examples,

9
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between the occurrence of algebraic covariant curves and ‘long’ (and integrable) PC is just
fortunate. We may even imagine a ‘pathological’ case where both PCs are ‘short’. A birational
mapping of this kind is given in appendix D.

In section 1, we mentioned the strange attractors (in their simple definition) which usually
arise in some polynomial mappings where the indeterminacy set is empty and the critical set
and exceptional set are also empty (the Jacobian is a constant).

A natural question which then arises is: can an algebraic and topological concept such
as the post-critical set [10] (‘long’ or ‘short’, ‘integrable’ or non-integrable) be related to
the structures known as strange attractors? For this, we will recall the well-known (bi-
polynomial11) Hénon map [5] and deform it birationally. Is the post-critical set of this
deformed Hénon map long in both directions or is it ‘long’ in one direction and ‘short’ in
the other direction? We introduce another simple birational mapping that happens to be
a sub-family of transformations considered by Bedford and Kim in [32] and ask the same
questions.

3. Birational deformation of the Hénon mapping

We take advantage of the much studied Hénon map [5], H0, to construct a birational mapping
with a non-empty indeterminacy set. The birational deformation, which we introduce, should
depend on a further parameter in order to get back the original mapping. In order to be as
close as possible to the dynamics of H0, the birational deformation should not add other real
fixed points of order 1 to the original Hénon map. Note however that this constraint is not
mandatory.

Recall the classical Hénon mapping [5]

H0 : (u, v) −→ (1 − au2 + bv, u), (21)

which, under the reversible transformation

U : (u, v) −→
(

u

1 + cv
,

v

1 + cu

)
, (22)

becomes a deformed birational Hénon mapping Hc:

Hc = H0 · U :

(u, v) −→
(

1 − au2 + bv + U1, u − c
uv

1 + cv

)
,

U1 = −c
uv

(1 + cu)(1 + cv)2
((bv − au2)c2 · v − (2au2 + auv − 2bv) · c − 2au + b),

(23)

with inverse

H−1
c = U−1 · H−1

0 .

The deformed birational mapping Hc actually reduces to the classical Hénon map for c = 0.
There are four fixed points of order 1 for the mapping Hc:

u = (1 + cv) · v, with

(a + c)c2 · v4 + (2c + a)c · v3 − (c2 − 2c − a) · v2 − (c + b − 1) · v − 1 = 0.

For the usual values of the parameters a = 1.4 and b = 0.3, two fixed points are complex for
a large interval of the parameter c.

11 Its inverse is also a polynomial transformation.

10
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Figure 1. The attracting sets for c = 0 (left) and c = 0.1 (right)

The Jacobian of mapping Hc reads as

J (Hc) = − b · (1 + c(u + v))

(1 + cv)2(1 + cu)2
. (24)

The indeterminacy set and exceptional locus of this birational mapping are

I(Hc) = {(0,−1/c), (−1/c, 0), (−1/c,−1/c), (∞,∞)} , (25)

E(Hc) = {V1, V2, V3}
= {(u = −1/c), (v = −1/c), (v = −(1 + cu)/c)}. (26)

Then the post-critical set of Hc is

Hc(V1) = (∞,−1/c/(1 + cv)) −→ (∞,∞),

Hc(V2) = (∞,∞),

Hc(V3) = ((c2 − a − bc)/c2,−1/c) −→ (∞,∞).

One remarks that the orbits are ‘short’ (ending at the fixed point (∞,∞)), and we have only the
finite point ((c2 −a−bc)/c2,−1/c) to benefit from the Diller–Favre criterion [1]. For generic
values of the parameters a, b and c, the birational mapping Hc has a degree growth of λ = 3.
The matching of the critical set to the indeterminacy set gives the conditions12 on the mapping
where Hc acquires less complexity than λ = 3. One finds λ = 2 for c = 0 corresponding to
the classical Hénon map. For a = (c − b)c one has λ = 2.414213 . . . given by (the absolute
value of the inverse of the smallest root of) 1 − 2t − t2 = 0, and for a = (c − b + 1)c one
obtains λ = 2.618033 . . . given by 1 − 3t + t2 = 0. These three complexity reduction cases
(c = 0, a = (c − b)c, a = (c − b + 1)c) are the only codimension-1 complexity reduction
cases in the (a, b, c) parameter space. When the mapping Hc is considered along one of these
cases, the Diller–Favre criterion will give the other (if any) subcases in the remaining two
parameters.

It remains to see the structures that the deformed Hénon map gives. Fixing the parameters
a = 1.4, b = 0.3 and for some values of the parameter c, we give in figures 1 and 2 the phase
portraits of Hc. We may note in figure 2, for c = 0.38, the emergence of a strange attractor of

12 These are given when the point ((c2 − a − bc)/c2,−1/c) of the post-critical set Hc(V3) encounters (0, −1/c) and
(−1/c, −1/c) and also the condition Hc(V2) = (−1/c,−1/c).

11
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Figure 2. The attracting sets for c = 0.3 (left) and c = 0.38 (right)
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Figure 3. Dimension of the attracting set for Hc, (a = 1.4, b = 0.3) versus c.

period 2. The structures shown have a basin of attraction and are reminiscent of the original
Hénon map attractor. The birational mapping Hc has a short (finite) post-critical set with only
one finite point. This point is out of the basin of attraction of the strange attractor.

Figure 3 shows the fractal dimension (computed by using the Lyapunov exponents; see
(44)–(46)) of the attracting set of the mapping Hc for some values around c = 0. We have
considered this small interval around c = 0 to show how far this can be close to the fractal
dimension of the original Hénon map, since the attractors (not shown) at these values of c
are very similar. Note that the fractal dimensions corresponding to c = 0.1, c = 0.3 and
c = 0.38 are respectively D = 1.226, D = 1.198 and D = 1.137 (for c = 0, the dimension
is D = 1.258).

For the (backward) birational transformation H−1
c , there are three curves in the critical

set:

E
(
H−1

c

) = {V1, V2, V3}
= {(v = −1/c), (cu = c − b − acv2), (c2vu = b + c2v − ac2v3))}. (27)
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Figure 4. The attracting set of H−1
c for a = 1.4, b = 0.3, c = 0.1, together with the strange

attractor for Hc.

In contrast to the forward mapping, the orbits of the critical set for the backward H−1
c are of

infinite length:

H−1
c (V2) = (0,−1/c) −→ H−1

c (V1),

H−1
c (V3) = (∞,∞) −→ (−1/c,−1/c) −→ H−1

c (V1),

H−1
c (V1) = (−1/c, 0) −→

(
0,−1 + c

bc

)
· · · .

The (parameters’) degree growth in the iterates of the critical set is exponential λ = 3, and,
thus, we cannot have algebraic expressions associated with the post-critical set. There are no
algebraic covariant curves. For the values13 a = 1.4, b = 0.3 and c = 0.1, the attracting
set for the backward mapping is given in figure 4, where the unbounded structure is obtained
for any input point. For these values of the parameters (giving a strange attractor for Hc), the
backward mapping H−1

c shows an unbounded attracting set in contrast to the backward Hénon
map that gives divergent orbits. Figure 4 is the image of the attracting set for H−1

c superposed
with the attracting set for Hc for the same values of the parameters. For the mappings
where the post-critical set is infinite in both directions, and when the (parameters’) degree
growth is exponential, one may expect (in the absence of any fractal dimension calculations)
the occurrence of some non-algebraic (transcendental) covariant curves. For the mapping
Hc where the post-critical set is finite in the forward direction and infinite in the backward
direction, the nature of the attracting set corresponding to the backward mapping (infinite PC)
is not clear.

4. A birational mapping: K

To build the birational mapping14 K, we consider a combination of the Cremona inverse

j : (x, y, z) −→ (yz, xz, xy) (28)

13 To obtain the strange attractor for H−1
c equivalent to the attracting set for Hc, the parameters should be

(a, b) → (a/b2, 1/b).
14 This birational mapping is a slight modification of a birational mapping considered by Bedford and Kim (equation
(6.4) in [32]).
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and the linear transformation

C : (x, y, z) −→ (y + bz, z, x), (29)

giving

K = C · j : (x, y, z) −→ ((z + by) · x, xy, yz). (30)

In the inhomogeneous variables u = x/z, v = y/z, the birational mapping becomes

K : (u, v) −→
(u

v
+ bu, u

)
, (31)

with inverse

K−1 : (u, v) −→
(

v,− v

bv − u

)
, (32)

the linear transformation (29) becoming the collineation (u, v) → ((b + v)/u, 1/u).
The Jacobians are variables dependent and read as

J [K] = u

v2
, J [K−1] = v

(bv − u)2
. (33)

The indeterminacy set and the exceptional locus, for the birational mapping K, are

I(K) =
{
(0, 0);

(
∞,−1

b

)}
, (34)

E(K) = {(u = 0); (v = 0)}, (35)

and for mapping K−1 they read as

I(K−1) = {(0, 0); (∞,∞)}, (36)

E(K−1) = {(u = bv); (v = 0)}. (37)

The post-critical set is the image by K of the exceptional set:

K(u = 0) −→ (0, 0) −→ (∞, 0) −→ (∞,∞),

K(v = 0) −→ (∞, u) −→ (∞,∞).

Here also, the orbit of the critical set Kn(E(K)) is ‘short’. By the Diller–Favre criterion
[1], only b = 0 yields a complexity reduction, otherwise the mapping is ‘analytically stable’
(terminology introduced in [1]). At the value b = 0, the whole plane becomes a fixed point
of order 6 which is easily seen from transformations (28) and (29) which are, respectively, of
orders 2 and 3. The fixed points of order one (1, 1), order two (−1/2∓ i

√
3/2,−1/2± i

√
3/2)

and order three (1,−1), (−1,−1), (−1, 1) still exist, but any deviation from these exact values
throws the trajectory at the fixed point of order 6.

To calculate the topological entropy [15] for the birational mapping (31), one counts the
number of primitive cycles of order n, for the generic case b �= 0. They are

#fix(Kn) = [1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, . . .], (38)

from which we infer the (rational) dynamical zeta function ζ(t):

ζ(t) = 1

(1 − t)(1 − t2 − t3)
. (39)
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The absolute value of the inverse of the smallest root of 1 − t2 − t3 = 0 gives the
(exponential of the) topological entropy h = 1.324717 . . . . This algebraic number is the
smallest Pisot15 number [42–44].

When one considers mapping (31) (in the homogeneous coordinates), the growth rate of
the degrees of x (or y or z) is given by the generating function

g(t) = (2 + 2t + t2) · t

1 − t2 − t3
, (40)

and the degree-growth complexity (absolute value of the inverse of the smallest root of the
denominator) again gives the smallest Pisot number λ = 1.324717 . . . . This degree-growth
rate has been proven in [32] (and as a limiting case in [45]).

We thus see, for this mapping (and similar to the results obtained for other transformations
previously studied [9, 10, 14, 16]), an identification between the growth rate of the number of
fixed points of Kn and the growth rate of the degree [11, 21] of the iteration.

Following this criterion (λ > 1, h > 1), the birational mapping K is chaotic. However,
this criterion does not properly describe the dynamics of the mapping seen as a transformation
in the real plane. It is based on the counting of degrees or fixed points irrespective of their
stability.

The fixed point of order 1 is real for any real value of b. For b = 1, it identifies with the
fixed point at infinity. For the mapping K, the fixed point of order 1 is an unstable spiraling
point for b < 0, a stable spiraling for 0 < b < 3/4, a stable node for 3/4 < b < 1, a saddle
for 1 < b < 3 and an unstable node for b > 3. The fixed point of order 2 is real and saddle for
b < −1 and for b > 3. It fuses with the fixed point of order 1 at b = 3 and with the ‘infinity’
fixed point of order 1 at b = −1. The fixed point of order 3 is real and saddle for any real b.

Note that, similar to the mapping H−1
c , the backward birational mapping K−1 has a ‘long’

post-critical set. The iterates of the critical set also have an exponential degree growth in the
parameter b, ruling out the existence of algebraic covariant curves.

5. The birational mapping K: phase portraits

The phase portraits of the birational mapping K show that for |b| > 1, the iterates are attracted
to the fixed point at infinity. For 0 < b < 1, the fixed point of K is an attractor. For
−1 < b < 0, the mapping is an attracting set. We show in figure 5 the attractor obtained for
the value b = −3/5. This structure is independent of the initial starting points of the iteration
and looks very much like a set of curves, a foliation of the (u, v)-plane. The structure shown
in figure 5 is obtained from one starting point.

This accumulation of curves has unbounded branches. A way to ‘see the global picture’
amounts to performing the plot in the variables [10] θu = arctan(u) and θv = arctan(v). This
way, the real plane is compactified to the box [−π/2, π/2]× [−π/2, π/2]. Figure 6 shows the
phase portrait in the variables (θu, θv). The unbounded branches of figure 5 appear in figure 6
at the bunches (θu = ±π/2, θv = ∓π/2) and (θu = ±π/2, θv = θṽ), the larger interval for ṽ

being [b − 1, b]. The attractor is thus not confined. This is consistent with the fact that it is
obtained for any initial point, the basin of attraction being the whole plane.

Since the birational mapping K is not integrable according to the criterion λ > 1 or
h > 1, one may ask whether the structures, shown in figures 5 and 6, are compatible with a
preserved meromorphic 2-form or simply with covariant curves. In fact the post-critical set is

15 For the occurrence of Pisot (and Salem) numbers for degree-growth complexity [11, 21] and for birational
transformations of two variables, see [41].
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Figure 5. Phase portrait in the variables (u, v) for b = −3/5.
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Figure 6. Phase portrait in the variables (θu, θv) for b = −3/5. The open circle shows the fixed
point of order 1.

‘short’, and there is no algebraic covariant curve. In the following, we show another way to
be convinced on this non-occurrence.

5.1. Non-standard fixed points

Denoting by (u(n), v(n)), the image of a point (u, v) by transformation Kn, the preservation of
a two-form m(u, v) means:

du · dv

m(u, v)
= du(n) · dv(n)

m(u(n), v(n))
. (41)
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If J [Kn](u, v) denotes the Jacobian of Kn, one has

J [Kn](u, v) = m(u(n), v(n))

m(u, v)
= m(Kn(u, v))

m(u, v)
. (42)

When evaluated at the fixed point (uf , vf ) of Kn, the Jacobian of Kn is thus equal to +1. This
is what was obtained for many birational transformations we have studied [9, 15, 16]. For
some of these mappings, we evaluated precisely a large number of n-cycles in order to get the
dynamical zeta function [15, 16]. For all these mappings, a preserved meromorphic 2-form
exists. However, we claimed for the mapping given in [10] the non-existence of a preserved
meromorphic 2-form since the Jacobians evaluated at (a growing number of) the fixed points of
Kn are no longer equal to 1. This mapping preserves a meromorphic 2-form in some subspaces
of the parameters, and we showed, in this case, that the equality J [Kn](uf , vf ) = 1 always
holds, with the exception of a finite number of fixed points. Thus, even when a meromorphic
2-form is preserved, the equality J [Kn](uf , vf ) = 1 may be ruled out for the fixed points of
Kn that correspond to divisors of the 2-form. Such ‘non-standard’ fixed points of Kn are such
that m(uf , vf ) = 0 (or m(uf , vf ) = ∞).

The number of these ‘non-standard’ fixed points [10] of Kn is an indication of the degree
of m(u,v), if the latter exists. When the number of such non-standard fixed points becomes
very large (infinite), the existence of this algebraic 2-form may be ruled out.

Thanks to the simplicity of the mappings of this paper, the expressions of these Jacobians
evaluated at the fixed points may be obtained up to a large order. For instance, at respectively
the order n = 1, n = 3, n = 10 and n = 11, they read as ((uf , vf ) are the primitive fixed
points of Kn)

J [K](uf , vf ) = 1 − b, J [K3](uf , vf ) = 1 + b + b2,

J [K10](uf , vf ) = (1 − b10)b10

(1 + b) · (1 − b5) · P
(10)
1

, (43)

J [K11](uf , vf ) : P
(11)
2 · J 2 + P

(11)
1 · J + P

(11)
0 = 0,

with

P
(10)
1 = b8 − 4b7 + 9b6 − 15b5 + 16b4 − 14b3 + 8b2 − 3b + 1,

P
(11)
2 = (−2 + 8b − 22b2 + 46b3 − 72b4 + 89b5 − 87b6 + 68b7

− 41b8 + 19b9 − 6b10 + b11) · b,

P
(11)
1 = 1 − b + 5b2 − 2b3 + 8b4 − 8b5 + 14b6 − 25b7 + 16b8

− 35b9 + 13b10 − 38b11 + 21b12 − 34b13 + 22b14 − 19b15

+ 10b16 − 5b17 + 2b18 − b19,

P
(11)
0 = (1 − b11)b15/(1 − b).

As long as the fixed points up to order 11 are sufficient to make a conclusion, no value of
the parameter b gives J [Kn] equal to unity for these fixed points. Considering only these fixed
points, a preserved meromorphic 2-form for the birational mapping K should be, at least, of
degree 134. In fact the proliferation of these non-standard fixed points gives a firm indication
of the non-existence of a preserved meromorphic 2-form.

6. The birational mapping K: ergodic (probabilistic) analysis

While the ‘complexity spectrum’ of the mapping in [10] is involved (see figure 1 in [10]),
the mapping of this paper presents the same degree-growth complexity or (exponential of the)
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Figure 7. Positive and negative Lyapunov exponents versus the parameter b

topological entropy (λ = h = 1.324717 . . .) for any value of the parameter b �= 0. Numerical
investigation shows that the fixed points, up to order n = 15, are real for real values of the
parameter b. We expect then to provide a clearer picture on the ergodic aspect of the analysis.
We have seen [10] that the existence, or non-existence, of preserved meromorphic 2-forms
has (paradoxically)16 no impact on the topological complexity but drastic consequences on
the numerical computation of the Lyapunov exponents.

If we believe the analysis of [10], the Lyapunov exponents should be zero in the case of a
preserved meromorphic 2-form. This is then another check on whether the structure shown in
figure 6 corresponds to a preserved meromorphic 2-form. We have computed the Lyapunov
exponents for the mapping K for the large values of n as

σ1 = 1

n
ln(|λ1|), σ2 = 1

n
ln(|λ2|), (44)

where λ1,2 are the eigenvalues of

M(n) = M(u(n−1), v(n−1)) · · · M(u(1), v(1)) · M(u, v), (45)

M being the tangent map evaluated at each point (u(n), v(n)) = Kn(u, v).
The Lyapunov exponents for b ∈] − 1, 0[ are shown in figure 7. The largest Lyapunov

exponent being positive, the attractor is chaotic.
Kaplan and Yorke [46] have conjectured that the dimension of an attractor can be

approximated from the spectrum of Lyapunov exponents. Essentially, this conjecture
corresponds to plotting the sum of Lyapunov exponents versus n (the number of Lyapunov
exponents, i.e. the dimension of the system), the dimension being established by finding where
the curve intercepts the n-axis by linear interpolation17. For a two-dimensional mapping, this
gives

DKY = 1 − σ1

σ2
, (46)

where σ1 and σ2 are, respectively, the positive and negative Lyapunov exponents. This
dimension is expected to be close to other dimensions such as box counting, information and

16 We have made in [10] a comparison between two sets of birational transformations exhibiting totally similar results
as far as topological complexity is concerned (degree-growth complexity, Arnold complexity and topological entropy),
but drastically different numerical results as far as the computation of Lyapunov exponents is concerned.
17 Note the comparison made in [47] for the correlation and Lyapunov dimensions using, for the latter, a polynomial
interpolation instead of a linear one.
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Table 1. Kaplan–York and box-counting dimensions for some values of the parameter b.

b −0.9 −0.8 −0.6 −0.5 −0.4 −0.3 −0.2

DKY 1.17 1.24 1.37 1.42 1.47 1.51 1.57
Dbox 1.34 1.36 1.44 1.52 1.52 1.56 1.66

correlation dimension [48] for typical strange attractors. The Kaplan–Yorke dimension (also
called the Lyapunov dimension) has been shown to identify with the information dimension
for Baker’s transformation. It has been tested for the Hénon mapping [49].

Using the Kaplan–Yorke conjecture, we can compute the (fractal) dimension of the
attractor which is shown in figure 8. For b ∈]−1, 0[, the dimension of the attractor corresponds
to fractals. The attractor is thus a strange attractor.

The dimension obtained from the Lyapunov exponents is given from a conjecture. In order
to be more convinced of the fractal nature of the attractor, we have calculated the (fractal)
dimension by the box-counting method for some values of b. The box-counting dimension
is believed to coincide, for most systems, with the Hausdorf–Besicovitch dimension. The
box-counting dimension amounts to considering boxes of side ε covering the attractor and
then counting the number of boxes N(ε) necessary to contain all the points. The box-counting
dimension is the limit ε → 0 of

Dbox = − ln(N(ε))

ln(ε)
. (47)

The calculations are carried out in the variables θu, θv (which are in one-to-one
correspondence with u, v). The results given in table 1 show an agreement with the dimension
computed from the Lyapunov exponents as far as the fractal nature is concerned. Note that
for this mapping, the Lyapunov (Kaplan–Yorke) dimension is less than the box-counting
dimension (and is a lower bound [46]).

Remark. The simplicity of the birational mapping K makes it a good working example of
many tests. For instance, it will be straightforward to compute the Lyapunov exponents and
the fractal dimension from the knowledge of the first fixed points [50]. How many fixed points
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will be needed for that purpose? Are the fixed points sufficient to completely characterize the
mapping in some ergodic analysis?

7. Conclusion

In this paper we have, first, considered four birational mappings. Three of them (K1, K2, K4)
have been already analyzed in previous papers and the fourth mapping (K3) is taken from
the literature on strongly regular graphs [37]. For these mappings, we have considered their
post-critical set versus the occurrence of covariant curves and preserved meromorphic 2-form.
In these working examples, the post-critical set is ‘long’ in both directions (forward and
backward). We have shown that the knowledge of the orbits of the critical set allows us to
obtain the algebraic covariant curves.

We have built a birational deformation of the Hénon map, Hc, having a ‘short’ post-critical
set. This birational mapping shows a continuous deformation of the original Hénon map. For
the values of the parameters (giving a strange attractor for Hc), the backward mapping H−1

c

shows an unbounded attracting set in contrast to the backward Hénon map that gives divergent
orbits.

We have focused on a birational mapping K (slight modification of a birational mapping
of Bedford and Kim [32]) which also has a ‘short’ post-critical set, with probably no preserved
meromorphic 2-forms (in view of the non-standard fixed points). The mapping shows an
attracting set, which passes the tests of being a strange attractor.

In view of these examples, we saw that birational mappings with a ‘short’ post-critical set
had no covariant curves. We also saw that strange attractors may occur for birational mappings
with a ‘short’ post-critical set and they are not necessarily confined.
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Appendix A. The birational mapping K3

We consider a 3 × 3 matrix, acting on the three homogeneous variables (x, y, z), taken from
the analysis of the matrix of strongly regular graphs [37]

M =
⎡
⎣2 a b

2 −1 + c −1 − c

2 −1 − d −1 + d

⎤
⎦ (A.1)

and the associated collineation C. Denoting the Cremona inverse (28) by j , the mapping
K3 = C−1 · j · C · j depends on four parameters. Here we fix a = 6, b = 6, d = c. The
birational mapping in the variables u = x/z, v = y/z is given by (14). The Jacobian18 reads
as

J [K3](u, v) = −5488
vNuv

u2D3
uv

· ((c + 1)uv − (c − 1)u − 2v) ((c − 1) · uv − (c + 1)u + 2v).

(A.2)
18 Note that the mapping depends on c2. However, we do not rename the parameter c2 for easy presentation; see the
factorized expression (A.2) in the Jacobian.
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The exceptional varieties of the mapping are

E(K3) = {V1, V2, V3, V4, V5, V6}

=
{

(u = 0); (
v = −3u

1+3u

); (v = 0); (
v = u(c+1)

cu−u+2

);(
v = u(c−1)

cu+u−2

); (Duv = 0)

}
.

The post-critical set for V1 is variable dependent. The orbit for V3 reads as

Kn
3 (V3) =

(
1

2
(1 + (−1)n) +

1

2
(1 − (−1)n)vn, vn

)
,

vn = f (c) − f (−c)

g(c) − g(−c)
,

f (c) = (c − 7) · (c − 21 − (−1)n(3c − 7)) · (c + 1)n,

g(c) = (c − 7) · (c + 21 − (−1)n(3c + 7)) · (c − 1)n.

The orbit for V2, after (1, 1) → (∞,∞), gives a similar expression to V3 and reads as
(n � 3)

Kn
3 (V2) =

(
1

2
(1 − (−1)n) +

1

2
(1 + (−1)n)vn, vn

)
,

vn = f (c) + f (−c)

g(c) + g(−c)
,

f (c) = (c − 7) · (3c + 71 + (−1)n(c + 21)) · (c + 1)n−2,

g(c) = (c − 7) · (3c − 7 + (−1)n(c − 21)) · (c − 1)n−2.

The orbit for V5 is identical, with the change c → −c, to the orbit for V4 which reads as

Kn
3 (V4) =

(
(c − 1)(c + 7)n − (c + 1)(c − 7)n

f (c) · vn + (−1)nf (−c)
· vn, vn

)
,

vn = 1

2
(1 − (−1)n) · c + 7

c − 7
+

1

2
(1 + (−1)n) · c − 7

c + 7
,

f (c) = (c − 1) · (c + (−1)n7) · (c + 7)n−1.

Finally, the post-critical set Kn
3 (V6) (which, after (∞,∞), is identical to Kn

3 (V3) with
c → −c and a shift in n) reads:

Kn
3 (V6) =

(
1

2
(1 + (−1)n) +

1

2
(1 − (−1)n) · vn, vn

)
,

vn = f (c) − f (−c)

f (c)g(c) − f (−c)g(−c)
,

f (c) = (c − 7) · (3c + 7 + (c + 21)(−1)n) · (c + 1)n+1,

g(c) = 1

2
(1 − (−1)n) · c + 7

c − 7
+

1

2
(1 + (−1)n) · c − 7

c + 7
.

From these orbits, one easily finds the covariant curves. The post-critical set of Kn
3 (V3)

gives u = 1 for n even and v = u for n odd; the covariant curve is thus (u−1)(v−u) = 0. The
post-critical set of Kn

3 (V4) gives v − (c−7)/(c + 7) = 0 for n even and v − (c + 7)/(c−7) = 0
for n odd, leading to the covariant curve C2 = ((c + 7) · v − c + 7)((c − 7) · v − c − 7) = 0.
The post-critical set of Kn

3 (V6) gives the same covariant curve as Kn
3 (V3).

These curves are covariant but, alone, they do not construct a preserved meromorphic
2-form (see (8)). One obtains

m(u, v) = (u − 1)(v − u) · ((c + 7)v − c + 7) · ((c − 7)v − c − 7),

m(u′, v′)
m(u, v)

= 28
Nuv

Duv

· J [K3](u, v).
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At this point, the mapping K3 does not seem to have a preserved meromorphic 2-form.
However, if a meromorphic 2-form exists, we know [10] that the fixed points of

the mapping for which the Jacobian is J �= 1 should be located on a covariant curve
corresponding to the meromorphic 2-form. For this mapping, there are four fixed points
of order 1 where J = 1 and two fixed points of order 1 where J �= 1. The latter reads as
(u = −5/2 ± √

21/2, v = 1) and is neither on (u − 1)(v − u) = 0 nor on C2 = 0. The line
v − 1 = 0 should be covariant as this appears clearly from expression (15) of the birational
mapping K3.

Producing this line v−1 = 0 from the iterates of V1 may call for a tricky analysis. Instead,
and since this is equivalent, we consider the backward mapping and its ‘long’ post-critical set.
Canceling the Jacobian (or its inverse) of K−1

3 , one obtains (among others) the algebraic curve

28u2 + 56(1 + v)u − (c2 + 35)v2 + 2(c2 − 35)v − c2 − 35 = 0.

Eliminating the variable u between this curve and the iterates K−n
3 (u, v) will give the line

v − 1 = 0 common to both components.
Combining the covariant curves (u − 1)(v − u) = 0, C2 = 0 and the new line v − 1 = 0,

one obtains

m3(u, v) = (u − 1)(v − u)·
v − 1

· ((c + 7)v − c + 7)((c − 7)v − c − 7),

m3(u
′, v′)

m3(u, v)
= J [K3](u, v),

giving the corresponding meromorphic 2-form dudv/m3(u, v).

Appendix B. Another birational mapping: K5

We consider the collineation C corresponding to matrix (A.1) but with the mapping constructed
as K5 = C · j . This mapping arises in [51] and was considered in [2, 52]. For the values of the
parameters a = b = −1 + q2, c = d = q, it was shown [51] that it has an algebraic invariant
for all values of the parameter q. Here, we take the parameters as a = b = q2, c = d = q

and the birational mapping is non-integrable for generic values of q. The birational mapping
reads as

K5 : (u, v) −→ (u′, v′) =
(

q2 · (1 + v)u + 2v

Duv

, 1 − 2q · (v − 1)u

Duv

)
, (B.1)

Duv = (q − 1) · uv − (q + 1) · u + 2v,

with the Jacobian

J [K5](u, v) = −8(1 + q2) · q · uv

D3
uv

. (B.2)

Its critical set reads as

E(K5) = {V1, V2, V3} = {(v = 0); (Duv = 0); (u = 0)}, (B.3)

and the first iterates of the critical set are given by

Kn
5 (V1) =

(
− q2

q + 1
,

1 − q

q + 1

)
−→

(
1 − q2 − q4

1 + q4
,

1 − q4

1 + q4

)
,

Kn
5 (V2) = (∞,∞) →

(
q2

q − 1
,

1 + q

1 − q

)
→

(
1 − q2 − q4

1 − q4
,

1 + q4

1 − q4

)
.

Those of Kn
5 (V3) are the same as Kn

5 (V2) after blowing down first on point (1, 1).
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The post-critical set for the backward mapping is also ‘long’ and the orbits have similar
expressions. The post-critical set, for both forward and backward mapping, is ‘long’. The
degree growth in the parameter q of the iterates of the critical set being exponential, there is
no preserved meromorphic 2-form. The phase portraits of this mapping show a foliation in
the plane with an infinity of leaves, similar to the mapping analyzed in [10]. Note that the line
v − 1 = 0 is covariant as easily seen from the expression of K5. The phase portrait however
shows no accumulation of points near this line.

Appendix C. A mapping by Bedford and Kim [40]

Consider the following birational mapping taken from Bedford and Kim [40]:

KBK : (u, v) −→ (u′, v′) =
(
v,

v + a

u + b

)
, (C.1)

which is non-integrable for generic a and b, the degree growth of the iterates being
λ = 1.3247 . . . given by 1 − t2 − t3 = 0. Its Jacobian reads as

J [KBK](u, v) = v + a

(u + b)2
. (C.2)

The critical set is given by

E(KBK) = {(v = −a); (u = −b)}, (C.3)

where only v = −a blows down on points. The post-critical set is given by

(u,−a) → (−a, 0) →
(

0,
a

b − a

)
→

(
a

b − a
,
a(1 − a + b)

b(b − a)

)
→ · · · .

The degree growth in the iterates of the parameters a and b is λ = 1.3247 . . ., i.e. the
post-critical set is non-integrable. Our claim is that there are no algebraic covariant curves for
generic a and b for this birational mapping.

However, the parameters a and b can be such that the degree growth of the post-critical
set is reduced to λ = 1, i.e. the post-critical set becomes integrable. In this case, algebraic
covariant curves can exist.

Bedford and Kim have shown [40] three cases of reduction of complexity in the post-
critical set. They read as

a = −μ(−1 + μ2 + μ3)

(μ + 1)2
, b = 1 − μ5

μ2 + μ3
, (C.4)

a = μ(1 + μ + μ2)

(μ + 1)2
, b = (μ − 1)(1 + μ + μ2)

μ(μ + 1)
, (C.5)

a = 1 + μ, b = μ − 1

μ
, (C.6)

and the algebraic covariant curves (see [40] for details) read as m(u, v) = 0, respectively, with

m(u, v) = (−1 + v)μ9 − (1 + u − 2v)μ8 − 2v(u − 1)μ7 + (−4uv + u2 + 1 − v2 + 2u

+ 2v)μ6 + (2u2 − 4uv + u2v + 2u − v2)μ5 + (−4uv + 2u2v − 2v + uv2

+ u2)μ4 + v(u2 − 2 + 2uv − 4u + v)μ3 + v(uv + 2v − 2u)μ2 + 2v2μ + v2,
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m(u, v) = μ6 + (1 + v + 2u)μ5 + (3u + u2 + 2v + 2uv + 1)μ4

+ (2u2 + u2v + 2u + 4uv + v2 + 2v)μ3 + (v2 + 4uv + uv2 + u2 + 2u2v + 2v)μ2

+ v(2u + v + 2uv + u2)μ + v2(1 + u),

and

m(u, v) = μ4 + (v + 2u + 1)μ3 + (1 + u)(u + 2v)μ2 + v(2u + u2 + v)vμ + uv2.

All these covariant expressions yield 2-forms preserved up to a factor

m(u′, v′)
m(u, v)

= μ · J [KBK ](u, v). (C.7)

Note that for the three cases (C.4)–(C.6), while the post-critical set is ‘integrable’, allowing
the occurrence of algebraic covariant curves, the mapping KBK itself is still with degree growth
λ = 1.3247 . . . .

Appendix D. A parameter-free birational mapping

This mapping is taken from [35] and originates from lattice statistical mechanics and is related
to mapping K1. It is parameter-free, non-integrable and reads as

K6 : (u, v) −→ (u′, v′) =
(

v,
1 + v − uv

uv

)
. (D.1)

Its Jacobian reads as

J [K6] = 1 + v

u2v
. (D.2)

The orbits of the critical set read as

Kn
6 (v = −1) = (−1,−1) −→ (−1,−1),

Kn
6 (u = 0) = (v,∞) → (∞, (1 − v)/v) → ((1 − v)/v,−1) → (−1,−1),

Kn
6 (v = 0) = (0,∞) → (∞,∞) → (∞,−1) → (−1,−1).

The post-critical set is ‘short’ and there is an attracting set which is the point (−1,−1).
For the backward mapping, the orbits of the critical set are

K−n
6 (u = −1) = (0,−1) → (∞, 0) → (1,∞) → (0, 1),

K−n
6 (u = 0) = (∞, 0) → (1,∞) → (0, 1) → (∞, 0),

K−n
6 (v = −1) = (∞, u) → (1/(1 + u),∞) → (0, 1/(1 + u))

−→ (∞, 0) −→ (1,∞) −→ (0, 1).

The post-critical set is short and there is an attracting set which is the cycle of order 3:
(∞, 0) → (1,∞) → (0, 1).

Note that one may remark (see the form of the mapping) that v + 1 = 0 is covariant for
the forward mapping, but it is not covariant for the backward mapping, where it gives birth to
an attracting point of order 3.

The Jacobian evaluated at the successive fixed points gives the following. There is one
fixed point of order 1 with19 J = 2. There is no fixed point of order 3. There is only one fixed
point for the orders 2, 4, 5, 6 with respectively J = 2, 2,−5, 1.

19 For the backward mapping, the value of the Jacobian evaluated at the fixed point is the inverse of the value
corresponding to the forward mapping.
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