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It is shown that commuting transfer matrix models in statistical mechanics are parametrized 
by algebraic varieties having a set of automorphisms deduced from the so-called "inversion 
relation." In general this set of automorphisms is infinite: this shows that for algebraic varieties 
of dimension 1, the models are parametrized by algebraic curves of genus 0 or 1. 

I. INTRODUCTION 

Commuting transfer matrices provide the best known 
criterion for exactly solvable lattice models in statistical me­
chanics (or models of quantum field theory). A key role is 
played by a special system of algebraic equations, the so­
called Yang-Baxter equations (or star triangle relation or 
factorization equations): the underlying reason is that the 
(local) star-triangle relation is a sufficient (and, to some 
extent, necessary I ) condition for the commutation of (glo­
bal) transfer matrices. 

These Yang-Baxter equations can be seen as certain ho­
mological conditions that describe the structure of the exact­
ly solvable models. A large number of solutions of the Yang­
Baxter equations have been found and recorded.2

•
3 One 

should, however, note that all these solutions are parame­
trized in terms of elliptic, trigonometric, or rational func­
tions. The few examples that gave some hope to elaborating 
more sophisticated structures seem to confirm a somewhat 
disappointing situation: the two-dimensional vertex models 
for which a uniformization by theta functions of genus g > 1 
was introduced do not satisfy the Yang-Baxter equations 
despite the fact that a Zamolodchikov algebra does exist for 
these models (because of the Frobenius relation on theta 
functions)4,5; on the other hand, the remarkable solution to 
the three-dimensional generalization of the star triangle 
equation, namely the "tetrahedron equation," obtained by 
Zamolodchikov and Baxter, turned out to be closely related 
with the two-dimensional free fermion Ising model (for 
which an elliptic parametrization occurs). 6,7 The star-trian­
gle relation appears to be a very stringent structure (overde­
termined set of equations) and this fully legitimatizes the 
attempts to classify exhaustively these remarkable nontrivial 
solutions. Along this line one should recall the beautiful pa­
pers of Belavin-Drinfeld (in which an exhaustive classifica­
tion of some "classical" limit of the Yang-Baxter equations 
related to simple Lie algebras is displayed8

) as well as Jim­
bo's success at "quantizing" this classical limit by introduc­
ing a q-analog of the universal enveloping algebra and an 
associated Hecke algebra.9 But an exhaustive list of solutions 
is still unavailable. 

We will not deal in this paper with the (infinite-dimen­
sional) Lie algebra aspects of the problem. The aim here is 
rather to suggest an approach to this classification problem 
that concentrates on the parametrization of the Yang-Bax-

a) Laboratory associated with CNRS VA 280. 

ter equations in the framework of algebraic geometry. We 
shall show that the parameter space of the exactly solvable 
models of statistical mechanics is naturally foliated by alge­
braic varieties that are stable under the action of a generical­
ly infinite number of birational transformations. Our prob­
lem then reduces to classical problems of algebraic geometry 
(algebraic varieties possessing an infinite set of automor­
phisms, diophantine equations, etc.) for which numerous 
results are available. 

In that generic case, the existence of an infinite set of 
automorphisms does not allow these algebraic varieties to be 
of the so-called "general type." In particular when these are 
of dimension 1 it means that the model can be parametrized 
by curves of genus 0 or 1 only (elliptic or rational parametri­
zation). The study of these varieties, which are not of the 
general type, will lead us to make a distinction between the 
varieties obtained by a complete and an incomplete intersec­
tion. 

The requirement that the group of automorphisms be 
finite very sharply constrains the model: for instance, in the 
case of the anisotropic q-state Potts model this imposes a 
restriction to the values 

q = 2 + 2 cos 21Tm/n (m,nEZ). 

These particular values have already been singled out by 
many authors (Tutte-Beraha numbers, two-dimensional 
models with conformal covariance, rational critical expo­
nents, etc. 10,11 ) • 

The results of that paper are not restricted to two-di­
mensional exactly solvable models. No assumption is made 
on the existence of a particular classical limit for the Yang­
Baxter (or tetrahedron) equations. 

II. THE BAXTER MODEL 

Let us recall briefly some basic results concerning one of 
the most important exactly solvable model: the symmetric 
eight-vertex Baxter model. I2 It is parametrized by four ho­
mogeneous variables (a,b,c,d)EP3' and the Yang-Baxter 
equations take the form of six trilinear homogeneous equa­
tions for three sets of points in P3: (a,b,c,d), (a',b ',c',d '), and 
(a" ,b " ,c" ,d " ). This system of homogeneous equations has 
nontrivial solutions if 

FI(a,b,c,d) =FI(a',b',c',d') =FI(a",b",c",d") (1) 
and 

F2 (a,b,c,d) = F2 (a',b ',c',d') = F2 (a",b ",c",d"), (2) 

where 
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Fl = (a2 + b 2 - c2 _ d 2) lab 

and 

F2 = cd lab. 

The Yang-Baxter equations imply the commutation of the 
2N X 2N row-to-row transfer matrices for arbitrary N (N is 
the number of vertices in a row), that is, 

[TN (a,b,c,d), TN(a',b',c',d)] =0, 

when Eqs. (1) and (2) are satisfied. 
The integrability of the model leads thus to the follow­

ing foliation of the parameter space: 

Fl (a,b,c,d) = Kl = const, 

F2(a,b,c,d) = K2 = const. 
(3) 

One recognizes the well-known projective representation of 
an elliptic curve as an intersection of quadrics in P 3 

(Clebsch's biquadratic). One can introduce the following 
elliptic parametrization: 

a = p.sn(v + 1J,k), 

b =p·sn(1J - v,k), 

c = p·sn(21J,k), 

d = pk·sn(21J,k)sn(1J - v,k)sn(v + 1J,k), 

with 

Kl = 2 cn(21J,k)·dn(21J,k), 

K2 = k sn2(21J,k), 

(4) 

where sn, cn, and dn are the Jacobian elliptic functions of 
modulus k. With that elliptic parametrization the Yang­
Baxter equations simply read 

v + v' + v" = 1J. (5) 

In this particular case we have an obvious connection 
between the Yang-Baxter structure and the Abelian charac­
ter of the algebraic curve. There also exist exact symmetries 
on the model, the so-called inversion relations, 13 which cor­
respond to rational transformations on the parameters of the 
model. These transformations are involutions and will be 
denoted by I and J: 

I: a __ al(a2 - d 2), b--b I(b 2 - c2), 

c-- - cl(b 2 - c2), d-- - d l(a2 - d 2), (6a) 

J: a __ al(a2 - c2), b--b I(b 2 - d 2), 

c __ -cl(a2-c2). d __ -d(b 2-d2). (6b) 

Here Fl and F2 are invariant under I and J. With the elliptic 
parametrization I and J reduce to 

I: V---+ + 21J - v, J: v---+ - 21J - v. 

They are conjugate via the "crossing" symmetry on the mod­
el 

a_b, V---+ - v. 

These involutions generate an infinite discrete group G of 
symmetries of the model isomorphic to the semidirect prod­
uct 

Z2EBZ (V---+±v±2n1J, nEZ). 

This infinite set of birational transformations preserve the 
elliptic curve (3) and the modulus of the elliptic functions. 
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One should not confuse these transformations with the iso­
genies of the elliptic curve (Landen, Jacobi, Legendre trans­
formations). One of these isogenies, the Landen transforma-

tion k---+k L = 2$1(1 + k) can be identified with a 
generator of the renormalization group for that model (a 
fixed point of that transformation is k = 1. the critical point 
of the model): the group G and the renormalization group 
act in an "orthogonal" way. 

Finally the Baxter model trivializes on the so-called dis­
order varieties of the parameter space, on which the parti­
tion function reduces to that of an isolated vertex. For this 
model these varieties have a very simple expression; one of 
these varieties, for instance, reads 

a + d = b + c. (7) 

The partition function per size Z is then very simple: 

Z=a +d. (8) 

Of course these disorder varieties correspond to a trivializa­
tion of the parametrization: equation (7) corresponds to a 
relation between Fl and F2 and a value of the modulus of the 
elliptic functions for which this parametrization trivializes 

III. INTRODUCTION TO THE GENERAL SITUATION 

For the sake of simplicity we restrict ourselves to the q­
state IRF model3 but the ideas we develop here also apply 
straightforwardly to two-dimensional vertex models. three­
(or higher-) dimensional models. In order to fix the nota­
tions let us first recall the definition of the q-state IRF model. 
The spin variable associated to each site i of a square lattice 
are assumed to take q values: W( 0';. O'j, 0' k • 0'/ ) is the Boltz­
mann weight associated to each of the q4 spin configurations 
around a face with sites iJ.k,l (see Fig. 1). The model de­
pends therefore on q4 homogeneous parameters (Xl •...• X; , ••• , 

Xq4 ). The partition function per site Z is defined by 

ZN = I IIW(O';'O'j,O'k,O'/) (O';EZq), (9) 
{o-,} 0 

where the product is taken over all the elementary square of 
the lattice and N is the number of these squares. 

More accurately the partition function (or even the 
transfer matrices) are invariant under some "gauge" trans­
formations 

D(O';.O'/) !:l(O';'O'j) 
W( 0'; 'O'j'O' k .0'/ )---+ W( 0'; 'O'j'O' k ,0'/) -------""--­

D(O'j'O'k) !:l(O'/'O'k) 
( 10) 

The analysis made in this paper forgets these trivial transfor­
mations. There exist two inversion relations I and J. They 
act on the Boltzmann weight to give WI and WJ defined by 
(see Fig. 2) 

I W(O';'O'j 'O'k .0'/ ) • WI (O'/'O'k,O'j'O'm) = A .~O';,O' m' (lla) 
<7> ' 

I W( 0'; 'O'j'O' k .0'/ ) • WJ (O'j'O' m ,00t,0' k) = A· ~O';,O' m • ( 11 b) 
<7> 

These transformations amount (up to a rotation 0/ the ele­
mentary square) to looking at W, in two different ways, as q2 
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FIG. 1. The Boltzmann weight W(O'" O'j' 

O'k,O'/) associated to each of the q4 spin con­
figurations (0'" O'j' O'k' 0'/) around a face 
with sites iJ,k,l. 

qXq matrices, and taking the inverse ofthese q2 matrices as 

(W( O'i 'O'j'O' k ,0'/ ) -> WUi,Uk (O'j'O'/ ) or WUpu/ (O';'O'k )}. 

Because of this composition by a rotation these transforma­
tions are not involutions as the one previously introduced for 
the Baxter model; they are generally of infinite order. 

These transformations / and J are both birational trans­
formations 

Pi (Xj> ... ,xq4) 
x·-> =/(x i ) orJ(x i ), 

I Qi (x l , ... ,Xq4 ) 

(12) 

where Pi and Qi are two homogeneous polynomials of de­
gree q - I and q in the Xi'S, respectively, with integer coeffi­
cients ( + 1 or - 1). 

This model may seem to be too general, depending on a 
too large number of parameters. The usual practice corre­
sponds to imposing different symmetries or constraints on 
the model in order to restrict the number of homogeneous 
parameters of the model (equalities between different Xi'S, 

exclusion of some configurations Xj = 0, etc) from q4 to n. In 
the following we will restrict the parameter space to such a 
homogeneous space Pn _ I with the condition that the (ra­
tional) transformations / and J leave that subspace invar­
iant. Heuristic arguments based on the transfer matrix for­
malism enable us to show the partition function per site pre­
sents some automorphy properties with respect to these two 
transformations (1la) and (1lb) andofcoursethegroupG 

h ti · 14 generated by t ese two trans ormahons : 

Z(xI"",xn )·Z (/(XI ), ... , /(xn)) = A, 

Z(xI"",xn ).Z(J(x.), ... ,J(xn )} = A I. 

(1m (j". 

W1 ~) G"'t A.S 
W °i/um 

(J". 
'-' <:i'l 

(13a) 

(13b) 

FIG. 2. Pictorial representation of the definition of the two inverse Boltz­
mann weights WI and WJ • 

2778 J. Math. Phys., Vol. 27. No. 11, November 1986 

The group G is, in general, an infinite discrete group. We 
now suppose that the model is exactly solvable in the sense 
that the Yang-Baxter equations are satisfied for the model. 
This leads to the commutation of the row-to-row (and also 
column-to-column) transfer matrices for arbitrary size N 
([TN (W), TN (W')] = OJ. The commutation oftransferma­
trices of specific sizes N leads to a set of algebraic equa­
tions l ,14.15 (see Appendix A for a simpler demonstration 
than in Ref. 1): 

Fa.N (x 1""'Xn ) = Fa.N (xi , ... ,x~ ), 

where 

Ua.N (x ., ... ,xn ) 
Fa N (X I"",x n) = ---=:::..:...--.:~--.:-

. Va.N(XI,· .. ,xn) 

(14) 

where Ua •N and Va •N are homogeneous polynomials (of de­
gree da •N ) with integer coefficients. It can be shown that the 
algebraic varieties defined by the intersection of the expres­
sions Fa •N corresponding to the row-to-row and column-to­
column transfer matrices are invariant under the transfor­
mations / and J (see Refs. 14 and 16): 

Fa.N(XI, .. ·,xn ) = Fa.N(/(XI),· .. ,/(xn )} = ... . (15) 

This is a consequence of the fact that if a Yang-Baxter equa­
tion exists for the Boltzmann weight ( W, W', W" ) there nec­
essarily exists another one involving W; and Wand in fact 
an infinite set of other triplets of Boltzmann weights corre­
sponding to some transformations of the initial triplet 
( W, W', W") under the action of the group G (see Ref. 14). 
In the previous example of the Baxter model this corre­
sponds to saying that Eq. (5) is also satisfied if one replaces 
(v,v',v") by (2n l 1J + v,2n 21J + V',2n31J + v") with 
n I + n2 + n3 = O. 

An integrable model must therefore present the two fol­
lowing remarkable features. 

(i) The infinite set of equations (14) corresponding to 
the various values of N must be redundant and equivalent to 
a finite set of m equations (m.;;;n - 2) we will denote from 
now on by Fa (a = l, ... ,m) (if this is not the case we are 
reduced to the trivial commutation of a matrix with itself). 

(ii) The algebraic variety r defined by the intersection 
of these m equations (of dimension n - 1 - m) has to be 
invariant under the infinite discrete group G of birational 
transformations in P n _ I . 

Therefore one sees that the exactly solvable models are 
naturally parametrized in terms of algebraic varieties that 
have (in the general case) an infinite group of automor­
phisms. 

IV. RESULTS 

A. Algebraic curves 

In almost all the examples of exactly solvable models 
known in statistical mechanics the algebraic varieties r 
turn out to be of dimension 1 (i.e., an algebraic curve). The 
following result is well-known: the only algebraic curves 
with an infinite group of automorphisms are of genus 0 or 1 
(see Ref. 17). 

In other words, if the group G does not degenerate into a 
finite group G, one has to deal with a rational or elliptic pa-
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rametrization. This result can be understood in the following 
heuristic way: the main distinction between the curves of 
genus 0 or 1 and curves of the general type of genus g> 2 (for 
which one would have to envisage a uniformization in terms 
of automorphic functions) lies in that there exists a finite 
number of particular points, called the Weierstrass points, 
for the curves of general type. (A point is called an ordinary 
point if the gap values are 1,2, ... ,g; otherwise it is called a 
Weierstrass point.) The group G that leaves invariant the 
algebraic curve must leave invariant these points. One un­
derstands that it is difficult for an infinite discrete group to 
leave invariant such a finite set of points. An old demonstra­
tion of Hettner (and also N oether) is based on these ideas. It 
is amusing to notice that if we consider a rational point in 
Pn - I (XiEQ::::}FaEQ), the images of that point by the infi­
nite group G are also rational points. We are thus led to an 
algebraic curve with a (generically) infinite set of rational 
points: Falting's theorem confirms that the curve has to be of 
genus 0 or 1 (see Ref. 18). 

Now that we have a precise characterization of the 
curves that can possibly arise in the context of exactly solv­
able models it is useful to study the projective representation 
of an elliptic curve (in P n ); the results are the following: the 
only case when a curve of genus 1 is given by a complete 
intersection are the plane cubic in P 2 and the previous 
Clebsch's biquadratic in P3; the other representations are in 
P n (n>4) and correspond to incomplete intersections. The 
case of incomplete intersection may, at first sight, seem rath­
er academic as far as statistical mechanics is concerned. 
However, there does exist at least one interesting example of 
model corresponding to that situation: for the hard hexagon 
model 19 the elliptic curve that parametrizes the model is giv­
en by an incomplete intersection of a quadric 
Fl = const = C I , a cubic F2 = const = C2, and a quartic 
F3 = const = C3 in P4• 

(16) 
2 + 2 22 22 

F 
_ X IX 2X s X IX 3X 4 - X 4 X S - X 2X 3 

3-
X~3X4XS 

On these expressions one verifies immediately that the inter­
section is incomplete (as it should) because it contains the 
spurious varieties XI = X 2 = X 4 = 0 and XI = X3 = Xs = O. 
The genus of the algebraic curve defined by this intersection 
can be calculated from the formula of addition of the charac­
teristic of Euler-Poincare: 

with 

l-g=X(Op) -X(O( -2») 

- X(O( - 3») - X(O( - 4») + X(O( - 5») 

+ X(O( - 6») + X(O( -7») - X(O( - 9»), 
(17) 

x(O(n») = [(n + l)(n + 2)(n + 3)(n + 4) ]/4! 

leading to a rather high genus if there were no singularities. 
The g = 1 case of the hard hexagon model corresponds to 
two relations between the previous constants Ci that raise 
the number of singularities to a maximum and thus reduce 
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the genus to a minimum (g = I): 

CI,C2 = 1 and CI + C2 = C3• 

B. Algebraic surfaces 

The problem of the classification of algebraic surfaces is 
much more complicated.2o There exist invariants playing a 
role similar to the genus for curves (Kodeira's dimension, 
etc.) One can sketch the classification that way: first come 
surfaces of "general type," which have only a finite number 
of automorphisms. This case is excluded when G is infinite. 

The surfaces that are not of the general type fall into five 
different classes (up to a birational correspondence): (a) the 
rational surfaces birationally isomorphic to P 2; (b) the ruled 
surfaces (r X PI) (these are surfaces that can be mapped 
onto a curve in such a way that all fibers of this mapping are 
isomorphic to PI); (c) the elliptic surfaces (fibrations by 
elliptic curves); (d) Abelian surfaces; and (e) K 3 surfaces. 
The K 3 surfaces have the property in common with Abelian 
surfaces that their canonical class is O. However, in contrast 
with Abelian surfaces there are no regular one-dimensional 
forms on them. 

These five sets of surfaces can all admit an infinite set of 
automorphisms. 

Let us now assume that the algebraic variety r is given 
by a complete intersection (this corresponds a priori to the 
simplest situation in statistical mechanics). 

A classical theorem (see Ref. 21, pp. 401 and 402) 
shows that complete intersection of dimension 2 has a trivial 
homotopy group (17'1 = 0). Thus the assumption of com­
plete intersection excludes the Abelian surfaces and imposes 
that the variety r has singularities. To be more specific, this 
situation of complete intersection occurs for a cubic or a 
quartic in P 3' for the intersection of two quadrics in P 4 corre­
sponding to a rational surface, and for the intersection of a 
quadric and a cubic in P 4 or the intersection of three quadrics 
in Ps that correspond to a surface of type K 3. 

In the case of a surface of type K 3 any explicit parame­
trization of the surface is, of course, hopeless. 

c. AlgebraiC varieties of dimension> 2 

Little information is available concerning the classifica­
tion of these varieties. However, remarkable progress has 
been made during the past few years.21 It is possible to define 
some invariants that unfortunately play only partially the 
role of the genus for algebraic curves (Betti numbers, etc.). 
Despite this complexity it is possible to single out varieties of 
a "general type" for which the number of automorphisms is 
finite. 

The varieties that are not of a general type constitute a 
jungle, which is, however, fairly well understood in the sim­
plest case of complete intersection. 

Thus the situation seems rather unsatisfactory: one 
would like to be able to find other algebraic varieties invar­
iant under the action of the group G that would make it 
possible (by taking the intersection with the algebraic varie­
ties r) to restrict the problem to an algebraic variety of 
lower dimension (eventually of dimension 1, leading to a 
foliation of the algebraic variety by curves of genus 0 or 1). 
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Fortunately such varieties can be obtained taking into 
account the fact that the inversion relations correspond (up 
to rotations of the elementary square) to taking the inverse 
of a set of matrices (see Appendix B). Of course, this ap­
proach applies only for algebraic varieties of dimension ;;;.3. 
In the case of the Baxter model one can, for instance, exhibit 
in this way algebraic varieties defined by an intersection ac­
tually invariant under the group G: 

abed /[ (a2 - c2)(b 2 _ d 2) J = const, (18a) 

(18b) 

However, the curve given by the intersection of these two 
quartics has, in general, no intersection with the elliptic 
curve (3). 

V. G IS A FINITE GROUP 

The previous analysis is based on the infinite character 
of the group G. When the group G is finite this leads to 
algebraic constraints on the parameter space that character­
ize the model very precisely. For every element g of G there 
exists an integer p such that gl' is equal to the unit element of 
G. This equality translated on the homogeneous parameters 
Xj means that the model is restricted to some very particular 
algebraic varieties. 

Let us now recall the hexagon model, which can be seen 
as a subcase of the S.O.S. eight-vertex Baxter model22

: de­
spite the fact that this model has a finite group G, it presents 
(as we have mentioned already) an elliptic uniformization, 
which can be seen as a restriction of the elliptic uniformiza­
tion ofthe Baxter model.23 Nevertheless, it is true that it is 
difficult to specify the algebraic varieties corresponding to a 
model, with a finite group G, that is not obviously embedded 
into a larger model with an already known uniformization. 
It is, however, possible, in the case of algebraic curves of 
genus g, to give an upper bound of the order of the finite 
group G (see Ref. 17): [GJ <84g - 3. 

VI. DISORDER VARIETIES 

We have already remarked that the Baxter model trivia­
lizes on a simple disorder variety (7). In fact such disorder 
varieties are quite easy to find24 and their corresponding co­
dimension is rather low. For instance, in the case of the 16-
vertex model, there exist disorder varieties of codimension 1 
in the parameter space. This should be compared with the 
codimension of the parameter space of the exactly solvable 
subcase of that model, the Fan and Wu free-fermion model7 

and the Baxter model of codimensions 4 and 5, respectively. 
For instance let us consider a subcase of the 16-vertex 

model that has the two previous integrable models as sub­
cases (but is not integrable in general): the asymmetric 
eight-vertex model. The homogeneous parameters of that 
model are usually denoted a,a', b,b " e,e', d, and d ' (the sym­
metric eight-vertex model corresponds to a = a', b = b', 
e = e', and d = d '). That model has a disorder solution on 
the (disorder) variety given by the quartic equation (this 
result has also been obtained recently by Giacominj25) 

(a + a') + (a + a')2 - 4(aa' - dd'»)1/2 

= (b + b') + (b + b ")2 - 4(bb' - ee'»)1I2. (19) 

If the model were integrable, there should occur a trivializa-
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tion of the parametrization on this disorder variety and also 
on the images of this variety by the infinite group G generat­
ed by the two inversion relations. It is a simple and instruc­
tive exercise to verify that there does, in fact, exist an infinite 
number of such images except in the two already-mentioned 
cases of the Baxter model and the free-fermion model 
(aa' + bb' = ee' + dd '), where the number of images of 
(19) under the action of the infinite group G is finite. The 
checkerboard Potts is another example of an infinite number 
of images of a disorder variety under the action of G (see Ref. 
26); moreover one has a remarkable and instructive agree­
ment between the exact expressions of the (analytical con­
tinuation of the) partition function on this infinite set of 
algebraic varieties and the exact expression of the partition 
function on the critical variety where the model is exactly 
solvable.27 

The existence of such an infinite set of varieties at first 
seems hardly compatible with the exact solvability of the 
model. An obvious situation where this set is finite is when 
the group G is itself finite. Let us consider the checkerboard 
Ising model: this model has an elliptic uniformization and 
the modulus of the elliptic functions that occur is given (in 
terms of the high-temperature variables tj = th K j and the 
dual variable 

1 - t 
t* = --', by Eq. (20): 
, 1 + tj 

4 t.(t'!'+t'!'t*t*)(1-t 2
) k=II" J k / , , 

j=1 tr(tj +t/k t/)(1-tr2
) 

(20) 

(i,j,k,l) = (1,2,3,4). 

This algebraic expression trivializes on the disorder varieties 
of the model, on the dual of these disorder varieties (and of 
course when the coupling constant of the model trivializes 
tj = 0, tj = ± 1, t r = 1). From this example it is rather 
tempting (if one is willing to bet on the exact solvability of 
the noncritical three-state Potts model) to guess an algebraic 
expression k associated to that model from the known equa­
tions of the disorder varieties and their images under the 
group G (see Refs. 28 and 29). 

VII. CONCLUSION, PROSPECTS 

The exactly solvable models are parametrized by means 
of algebraic varieties having a group of automorphisms de­
duced from the so-called "inversion relations." It is very 
constraining for a model of statistical mechanics to ask for 
this group to be finite. It is, in general, infinite and this shows 
that these algebraic varieties are not of the "general type" 
(but this does not prove that they should be Abelian varie­
ties). For algebraic varieties of dimension 1, this sheds a new 
light on the occurence of curves of genus 0 or 1 only for all 
the exact models known at the present moment. Of course 
this is just a preliminary work and these ideas will be pursued 
in forthcoming publications. The ideas we have developed 
here also apply, mutatis mutandis, to statistical models in d 
dimensions with the difference that the number of inversion 
relations that generate the group G grows with the dimen­
sion d. A priori there is no relation between these generators. 
Therefore the group G is in general a very "large" one (infi-
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nite discrete of course): is it possible for algebraic varieties to 
have such a large group of automorphisms? 
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APPENDIX A: ALGEBRAIC CONDITIONS FOR 
COMMUTATION 

The commutation of two n X n matrices T and T' leads 
to the existence of algebraic expressions in the coefficients of 
these two matrices Fa (T) = Fa (T'). They can be seen as 
some symmetric functions of the eigenvectors shared by T 
and T'. We sketch here a simple way to get these Fa's: Let us 
denote by C and C' two matrices that are linear combinations 
of powers of T and T', 

n-I 

C= I,ap.T P
, 

p=o 

We have 

n-I 

C'= I,a;.T'p. 
p=o 

[T,T'] = O:::>[C,C'] = 0. (AI) 

Let us denote by Cij, Cij, Tij, and Tij the coefficients of these 
matrices. We can choose ap and a; some algebraic expres­
sions of the Tij and T ij such that 

CIj = 0, j = I, ... ,n - 1, Cln ;60, 

Cij =0, j= I, ... ,n -1, Cin;60. 

Equation (20) then leads to 

Vi: Cin/C~i = CIJCni • (A2) 

Similar algebraic expressions can be obtained imposing C 
such that 

Cij = 0, j = I, ... ,n - 1, Cin ;60. 

APPENDIX B: G-INVARIANT VARIETIES 

The characteristic polynomial PM (A.) of an n X n matrix 
M and of its inverse matrix M - I are related: 

(Bl) 

We denote by Ci the coefficients of PM (A.) and obtain 

PM(A.) = A. n + CI'A. n - 1+ ... + CiA. n - i + ... + Cn . 

An immediate consequence of (B 1) is that the expressions 
t/Ji = CiCn _ ilcn are invariant under the transformation 
M---+M -I. These expressions are the ratio of two homogen­
eous polynomials of degree n in the coefficients of the matrix 
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M. The inversion relations I and J correspond (up to a per­
mutation of the homogeneous parameters of the model Xi ) 

to taking the inverse of a set of q2 matrices M a' One can 
associate to each of these matrices the corresponding expres­
sions t/Jf. 

Let us consider t/Ji the product of the t/Jf and algebraic 
expressionsAj invariant under the previous permutation of 
the Xi; the algebraic variety defined by the intersection of 
equations 

t/Ji (x!>''''xn ) = const, Aj (xI, .. "xn ) = const 

is invariant under the inversion relations I and J. 
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