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We analyze birational transformations obtained from very simple algebraic calculations,
namely taking the inverse of ¢ X ¢ matrices and permuting some of the entries of these
matrices. We concentrate on 4 X 4 matrices and elementary transpositions of two en-
tries. This analysis brings out six classes of birational transformations. Three classes
correspond to integrable mappings, their iteration yielding elliptic curves. Generically,
the iterations corresponding to the three other classes are included in higher dimensional
non-trivial algebraic varieties. Nevertheless some orbits of the parameter space lie on
(transcendental) curves. These transformations act on fifteen (or ¢> — 1) variables, how-
ever one can associate to them remarkably simple non-linear recurrences bearing on a
single variable. The study of these last recurrences gives a complementary understand-
ing of these amazingly regular non-integrable mappings, which could provide interesting
tools to analyze weak chaos.

1. Introduction

In previous publications, the study of integrability of lattice models in statistical
mechanics has brought out the existence of an infinite discrete symmetry group
of the Yang-Baxter equations,'™® which originates from the so-called inversion
relations.” 12 More generally this group corresponds to non-trivial symmetries of
phase diagrams of lattice models in statistical mechanics.'®"1% The representations
of this group are birational transformation groups, generated by involutions, acting
on the parameter space of the model.l»? This analysis has been performed in detail
for the sixteen vertex model associated to the two-dimensional square lattice and
for a particular subcase of a sixty-four vertex model corresponding to the three-
dimensional cubic lattice.*%16-18 In both cases, the parameter space of the model
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can be represented by 4 x 4 matrices, one of the group generators I, coinciding with
the matricial inverse and the other(s) being some permutation(s) of the entries of the
4 x 4 matrix, denoted t generically.! The study of this group brings to analyze these
birational mappings and especially the (generically) infinite order transformation
t I.12 Remarkably, for the sixteen vertex model and some subcases of the sixty-four
vertex model, the iterations of these birational transformations ¢ I actually densify
algebraic elliptic curves in the parameter space, CP5 (Ref. 5) (generically for the
sixty-four vertex model subcase detailed in Refs. 4 and 17, they densify algebraic
surfaces). These algebraic curves, (or algebraic surfaces), indeed define a foliation
of the whole parameter space.® When elliptic curves occur in the whole parameter
space, the mappings are integrable, though the associated lattice model may not
be integrable ilself (in the sense of Yang-Baxter equations® to be satisfied).!3 Such
lattice models have been denoted quasi-integrable.’

Integrable mappings acting on fifteen inhomogeneous variables have thus
emerged from this analysis of the symmetry of integrability for lattice models. This
result is interesting in itself, as far as discrete dynamical systems are concerned,
since the examples known in the literature were always systems bearing on few
variables.?2:23 Besides, it suggests considering other birational mappings in CP;s,
generated by the matricial inverse and some (involutive) permutations of the en-
tries of the matrix, not even related to any symmetry of lattice models of statistical
mechanics.?42% The results will be reported here and, in parallel, in a series of
papers,?426 for the simplest examples of permutations: the transpositions of two
entries. It is important to note that, though this paper deals mainly with 4 x 4
matrices and therefore mappings of CP;s5, the results can be generalized to q x q
malrices, the associated mappings acting in CP,2_;. (Refs. 24 and 25).

We will first show that one can reduce the study to siz classes of such mappings.
Their iterations often lie on curves, however this emergence of curves does not corre-
spond to a unique situation, but on the contrary to two different ones. Three of these
classes correspond to integrable mappings, their iterations actually yielding alge-
braic elliptic curves. The equations of these elliptic curves are given as intersections
of fourteen quadrics in CP;5. On the other hand, the three remaining classes cor-
respond to another kind of mappings, we will call “almost” integrable: they are not
generically integrable, even if their ilerations slay on curves in some regions of the
projective space. Actually, these curves are not algebraic, but transcendental though
they may look very much like algebraic elliptic curves (see Secs. 4, 6 and 8 in the
following). Indeed, for such “almost” integrable mappings, one can follow the evo-
lution of an orbit from a transcendental curve close to an algebraic elliptic curve, up
to an “explosion” into a spray of points. This is reminiscent of the KAM theorem.?
More precisely, when iterating these mappings one gets orbits similar to the one de-
scribed by Siegel’s theorem,?”-3% though there is no associated complex structure.

3or of their higher dimensional generalizations.!9-2!
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In other publications,2426 it is shown that the iterations of these birational
transformations present some remarkable factorization properties, and that the poly-
nomial factors occurring in these factorizations satisfy for some classes non-trivial
non-linear recurrences.?»?® It will be shown that these non-linear recurrences on
one variable also describe algebraic elliptic curves or transcendental curves, and
thus, can also be classified in two categories : integrable recurrences and “almost”
integrable recurrences. The equations of these elliptic curves are biquadratic rela-
tions, and the transcendental curves look like deformations of these algebraic elliptic
curves. When the deformation parameters become large enough one can again see
the “explosion” of these transcendental curves (the KAM tori).

These recurrences can be generalized to build new recurrences on a single vari-
able, yielding again either algebraic elliptic curves or transcendental curves (see
Sec. 8.3).

Finally, one will sketch other 15-dimensional mappings, which are neither inte-
grable nor “almost” integrable, their orbits lying on surfaces or higher dimensional
algebraic varieties. These last algebraic varieties could also be deformed into tran-
scendental manifolds. This analysis suggests some “graduation of chaos”, from
integrability strictly speaking to more and more chaotic situations.

2. Notations
Let us consider the 4 x 4 matrix

a; az by b
a3 a4 b3 by (2.1)

cp ¢ dy d
cs cq4 d3 dy

Let us also introduce the homogeneous matrix inverse I:
I:R— R™1.det(R) . (2.2)

The homogeneous inverse I is a polynomial transformation on each of the entries. It
associates with each entry its corresponding cofactor. The homogeneous transfor-
mation I is an involution up to a multiplicative factor: it satisfies I2 = (det(R))?-Zd,
where Zd denotes the identity transformation.

One will also introduce the involution ¢, which denotes an arbitrary transposition
of two entries of matrix R, and K, = ¢-I, the infinite order transformation associated
with each transposition . Transformation K; is a polynomial transformation of the
sixteen homogeneous entries of the matrix. I'; will denote the infinite discrete
group generated by I and ¢.}:%6:13 Such groups I'y, generated by two involutions are
isomorphic to Z, up to a semi-direct product by a two element group (the infinite
dihedral group). The “infinite part” of the group (which is isomorphic to Z) is
generated by Ky, that is the simplest infinile order generator of the group. Notice

that T'; is a group of birational transformations.!?
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3. Six Equivalence Classes

Let us analyze these groups I'y, of birational transformations. At first sight, one has
to study as many groups of mappings as there are transpositions ¢, of two elements
among the sixteen entries of the matrix, that is (126) = 120.

In fact, the 120 corresponding groups T'y, fall in only siz different classes.

Let us first exhibit an equivalence relation on these 120 transpositions, which
does not modify the structure of the corresponding group, defining seven different
classes. Let us construct this equivalence relation by introducing transformations
acting on the entries of the matrix, which commute with the matricial inverse I.
Let us consider transformation T, which associates to a matrix, its transpose. Let
us also consider transformations Tj; (¢, = 1...4), which permute rows i and j,
and at the same time columns ¢ and j of matrix (2.1). For example T}, reads:

as4 ag b3 b4
_ as ap bl bz
T”(R) - Cy C d1 dz

cgy c3 dz d4

Obviously, these transformations are involutions which commute with the matricial
inverse I (moreover T does commute with all the T;;’s). A generic element of the
finite group G, generated by these involutions, reads:

9= T:(:J)UI(J) Ta1 @, a;; = 0) 1
i,j=1...4

where o and ¢’ are two permutations of {1, 2, 3, 4}.

G is isomorphic to the group of permutations of four elements Sy, up to the
semi-direct product by the two element group {Zd, T}. One can now define the
equivalence relation : two transpositions t and t’, belong to the same equivalence
class if, and only if, there exists an element g of G such that:

t'=g"1tg. (3.1)

For two such transpositions let us compare the two groups of transformations Ty
and I'y/, generated respectively by (I, t) and (I, t'). A generic element of Iy reads:

yo = I (I 1 = 19 (1 g~ tg)" 1" = I (¢~ Itg)" 1*
=17 g (I gI* = g7 (I (1) I®")g,  with a;,a;=0,1
=9 'ng
where v; is an element of I';.

b The Ti;’s transformations do not commute with each other, thus their order in the product is
relevant.
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Thus, I'; and Ty are actually two (birational) representations of the same group.
If A; denotes a rational expression of the entries of matrix R, invariant under the
group I'y, which means

Ai(r(R)) = A(R) (3.2)

for all 9 in Ty, then the rational expression Ay (R) = A¢(g(R)) is invariant under
Fgl!

Av(re(R)) = A(9(g7 1 9(R))) = A9 97 711 9(R)) = Ai( (9(R))) = Au(g(R))
= Au(R)

for all y¢ in Ty

In order to list all the classes and their elements, let us detail the correspondence
between G and Ss: one can associate to g = [[ Ti; in G a permutation o = [] t;;
in 84 (tij being the transposition of {1...4} exchanging i and j). If ¢t denotes
the transposition exchanging R;,;, and Ri,j,, then ¢’ = g~!tg is the transposition
exchanging Ro(i,)o(j,) a0d Ro(iy)0(j,), and obviously ¢ = T't T is the transposition
exchanging R;,;, and Rj,i,.

With the notation [r;; — r;] for transposition exchanging the two entries r;; and
rz; of matrix R (2.1), the seven classes read:

— Class C; corresponds to all the 6 transpositions of the form [ri; — r;;]

— Class C; corresponds to all the 6 transpositions of the form [r;; — 755]

— Class C3 corresponds to all the 12 transpositions of the form [rj; — g

— Class C4 corresponds to all the 24 transpositions of the form [rj; — rji] or

[ri — rxj]

— Class Cs corresponds to all the 24 transpositions of the form [r;; —r;] or [rj;—ri]
— Class Cs corresponds to all the 24 transpositions of the form [rj; — ;]

— Class C7 corresponds to all the 24 transpositions of the form [rj; —r;;] or [ri;—rj;]

where all the indices 1, j, ¥ and ! are different.

Moreover, one can show that classes C; and C, lead to the same behavior as far
as iterations of their associated birational mappings are concerned: let us denote
Ci; and L;; the involutions respectively permuting columns ¢ and j, or rows i and
J (Cij - Lij = Lij - Cyj = T;;). In contrast with the T;;’s, the C;;’s and L;;’s do not
commute with I, but are intertwined by I:

C;j-I-L,'j:L,'JWI-C,’j——-I. (3.3)

If ., denotes a transposition of class Cy, namely [r;; — r;;] and t., a transposition
of class Cz, namely [r;; — rj;], one has

te, = Cij -te, - Cij = Lij -te, - Lij . (3.4)
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Therefore a generic element of I'y reads

Y, = 1™ (Ite,)" I** = I* (ICjjt,, Cij I Lij te, Lij ...) 12
= 1% Lij ((Lij 1Cij) te, (Cij I Lij)te, (Lij I Cij)te, (Cij I Lyz)...) I
=19 Ly (Ite, Tte, Tte, I..) WI® = Wy I (I1,,)" 1% W,

=Wimn, W,

where 7;, is an element of Ty, , and where W, W, and W; denote either Cj; or Ly;
depending on the parity of n and the values of a; and a3 (0 or 1).

Therefore the iterations of (It.,)" and (I't.,)" are equivalent up to some changes
of variables. If n is even, one notices that the elements (I ¢.,)" and (I t.,)", respec-
tively associated to classes C) and C,, are actually conjugated.

Let us now consider A, _, a rational expression of the entries of matrix R,
invariant under the group I';., and build a new rational expression invariant under
the group T';_ , denoted A,_ .

Let us first introduce A,ch and Atc;g:
Af (R) = A, (Lij (R)) , AL (R) = Ar,, (Cij (R)) . (3.5)

One remarks that

AL, (tes (R) = Ar, (Lij tey (R)) = As,, (te, Lij (R)) = As,, (Lij (R)) = AL_(R)
AL, (te; (R) = Ar,, (Cij te; (R)) = v, (te, Cij (R)) = Ay, (Cyj (R)) = A (R)
(3.6)

and also

AL, (I(R) = A, (Li; I (R)) = A, (ICi; (R)) = Ay, (Ci (R)) = AL (R)

AL (I(R) = A, (Cij I(R)) = Ar, (I Lij (R)) = As,, (Li; (R)) = AL _(R) .
(3.7)
One thus can define A, = A,ch + A,C%, which is invariant by t., and I, and thus
invariant under all the group Iy, . Finally classes C1 and C; can be brought together

in the same class, we will denote class I in the following. The five other classes
(Cs, ..., C7) will be relabelled classes (II, ..., VI) in the same order.
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Let us now give an exhaustive list of elements for all the six classes. The notation
[a1 — ag] still denotes the transposition exchanging the entries a; and a2 in the 4 x 4
matrix (2.1).

— Class It (12 elements)

l[a2 — a3], [b1 — 1], [bz —c3], [ba —cd], [d2 —d3], [c2 — ba], [a1 — a4], [a1 —di],
l[a1 —d4], [a4 —di1], [as —d4], [d1 — d4],

— Class II: (12 elements)

(b1 — b4], [b1 —ca], [b2 — 03], [b2 —¢2], [az —da], [az —d3], [a3 —d2], [a3 — d3] ,

[er — ba], [e1 —ca], [ea = b3], [c3a—c3] ,
— Class III: (24 elements)

[az —b3], [az—b4], [az—b5], [a2—c3], [d2—b3], [d2—4],
[d2—cs], [d2—cd], [az—co], [aa—cq], [az—bi], [az—bo],
[ds—c2], [ds—e1], [ds—bo], [ds—ba], [c2—04], [c2—b1],
bz—c1], [ba—ca], [bs—ca, [bs—ci], [es—b1], [c3—bd],

— Class IV: (24 elements)

l[az ~b1], [az—b2], [b1—b2), [aa—bs], [az—~bd4], [bs—b4],
er—ca), [e1—da), [ea—d2], [e3—ca], [c3a—ds], [ca—ds],
l[aa—c1], [aa—c3], [ex—c3], [az—c2], [aa—cd], [ca—cq],

[br —b3], [b1—ds], [ba—ds], [ba—b4], [ba—d2], [ba—d3],
— Class V: (24 elements)

l[ar—b3), [a1—bs], [a1—d2], [aa—b1], [asa—b2], [aa—dy],

[di—a2], [di—ba], [di—bs], [da—a2], [da—bi], [dsa—1b3],

[ay —c2], [a1—ca], [a1—d3], [aa—c1], [aa—c3], [asa—d5],

[dl - a3] ’ [dl - 63] ) [dl - 64] ) [d4 - a3] , [d4 - 61] ’ [d4 - 62] s
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— Class VI: (24 elements)

[as —a2], [a1—b1], [a1—b2], [asa—a3], [aa—b3], [aa—b4],
[di—e1}, [di—c2], [di—d3), [da—c3)], [da—ca], [da—ds],
[01 - 03] s [01 - Cx] y [al - 03] ) [al - 02] y [a4 - 02] ) [04 - 04] ’

[di—b1], [d—b3], [di—ds], [da—b2], [da—bs], [ds—d2].

It is important to note that this classification in six classes holds for ¢ x ¢
matrices, for any value of ¢ > 4. For ¢ = 3 one remarks that class II no longer exists
and similarly, for ¢ = 2, classes I, III, IV and V do not exist anymore. Also note that
any transposition of two entries R;,;, and R;,;, of a ¢ x ¢ matrix can be associated
with a transposition exchanging R,(,)o(;,) and Ro(i,)o(j,), Where o(i1), o(j1), o(iz)
and o(j2) run into {1, 2, 3, 4}. One can thus restrict the transposition to act in the
4 x 4 block-matrix corresponding to the first four rows and columns, and be back
to the previous classification on 4 x 4 matrices.

One will now study a single mapping in each class and directly deduce the results
concerning all the other transformations of the same class.

4. Numerical Study

An efficient method to analyze such transformations, especially when there are
many variables, is to iterate numerically the action of the (generically) infinite order
transformation K¢, on an arbitrary initial matrix and to visualize a two-dimensional
projection of the orbit.!+2

The iterations are not performed on the sixteen homogeneous entries, but on
fifteen inhomogeneous variables and thus K, is represented in terms of birational
transformations.® In fact the numerical calculations are not performed in CPjs,
but in C!'® (one of the variables being normalized to 1).° Since this representation
of CPis is not compact, some points may apparently go to infinity. K, seen as an
inhomogeneous transformation, being of degree —1, favors points going to infinity,
while K2 do not lead to such point spreading. One thus iterates transformation K2
and obtains Figs. (1) to (6).

Figure (1) shows a two-dimensional projection in the 15-dimensional space, of a
trajectory of the K, -iteration, where ¢ is a transposition of class I. Similarly Figs. 2
to 6 correspond to two-dimensional projections of trajectories of the K;-iteration,
where t is a transposition of classes II to VI, in the same order. These figures have
been obtained with around 10% iterations.

Since coefficients of birational transformations are integers all the iterates are in IR1%, if the initial
matrix is taken real. All figures given in this paper correspond to iterations in R13.
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Fig. 1.

Fig. 2.

All these figures ezhibit curves. This result is astonishing, if one takes into
account the complexity of the birational transformation K?. Moreover this com-
plexity, due to the degree of the homogeneous transformation and to the number
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Fig. 3.

Fig. 4.

of variables, does not yield any numerical instabilily of the curves. One can also
remark that fewer number of iterations still densify these curves in a quite uniform
way.
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Q

Fig. 5.

/

¥

Fig. 6.
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5. Algebraic Invariants

The above numerical study tends to show that the orbits of the groups of birational
transformations I'y associated with any transposition are curves (at least in some
domain of the parameter space). One can thus try to get the equations of these
curves in CP;s, for instance from explicit algebraic expressions, invariant under

Ft.

Let us first recall an important property of & x k£ minors of a generic matrix A:
(1) (k) = Giy,...,ix,j1,...,5x denotes the k x k minor of matrix A corresponding to
FOWS 1y, ..., ¢ and columns jq, ..., jr and a(Ik)(Jk) =iy, ... ix,j1, ..., jx denotes the
minor corresponding to the (n—k) complementary rows and columnsin {1, ..., n}.
Let us also introduce B = A~! the inverse matrix of A, b(;, (s, ) the minor of matrix
B corresponding to rows iy, ..., ¢ and columns j;, ..., jr and E(Ik)(Jk) the minor
corresponding to the (n—k) complementary rows and columns in {1, ..., n}. Some
elementary considerations on exterior algebra yield the relation

_1)i1+~~'+ik+jx+~--+jk ~
L)) = det(A) by - (5.1)

In particular if A denotes a 2p X 2 p matrix, relation (5.1), for ¥ = p, becomes
an equation relating two p x p minors, one of A and the other one of A~}. Hence
the set of p x p minors is globally invariant, up to a multiplicative factor, under the
matricial inverse I. Let us restrict to 4 x 4 matrices, that is p = 2. The set of all
2 x 2 minors of the 4 x 4 matrix R reads

m; =a; a4 —azas, my =a; by —azby , m3 =ay by —az by,
my =aybs —asby ms = Gz by —ag by, me = by by — b3 by,
mz =a;cC2—Caz, mg=aydy —cy b, mg=aydy —c by,
mig = azdy —caby my; = azda —c3 by, myz = by dy — ba dy
mi3 = ajcq4 —C3az, myy =aydz—c3by , mys = aydqg —czbsy
Mg = agds —ca by , mi7 = azdq —ca by, mig = bydy —dszbs, (5.2)
Mg = da3Cq4 — C304 , mae = azdsz — cabs , Mgy = azdy — c3by
Mo = aqdz —cabs, ma3 = agdg —cqa by Mmag = bady — byds ,
Mys = azcy — €1 aq , mge = azd; —c1 b3 mg7 = azdy — ¢y by ,
mag = agd) — ca b3, Mag = agdy — c2 by mgp = bz dy —dy by
mg3 = C; €4 —C3C2 , mgy = c1dz —czdy , ma3 = c¢;dy — c3dy
m3q = cadz —cady | m3s = cadq —cqdy , mgs = dydy —dsdy .
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This property of global invariance of these minors by I reads in that particular case

I(my) =nmge, I(my)=-nmgy, I(m3)=nmsz,

I(m4):7]m18, I(ms):—nmm, I(mﬁ):nme,...

where n = det(R).

The non-linear {ransformation I, thus has a linear represeniation in terms of
the 2 x 2 minors.

We will thus barter the sixteen homogeneous variables for these thirty-six
quadratic minors (5.2). Of course the number of homogeneous variables being
sixteen, there must exist many relations between these minors.

To find out these relations, let us first recall an important property of pro-
jective spaces and Plicker coordinates®': if m is an m-dimensional subspace of
an n-dimensional projective space CP, spanned by m + 1 independent points
Ao, Ay, ..., A, of CP,. Let us denote by (aoo, ..., @on), (@10, ---; G1n), -«

(amo, - - -, @mn) projective coordinates of these points, and by pj, j,, ...,j. the de-
terminants
aojo e aoj,,
Pio, i1, im =
am_,-o PPN amjm
where 0 < jg, ..., Jm < n.

The subspace 7 can be represented by these homogeneous coordinates pjg i, ,....jm>
which are independent of the choice of m+ 1 points spanning m. These Pliicker coor-
dinates actually satisfy quadratic relations, the so-called Plicker relations.3! In the
well-known subcase3! corresponding to m = 1, n = 3 this set of equations reduces

to the relation

Po1 P23 — Po2 P13 + PoaP12 =0 . (5.3)

With each couple of rows, or columns, of the matrix R, are associated six minors,
which are actually Pliicker coordinates. One thus obtains twelve quadratic relations
like (5.3).

Besides, let us recall another important property of £ x k minors of a generic
matrix A: if e,y = @iy, ik gy, o ST denotes the minor corresponding to
rows iy, ..., ¢ and columns ji, ..., jk, and Gz y,) = @iy, .. 0,44, .., 5, the mi-
nor corresponding to the (n — k) complementary rows and columns in {1, ..., n},
let us denote M; the matrix of entries a(,),), and Cj the matrix of entries
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(=1)irt-+ixtist+ie gy 5y, the Laplace theorem then reads

My - (Ck)t = (Ck)t M = det(A) Id(:') (54)

where (C})! denotes the transpose of matrix Cj.4

In the case, mainly studied in this paper, where n = 4 and ¥ = 2, one obtains
a set of thirty-six more quadratic equations on the 2 x 2 minors. Obviously, these
equations and the twelve Pliicker relations (5.3) are not independent.

These well-suited Pliicker-like variables enable one to get the algebraic invariants
under the various groups I';. Since I is linear with respect to these new variables,
it can be “diagonalized” in terms of linear combinations of these minors. Since [
satisfies 12 = n? Id (7 still denotes det(R)), the only possible “eigenvalues” are +7
and —7. One can thus calculate the linear combinations of these minors covari-
ant, up to £, under the matricial inverse I, as “eigenvectors” associated to each
“eigenvalue”.

Let us first give the minors directly covariant under I, with cofactor +#:
hi=mg, la=mn, lz=m, la=mg, ls=my, lsg=mgy . (55)

Moreover, the following fifteen linear combinations are also covariant under I with
cofaclor +1:

lr=my+m3e, ls=ma+ma, lg=ma+miz, lio=mg+ma,
hi=mupa+mag, lia=mis+mes, ha=mas+maz, lia=my—my,
lhis=msg—miz, Lhe=mz—mgs, lLz=mg—my, lLig=mp—mz7,
119 = my4q4 — may , 120 = Mg — M3y2 y 121 = M9 — Mye . (56)

Finally, the following fifteen linear combinations of minors, are covariant under I,
with cofactor —n:

loo = my — mg3e , 123:m3—m30, loyg = mg —mys 125=m8_m23a

lyg=miza—maq, lag=mys —moz, lyg=mas—maz, lyg=my+mo,

lsp=ms+mi2, bLi=m7s4+mas, lao=me+map, laz=mpe+mz,

lzg =myg+ma, las =myg+may, lzg=mg +mas . (5.7)

dRelation (5.4) is a generalization of the well-known relation, which expresses the inverse matrix as
the transpose of the matrix of cofactors up to a determinant factor (this particular case corresponds
to k=1).
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Let us denote Sy, the set of I;’s, i running from 1 to 21 (see (5.5) and (5.6)), and
S_, the set of I;’s, i running from 22 to 36 (see (5.7)). S+ and S_ respectively
generate the eigenspaces associated to +n and —7. One can thus choose any linear
combination of elements of Sy, or any linear combination of elements of S_ (but
no mixed one), to build algebraic invariants under a transposition ¢, without losing
covariance under I. As previously explained, one can reduce this study to one
representent in each class.

Let us take a representative in each of the six classes.

Let us consider for instance for class I, transposition ¢; exchanging a, and a3.
Similarly the other classes will be represented respectively by the following trans-
positions: transposition ¢;; exchanging b; and by, transposition t;;; exchanging a,
and bj, transposition tyy exchanging a; and b,, transposition ty exchanging a; and
bz, and finally transposition tyv; exchanging a; and a4.

The following polynomials are respectively invariant under ¢y, ..., ty;:

— tr-invariants:

ri=h, pe=ls, pa=lz, pa=lo, pPs=hla, ps=hr, pr=hg,
ps=1la2, pPo=1las, Pro=lyr, Pu=laa, pa=laa, pa=bk+ls,

pra=la+ls, ps=lis—1la, pie=1laz+ls,

— trr-invariants:

ri=h, po=la, pa=ly, pa=ls, ps=lz, ps=ln, pr=la,
pe=lia, po=le, Po=1lwn, pu=la, pr2=ls, pra=lu,
pra=ls, pPs=l1, pe=ls, prr=lr—lis, pis=lig+1s,

P19—_-132+133’ p20=134+135, P21=13+15+110»

— tyr7-invariants:

=1, pe=le, p3=ls, pa=lo, ps=bla, ps=li7, pr=lw,
ps=1lu, po=las, po=ls, pn=la2, p2=ls, pa=h+ls,

D14 =+ 14, P15 =he—In , P16=131 + 36 ,

— tjy-1nvariants:

pi=la, p2=1ls, pa=ls, pa=ls, ps=h2, ps=la, pr=lr,
ps=1lao, pPa=1lan, pPo=ls, pu=lr, p2=lbs, pa=ls,
pra=lss, pPis=lss, pPe=lr+ha, Pr7=lo+he, P1a=li+hy,

pro=laa+lg, pro=ls+ls, pn=le+las, p2=bL+bs—1,
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— ty-invariants:

=y, pp=l3, ps=ls, pa=ls, ps=ha, ps=hs, pr=hls,
Pa=1lp, pa=lws, po=ln, pu=la, p2=1Is,
pia=lia—lu—lig, pa=lagr+lag+ia,

— ty-invariants:

pn=h, po=ly, pa=ls, pa=l, ps=1lg, ps=la, pr=ly,
ps=lbs, pa=ly, po=le, pu=bk—hr, p2=l-h,
pa=lu+lo, pa=lizs+the, pis=le+ls, pis=Ils+ia,
prr=ho—li2—ls, pis=las+1l7—1s3.

We have obtained in each class, a set of homogeneous polynomials invariant
under transposition ¢ and covariant under the homogeneous matricial inverse I, all
with the same cofactor (the determinant of the matrix R), up to a sign. Thus the
algebraic invariants (up to a sign), under the group of transformation T'; are the
ralios of these covariants. For example, one can take in each case the ratios: p;/p;.

Let us now sketch how one can get this set of covariants, for a transposition of
class Cz, from covariants of transposition ¢; (since this last transposition belongs to
class Cy).

For instance let us take in class C; transposition t., exchanging a; and a4. Notice
that when dealing with covariants (instead of invariants as in Sec. 5), one has to
consider the set of pF + pf (with the same notations as in (3.5)) together with the
set of p,-L —p,-c (where the p;’s denote the covariants corresponding to t;). The family
pF + pf reads

loo, laa+lse, bz, his—lo, la+1ls, Is+1ls, lso, lsa, lis—ly, Lo+l
and the pf — pf’s read
L, ls, Lhs+ln, Ils—1l, -1z, lss—1I33.

Merging these results together one gets the ¢.,-invariants

nm=b, po=l, pa=ls, pa=ls, ps=l, ps=1ls, pr=1lr,
ps=lis, po=la, po=ly, pu=ls, p2=Ils,
Pia=1la, pua=lss, pis=lotlz, pie=1lu—1ly.

Since quadratic relations like (5.3) do exist, the problem of the algebraic inde-
pendence of these sets of quadratic covariants is not obvious. It is analyzed in the
next section.
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6. Almost Integrable Mappings

The orbits of a particular group of birational transformations I';, are included into
the intersection of quadrics defined by the invariants (p; /p1 = ki, k; being arbitrary
constants). One has to calculate the dimension of this intersection, to confirm
whether they actually are curves or not, as the numerical study suggested in Sec. 4.
Thus one has to calculate the “algebraic rank” of the different sets of invariant
polynomials.©

The results are:

— the orbits of the groups of classes I, II and III are actually included into algebraic
curves,

— in contrast, for class IV, one invariant is missing, the orbits are only included
into algebraic surfaces,|

— finally for classes V and VI, only thirteen algebraically independent polynomials
are covariant, the orbits of the corresponding mappings are only assigned to lie
on three-dimensional algebraic varieties.

In all these cases, the different algebraic varieties foliate the whole parameter
space.

The orbits corresponding to classes I, II and III are actually elliptic curves since
they are algebraic curves stable under an infinite number of aulomorphisms® (or
even they may degenerate into rational curves).!'? Thus the corresponding map-
pings are integrable. This situation is very similar to the one encountered with
the birational mappings associated to the sixteen-vertex model® & In terms of dis-
crete dynamical systems, these three classes provide new interesting examples of
integrable mappings, since the parameter space is a 15-dimensional one.

In contrast algebraic calculations of Sec. 5 for classes IV, V and VI, do not
enable one to understand the numerical calculations of Sec. 4: either the curves of
Figs. 4, 5 and 6 are not really curves (but for instance fractal-like set of points with
Hausdorff dimension very close to 1), either one does have algebraic curves and
some covariants are missing, and have to be hinted among polynomials of higher
degrees, or the curves are not algebraic anymore but {ranscendental. To clarify
this point let us come back to a more detailed numerical study on classes IV, V
and VL

©The “algebraic rank” of a set, S, of polynomials denotes the cardinal of the biggest subset of S,
whose elements do not satisfy any algebraic relation. It corresponds to the rank (in the common
linear éense) of the jacobian matrix of the polynomials with respect to its variables (which are
here the entries of matrix R). Since the homogeneous parameter space is a sixteen dimensional
one, an algebraic curve corresponds to fifteen algebraically independent covariants.

{1t is shown in Ref. 24, that these surfaces are actually planes.

&For lattice models of statistical mechanics one should not confuse the Yang-Baxter like integra-
bility and the integrability of the birational transformations associated with the inversion sym-
metries, acting on the parameter space of the model.1’? The sixteen-vertex model is said to be
“quasi-integrable”, and not integrable.®
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Fig. 7.

Iteration calculations with high precision does not exhibit any subtle fractal-
like difference with curves: Figs. 1 to 6 are actually curves as far as high precise
computations are concerned. These numerical figures are highly stable under very
large number of iterations (more than 10°), moreover they also remain stable under
perturbations of the initial matrix. Nevertheless strong enough perturbations can
make some of them explode, as shown on Figs. 7a and b. This rules out the existence
of some additional algebraic invariant, and shows that, in some domain of CPs,
one actually has non-algebraic (transcendental) curves.” Such a situation, where one
gets transcendental curves in some regions of the parameter space, will be denoted
“almost” integrable.

More precisely Figs. 5 and 7a correspond to the iteration of K, , where ¢y still
denotes transposition [a; — b3] of class V. Figure 7a is clearly a curve (as well as
Fig. 5) made of a set of “bubbles”, and Fig. 7b corresponds to an “explosion” of
these curves in a spray-like set of points. Such a situation, detailed here for class

h At this point it is worth recalling Serre’s GAGA theorem32:33:31 (pp. 164-171). In particular,
every analytical curve in a compact space (like CP. projective spaces) is necessarily an algebraic
curve. The “smooth” curves one sees on Figs. 4, 5, 6, 7a and 8a, cannot be C-analytic, since,

if analytic, they would be algebraic, and then one would have a foliation of the whole parameter
space, which is not (see Figs. 7b and 8b).
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V, also occurs for class IV and VI, with similar occurrence of curves and “bubble-
curves”, and breaking of the curves into chaotic figures. For instance for class IV,
Figs. 8a and 8b correspond respectively to a curve made of seven “bubbles” and to
an explosion into a spray of points.!

The situation one encounters here, is visually similar to the one described by
Siegel’s theorem.2"3% This theorem corresponds to describing the iteration of a
quadratic transformation on one complex variable, namely

z— Az 422 (6.1)

where A = €279 @ being diophantian. Siegel’s theorem shows that, in some neigh-
bourhood of z = 0, these ilerations yield curves holomorphically conjugated to cir-
cles. These curves are R-analytic {ranscendental curves and are included in some
domain with an involved Julia set-like frontier.34-3¢ The situation encountered here
with these birational mappings seems, as far as the visualization of the orbits is
concerned, more related to Siegel’s theorem than to the KAM theorem. This is

(a) (b)
Fig. 8.
1We would like to thank C. M. Viallet for large number of iteration calculations with high precision

(150, 200, 250 digits}, which confirm these curves and “bubble-curves” are actually curves, and
that the chaos occurring in Figs. 7b and 8b is not a numerical artefact.
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Fig. 8. (Continued)

well illustrated by Fig. 8¢} which represents a set of orbits corresponding to the
iteration of K?I .» near a fixed point of this transformation, in the very plane sta-
ble under K?  (in contrast with arbitrary two-dimensional projection). One does
not see any rapid succession of ordered and disordered regions like in the KAM
dynamics (Ref. 22).% However more detailed analysis seems to show the occurrence
of “bubbles-curves” in any neighborhood of the fixed point(s). Hence one does not
really have foliation of some continuous domain of the parameter space in curves
conjugated to circles. In fact it will be shown in Ref. 24 that, at least for class
IV, one does not have any hidden complex structure enabling one to introduce a
complex variable z, but that transformation K?IV actually reduces to a birational

transformation in some (a, b)-plane reading (with origin taken at some fixed point
of K2, ):
a cosf sinf\ (a Ry(a, b)
(b) - (—sinf) cos@) (b) + (Rg(a, b) (6.2)

JWe thank M. P. Bellon for providing this figure and for numerous parallel calculations.
KIn our examples the dimension of the parameter space is arbitrary (odd or even) and one has no
obvious symplectic structure. One is not exactly in the framework of the KAM theorem.
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where R;(a, b) and Rz(a, b) are simple rational expressions of a and b, the lowest
degree of their numerators being greater than two.

In order to study from another point of view, this distinction between integrable
and “almost” integrable mappings, let us recall in the next section some results
obtained in Refs. 24-26: one can associate to these birational mappings new re-
currences in a single variable. This makes the numerical iterations simpler and
numerically much more controlled.

7. From Birational Mappings in CP q* — 1 to Recurrences in One Variable
7.1. Factorizations and integrability

With the method described in Refs. 24 and 25, one can exactly study the iteration
of Ky = tI on an arbitrary ¢ x ¢ matrix. This exact study brings out remark-
able factorization properties for these (g2 — 1)-dimensional mappings.?* In terms of
homogeneous variables, K; is a homogeneous polynomial transformation of degree
(g—1), thus (K;)"(R) is a priori a matrix whose entries are homogeneous polynomi-
als of degree (¢—1)". In the cases considered here, the entries of (K,)"(R) matrices
happen to factorize, and since they are homogeneous, they can all be divided by
their greatest common polynomial divisor. These homogeneous polynomials which
factorize in all entries can be expressed in terms of some elementary polynomials
(related to determinants), we will denote the f,’s (see Refs. 24-26). Thus, the de-
gree of transformations (K,)" falls sometimes to the point of being polynomial in
terms of the variable n.24?% In other publications,?4-26:37:38 the link between this
polynomial growth instead of the generic exponential grdwth, and integrability is
detailed.?4726:3%38 Indeed, if one can easily imagine that the integrable mappings
do have a polynomial growth of the “complexity”, the reciprocal statement is far
from being obvious.3”

In fact the degree of transformation (K;)" becomes polynomial for all the map-
pings of classes I, 11 and 111,24 and even for the mapping associated with the sixteen
vertex model of statistical mechanics,?¢ that is for all cases corresponding to inte-
grable mappings (see Sec. 5). This degree is exponential for the three remaining
classes IV, V and VI, which does not correspond to integrable mappings (Ref. 24).!

Let us illustrate these factorization properties on a lattice model of statistical
mechanics. For instance, let us consider the symmetry group of the sixteen vertex
model.® This infinite discrete group is generated by the matricial inverse I and a
permutation of entries denoted ¢1.526 Namely ¢; permutes the two off-diagonal 2 x 2
blocks of the 4 x 4 matrix.%26

When dealing with birational transformations associated to the sixteen vertex
model® the polynorﬁials which factorize are given in terms of some elementary ho-
mogeneous polynomials, denoted F, (instead of f,).242° Let us denote M, the
successive “reduced” matrices equal to (K¢, )*(R) divided by the greatest polyno-

THowever this exponential growth is independent of ¢ and in fact strictly bounded by 3™ (in
comparison with (g — 1)™ generically).
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mial which factorizes in all entries of (K, )"(R). M, denotes the initial matrix R.
One does not have any factorization for the first two iterates

M, = Ky, (M), M,= K, (M) (7.1)

but one does have faclorizations for the next iterations?425:

Ki(Mpy1) = F2 - Mpyq . (7.2)

Moreover the F,’s do satisfy the relation®%25

det(M,,.H)

3 (1.3)

Fn+2 =

When it is possible to find some particular patterns for matrix R, compatible
with the action of K, one can consider a “restricted factorization” problem where
all the iterated matrices K"(R) are actually of the same form.!*!* Because of
the particular forms of the matrices some additional factorizations may occur.?®
The analysis of such “restricted factorization” problems deserves some attention,
especially because many such patterns correspond to interesting lattice models of
statistical mechanics.!? Let us take a simple example in order to explicit the relation
between these factorizations and the Pliicker-like K;,-invariants.5 For instance let
us consider a well-known subcase of the sixteen vextex model: the Baxter model.?®

7.2. Relation Between Invariants and Factorizations for the Baczter
Model

Let us show how the various “determinantal” quantities F,,’s, (see Eq. (7.3)) which
emerges from the analysis of the iterations of transformation K;,,24?% are actually
related to well-known algebraic invariants of the Baxter model.3%4°

Let us recall the R-matrix of the symmetric eight-vertex model*!:39:

(7.4)

/KR © O© K
(=B =]
(=== S T =)
QRO O A

Introducing the row-to-row transfer matrix T'(a, b, ¢, d) deduced from the previ-
ous R-matrix (see Ref. 39), the Yang-Baxter equations show that one has a family

of commuting transfer matrices390:42;
[T(a, b, ¢c,d), T(d", ¥, c,d')] =0 (7.5)
if
a2 + b2 _ CZ - d2 a/2 + b12 — c/?, _ d12 ab ab
ab = 't o GEage 09
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One also has a Hamiltonian which commutes with the whole family of commuting

transfer matrices.*?
H=Y) (Jo o5 onpi+Jy ob ol + 12 0h oyy) (7.7)
n
with
Je=ab+ecd, Jy=ab—cd, J,=(a®+b*-c*-d?)/2. (7.8)

These three quadratic polynomials J;, Jy and J, are ezactly the equivalent, for the
Baxter model, of the p,’s previously introduced (see Sec. 5), and also introduced for
the sixteen vertex model.> The two algebraic invariants (7.6) are obviously related
to the above three homogeneous invariants Jg, J, and J, (7.8).

It is important to note that the study of the iterations of K;, not only brings
out factorizations of determinantal-like polynomials F, (see (7.2), (7.3)), but also
show thal these very expressions do salisfy recurrences.2®?® For the sixteen vertex
model, and of course for the Baxter subcase, these recurrences happen to have a
particular form: namely some rational expression of the F},’s is invariant under the
shift n — n + 1. The corresponding (homogeneous) invariant Z reads?*2%:

Fn—ZFn+2Fn+3 - Fn-—anFn+4 _ Fn—an+3Fn+4 - FnFn+an+5

2 =
Fn-an+2“ ﬂ+3Fy? FnF3+3—Fn+4F3+1

I=

(7.9)

In terms of these various well-known homogeneous invariants (7.8), the expressions
of our new K, -invariant Z is remarkably simple and symmetric:

I= e+ Ldy+ Jod)(Jody = Jodp + T2 0,)
X (Jody = Jodo — Jod))(Jady + Jodg = T2 0y) . (7.10)

At this point one realizes that one has, at least, two approaches of the integrability
of birational mappings:

~— one previously developed (see Sec. 5) which amounts to a study of the algebraic
invariants of the birational mappings in terms of Pliicker-like variables or from
a systematic search of the lowest degree invariants.!»2

— another one which concentrates on the analysis of the factorization properties
of the iterates of transformation K, (see Eqgs. (7.2) and (7.3)). This section,
and in particular Eq. (7.10), clearly shows that these two approaches are closely
related.

Moreover the F,,’s can be expressed in terms of determinants (see relation (7.3)).
Hence one can get easily convinced that 7 is invariant under conjugations of the
initial matrix Mo = R, which are t;-compatible. This property is reminiscent
of the weak-graph duality symmetries*® of the sixteen vertex model: actually it
has been shown in Ref. 5 that one can construct from the previous I'y-covariants
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Pa’s (see Sec. 5) more “sophisticated” (and higher degree) covariants taking also
into account the weak-graph duality invariance. This correspondence between these
higher degree I';-and-weak-graph duality invariants and the determinantal invariant
Z can be detailed explicitly for the Baxter subcase. These results are given in the
Appendix.

8. Recurrences

Factorizations of the K™ (R) matrices (see Sec. 7.1}, of course, yield factorizations
of their determinants. However these determinants factorize even more: one also
has similar factorization equations as Eq. (7.3) for all the six classes I, ..., V1.2472¢
For class 1, and surprisingly for the generically non-integrable mappings of class
IV, the determinants of the K" (R) matrices actually salisfy recurrences of a very
simple form.?%2% Let us give here some results obtained in Ref. 24 concerning these
recurrences.

Actually the recurrence obtained for class I is exactly the same as the one cor-
responding to the sixteen vertex model (see Eq. (7.9)) up to a simple change of
variables?® and can be written in a more compact form in terms of some homoge-
neous variables g,,’s (simply related to the £n’s),% namely

Gn —qn+1 1 gng1 —dne2 1 (8.1)
In—1 — dn42 dn n+1 In — qn+3 In+1qn+2

The recurrence obtained for class IV is actually different and reads??

9n+3 — Gn+1 1 _ In45 — Gn43 1 (8.2)
In+4a — qn In+3 In+1 In+6 — dn+2 In+5 In+3

In this last case, the relation between the f,,’s and ¢,’s is not as simple as for class
1.24

Note that recurrences (8.1) and (8.2) are still valid for classes I and IV general-
ized to ¢ x ¢ matrices. One thus has universal recurrences independent of q.**
Let us now study the possible integrability of these recurrences.

8.1. Omne tntegrable recurrence: class I

In fact, Eq. (8.1) can be “integrated”

i 1
Gn42 — @n-1= —A- ( - —) (8.3)

dn+1 an

which can be rewritten as

A
=Qn-1+ — 8.4
dn+1 n-1 n ( )

dn+2 +
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or, equivalently:

A
n +qnt1 + qnp2 + =¢n-1tqn+qny1 + q—- . (8.5)
n

dn41

The value of the left or the right-hand side of Eq. (8.5) is denoted p.
On the other hand, one has

A A A -
Int2 + PR + Pt (qn + qn_1> (anl . (8.6)
Denoting
Qnt1 =gnp1 + qin (8.7)
Eq. (8.6) can be rewritten
Gn * Qnt2 = gn-1-Qn (8.8)
or equivalently:
Gn “Qn42 " Qns1 =Gn-1"Qn  Qny1 . (8.9)

The value of the left or the right-hand side of Eq. (8.9) is denoted .
One also has

In - Qni1 = Gndnt1 + A (8.10)

and

I p
g — guey = = , 8.1
ptn ntl qn - Qn+1 n gn41 + A ( )

finally giving a biquadretic equation relating ¢, and gn41:

(P =80 — gn41)(gn Gne1+A) = 1. (8.12)

It is well known that biquadratic equations are associated with elliptic curves.®

Hence this recurrence on one variable has an elliptic parametrization, corresponding
to the biquadratic relation (8.12).™
To keep track that recurrence (8.1) enables to calculate g,44 in terms of ¢n,
dn+1; gnt2 and gn43, one can, for instance, express A, g and p in terms of the first
four g¢,,’s%4:
)= 99293~ q) (8.13)
92— N

MRecently systematic approaches have made their appearance in the analysis of integrable map-
pings. Among these, one should mention the work of Quispel and other authors who have presented
a wide class of mappings of the form zn41 = f(Zn, Zn-1) which can be seen as discretizations of
second-order ordinary differential equations related to elliptic functions.44-5¢
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K (o+ ¢ —q2— 933(40 01— 92 93) (8.14)
(91 — q2)
_ 2 _ g2
p= 00 —q2ast9i—a5 (8.15)
0 — 92

Note that there is no longer any ambiguity in the determination of g,4; in terms
of the previous g¢,,’s (because of some remarkable factorizations) in contrast with
what could have been imagined considering the second order (in ¢n+1) Eq. (8.12).
For instance, one gets ¢4 in terms of gg, ¢1, ¢2 and g3 as follows:

_ 0 (0t 9 95— 0~ q0 ¢)
g3 (11 — ¢2)

q4

8.2. One “almost” integrable recurrence: class IV

The left-hand side and the right-hand side of Eq. (8.2) are the same up to a shift
of two. Therefore introducing the two constants of integration Ay and Ag, one can
see that Eq. (8.2) is equivalent to equation

1 1
Gnt+a — Gn = An - ( - ) (816)

dn+1 dn+3
where Az, 41 = A1 and Ag, = Ao,
Since Ap42 = A, one can rewrite (8.16) as

An+2

A
dnta + nya + . =gnio+ gn + —— . (8.17)

n+3 In+1

One sees that Eq. (8.17) relates the left hand-side and the right-hand side by a shift
of two, leading one to introduce two new constants of integration

A
dnt2 + 40 + p = =p, (8.18)

where pap41 = p1 and p2p, = p2."
To go on with this integration one has to write an equation similar to (8.6),
which reads

A A A
gnta + nt? o Gn + —— = <11n+1 + ’—") An (8.19)
In+3 In+1 dn / Gn+1

Unfortunately Anpt2 # Ants and one does not have any other covariant expression.

NSimilar recurrences depending on the parity have been analyzed in Ref. 48 (see p. 1827).
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Nevertheless, one can study the restricted recurrence, corresponding to A; =
A2 = A. In that subcase this recurrence is actually integrable and closely related
to recurrences and biquadratic relations studied in the previous subsection (see
Eqgs. (8.4), (8.6) and (8.11)). Equation (8.19) becomes

A A A qn
+ =g+ = + — . 8.20
It s T ot (q"“ qn) Gn+1 (8:20)

With the same variables @,, as in previous section, Eq. (8.20) reads

Qnia = qq:1 Qn+1 (8.21)
n

which can be rewritten as

Gnt1 Qnya Qn+3 Qn+2 ={Gn Qn+3 Qn+2 Qn+1 . (8-22)

This last equation enables one to introduce a new constant of integration .
With variables @, equations (8.18) yield

Qn42=Pn—n . (8.23)
From Eqgs. (8.22) and (8.23), one gets
B=0n Qns1 Qni2 Qnys
= (Pn = @n) (Pnt1 = @n+1) (In Gnt1+ A) (8.24)
yielding two biquadratic equations

(P2 — q2n) (1 — 2041 )(92n G241 +A) —p =0

(8.25)
(P2 — Q2n42) (Pl - (12n+1) (Q2n+2 92n+1 + /\) —pu=0.
Let us introduce the biquadratic polynomial B(z, y):
B(z, y) = (zy + A)(z — p1)(y — p2) — 1t - (8.26)

In the (¢n, gnt1)-plane, these successive points respectively lie on two biquadratic
curves depending on the parity of n, namely, if n is odd B(z, y) = 0, and B(y, ) = 0
if n is even.

This shows, in the A} = A; = X subcase, that recurrence (8.2), or equivalently
recurrence (8.16), is an integrable recurrence. The algebraic elliptic curve corre-
sponding to the biquadratic Eqgs. (8.25) is well illustrated on Fig. 9a which shows
the iterations of transformation K, in the (¢n, gn+1)-plane. Figure 9a correspond-
ing to a recurrence in one variable in the (g,, gn+1)-plane has to be compared with
Fig. 4, which corresponds to the iteration of transformation Ktzw seen as a bira-
tional transformation in a 15-dimensional space. This A; = A, integrable subcase
can be rewritten as a condition bearing on the ¢,’s. This integrability condition is
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obviously stable under the recurrence, since it is similar to Eq. (8.2) with a shift of
one instead of a shift of two. One can express this condition in terms of the initial
values of the ¢,;’s :

04929305 — ¢4 Q2 1 95+ Q49245 — 4301 42 + 43919094 — G391 o g2 =0 . (8.27)

For 4 x 4 matrices it is possible to rewrite condition (8.27) as an integrable
codimension one subvariety of the parameter space CP1g.This integrable subvariety
will not be written here.

For A; # \,, we have systematically considered the iterations of transformation
K;,, in the (g,, gn41)-plane. Remarkably, for a large set of initial conditions for
the iterations, one still gets curves: these curves are highly stable even after more
than one 10° iterations!!

When leaving the A\; = A, integrability condition, one recovers the same phe-
nomenon as the one described in Sec. 4: on Fig. 9b the “trajectories” of the iteration
still lie on curves (up to the computer precision), even when the deformation param-
eter 8§ = A1 — Ag is not small anymore. For increasing values of §, one recovers some
features of the well-known route to chaos.2-3% These curves can deform more and
more, and sometimes a finite number p, of “bubble-curves” pop out (see Fig. 9c¢).
This finite number p, corresponds to the occurrence of a specific period®® in the
dynamics of the problem. Instead of iterating the birational mapping Ky, , one can
iterate KT, : this new iteration “extracts” one bubble out of the p ones. One notes
again that, whatever the number of bubbles is, these “trajectories” actually do lie
on curves, also stable even after a large number of iterations (greater than 10°).

For sufficiently large deformation parameter 6§, one can see these curves or
“bubble-curves” explode in Cantor-like spray figures (see Fig. 9d), clearly show-
ing that recurrence (8.2) is not integrable, though it is integrable in the A; = A,
subcase, and though corresponding iterations very often yield highly stable (tran-
scendental) curves. For not too large “deformation” parameter §, the “trajectory”
curves (see Fig, 9b) are similar to the biquadratic elliptic curves (8.26) (see Fig. 9a).
Figure 9¢ and chaotic Fig. 9d again show that the curve of Fig. 9b is not algebraic.®

These examples are reminiscent of the KAM theorem, where the range of stabil-
ity of the KAM tori is quite large?253:5¢ like in Siegel’s theorem.?”"3 This situation
justifies further analysis to understand the occurrence of curves and the remarkable
regularities of these mappings, which are not a consequence of some hidden com-
plex structure like in Siegel’s theorem.?? This study of a one variable recurrence
associated with class IV is complementary of the one performed in fifteen variables
(see subsection 6) and actually confirms the “almost” integrability of this class of
mappings.

°We thank B. Grammaticos and A. Ramani for providing an analysis of (8.2) and (8.16), with
the help of their singularity confinement method,*8:44:4? which confirms our visualization analysis
showing the generic non-integrability of (8.2) and also that one algebraic invariant is actually
missing (see Sec. 5).
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Fig. 9.
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Note that one can also associate to class IV a mapping in CP3 as follows:

A1
In41

Int2 = P1 — qn —

8.28
Az In41 ( )

(P1 = @n) Gn41 — A1

In4+3 = P2 — Qnyl —

Remark that mapping (8.28) in CPj; is also a birational mapping. One gets
(¢n; gn+1) in terms of (gn42, gn+s) from Egs. (8.28), with the changes

Al Ay, p1eopr, G Gni3 ;s  ntl < Qny2 -

This complementary approach, which associates with 15-dimensional birational
mappings, non-linear recurrences on a single variable, can also be envisaged for
the four other classes (I, III, V and VI). Actually, we have been able to associate
to these four classes either recurrences on two variables or even (for class III) a
recurrence on a single variable (which is not simply related to the determinant
of the 4 x 4 matrix).?* The elimination of the second variable can, in theory, be
performed but calculations are much too large.?* Moreover, similarly to class IV
(Eq. (8.28)), one can theoretically associate, with each class, mappings in various
projective spaces CPy,, n running from 1 to 15.

8.3. Generalization of the recurrences: more “almost” integrable itera-
tions

These ideas naturally lead to consider a generalized problem (which is the straight
generalization of the system of recurrences (8.18)): the analysis of the iterations of
the p-recurrence

dnid + gnyo + An = Pn (829)
In+3
with Apyp = An and pnyp = pn.

Figures 10a and 10b correspond to p = 4, and Fig. 10c illustrates p = 5. One of
the most striking features of such systems of recurrences is that the visualization
of the corresponding iteration again gives curves. These orbits of course reduce,
inthe \y = XAy = --- = A, and p; = p; = -+ = p, limit, to algebraic elliptic
curves associated with biquadratic equations such as (8.25). Again for quite large
perturbations from this integrable limit, one can get non-algebraic curves. Such
p-recurrences induce a natural period p, even before any “bubbles”, like the one
previously described in subsection (8.2), occur. Once more, one should remark
the astonishing numerical stability of these calculations. This again provides new
examples depending on an arbitrary number of parameters (A1, ..., Ap, p1, ..., pp)
of KAM theorem where the KAM tori (curves here) remain actually stable for large
perturbations from the integrable situation?? like in Siegel’s theorem, 2730
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(<)

Fig. 10.

Again, let us underline that this situation is remarkable: most of the generaliza-
tions of (8.18) yield more standard KAM-explosion.?? For instance, one can easily
verify with the iteration of the recurrence

Gtz +(1+€)gn + =p (8.30)

In+1
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that the integrable curves (corresponding to € = 0) explode in chaotic set of points
even for very small deformation parameter e.

9. Generalization to Other Permutations

Let us come back to transformations acting in CP;5. Birational mappings associ-
ated with more general permutations of the entries of the 4 x 4 matrix can also be
studied systematically.2® Some examples related to lattice statistical mechanics in
%17 yielding algebraic
elliptic curves or algebraic surfaces. Since the permutation group of the sixteen

dimension two or three have already been analyzed in detail?

entries of a 4 x 4 matrix is very large the associated birational mappings cannot
be analyzed systematically? 2°: for the sake of simplicity one can first imagine
restricting to permutations which are the product of two elementary transpositions.

Even restricting to such permutations one has to deal with too large number of
permutations and therefore of associated birational mappings. Of course, one still
has relabelling of the rows and columns of the 4 x 4 matrices and, as a consequence,
equivalence classes of permutations. Since this number is still too large, one will
not try to be exhaustive, but only consider some specific examples. Let us consider
the permutations

{a2 & a3, dy & d3}, {bs & ca, by & 1}

The iterations of the birational transformations in CPjs respectively associated
with these permutations correspond to Figs. 11a and 11b in the same order.

Considering these two “trajectories”, one remarks that the “density” of points is
similar to the one given in Refs. 4 and 17, where algebraic surfaces occur. Actually
one can exhibit algebraic quadratic invariants similar to those given in Sec. 5, and
show that these orbits also lie on algebraic surfaces.

10. Comment: “Almost Curves” Versus Surfaces

Let us compare the “trajectories” corresponding to permutations associated with
class IV (see Figs. 4, 8a and 8b) and the “trajectories” corresponding to one of the
two examples of the previous subsection (9) (see Figs. 11a and 11b). In both cases,
one has the same number of independent algebraic invariants (namely thirteen).
Figure 8b corresponds to a chaotic regime of the “trajectories” of class IV : the
points actually wander in a chaotic manner on the algebraic surface given by the

PThe previous exhaustive analysis on the transpositions cannot be generalized straightforwardly
to arbitrary permutations of the entries, since there is no compatibility between the product in
S16 and our groups: I'y s properties cannot be generically deduced from the analysis of I'; and I,/
The only simple compatibility is the equivalence relation yielding the six classes of transpositions.
Of course this equivalence relation also yield classes in all S16, but the number of permutations to
study still remains too large.
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Fig. 11.

intersection of these thirteen quadrics. This chaotic trajectory is reminiscent of
the transcendental curves one had before this explosion (see Fig. 4). Clearly the
density of points is drastically different from the ones on Figs. 11a and 11b, or from
the examples detailed in Refs. 4, 5 and 17, which correspond to some uniform-like
density on algebraic surfaces seen as two-dimensional tori.

One can imagine to “upgrade” the distinction between integrable and “almost”
integrable mappings, illustrated by the emergence of transcendental curves, to a
distinction between mappings yielding either algebraic surfaces foliating the whole
parameter space, or transcendental surfaces in some domain of the parameter space
(see Fig. 8c). Again these surfaces can then explode into some higher dimensional
algebraic varieties.

The examples detailed in this paper (in particular classes IV, V and VI) suggest
to introduce some “double graduation of this almost integrability” d, d' (d < d'),
d corresponding to the dimension of the manifold the almost integrable mappings
densify (apparently) uniformly, and d’ the dimension of the algebraic variety, in
which the previous manifold will pop out. Integrable mappings correspond to d =
d’ =1, while conditions d = 1 and d' > 1 define “almost” integrable mappings (for
instance d’ = 2 for mappings of class IV, d’ = 3 for mappings of classes V and VI).
In contrast, for the mappings described in Sec. 9, d is no longer equal to 1 and one
hasd=d =2.
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11. Conclusion

We have studied a set of birational mappings which have first emerged in the analysis
of the symmetries of lattice model in statistical mechanics. We think they could be
powerful tools to study the route from integrability to chaos in discrete dynamical
systems.

The set of such transformations is very large, as large as the number of permuta-
tions of ¢2 elements: we have thus restricted ourselves to elementary transpositions
and shown that this restricted subset of mappings fall in six classes for ¢ > 4. Three
of these six classes (namely I, II and III) are integrable mappings, their iterations
giving algebraic elliptic curves, which can be written as intersections of fourieen
guadrics. Even when these mappings are not integrable, they do present remark-
able properties: their iterations actually lie on curves for some domain of initial
points. For class IV one even has an integrable subcase (on some codimension-
one algebraic variety) with again algebraic elliptic curves. These mappings exhibit
many of the well-known chaotic features of discrete dynamical systems, such as the
occurrence of periods, explosion of curves in Cantor-like spray of points ... How-
ever one notes several regularity properties of these mappings. First, the initial
points, whose orbits are curves are not rare. This provides an illustration of a tran-
sition from integrable dynamical systems strictly speaking, with their associated
algebraic elliptic curves, to more chaotic situations through highly stable curves, or
set of points which cannot be numerically distinguished from curves. When curves
they are transcendental and thus one would like to understand, in the absence of
any algebraicity or any conformal structure, what is the hidden structure (symme-
try) which forces the iteration to lie on such curves.? It will be shown in parallel
publications that, at least near some fixed points of transformation K2, this situa-
tion is visually similar to the one described in Siegel’s theorem?”3 but is definitely
different®* (see Eq. (6.2)).

Moreover, the calculations of these iterations happen to be amazingly stable,
when one gets curves. It is important to note that such a stability phenomenon is
not the classical siluation of stable fired poinis (or even curves or varieties), with
negative Lyapounov exponents. One has no isolated contractant curve : in some
domain of CP35 one has stable curves, which seems to be arbitrarily close. The
stability one encounters is a global stability of the curves : one has a stability
property when leaving the curve, however, the calculations are quite unstable along
the curves. This “dual” stable bebavior (stable in the neighborhood of the curve,
unstable along the curve) is the reason why our visualization approach works so
well. We will try in forthcoming publications to better understand the remarkable
numerical stability of such birational mappings.

90ne could imagine that these curves are solutions of some hidden PDE or differential equations
having these birational transformations as symmetries. In fact, for the same reason that Figs. 7b
and 8b ruled out the existence of some additional algebraic invariant, one can certainly also rule
out the existence of such hidden PDE or differential equations.
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Finally associating with these mappings in CP 2 _, a non-linear recurrence
bearing on a single variable enables to cross-check the numerical and analytical anal-
ysis. In particular the algebraic elliptic curves in CP15 correspond to biquadratic
curves in the (gn, gn+1)-plane, for the sixteen-vertex model, for class I and for class
IV when integrable. The analysis of the “route to chaos” is easier to perform on
these non-linear recurrences, while the “graduation” (d, d’) can only be defined
for mappings in CP_. _ ; and enables to discriminate between various chaotic sit-
uations occurring for recurrences on a single variable. For instance, the chaotic
Fig. (9d) corresponds to an explosion in an algebraic surface (see Fig. 8b), that is,
to a “less” chaotic situation than the one corresponding to class V (see Fig. 7b), for
which the “explosion” takes place in a three-dimensional algebraic variety.

This remarkable correspondence between birational transformations in (Cqu _1

and non-trivial non-linear recurrences in one variable should certainly be inter-
preted in terms of Grassmannian structures3! associated with elliptic curves. The
introduction of Pliicker-like variables {see Sec. 5) for the CP15 mappings, and of
determinantal variables as far as recurrences are concerned (see (8.1) and (8.2)),
strongly suggests such structures. This approach is clearly a fruitful one since these
structures are not restricted to integrable mappings, but can also be introduced for
more general mappings and their corresponding algebraic varieties (see Sec. 5).
In parallel publications?4 2637 one will further analyze the six classes of map-
pings defined here in order to shed some light on the relations between different
properties and structures, such as the polynomial growth of the complexity of their
iterations, the occurrence of factorizations (see Eqs. (7.2) and (7.3)), the existence
of recurrences bearing on the factorized polynomials f,’s (see Eq. (7.9)) and finally
the relation with the integrability of these mappings.
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Appendix
Let us consider the Baxter model (see Sec. 7.2) and Egs. (7.8), (7.9) and (7.10)).
Let us also introduce the symmetric expressions of the variables J,, J, and J,:

s1=de+dy+Js, sa=Jody+dyJs+Jods, s3=Judy s . (11.1)

A set of algebraic homogeneous expressions denoted Iy, I, ..., Iz and K3, K3
and K4 has been introduced in Ref. 5. They are covariants under transformation
K, and also have covariant properties with respect to the so-called weak-graph
transformations.*® These new invariants Z;, Zo, ..., Zs read in the terms of the
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symmetric expressions (11.1).

ITi=I,=2s1, I3=T4=0, Is=7Ts=96(s%—3s,),

Iy =T3=64(95155 — 255 — 2T s3) . (11.2)
The K;,-and-weak-graph invariants Ks, K3 and K4 (Ref. 5) read:
Ky=-8(C+J?), Ks=—16s3, K4=16(C*-3D) (11.3)
with
C=J2+Ji+J2, D=J2J}+J2I2+J2J2 (11.4)
and also
7= sg — 453 53(s1 52— 253)
= (Ts — 24T (T2 — 401272 — 321 T, T — 3207} Is
— 1280237, 4 5127} — 6417%) . (11.5)

The expression of 7 is related to the K, -and-weak-graph invariants K, K3 and K4

(Ref. 5) as follows:
A0+AII+A212+A313:0 .

(11.6)

The expressions of the A,’s of (11.6) in terms of the K, -and-weak-graph invariants

K2, K3 and K4 read:
Az = —1082535236962615296

Aq = 37180995010560 K3 + 2062653748936704 K2 — 452955840970752 K2 K4

+ 5062877383753728 K5 K2

Ay = —238878720 K3 — 1294932639744 K3 — 7080152924160 K2 K, K'2

+ 1269942976512 K3 K4 K2 — 104979234816 K3 K3 + 626025037824 K3 K3
+ 7484866560 KS K4 + 1743496151040K5K 4 — 7253886763008 K2 K3
— 92398288896 K3 K2

Ao = 373248 K5 K2 + 66187368 K§ K3 + 3712464576 K3 K'S + 76087296 K3 K3

— 226492416 K3 K2 + 1119744 K2 K3 — 12828672K3 K5 — 46656 K3° K4
— 1461583872 K3 K3 + 729 K12 + 7163154000 K3 + 268435456 K'§

— 13934592 K7 K4 K2 4 207028224 K2 K5 K2 4 7622387712 K3 K3 K3

— 1157504256 K3 K3 K4 — 8396835840 K, K§ K, — 1245708288 K3 K3 K2
+ 2566914048 K3 Ko K2 .
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