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Abstract

We analyze discrete groups of symmetry of vertex models in lattice statistical mechanics repre-
senting them as groups of birational transformations. They can be seen as generated by invelutions
correspending respectively te two kinds of transfermations on ¢ % ¢ matrices: the inversion of the
¢ q matrix and an (invelutive) permutation of the entries of the matrix. Weshow that the analysis
of the [actorizations of the iterations of these transformations is a precious tool in the study of
lattice models in statistical meehanics. This approach enables io analyze two-dimensional ¢'-state
verlex madels as simply as three-dimensional verfex models, or higher dimensional vertex models.
Virious examples of hirational symmetrics of vertex models are analyzed. A particular emphasis is

devoted to the Bd-state cubic vertex model which exhibits a polynomial growth of the complexity
of the calculations, We also concentrate on a specific two-dimensional vertex model to see how the
generic exponential growth of the calculations reduces to a polynomial growth when the model be-
comes Yaug-Baxter mtegrable. It is also underlined that a polynomial growth of the complexity of
ihese {terations can oceur cven for transformations yielding algebraic surfaces, or higher dimensional

algebraic varietics.
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The f-matrix is & (¢m} x {(gm) matrix which can be seen as g% blocks which are m % m matrices:

AlL1] AlL,2) A3 - All, g]
AR AR AZ3 o Al
= A} A3, 2 Afg3) - AR, 1 (2.3)

Alol Alg.2 Alg3) - Algq]

wheze A[L 1], A[1,7], ..., Alg,q] are m x m matrices. With these notations the patial transposition £,
amounts to permute matrices Afer, 4] and A[B, o).

We use the same notations as in [1, 2, 3], that is, we introduce the following transformations, the
matrix inverse I and the homogeneous matrix inverse [:

I'rR— g (2.4)

I':R— dei{R)-R! 2.5)
l

The homogeneous inverse [ is a polynomial transformation on each of the entries of matrix R, which
associates with each entry its corresponding cofactor.

The two transformations ¢, and [ are inpolutions and 1% = (det(R))* ™2 . Id where Td denotes the
identity transformation.

We also introduce the (generivally infinite order) transformations:
K=ty d and K=t-1 (2.6)

Transformation K iy cleacly a birational transformation on the enfries of matrix R, since its inverse
transformation is [ - 1y which is obviously a rational transformation. K is a homogencous polynomial
transformation on the enlries of matrix A.

3 Two-dimensional vertex models

3.1 Iterations associated with the sixteen-vertex model

The sizteen-verter model corresponds to vertex of (2.1) and R-matrix (2.3) with ¢ = m = 2. In this case
of 4 % 4 matrices, permutation t;, lias already been introduced in the framework of the symmetries of
the sixteen-vertex model [10]. Namely, £, amounts to permute two 2 x 2 (off-diagenal) submatrices of
the 4 x 4 matrix R,

Remarkably, the symmetry group generated by the matrix inverse T and transformation ty, or the
infinite gencrator K = ¢, - I, has been shown to vield algebraic elliptic curves [10] in CPys.

Let us consider 2 4 % 4 malrix My and the successive matrices obtained by iteration of transformation
K =1, I. Remarkably all the eniries of the successive matrices obtained iterating & on My do factorizes
common polynomials. This enables to introduce at each step reduced matrices, denoted M,,. Moreover,
the determinants of these M,’s also factorize. More precisely, similarly to factorizations deseribed
in {1, 2], one has the following factorizations for the iterations of K [1];

My = K(Mg), My = K(M), F = det(Mo), Fs = det(M), Ty = __...%wm_ My = Hm__wiu
1 ¥
and for arbitrary n:
K(M, ) det( M, i
Mugz = =22 1), = nﬂia (3.1)

One also has the following relation:

~ K (Moya) Miia :
L B 3.2
K(Mny2) det( My a) Frug1Fiya v

Cune can also introduce 2 right-netion of K on matrices M, or owany homogeneous polynotial expression
of their entries (such as the F,’s for instance): the entries of matrix M, are replaced by the entries of
K(My). Amazingly, the right action of K on the F,’s and on the mairices M, factorizes Fy and omily
Fy [1]:

(Mp)g = Mugy s (Fa)k = Fuga- ik {3.3)

Denoting «v, Lhe degree of the determinant of the matrix M, and 3, the degree of the polynomial £, one
immediately gets from equations (3.1) and (3.2) the following linear relations (with integer coefficients):

i1 = 3 Fn+ Posz, 3ong = na+8 0., (3.4)

gy +onpn = A+ Buys), 38 = Fapitdpn, Son = eng o+ 16,

ing on the generating funetions:
z a(z) = m .,va Py, Br-1)-alz)rd = 8225,
(1+x)-alz) = 401 +2%)-f(z) +4 (3.5)

From these {actorizations, one can casily deduce linear recurrences on the series av,,, f,,, @, and »,, and,
then, the following expressions for their generating functions:

4(1 + 3z%) _ Aa: e wnmﬁmlu._ S 2t ,
R Bz) = T—ap’ May= St wr) = —— (3.6)

afz) = l-zp"

The cxpressions of the degrees and exponents e, 8, o and 1, respectively read:

=420 +1), fo=2n(n+1), pa=n'-1, vy=mn(n-1) (3.7)

Let, us also mention that, for a given initial matrix My, the successive iterates of My under transformation

K?, move in a three-dimensional affine projective space:

K*(Mp) = af™ Mg+ of™ Mo + ol My + o™ My

My (3.9)

K2 (M) = 6w+ 8 M - 850 My ¢
In term of these homogeneous varables af, of, o , oF (or 67, b3, B, B ) transformation K is represcnted
as a enbic (birational) homogencous transformation:
B = (3.10)
> By Mu; No, Ny, Noy Ny - (o YN0 - ()M - (™)™ () with §=0,1,2,3
Nob- N+ Ny Ny=3
the N's being positive integers, and similarly:

B G = (8.11)

Na

3 Ai(Mai Noy Ny, Na, Ny ) - (85 Moo @My . gel™yva with i=0,1,2.3

No+My+ N4 Na=3

Considering the points in CFPys associated with the successive 4 x4 matrices corresponding Lo the iteration
of My under transformation K (instead of K?), one thus gets sets of points (lying on elliptic curves)



which be 3 to two three dimensional affine subspace of CPys, which also depend on the instial matriz
My in a quive involved way.

Amazingly, the F.'s do satisfy a whole hierarchy of vecurrences [1] such as:

FoFrin = P Fayy _ Pocs By = P By
Foy oy Foga — Fy Py Fogs FoaFusallngy — B FaFliyy o

Let us recall that this very recurrence is inlegrable, yielding algebraic clliptic curves [1]-

Let us remark that, for the sixteen-vertex model, the two directions are equivalent. Therefore, one
can replace, in this factorization anulysis, transposition ¢; by the transposition on direction (2) n_mc.cﬁam
tz. It amounts to a relabelling of the rows and columns of the R-matrix. In fact, product ¢, -2, e.. nothin
but the “total” transposition of matrix I, and thus commute with 1. ¢

After these recalls let us now consider new examples of vertex models.

At : i
3.2 g'-state two-dimensional vertex models
Let us consider a generalization of the sixteen-vertex model for an arbitrary number of spin values. It
corresponds Lo m = q for model (2.1), Matrix (2.3) is now a ¢ x g matrix.

mmrd:m.,._z Lo the ?.ﬁ.sl&ﬁibﬁ described in (3.1), one has the following factorizations for the iterations
of I acting on My, a ¢° x g matrix:

My = K(Mo), My = (M), Fi = deuMy), Fy = det(dy), Fy = SdMa)
e
and for arbitrary n:
| K(Maas)  det{M)
. !ﬁéulu 1 48 = l_ﬂqﬂm' {3.13)
One recovers relation (3.2), independently of ¢
~ K(M, o
Rifoys) = XBhasal . M (3.14)

&nn?ﬂ.ﬂ_+uv For1 oy

Maoreover, one notices that the right action of transformation JC again yields the factorizalion of Fy and
only Iy, enabling to define the exponents i, and 1.

It is clear that these factorizations are straight gencralizations of the one described in section (3.1).
From these factorizations, one can easily get linsar recurrences on the exponents oy, G., 1, and u,:

s+ anir = 0 (Fapr+ Burs)s  @ner = (@F = 1) Bo+ Busns (3.15)
(@ =Vans = eupa + (=2 B,
(@ =1 B = ot @ s, (=D @ = aupr ¢

One deduces the relations on their generating functions:

eoa(z) = (1+(F - 1)) 8=), (L+z) ale) = ¢ (1+2) flz) +°, (3.16)
0 (¢ =2) 27 Blz) = (" ~ Ve —1)-ala)+¢*, @ zple) - e = (P -1)z—1)- A=),
gmefz)~¢" = ((¢* = 1)z - 1) af=)

and the following expressions for these generating functions:

ale) = g+ (" - 1a?) N iz
() I-2)-(I— (@ —2)z+a?) Blx) = O 027" (3.17)
(¢ =1) =) (¢° —2) - =*

wlz) =

0w (- e ta?) T I=n) (- (- 2z +a7)

The expressions of the cxponents e, fu, iy and w, clearly have (generically) an ezponential growlh in
terms of n when g is different from 2. This suggests that the ¢*-state vertex models are not generically
“good candidates” for iniegrability when the number of colors ¢ is not 2 anymore.

Let us recall that a polynomial growth of the caleulations corresponds to cases where the roots of the
denominators of the generating functions a(z), #(z), ... are Nih root of unity. On the explicit expressions
(3.17) one sces that such a situation can only occur when g* is a Titte-Beraha nurnber [13, 16]:

1 .
g = 2+1+ e with N =1 for some integer N {3.18)

A polynomial growth behavionr cannot genericlly occur when g is un integer different. from 2 (or 0...).
In general, ona does not expect the birational transformations defined in [1, 2, 8] from permutations of
cntries of a ¢ x ¢ matrix to be integrable mappings®. It is however important to recall that integrability
cases are pot ruled ont even when g is an integer different from 2

3.3 TFrom exponential growth to integrability

Tt is known that there does exist “Yang-Baxter-integrable” subcases of the generic § X O malrix (and
more generally of the generic ¢* x g* matrix [18]): how is it possible for such miegrable cases to survive
in such a “hostile framework® (exponential growth of the complexity ... ). Does these restrictions ou
the 9 x O matrices change the (generic) exponential growth of the calculations into a polynomial one 7

For heuristic reasons let us, for example, consider a simple pattern fora 9 x 9 matrix corresponding
«d by Stroganov [19]:

1o a vertex model introd

1000 b 0D 0 B
000 c¢0OO0DDOD
00DDO0DU0 e 00
0 c00O0COOGOO0
Rstpap=| b 0 0 0 1 0 0 0 b {3.19)
0000000 ¢ 0
00 e 0DO0O0O0UOD0
1 6000 ¢ 000
b OO OB OO0 01

This madel is known to possess two “Yang-Baxter-integrable” subcases [19):

1—h
¢=1-b, andalso € 5= === (3.20)
140
When restricted Lo one of the two integrability subcases (3.20), the partition function of this model can

casily he calculated using the inversion trick [19]. We consider this very example because it is sinple
{only two parameters and a single one in the integrable subcases) and yields a rotional parameterization
of the integrable subcases of the model ?. We restrict to the first integrable subcase (3.20): ¢ = 1 —b.

Tt us first remark that, in this (rational) subcase, all the birational transformation-symmetries we
cousider are just homegraphic transformations. For instance trunsformations ty, I and K™ read:

b 2h+ 1 N.(b)
it s=1-b, T: b —_ K:ib = —— K": b - —/—— 3:21)
1 b=« — THE P h D, (b) ( )
1 11 however worth recalling t the g-state standard scalar Potts model for which the Lich-Temperley

algebra, 2 matrix representation can be given in terms of matrices of sizes mdependent of g, g becaining & parameter in
the entries of these matilces [17). Therefore one can also imagine to be able ta define the biral nil transformations K for
nom-integer values of q.

I0f eonirse the reader can, 8s @n exercise, rep
“Yung- Baxter-integrable” 9 % 9 matrix patterns, T
ather posst

this inodel and this very form of the 9 % 9 matrix (3.19) by other
stance the salvable g'-state models introduced in [1R] amony many




where the numerators and denominators of the first successive homagraphy K* respeciively read:

Ny =2b41, No = 5b4+3, Ny = 13b-+8, Ny = 345+21 --. (3.22)

Dy =b+1, Dy =3b+2, Dy =8b+5, Dy = 21b+13, Dy = 550434, .-
These successive polynonials can be shown to satisfy the following recurrences:

Mugr = 2N, +Dy,  Duga = N+ D, (3.23)

and the entries of the suecessive matrices M,.’s, previously defined for genéric 9 x 9 matrices
(see (3.13) with g = 3), do factorize:

Fyo= =Nb=1 Fo= =Np (b 1) 0 Ry = Ny (h— 1M 58

and for arbitrary n:

= —Np-(b=1)7 b (3.24)

where the r,'s are the coeficients of the rational function:

. ; i+ 7a? — o
HE) = 1+ z+rg -2 +rg oz 4000 = 3.25
) _ TR (I=2)(1-Tc+a%) (3.25)

All the entries of the M,'s factorize the same polynomial which enables to introduce new matrices M0
which entries are polynomial expressions in b

My = =M™ (b—=1), Ma= M™% (b= 1)% 57, My = —MI™. (b—1)2 350 ..,
and for arbitrary n:
My = =M (h=1)™ e [3.26)
where the 8,'s are the coefficients of the rational function:

) L-o4 8z 28
= 14 s z+gmat Fug 8 fooi = - 7
3 P 8y T Y T (3.27)

Let us sec how these new factorizations (3.24) and (3.26) are actually compalible with the generic ones
(3.13).

The new (highly) factorized matrices MI"'s have a remarkably simple form in terms of the N, s and
Is

Dy i a 0 N, 0 0 0 Na
0 0 0 ~N,op 0 0 0 0 0
(i 0 0 0 0 0 ~Naey 0 0
) 0 =Ny 0 0 i 0 0 0 0
M = | N, 0 0 o Dy o 0 0 Ny (3.28)
a 0 0 0 0 0 0 —N,—y D
0 0 —Nnt 0 0 0 0 0 0
D, 0 0 i 0 =N, il 0 0
Ny 0 o 0 Na 0 0 i Dy,

o

As it should, this matrix (up to the normalization of R[1,1])) has exactly the same form as (3.19)
where b has been changed into K™(b) (taking relation (3.23) into account). The determinant of AfE
can easily be calculated:

det(My™) = —Ni_| (2N, + D) (N, — D) (3.29)

sion aldo reads:

Recalling recurrences (3.23) this exp

det(M™) = — Nyyy - NE_, (3.30)
Recalling (3.24), (3.26), (3.30) and {actorization (3.13) for g = 3, ane can write:
det(Magn)  det(Min) - (b= 1)P e 3
Farz = = - (N (b= 1) Trmyf (B3

s _ .n<:+.m.nm_\ :m?.t LR ..ca_._, —R

This compatibility between the factorizations for the generic 9 x 9 matrices (exponential growth) and the
one for the Strogunou’s model (3.19) corresponds to the follounng relation on the r,'s, the s,’s and the
Bn's:
Brse = 9-(8ugr +80) = 8- (ra+ra=y) + 1 (3.32)
or, in terms of the associated generating functions fA(x), v(x) and s(z):
]
l -z

Bla) = 9z-(1+x)-8(z) —82*-(1+u) r(x) + ~1 =2z + Tzt + 8% (3.33)

which is actually verified.

3.4 Stroganov’s model outside the Yang-Baxter integrability

When Stroganov’s model is not restricled to the Yang-Baxter integrability conditions (3.20) anymore,
the model, despite its simplicity (only two parameters, and a very simple form for the ¢* x ¢* R-matrix
{3.19) ...) 1s not known to be integrable.

Let us examine the factorization properties outside the integrability conditions (3.20) (that is in the
whole (b, ¢} parameter space). The first factorizations read:

yo= = e (2h4 1) (- 1), Fp= ™ b0 b=1)" hyg?, - {3.34)
with:
g = ~1=h+2P+e+ b e, hy = =2—=2b+4b* = be — ¢ (3.35)

new malrie

All the cntries of matrix M, factorize the same polynomial which enables to introdn
MFtron's which eniries are polynomial expressions in b and e

My o= MPTO(h-1)-ef, My = —MJ'™. (b= 1) (3.36)
Furthermore:
det( M) = o8 B0 hy gt det(MI"%) = S (b—1)"-(20+1) hy-gf, -+ (3.37)
with
ga = 2—Gb +4b —e—eb+ 2o —e* —be*, (3.38)
hy = 4+8b— 120 — 160" L 160* — 20— 3eb + 3bfe+ 26%c — 268 — 3bet — 1
The sneressive “reduced” matricos M7*779%s also have a simple form slighily generalizing (3.28):
An 0 0 0 B V] ¥ 0 B,
0 0 0 -C, 0 0 0 o 0
0 0 0 0 3} a -y 0 0
0 -, 0 0 1] ] 0 0 0
MStren = L B D 0 0o A, 0 il 0 B, (3.39)
0o 0 o 00 0 -C, 0

n, 4] 0 0 B, 0 f 0 A



.;a..m is no ,.iu“aoz between the A,'s, B,'s, C\'s anymore (like €, = B,_, for (3:28)). With this
particular form (3.39) the determinant of the “reduced” matrix factorizes, at least, as follows:

AT 0 2
det(MT7%) = - 8. (2B, + ?u : Ams - 4,) (3.40)
The previous expressions gy, Ay, g2, hy simply read:

g=Bi—Ai, b =2B+4), g =Bi—A;, h=2B+ A (3.41)

Therefore one has a representation of K as a birational tronsformation in CPy:

. Co- (Bat Ay) (By—A,) (2But+Ay) By-C
Tﬁ;_ W:.«\uv ey n\w:._.:m:.:_nﬂiuv = i " . By n n T4 :u n n 5
m . H. " v {842)
and a representation of K—1:
Bp (Can—A4,) =B, -C T =
(A By Cu) — (At By, Comy) = (E2 (G2 m A) B G Uin £ Cn)- (0 = 2Cu)Y 5,43

.s&mwm m? iz the GDU polyvowial of O, - (Bn+4,), (B, —Az)(2Bn+A,) and B,-C, and, similarly, L,
is the GCD 1&5.55._& of By (Cy— An), = By C, (A +C,)  (An -2 C,) tespectively. ‘Transformation
(3.42) can be written in a compact way:

3 K (MFtron)
M = »
vl i, (3.44)
The first A,'s, B,'s, Cn's read:
A =1, Ba=b, Oh= —¢c, 4y =~c-{btl), By = (b=1)-(20+1), C) = =—be,
Ay = —be (20 —b—c—be=1), By = (2B —b+otbe—1) (40— 2b- o — e =2
Gy = =be-(b=1)-(2b+1), - (3.45)
Introducing other polynemials:
Xo= By — Ay, Y,= 2Bpy+ Ay oy, Zno= By + Any (3.46)
polynomials Ay, Bayy, Cryy simply read:
€ X @,
A = f7 “Zus Bagy = "o Crpy = m.ma (3.47)

_uc_m.d_:zu.m_._m Y, and Z, do not factorize, while polynomials X, 4, as well as polynomials C'’s (more
precisely the Ch_y's ... ), are divisible by H,. Defining polynomial X7 by:

F_  Xa
Xy = . (3.48)

aw._n EEE._E. that these \ﬁ.m s do not, factorize. Moreover ome ulso remarks that H,, is actually equal to
¥y—z: The first expressions of the GCD H,'s (or equivalently of the ¥, _2’s) read:

Hy =Y, =2b+1, Hy=Y;= 4V -20—2-bo—c, (3.49)
Hy = Yo = 4=3be — 120" +8b~ 20 + 20% + 3% — W e —3bc? — 262 4 165 — 1647, ..
In terms of these X7's, ¥,'s and Zy's, the A,'s, B.'s and C\,'s are:
= il s -
Ay = XL o XX X By By Byt = XEL Ve,  (3.50)

v — x4 " it i
Copr = Xy Xy e .N.p.q B Cy- Y

*n=3

A more complete list of the successive expressions of X7, Y,,, Z,, is given in Appendix A.

Representations (3.42) and (3.43) are nothing but iransformation K (or ') represented as a
birational transformation on (b,c). Let us, for instance, give the representation of T and #) as birational
transformations on (b, ¢):

—b (1-4+2b) (1 -b)

I (be) — ﬁw|+.w j..lv , ty i (be) — (e,b) (3.51)

Let us denote d, the degree of palynemials A, (or B, or €,,) and d{z) the associated generating

function. The degree of the X5, ¥i.'s and 4., denoted 4, dY, d7 vespectively, satisly:

df =1 +dea, df =d? = do, (3.52)

Relation Bnyi = XY, Y, yields:

dy= dX Fdf =14 dos+dpy, da@)-(1-z=2%)— _Wﬁn 0 (3.53)
Thus d(r) reads:
1
- [ ppp. | S g e v e e e 5
diz) = 1+d -z+dy -3 +dz-a” + =21 —s=s9) (3.54)

=142z + 4% + Ta® + 122 + 202° + 332° + 542" + B8Rz + 1432% 4 232210 4 ..

The generating function d{x) vorrcsponds to an exponential growth of the complexity of the iterations
like = where z is the largest root of 1 4+ 2 — 2% (2 = 1.618033989 ... ). This growth has to be compared
with the exponential growth corresponding to the generic 9 x 9 matrices (see section (3.2)) for which
one has an exponential growth like 2™ where 2 is the largest root of 1 — T2 4 2% (2 = 6.854101966.... ).

This exponential growth for model (3.19) is confirmed by the fact that, secking for algebraic ex-
pressions of b and e (P(b,e)/Q1(b,e)) invariant under transformation K (or transformation 7 and i
see (3.51)), we have not found any such expressions up degree ten in & and ¢ for Pi(b, ) and @y (b,c).
One expects a quite “chaotic” behaviour for the iterations of K outside the two integrab conditions

(8.20).

3.5 Back to integrability: the inversion trick

Since we claim that the various polynomials of the two variables (b, ¢} previously introduced (A,,, 13,,C,,
XM, Y., Z, ...) may be uscful for a better understanding of Stroganov’s model outside the Yang
Baxter-integrability conditions (3.20), it is natural to look &t these polynomials when restricted to the
Yang-Baxter-integrability conditions (3.20). For this purpose let us recall the (rational) well-suited

parameterization of the model restricted Lo (3.20) (more precisely e =1 - b):

3 =
wir—w 1+ /5

b= —m—M here = == 3.5¢
T where w 3 (3.55)

and the expression of the partition function per site deduced from the inversion trick [19]:

S £ I TRy 1
Zb1-b) = w? I;;qE F(1/x) (3.56)

where F(z) is an evlertan product:

P = T (- gm) (- ) &

k=1,



The expressions of the first X s, ¥,.’s, Z,.'s read in terms of the variable x (3.55):

o @—w? L ﬁEp.nIE\uv ,  wlrgwt .
X = w(l+x)’ Y= w(ldaz) &= w(l+x) ’ (3.58)
X = {2 —w?) (wPz - 1) v, = (2= w?) (Wi IuE\J - (2 —w?) ?cuw +w™?) )

N (1 +2) w? (1+2)w (1+7)" w?

N (x—w?)? (& —w2) (@ —w ") _— (v —w?)? (- w?) (g —w'%) b
T (+2) (w2 —1) KRR (140 :

T. == E.Ju T‘ + EI:J AH = EIM.V w?

(1+a)*

Ty

partition Tunection (3.56), and more precisely in the “culerian™ product (3.57).

it is clear that palynomials X2, ¥, Z, ... are closely related to the various factors nccurring in the

When one considers weak-graph expansions [20] of this vertex model when it is ne longer restricted
to the “Yang-Baxter-integrahility” conditions (3.20), the “complexity” of the polynomials in b and ¢
is very similar to the one encountered with poiynomials X#, 5., Z. ... seen as polynomials of the
two variables b and ¢ (see Appendix A). One can hope that these polynomials could be well-suited to
“decipher” the complexity encountered in weak-graph expansions of models which are not Yang-Baxter-
integrable {21, 22].

Therefore the following quesiion pops out: is it possible that the inversion trick [4, 19, 23] could,
using such polynomsals well-suited for the factorization analysis, yield an ezpansion in agreement with
the wenk-graph expansion ¢ This would open a new class of model in lattice statistical mechanics: models
which are “computable” withoui being “Yang-Baxter-integrable”® . We will address this very important
question in forthcoming publications. We however have a negative prejudice on this very model, since the
birational transformations K are not generically integrable (no foliation of the (b, ¢)-plane in algebraic
clliptic enrves, chaotic behaviour of the iteration of K ontside the integrability conditions, exponential
growth ... ). Therefore we will address this “computability-versus-Yang-Baxter-integrability” question
on hetter suited models for which a foliation of the whole parumeter space in terms of (algebraic) elliptic
curves does exist®. The very existence of these elliptic curves yields analyticity properties in one variable
which are known to be a key ingredient for the inversion trick to work [26, 27, 28],

3.6 Stroganov's model for ¢ > 4

These caleulations can straightforwardly be generalized to arbitrary g, that is ¢* x ¢ matrices.

The way the exponential growth “degencrates” into a polynomial or linear growth (here, for model
(3.28), the situation is even more drastic: there is no growth; seen as a homogencous transformations
the degree of the N,’s or £,’s is 1) is exactly the same as for ¢ = 3. We have again factorizations (3.24)
and (3.26) but now the generating functivus r(z) and s(x) respectively for arbitrary g

R 61 €l e A z-((g" = 1) ~2)
i (1—=z)(1 —(g* - 2)z+22) ¥ (1 —z)(1 - (g? = 2)x +2?) (329
oy l—zt(@ -t (g —=2)-x
sta) = (1—a)(1 = (? - 2z +27) W (.60)

(1=2)(1—(g* —2)z +22)

48 uch models do exist: for instance, disorder solutions {24, 25) provide vome examples of “compiitable” models that are
fot. Yang-Baxter-integrable. However such disorder solutions correspond to dim nal redurtions of the moedel. We are
secking here for two-dimensaional (or higher di ional) maodels with a genuine two-dimensional complexity .

5We have called these models “quasi-integrable” [10]. The most spectacular sxample of 5 & quasi-integrable, but not
(generically) Vang-Baxter-integrable, model is the sizleen verter model [10].

il

The compatibility relation between factorizations (3.24) and (3.26) and the generic factorizations (3.13)
reads: . -

Bnyz = 08 (Snpr+8n) = (68 = 1) (tn +700) + 1 (3.61)
vielding on the associated generating functions e(x), r(z) and s(z):

1

1-=

B(r) = {1+=)- Tu.ﬁ.ii\?ml 1)z? .AH& + ~1-2z+ (¢ —2)2? +(4* - 1)2* (3.62)

Let us note that s(z) has a remarkably simple form for ¢* = 2. Let us also note that the differcace
between 7(x) and s{x) is quite simple: ‘

T
1—(q* -2}z + a2

r(z) = s(z) + (3.63)

Of course this does not completely rules oul integrability for ¢ different from 2: many integrable
subicases of the gi-state vertex model are known in the literature, but the corresponding patterns of the
R-matrices are very specific [29].

In contrast it will be seen, in a forthcoming section (5), that polynomial growth occurs when some
of the * arrows” of the verlex models takes 2 colors. It will he seen that this polynomial growth is
closely related to the fact that transformation K can thus be represented as a skift on a Jacobinn varicty
naturally associated with K. .

4 Three-dimensional vertex models

Let us now recall that, for a three-dimensional cubic vertez model [8, 9], transposition t; associated with
one of the three directions of the cubic lattice has already been introduced [8, 9):

The action of £; en the threc-dimensional R-matrix is given by:

LRy gt (@)

didais 1 J2an

and similar definitions for ¢, and 5 [8, 9].

Such a situation corresponds to m = ¢* in framework described in section (2). Of course, vne can
define £y and #; ou this model because the g?-dimensional space decomposes into the tensorial product
of two g-dimensional spaces.

We will restrict in this section to ¢ = 2, the results for an arbitrary value of q will be given in
the following (see section (5)). The analysis of the factorizations corresponding to the iterations of
transformation K for #; for a general 64-state three-dimensional model (generic 8 x 8 matrix) gives the
following factorizations:

_ — de - _ det{M,) K(M,) det( M)
My = K(Mq), fi = det{My), fo = |m% My = lbn = Ilhn.m_ ,
_ K(M,) det( M) K(M3) det(M,)
E. = = ) = Z g.— = = N = 4 Ky
CTRA T FER " FRERER (4.2)
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aud, for arbitrary n, the following “string-like” factorizations:

Hnng_.au = .a\r_.:f . ﬂw wlﬂ : h.?\w.ﬁz .m..,bv: Truv

det(My) = Fups- f1- 11 A&alu - Fr—a s famae- ..Dv: (4.4)
yielding:

R,y = KM _ Mups »

I e
det(M.) (fie Fooor fuet)” = Fu- fagi
From factorization (4.5), one easily gets a relation between the generating functions eo(z) and B(x):

8 (1+a?)
P—uw

(14+x)- afz) - : )-8 =20 {4.8)

leading:

8 (1 +a)* 8z
afz) = (1T—zy ? Ale) = (1—u)3 (4.7)
The “right-action” of K also yields factorizations of f; and only fit one gets again equations (3.3) (with
of course different expressions for the p,'s and v, 's) . These equations, combined with (4.6), give the
following expressions for p(x) and v(x):

z(14 x)(d - =)

W) = TR ) = 28 F 22 AT

(1—=)

(4.8)

Oue notes that oy, and 3, are respectively cubic and quadratic functions of n (to be compared with
(3.7)):
g 2
o= (D) +2m+3), B = 4n(n+1) (4.9)
At first sight it 15 amazing that such o polynomial growth oceurs with involved “string-like” factorizations,
such as (4.3) and (4.4).

The oceurrence of polynomial growth of the caleulations of the werations could correspond lo situations
where the algebroic varieties generated by K are ahelion varietics {30]. One knows that algebraic varieties
having an infinite sef of automorphisms caunct be of the se-called general type® [28]. This is the case
here: we actually use the symmetries of the algebraic varieties (birational antomorphisms) to visualize
them [5, 6, &, 9, 11],

The analysis of the iteratious of transformation K has been performed in more details for a particular
8 x 8 matrix corresponding to a three-dimensional generalization of the Baxter model [8, 9]. This
analysis shows that the orbits of the iterations lie, in this subcase [8, 9], on aw algebraic surface given
by intersection of gquadries (8, 9]. We will come back to this very model in a forthcoming section (4.3).

For the general 8 x 8-matrix considered here, the orbits do not lie on algebraic surfaces but on
higher dimensional varieties [8, 8], Introducing Plicker-like variables closely related to the minors of
the R-matrix [1, 3], here 4 x 4 minors, one can, for this three-dimensional vertex model, explicitly write
down the equations of these algebraic varieties as intersection of quortics, In fact the analysis of these
algebraic varicties [7, 8, 9] is difficult to perform: are these varieties abefian warielies, or even products
of elhptic curves”, ar any other algebraic varicties which are not of the so-called “general type” (28] (like

Plxamples of algebraic varieties which are not of the general type are, for instance in the case of surfaces, abelian
surfaces, hyporalliptic sutfaces (surface fibred over CPy by a pencil of elliptic curves), Enriques surfaces ..,

TThere exist some systematic pracedures in see if an algsbraic surface is a product of curves but th y are extromely
difficult to implement.
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K3 surfaces ® ... ). We hope that the occurrence of polynomial growth of Lhe associated iterations could
hielp to clarify the kind of algebraic varieties associated with these birational transformations.

models.
tior

On the othier hand, this could provide a new way to analyse three or higher dimensional verte
Of course, il is necessary to analyse simultancously not enly K bhut also K, and K,,, :.:u. bi
transformations corresponding to the two other directions of the eubic lattice and to their associated
partial transposition ¢, and f3.

Let us try to better understand the relation between polynomial growth and the occurrence of various
examples of algebraic varieties which not of the “general type”.

onal vertex model,

For this purpose we now examine five different subeases of this three-dime

4.1 Restricted factorizations in dimension three: product of elliptic curves

Similarly to what has been seen in section (3.3), one can consider the “restricted factorization problem”
corresponding to the following initial matrix:

A B
Byp = ﬁm bv (4.10)
where the 4 x 4 submatrices 4, B, C and IJ are of the form:
(4 0 4TS
A= m& .)

with 4y, Az and Ag are 2 X 2 matrices and “0" denctes the 2 % 2 matrix with zero m:.ﬂwmm_ and the ?J.:
for matrices B, € and D is similar to (4.11). It is straightforward to see that a form :wm.?_..ucr ?imi:ﬁ
with (4.11), is actnally compatible with the action of the group generated by the matrix inverse £ and
Ly _.w, 8]. .

Tor such matrices ((4.10), (4.11)) one can see (permuting rows and naru:nzwm 3-4 and 5-6 of the
& % 8 matrix Ry p) that the polynomials f, defined by equations (4.2) factorize in the product of w.?,._
polynemials. One can show that these two polynomials Y and FE actually nc_.:.u.mw.::_ Lo the action
the birational transformation K associated with two sixteen vertex models (see section (3.1)) associated
with the two following 4 x 4 matrices:

A3 By ;
1 _ (A B . unﬁ 2 u 412)
My"= AQ_ D_v week Cy Dy (
One gels therefore on the f,'s:
fa = EU ., g3 {4.13)

where each of the FXV’s and FL™s satisfy independently the sume recurrence sm_;n_w is actually the
recurrence oceurring for the sixteen vertex model {see section (3.1)). This =c:.=_hummn recurrence has
been shawn to vield algebraic ellfiptic curves £ [1, 2, 3]. Tt is thus n_mw_.., at H.mmmﬁ in subcase (4,11}, that
the f.’s do not satisfy a recurrence (like (3.12)), but that the orbits c_.z._m P,Sq.wsoz of K are :.::_:_,:z
associated with algebroic surfaces which are the product of two algebraic elliptic curves: 5 =€ = £.

Trom equation (4.13), one easily gets in this subcase ({4.10), (4.11)), that the degree of the f,'s and
det(M,,)'s, namely A, and @, can be writien as a sum of two terms:
o= Y 4 g2 ey = ol el (4.14)

s (resp. the oll)’s) are the degree of the FiPs (resp. the det(My)'s) with < = 1,4,

n

where the 3,

8The birational transformations considered here, actually densify 1n a quite “uniform way" the algebraic surfaces we
el (sce figures (1a), (1b) and {1c)): sde automorphisms of K3 surfaces,
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From scetion (3.1) (see equations (3.7)), one immediately gets that .=v =Y = om (n+1) #:.n_

ol = o =4 (292 4 1). This provides an example of a quadratic growth essociated with an alyebraic
surface (namely: S =€ x £).

4.2 A three-dimensional generalization of the Baxter model
Another (less academical) example of “restricted factorization” corresponds to vertex-models defined

in [8, 9, 31] which can be seen as a three-dimensional gencralization of the Baxter model. This model
corresponds to the following K-compatible conditions:

B iz B
m»w.,wwuuu - mwlg.__ .I._.”.IH...; (4.15)
and BT =0 if iytgiaijaga = —1 (4.16)

Let us assume that the order for the “in” triplet (iy,iz,i3), as well as the “out” triplet (71 512072) Is as
follows:

?_m.u}-_m,ﬂm; = (4.17)

[(H1, 41, 41, 41, =1L =14, -1 =101+ D1+, =1 (- -1, +1)(<1,~1,-1)]

This order singles out direction 1, and is therefore wefl-suited to analyse Lrausformation K.

With this ordering, conditions ((4.15), (4.16)) yicld the following 8 % 8 matrix:

a 0 0 k 0O ! m O
0 6 ¢ 0 n 0 0 d
0 e f O p 0D g
- 0 0 A O i 5 0 :
R = m j 4 0 kR O 0 g (28)
g b 0 p O f e 0O
d 0 0 n 0O ¢ b O
0 m ¢ 0 kK 0O 0 a

With another order for the Tows and columns (namely (1,2,3,4,5,6,7,8) = (1,4,86,7,8,5,3,2)), this
8 x 8 matrix con be seen as two identical 4 x 4 block-matrices:

a k I m

e |4h w i (4.19)
g P
d n e b

These two block matrices are respectively associated to the two “odd and even” subspaces: T+_u+ 11}

(#1711 (-145,-1) E_._.L_.:_ and T‘f.\: (1,41, 41) (43,1, +1) (1, 41,-1) _ With this new order
the three directions 1, 2 and 3 are on the same footing: it is better suited Lo analyse the group mnbmnw_..n._
by oll the {four) inversion relations of this three dimensional vertex model [8, 9] (of course transformation
t; becomes a more involved permutation of the entries).

For this threc-dimensional generalization of the cight-vertex model [9, 31], introducing the same fu's
as the ones piven by (4.2), (4.2) and (4.4), one actually verifies the facterizations:

A K (M det(M2)
My = KMo), 1 = deupto), Jo = SR, gy - SER) g - SERE,
1
KM, det(Msy) _ K(Ma) o de(My) ;
a&".‘.mn.%. fi = .ﬂ.u‘m.amlbm..m.?t - (420}

Let us note that one has more factorizations than in the geueric case (4.2). Morcover, for arbitrary
n, one has the following factorizations but now with a fived number of palynomials f,,, instead of the
“string-like” factorizations ((4.3), (4.4)):

K(My) = Moa- S 05, def{M.) = fopy f2- (4.21)
yielding:
i K(M,,) Moy
K(M,) = - 4.9
ﬁ u &c:?ﬁ;v H:iu " -ﬁ» a ..m:+_ ﬁ v

Let us mote that, since the 8 x 8 matrix (4.18) is, after a relabelling of the rows and columns, the direct
product of two times the swme 4 X 4 matriz, and since the homogencous transformation /X acts in the
same way on these two blocks, all these f,'s are eznctly perfect squares.

It is illuminating to see how factorizations like (4.2), (4.3), (4.4) and (4.5) hecome (4.20), (4.21) and
(£.22). Oune actually has the same first factorizations up to My and f3. They first hecome different with
M; for which one gets an estra factorization of f;. Obviously, in the factorization of f4, one does nov
have a factorization of f§ anymore (becanse an extra factorization of fi in all the entries of My yield an
extra [actorization of ff in det(Ms)). These slight modifications however have the amazing consequeice
to change the “string-like" factorizations (4.3) and (4.5) into factorizutions with a fived number of terms
(see relations (4.21) and (4.22)).

The generating functions e(x) and g(x) verify:

(L) afz) 8 (1+z+2") - f(z) - 8 = 0 (4.23)
leading:
lzm“+A&+._..R»u _ 8z IH?._.H:A\H. 3 (14 22) .
)= — ﬁl\ o) —, Blz) = a-z pix) = A=z v(z) = T2 (4.24)

One notes that o, and 3, are both quadratic functions of n:
w, = 867" +1), Oy =dn(n+1) (4.25)

One remarks that the two generating funciions #(x) and u(x) are the swne as for the general 8 % 8
matrix (sce (1)), the difference being on the e,’s or the i,'s {or equivalently on the gencrating functions
afx) and v(x)): the cubic growth of the ay's or the v,’s (see relation (4.9)) being replaced by a quadratic
growth (see relation (4.25)).

In fact thiz madification of a “string-like” factorization into factorizations with a fized number of
terms is not as drastic as it Jooks at first sight. Let us for instance define, for a 8 x 8 wmatrix of the form
(4.18), the variables f3'™"9%s and the successive matrices M2%9's from the “string-like” factorization
relations (4.3) and (4.5), which are valid for general 8 x 8 matrices, and therefore, a fortiori, for mafrices
of the form (4.18). We have just seen that an extra factorization occur for model (4.18) (M ..). Tt is
amusing to remark that the varisbles f27"9’s defined from (4.3) and (4.5) and the variahles f,'s defined
from (4.21) wetually eoincide | This can be proved recursively. Let us denote y,, the multiplicative factor
between My, (defined by (4.21)) and Mj*"™e: Matrme — g . M. One immediately gets, from (4.3) and
(4.21), the following relations:

(f o Fus)
1 Mudyodes) e S fodieedies (4.26)

.. = v
Ynt1 fr-i ‘Yn H..” i Yn-1

It is then simple to show recursively that g, = fi - fa-+r fn_» and therclore that fa = frrina, This
means that this string-like factorization may be seen, to some extend, just as a “propagation” of the
extra factorization ocenrring with Ms. This explains that the generating functions pu(z), B(x) are actually
idemtical for matrices of the form (4.18) and for general 8 x 8 matrices (sce (4.7), (4.8) and (4.24)).
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Let us note that if one relazes the spin reversal consiraint (4.15) (for instance just relaxing the
equality between My[L, 1] and Mo8, 8] in (4.18)), which means that, afier relabelling, the 8 ¥ & matrix
can he written as two non identicel 4 x 4 block matrices, one gets back to the ahove detailed “string-like"
factorizations of section (4). OFf course if one relaxes the “charge-conservation” constraint (4.16) (for
instance just make M1, 2] non zero in (4.18))) one also gets hack to the ubove detailed “gtring-like”
factorizations of section (4).

Let us note that the orbits of K can be shown Lo vield algebraic varietics in OFy; given by intersection
of guadrics [1]7.
4.3 A nine parameter three-dimensional generalization of the Baxter model

The visualization of the orbits of I have been performed in [8, 9] fur the particular subcase which
amounts to imposing, together with (4.15) and (4.16), matrix R (4,18) to be syminetric:

In this subcase one clearly gets surfaces and it has been shown Lhat these surfaces are algebraic surfaces
given by dintersection of quadries (1, 9, 31)'".

The explicit expressions of these quadrics has actually been written down in the particular subease of
the model defined by (4.15) and (4.16) together with (4.27) {1, 9, 31]. Condition (4.27) is clearly preserved
by transformation [ and ¢; « 3 -5 (the matrix inversion and the matrix transposition). More remarkably
condition (4.27) is actually preserved by the three other inversions [8, 9] of this three dimensional vertex
model namely: L, =4 -Ity+tg, I = ta- Tty oty and Iy = t3-T 4y -2y Thisisa consequance of the fact
that condition (4.27) is preserved by the partial transpositions #1, ¢, and t;. With this last condition the
three dimensional vartex model looks even closer to a generalization in three dimension of the symmetric
eight vertex Baxter model [9, 8]. When condition (4.27) is satisfied, together with conditions (4.15) and
(4.18), the two ideniical block matrices (4.19) depend only on fen homogeneous parameters. Using the
notations intreduced in [9] or [31], one can introduce ten homogeneous parameters:

a k I m a dy dy dy

s _ g h i J) _(d b o e
B = g p foe| |d e by oo (4.28)

d n ¢ b d; ea ¢ Db

Of course trapsformation ;, which is the block transposition of the two off-diagonal 4 x 4 matrices, as
well as transformations t2 and ty become, as a consequence of the relabelling, new permutations of the
entries of this 4 x 4 matrix B% [31]:

I e T (27 %)== (1,2,8) (4.29)

Actually, and quite remarkably, there exist four quantities which are invariant by oll the four generating
involutions T, Iy, Iz, Iy and therefore the whole group Typ they generate. Let us recall the results of [31].

Let us introduce:
aby + boby — & - d2, caddy — eyds (4.30)
and the polynomials obtained by permutations of 1, 2 and 3. They form a five dimensional space of
polynomials. Any ratio of the five independent polynomials is invariant under all the fonr gencrating
involutions I, Iy, T, Iy. The parameter space CFy is thus foliated by [five dimensional algebraic varicties
invariant under the whole growp Typ:

Pi(a, -+, dy)
Qila, . dy)

"'I'he oceurrence of guadrics is closely related [1, 3] to the occurrence of 4 x 4 matrices like (4.19) for mmdel (4.18).
When conditions (4.15) and (d.16) are relaxad one does not get (2lpebraic) surfaces anymors, but highsr dimensional
variaties

= constant (4.31)
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where F, and Q; ave chosen among, the quadratic polynomials (4.30) and the one deduced by permutations
of directions 1, 2 and 3.

Considering the subgroup of Izp generated by two involutions among these four, or equivalently
considering the iteration of K only'?, one can show that the orbits of this transformation are algebraic
surfaces given by intersection of quadries [1, 9, 11, 31].

These additional quadrics have been written explicitly [31]'?

aby ~— baby — &t — d? (a+b1) ey — dads — ese3, (bz + b3) dy = s — dyea (4.32)

On figure (1a), figure (1b) and figure (1¢), given at the end of the paper, it is clear that the orbits of
K are (algebraic) surfaces. These orbits strongly suggest an interpretation in terms of curves winding
round a two-dimensional torus i the generic “incommensurate’ situation.

In contrast with the situation encountered in section (3.1) (see relation (3.8)) the successive iterates
of My live in the whele nine dimensional affine matrix space (4.28):

My ral? Mg + ol - Mg (4.33)

K (M) = ai™ - My + af

The visualization of the orbits of K, has alsa been performed if one relages the matriz symmetry
condition (4.27). One does not yield surfaces anymore. Figures (2a), (2b) and (2¢) illustrate such a
sitpation. Figure (2a) corresponds to an orbil for an initial matrix “almost” symmetric (symmetric up
to 10~%), This first figure, which corresponds to a very small asymmetry of the inifial matrix, may
look similar (at least for the first 1607 iterations) to figures :mu_ :Tw and (1c). In fact one can see on
figure (2a) that the density of points is more “fuzzy” compared to fignres (a), {1b) and (l¢) which
suggest a curve moving on a two-dimensional torus. The density of points of figures (2h) and (2c) clearly
corresponds to the projection of points living in algebraic varieties of dimension greater than two.

These results have to be compared with the one given by Korepanov [32], or the one described in
a forthcoming section (6). The fact that a polynomial growth oceurs when some of the * arrows” in
the vertex models take 2 colors and that exponential growth {generically) oceurs when the number of
colors of the * arrows” is no longer 2 (see scction (3.2)) deserves some comment: it will be seen that
this polynomial growih is related to the fact that transformation X con be represented s a shift on o
Jucabien variety naturally associated with K. We previously recalled that algebraic varieties having an
infintte set of automorphisms cannot be of the so-called general type [28]. The [act that one can associate
with the algebraic surface given by the intersection of quadrics (4.32) and (4.30), some Jacobian var
should help to characterize in more details these surfaces which are not of the general type*®.

4.4 An integrable subcase of the three-dimensional generalization of the
Baxter model

In order to shed some light on the relations between the polynomial growth and the occurrence of algebraic
varzelies which are not of the so-called “general” type [28] (abelian varieties, products of elliptic curves,
...)y let us consider a situation for which elliptic curves occur. At this point, it is worth recalling that,
for particular patierns of the three-dimensional generalization of the Baxter model considered in section
(4.3) (conditions (4.16), (4.15) together with the additional condition (4.27)), the iteration of I (or K)
can actually yield elliptic curves (sec [8, 9]). These particular patterns amount to imposing that the
initial matrix {and therefore the successive matrices M) is tnveriant under the permutalion of the tuo
dirvections '1" and “2". ln fact we will see in this section, that there is no need Lo impose the matrix
symmetry condition (4.27) to get integrahle subcuses of (4.18).

Usince | eommmutes with the matrix transposi 2+ t3, Lhe product of two inversions; for instance [y - [ =
Bk ta-ty- byl = K2ty -3 - t3 is equival ip Lo the matrix transposition £y - £y < by, Lo K2,

120ne should note & misprint in [31]: one shouid read aby — bty — nm 2 _ﬁ" Instead af aly — baby — o + df .

¥Note that the space where this Jacobian variety lives is, in general, not the same as the parameter space ﬂﬂu _y
where these algebraic varicties generated hy K live
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With the previous order (4.17) for the rows and columus of the 8 x 8 matrix, these additional
ronditions read:

1[1,6] = R[1,7], R[2,8) = R{3,8], R[2,5]= R[3,5], R4,6] = R[4,7], R2,2] = R[3,3], R2,3] = B[3,2)

Recalling matrix (4.18) and its notations, this symmetry between direction 2 and 3 yields the additional
equalities among the entries: m =1, j =4, g =d, e = ¢, f = b and p = n. The corresponding 8 x 8
matrix, thus depends on ten homogeneous parameters;

\n 600 k0! I 0
0 b ¢ 0 n 0O0d
0 ¢ b 0 n 00 d
w_|g 00RO o0
=10 i 0000 (4.34)
d 00 n 0 b c O
d 06 n 0 ¢ b D
o110 %k 00a
or, on the two identical 4 x 4 block matrices (4.19):
e k1 1
a _ |9 R 2o
E d n b ¢ (4:35)
d n ¢ b

This 4 x 4 matrix is invariant under the permutation of direction 2 and 3 which amounts to permuting
the iast two rows and columns of the two four dimensional subspaces T+f+~.+: (+1,-1,-1) (-1,4+1,-1)
n.r;_iw_ and ﬁ (101,13 (-141,41) (1,14 1) (#1,41,1) _

In this subcase (4.34). the factorization relations (4.20) are slightly modified. fmposing these addi-
tional constraints (4.34), one remarks that factorizations (4.21) and (4.22) are slightly, but definitely,
madified as follows:

det(M K(M det{ M,
My = K(Mo), fu = des(My), fo = SH20) gy, _ KQWL) -y  dotlMy)
i i .3 13
K(My) det(My) K(My) det(M,) »
My= ——. A= =, My = = . = - 4.36
CEAE TR TR ER P ERR bR
and for arbitrary n:
K(M,) = My u : m\_ Ly .me_ det(Mo) = fan ,ﬁw MI~ . .ﬁw\u (4.37)
yielding:
Mm.n...?ﬁ; = W«E:v o M1 ﬁa.:.w.wv

det{M,) ~ faz fuor For fam

Note that the “universal” relation {4.38) is actually modified for subcase (4.34). The new polyno-
wials, defined in this restricted (integrable) subcase (4.34), can actually be shown to verify non-linear
recurrences. Since the f,'s are perfect squares, one can introduce their square-roots f', = /f.. Re-
markably, these polynomials ' "s do verify the same hicrarchy of recurrences as for the sizteen vertex
maodel (see section (3.1) and [1]):

2 2 2 2
._‘...a h=+u - .w..n+._.__...n+_, .__“_.:L.ﬁ_.aaru - Hﬂi.u\;: Ah umu
.T:. _M__i.w.w.:t, == g.:.?w,nt.__z:; Hsalfm_=+u._:...+.._ . .»...:\._

nf'nya
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or:

?

2 2 2 2
Flogi F nsal nss = Fupa Flosal nes Faral aesf vee = Pazal apaFavr (4.40)
2 2 = 2 0 .
Fovefialair= Mol a5 JotaF ngad nps = L L -

These recurrences are known to yield elliptic curves [1, 2, 3]. The generating functions o{z), f(z), ju(z)
and »(x) read:

. _ 8(1+5x0+32%+ 7% I 8
o) = ot ' 9= Trma_ (441)
ulz) = x (54 22 — z%) - 2z (2+x +33%) (4.42)

(14+z)(1 =)’ (I+x)(1—x)p

The integrability of this subcase (4.34) is thus associated with the occurrence of ane mors singularity
(compare with (4.7) or (4.24)),

In contrast with the situation we had in section (3.1) (see relation (3.8)) the successive iterates of
My belong, for this subcase (4.34), to a seven dimensional affine subspace of the nine dimensional affine
malrix space ((4.34) depends on ten homogenesus parameters):

K*"(My) = of™-Mp + o™ My -3 ol -y, (4.43)

that is a codimension-two subspace of the space where the matrices Ay live.

The equations of these elliptic curves can be simply written down as the intersection of the guadrics
and of the hyperplanes preserved by K* (see (4.34)). For model (4.28), analyzed in [8, 9] (see the
previons section (4.3)), which amounts to imposing the Bolizmann matrix to be symmetric (condition
{4.27)) these quadrics are (4.30) and (4.32), and these hyperplanes read, with nolations (4.28):

by = by, 3 = ey, dy = ity (1.44)

4.5 A three-dimensional generalization of the six-vertex model

Another example of “restricted factorization” corresponds Lo the vertex-model defined in [8, 9, 31] whick
can be seen as a three-dimensional generalization of the siz-verter model [31]. This model corresponds
Lo the K-compatible conditions (4.2) together witk the additional conditions:

= 0 i (daaa) #(FL 41, 41) and B =0 il (ig,deds) # (=1, -1, —1)
Ry = 0 if (rjad) # (L +1,41) and B0V =00 00 (G, deydy) # (—1,—1,-1)(1.45)

One should note that this particular form for the 8 x 8 matrix (4.45) is not stable by transformation
K (basically because transposition 4, does nol preserve the form (4.45)) but il is actually prescrved
under the action of K7 [31]*. Taking into account the simplicity of this model one can relax the matrix
symmetry condition (4.27). This gives {with notations (4.18)) the following 8 x 8 matrix:

a 0 0 0 0 0 0 0

O b ¢ 0 n 0D OO

6 e f O p 00D
w |00 o A0 i 5o _
B=1o i io0no0o {4.46)

¢ 00 p 0 f e 0

000 nrn 08 ¢ b 0O

0000000 a

14This situation generalizes the one encountered in lwo dimensions with six veriex models,
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or, recalling the velabelling previously introduced { (1,2,3,4,5,6,7,8) — (1,4,6,7,8,5,3,2) = T+H_+_ +1)

(1200 (11D (Lot )] and [ (1o101) (LA141) (41,1,41) (+1,+1-1) |, the two identical
4 x 4 matrices {4.19) can be written:

a 0 0 O

o A 9 g

“lo p J e (4.47)
0 n c b

This model depends on ten homogeneous parameters. For this three-dimensional generalization of the
six-vertex madel [9, 31], one can introduce the same f,’s as the ones given in section (4.2). The
corresponding matrices can be seen Lo be product of 3 % 3 and 1 % 1 matrices. One straight consequence
is that all the determinants one calculates are perfect squares which factorize into deferininants of 3 x 3
matrices and terms corresponding to the 1 % 1 blocks. This crables to introduce variables which arc the
determinants of these 3 x 3 matrices which will be denoted g, in the following, instead of the variables
[ related to the determinant of the whole 8 x 8 matrix. Introducing two variables wg and w, related
to two particular entries of the matrix My and ils transformed by K, one gels factorizations:

dot( M) /* §
= (Mo, @ = STy o K]
Wa g1 wo
M, _ vz
o ( .Lﬁ_ g = Eqﬂw\mz M, = NTW&L.
un wy g2 0
(det(My))M* K(Ma det(Mz))' /2 K{M.
Gy = e M; = 3 mu s G4 = ( _.M .Lum y My = — ﬁawv -o- (4.48)
oWy 4y Wy Wy gy 43 Wy Wy 93 Wiy Wy Gy G4
and, for arbitrary n:
K(My) = Mayr-wo-w g5 - gasr, for n even
K(M,) = Mugr-wl - goy  Gat, for n odd (4.49)
together with:
(det(M )2 = goyr-wo-wi - of_,, for n even
(det(M,)1/? = Gnyr-wh oy gl for u odd (4.50)
yielding forn > 2:
= K{M, M,
K(M,) = (M) ad (4.51)

&nwﬁ.s\mﬂv Gn—1 " Gn1 - Wp - wy
Similarly, onc can introduce the degrees of the determinants of these matrices M, and the degrees of
the successive polynomials gn's , namely e, and f, and their corresponding generating functions a(x)
and f(x). These generating functions read:

Bl+z+af—a') - (3 —2x1)
alz) = i Ha) = ———~ ¢
(+mi-zy @ "M@= G
The exponeats @, and Br, read;
) -5 2
a, = Anl+16n46+2(-1)", f§, = 220 wma (4.53)

Again, one can study the “right action” of K on matrices M, (equations (3.3)). However, since the
form of matrix (4.46) is only preserved by K2, the right action in a little bit more involved, namely:

gk = mg el wy wl,  8{glrr = g1 ¢f o wit w}',
64 (gl = g5 08 o wit wt .- (4.54)
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and for arbitrary n:
L [FE - B oY)

20 (gn)gr = Garz gzt 5 W Wy (4.55)
where the 2\ are quadratic integers:
n(n+1 : ; Tn+ 39)n + 9
AN = ( 2 v, S S L ( - ) , 9=l 5), 2P = (n ._.w )n

Imposing the matrix symmetry condition (4.27) dees not modify these factorizations.

The successive iterates of My belong, for subcase (4.46), to an eight dimensional affine subspace of
the nine dimensional affine matrix space (matrix (4.46) depends on ten homnegencous parameters):

ESMo) = o™ My + o8- My oo+ al™ - Mg (4.56)
that is a codimension-one subspace of the space (4.46) where the matrices M, live.

If one imposes for this three-dimensional generalization of the six vertex model (4.46), the malrix
symmetry condition (4.27), the model now depends on seven homogeneous parameters and the successive
iterates belong to the siz dimensional affine space (4.46) together with condition (4.27). The factorizalion
scheme ((4.49), (4.50)) is not modified when condition (4.27) takes place. In contrast il one relaxes
the spin reversal condition (4.15) (twenty homogeneous parameters) the factorization scheme (4.49) is
reminiscent of the “string-like” factorizations (4.3). The affine subspace (4.56) is then of dimension
preater than nine.

A more detailed analysis, with o particular emphasis on the “pre-Bethe ansatz” conditions (sec [10]
and (6.2) in the following) of this three-dimensional generalization of the six vertex model has been
performed in [31].

5 (Generalization to d-dimensional vertex models and mon-
odromy matrices

One will here consider matzix (2.3) for an arbitrary m-dimensional space when there are only two spin
states on direction (1), that is q=2,

Transposition #, amounts to permuting two off-diagonal m x m submatrices of this 2m x 2m -

matrix 1%
‘A B A C i
A ﬂﬁ h..ul AH* bv (5.1)

where A, B, € and D are m x i matrices.

Such formalism can represent many different situations encountered in lattice statistical mechanics
for vertex models. Namely, it can deseribe d-dimensional vertex models as well as the corresponding
monodrony matrices (see section (6.1)) [33].

Liet us remark that for d-dimensional vertex models, m is equal to 247! In this case one can consider
transpositions tg, t3, - ta—s [8, 9] like #; associated with the d — 1 other directions, and of course one
obtains similar results for all the ¢,

For arbitrary m (equal to 24-1 ur not), the analysis of the factorizations of the iterations of trans-
formation K yields:

. det (M| K(M det{ M, K(Ms
M, = K(Ma), = det(M), fo = S0 gy, o KOB) g AR gy KEBL
1 1 1" Ja 1
deL{Mz) K{(Ms) det{My)
oy 4 = .‘._n.

2(2m—8) 5 pem—b’
' .D. 3

fo= s 2 (m—2) " = AR 5 p2lm—3
RO g5 A

a

'3 his problem Lly corresponds to Lie one considered by Korepanov in (92},
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and, for arbitrary =, the following “string-like” factorizalions:

KMy = Moy -ff™Yefd, iGT8O g8 (5.3)
: 2 (r —2 A (m—2 A (-2 A
HetMn) = Fapy Fo W pl AR R UOER e R L e

Equations (5.3) and (5.4) yiald the following relation independent of m :

= B K(M;) _ M1 5.5
KL = G00) = B s o b o

Equation (5.5) gives again a generalization of equation {4.6) for arbitrary m:

B 2m ﬁ,_ +..=J

l—x

Ble) = 2mo= 0 (5.6)

{1+ z) - ()

From (5.3) and (5.4} aud also [rom (3.3) which is indeed valid, one gets:
(1-zp+2ma(l+s’) 2m z
. Ble) = ——— 5.7
O+ (- Pe) )

(1-a)"
T (Z2m— 4+ 3m—a2%) @ {(2mm —5) (1 +2%) + 55+ =%)
(1—a)*

(-2 (1+3)

a(z) = 2m

(5.8)

uix) = . ov(x) =
Let ns nnderline that, for m = 4, ane recovers (4.7) and (4.8) taking the m = 4 limit of expressions (5.7).
(e also recovers factorizations (4.3) and (4.4) taking the m = 4 limit of factorizations (5.3) and (5.4).

Lor this kind of permutations and associated transformations X one can also (similarly to what has
been done in section (3.1)) consider, for a given initial matrix My, the successive iterates of My under
transformation K* and see what is the dimension r of the affine projective space where these successive
matvires live on:

KiM) = al™ Mo + ™ My 4+ ol My, (5.9)

For m = 3 (6 x 6 matrices), performing iterations up to K%, we have been able to show that » > 11
It will be shown, in the next section, that one can find an upper bound for r considering “gange-like”
symmefries of this problem (see next section (6)).

5.1 Some comments on the generating functions: from vertex to spin models

For all the birational transformations described here, one remarks that one always has the three following
[actorization relations:

dei(M,) = faor-FSFS fD P FE o S (5.10)

KM.) = Miga - fIf05 of Ry e fi (5.11)

= K(M,) Mot .
- = .12
HO) = 3006) = Tor B T Fa Foia D e

Let us introduce a new generating function for the (,'s:
) = 1+ G e+Ge+ a4+ . (5.13)
With this new generating, function, ¢(x), relation (5.10) simply reads:

zofz) = ((z)- () (5.14)
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One can also introduce generating functions for the ,’s and o st

Mz) = ptmartipet+mats oo (5.15)
plr) = T+patpratpya®+ - (5.16)

One gets, from relation (5.12), the following relation between afz), A(z) and pl
N+ Np(z)-fz) = (1 +2)-ofz) (5.17)

which gencralizes equations (5.6) for an arbitrary N x N matrix.

Many more relations can be obtained between these various generating functions (a(z), A(x), u(x)
and v(z) ... ) (see [1, 2]).

Amuong these mozce or less involved generating functious, it appears thal two generating lunctions are
especially simple namely A(z) and particularly p(z). Let us give here the explicit expressions of p(x) for
various vertex models considered in this paper. For t) for 4 x 4, as well as % x g2, matrices (sea section
(3.1) and section (3.2)) the expression of p(z) is:

plr) = 14+4° (5.18)

while for £; for 2¢ x 2 (or 29 x 2n) matrices (see sections (4) and (5) and equation {5.6)) o(x) is given
hy: )
14z

l—z

plz) = (5.19)

These two kinds of generalizations of transformation #, for arbitrary size of the malrices, are of a
quite different nature. In particular the size dependence of the generating functions (in particular 3(2))
is quite different. 1t is simpler for the gencralizations described in sections (4) and (3) {coupare for
inslance the expression of f(x) in (5.7) and in (3.17)). Note however that p(2) is remarkably simple for
both kinds of size-gencralizations, since it has zeros or poles ondy on the unit circle and thel it is actually
independent of the mairiz size.

The polynowial, or exponential, growth of the caleulations of the iterations is made clear on the
singnlarities of the other generating functions a(x), B(z), ... or even on the generating funetions n{x)
or ¢(x). This provides a condition for the polyniomial grawth of the caleulations, which can therefore be
checked quickly from relations (5.10), (5.12).

Let us finally make the following remark: the polynomial growth of the calculations corresponds to
the occurrence of only Nth root of undty in the denominators of Lhe rational functions (ex(2), (), - - -).
In most of the examples we have introduced [1, 2, 3] one gets, most of the time, » = =1 singularities. At
the present moment we have obtained very few Nth root of unity different from © = +1. One example
corresponds to an iutegrable subcase of a birational transformation (denoted class IV in [3]) which yields,
when restricted lo this integrable subcase [2]:
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fAla) = === (5.20)

Another interesting example correspond to a (siz-state chiral) edge spin model {5, 6] for which a
foliation in termms of elliptic functions exists [5]. The analysis developed here, or in [1, 2, 3] for vertex
models, has to be slightly modified [12] when considering edge spin models or TRF models. However it
is worth noticing that one gets, for these integrable birational mappings, a generating fitnction for the
growth of the calculations where third und fourth rovts of wnity aceur [14]:

(44227 + 2% +22Y (14 25+ 222 4 223)

Gl = (T—z)(1-a%)(1—a) (=31)
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The growth of these coefficients, that is the growth of the degree of the successive iterations, is dominated
by the coefficients of the expansion of:
49
Giam(m) = R 5.22
dom(7) 12(1-zp (:24)
which grows like 49 (n+ 1) {n + 2)/24. Another example is a five-state Potls mode! [6, 34] (symmetric
and cyclic 5 x 5 matrices) which yields integrable birational mappings (a foliation of ©P, in algebraic
elliptic curves) [6]. For this edge spin model the generating function for the growth of the calculations
is given by [14]*%:

(1+z+22%)°

(1—=x)* (1—a%) (5.23)

Gpos(z) =
The similarity with expression (5.21) is striking. The growth of these coefficients is dominated by the
coefficients of the expansion of:

Putl _ 16 5
Gl *(®) = o (5.24)

Another interesting example of spin model is the g-state standard scalar Potts model on a triangular
lattice with two and three site interactions introduced by Baxter, Temperley and Ashley [17]. Because of
the three site interactions on the up-pointing triangles, this model is not an edge spin model. It can also
be represented as a vertex model on a triangular lattice [17]. Tt has been shown that the symmetry group
generated by the inversion relations yields birational representations of hyperbolic Coxeter groups [35].
Same of the generators of this group have been shown to yield algebraic elliptic curves and even rational
curves [35]. Let us consider the factorizations of corresponding to the iteration of one of these generators
which yields cnrves. The analysis of the polynomial growth of the degree of these iterations is sketched
in Appendix B and leads to a quite simple generating function:

1+22*

—zp(1+z) (5.25)

Guralz) =

This greater complexity of the generating funciion vne encounters with edge spin models comes from
the fact that the involution which plays the role of the transpositions 1y, ¢ ... for vertex models is a non-
linear transformmation (namely the Hadamard inverse [, 6]) which amounts to taking the inverse of each
cntries of the matrix Rli, j] — 1/R[:, j]). Onc cannot find, as simply as for vertex models, “Pliicker-like”
variables [1] of a reasonable degree that “linearize” the action of the matrix inversion [ and of the other
invelution: the algebraic expressions covariant under the action of the action of the matrix inversion [
and of the Hadamard inverse are of & higher degree [5, 6]. In [act it is always possible, after Kadanoff and
Wegner [36], to map & spin edge model for which the edge Boltzmann weight interaction depends ou the
difference between nearest neighbor spins, onto a vertex model [36]. Introducing the edge Boltzmann
weight interaction Wle; — ;) (associated with the horizontal bonds) between two neighboring spins
i, a; and W (ay, o) another edge Boltzmann weight (associated with the vertical bonds between two
neighboring spins oy, ¢; ), the two bonds [5i-0;] [7x-m) being dual bonds, one can easily associate a
vertex Boltzmann weight given by:

S_._iu&:wu‘_#.nv = Wia; — a_..L . S\hn:. - _u__u ﬁm.wmu
with i=a;—0oy,j=ar—0j, k=0;,—o1, l=a—0a; and therefore rtj+k+l=0

Thisg transformation maps the edge spin model onto a vertex model, thus allowing to introduce linear
involutions like ¢1, t; ... However this “linearization” of the problem, multiplies by two the degree of all
the algebraic cxpressions encountered.

10 he birational transformations corresponding Lo these two examples of spin edge models [6, 34] can be "g-deformed”,
this deformation preserving i (namely the foliation in eiliptic curves of the parameter space) [14, 34 It is
worth noticiiig that lional transformatiaons have the same generating function as (5.21) or (5.23).
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6 Pre-Bethe-Ansatz and gauge transformations

Let us give here miscellaneous remarks concerning a key “factorization” relation closely related to the
action of the birational transformations K, namely the pre-Bethe-Ansatz condition [10]. Let us first ncn....._.:.
the results of [10] on the sizteen vertex model {which corresponds to m = 2 in the previons se :aw: 4__:..
weak-graph duality [20] symmetries correspond to a“gauge group” G = sly x sly which acts H».:nE..N.__ cu.
I by similarity transformations (see [20] for details): ) .

I, g=nxmn 9(B) = o7'g;" Rogy g (6.1)

Let us denote B the group of birational transformations generated by [, t; and 1y, The action of
G and B do not commute. However G and I do commute, and ¢y Tﬁwv 1y) sends orbits of G outo
arbits of G. Noticeably & group, larger than the gauge group G, has naturally emerged in the analysis
of the symmetries of the sixteen-vertex model: 2 group we have denoted Q«._H::u [10]. Actually one of
the keys to the Bethe Ansats is the existence (see cquations (B.10), (B.11a) in [37]) of vectors which
are pure tensor products (of the form v ®w) and which R maps onto pure tensor product o' @' (see

also [10, 38, 39]). If
e 1 — 1 oyt — 1 { — 1
v ?v b Anv_ o= ?.v‘ T = Aiv

then the solution of the “pre-Bethe-Ansatz” equaltion [10}:
Rvow) = po' @' (6.2)
verifies the two higuadratic relations [10):

b+lnp-lap' + by’ + 00" — (b + L) pp’ — b P +ho ppt 4l ©p? =0 (6.3)

tbhaq—had' +lqd” +lsq? — (I —ha)gq' = L1 ¢ ¢ + b gt +l g g% =0 (6.4)

These two biquadratics are elliptic curves. Remarkably, when calculating the modular invariant [41)]
of these curves, onc can actually sce that these two curves actually reduce to the seme Weierstrass
canonical form [10, 41}

= At —gpw— g (6.5)

A group Gpeine = sla x sl x sla % sly naturally acts on (6.2): the four copies of sy act respectively on
v, Jw'. This indeces a linear action on R: .,

R — ] HJ._

e Hemr e gan (6.6)

We have also claimed [10] that our infinite order transformations K, or K, can bhath be represented
as a u__::. of the (spectral) parameter enabling to move along these various elliptic enrves: the two
biquadratics (6.3), (6.4) and the elliptic curves generated by transformations &K, or Ky, in CP,s.

. This situation can straightforwardly be generalized to 2m x 2m matrices (section (5)), hut wow,
directions 1 and direction 2 are not on the same footing anymore: vertors w and w' have m coordinates
H.nm.,.m&h of two. Their elimination still yields a relation similar t (6:3) but now of a higher degree. The
linear action (6.6) is changed into:

1 .
R — Gul * R gen (6.7)
Let us represent gaq and mn.l...“ as 2 X 2m matrices namely:

_ (G 0 - Gop 0

2L
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where Gog and Gay, are two m X m matrices.

Using notations (5.1) for the Boltzmann weight matrix, one can easily see that this elimination yields
the following determinanial relation belween p and p':

dei(dp' —C — Dp+pp'B) = 0 (6.9)

This determinant is a polynomial of degree m in each varinble p and p'. 1t is important to note that this
determinant is covariant under the “gauge-like” transformations (6.8):

det{dp’ —C — Dp+pp'B) — det(Gop)® - det(Gar) - det(4p’ —C — Dp+ pp' B) (6.10)

The compatibility condition (6.9) is therefore invariant under the “gange-like” transformations (6.7).

We have performed an analysis for the m = 4 case (more precisely for an 8 x & Boltzmann matrix cor-
responding to a thres dimensional vertex model) getting biguertic relations [31]. Generally, for 2m x 2Zm
matrices, one gets relations of degree m both in p and p’. Curve (6.9}, excepl for the remarkable m = 2
case (the sixteen-vertex model !) for which the curve identifies unth its Jacobian, is a curve of genus
greater than one. Generically it is a curve of genus'” g = (2m —2)(Zm— 1)/2 =2+ (m - 1) m/2
= (m — 1)* and Karepanov after Krichever [32, 39) have claimed that the group of birational transfor-
mations we study can actually be represented as a shift on the Tacobian variety associated with curve
(6.9). Translormation K linearizes on the Jucobian vericty: transformation K corresponds to a constant
shift on the torus. Transformation X amounts to adding a fixed clement of the Albancse variety €2)T.

Mareaver it is straightforward to sce that the two transformations gax and .em_.— are actually syrame-
tries of transformation I, With notations (6.8) one gets immediately:

K (g5 M- m_nsu = det(ger)- det{gzr) ™" - gop - K(M) - qar, (6.11)
2(m—1) .
K7 Momn) = (detloan) detloen) ') -gm KA gan (6.12)
1d for arbitrary n:
K (50 M- gan) = (detlgzr) - det(ga)?) " - g2l - K2"(M) - gur (6.13)
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= ?Ene;.._ﬁaﬁ Lv g5l - K3™M) - gag

K2 gp! M - gan) = (detlozn) - detloz)™) " g - KPUM) - gur (6.14)
) EEmetr ) aan
= (det(Gan)-det(@ar) *) T ggk e KERNM) ot
with:
_1yen 324t
(2m—1) 1 _(2m -1 + 1 (6.15)

23 = 1 Zandl = 2en

2m
Tor the inhomogeneous transformations K one also gets:
R (g2 - M-gan) = g3t -R*"(M)-gur, K™ (g3} - M-gar) = g3+ K2 (M) a1 (6.16)

This is a simple consequence of the relations eorresponding to the two transformations I and #,:

(g5 M- gur) = det(gan) - deU(ger)™ - g - I(M) - gur, = det(Gar)* - det(Gar)™ - gzh - I(M) - gar

A formula for getting the genus is for example Noether's formula obtained assuming that the eurve of degree d las
otily ardinary multiple points. Sincs we have ouly n-uple points Lhia yields: g = (d—1)(d — 2)/2 = N-n(n - 1}/2, where
N is the number of n-uple points [42, 43, 44]. We have here (w0 n-uple points. To sce this one can, for instance, write
curve (6.9) in a homogeneous way. as the intersection of equations det{Ap’ — Ct - Dp+ (' B) = 0 and pp' = ¢/,
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and:
tuuzd- M- = g
1| 2 Br) = ga t(M) @r (6.17)

If one imposes det(Gp) = det{Gay,) one gets an invariance under the homogeneous translormations
K*™ Dbut in fact onc has, in general, a covarinnce property which is actually o syminetry closely linked
to the homogeneity of the problem (1, 2]. The f.'s and det(M,)'s transform very simply under (6.7):

u._m..nm.: (ni1)/2

fo = (et(gan) - det(gar) " Fu = (der(gar) - det(ges) *)” fr o (638)

det(M,) — T&Ea .n_m:?.u.._vp:_?_ - det(M,) (6.19)

Tn the mi = 2 case (sixteen vertex model see section (3.1)) the £.’s satisfy recurrences, like (3. 12), yielding
eliiptic curves. These relations are actually dnvariant under symmetry (6.18) (see for instance [1, 2 It
is however important to note from (6.16), that the inhomogencous variables o, =1, - {,s;, product of
two consceutive £, 's (1, = det(K"(My))}, (and therciore recurrences (3.12)) are actually invariant under
(6.7): variables x,'s actually “gange-away” this quite large symmetry group (6.7).

To sum up, when considering the iterations of K2 or K2, vue can, without any loose of generality,
“gauge-away” the parameters corresponding to these (linear) transformations (6.8): oue has two times
m? — | inhomogencous parameters corresponding to Gy and Gap. For m = 3 for instance, one can
probably “gange-away” 2(3% — 1) = 16 paramelers among the 62 — 1 = 35 inhomogeneons parameters
of the 6 x 6 maltrices one considers. This would yicld an upper bound for the dimension r of the affine
space where the successive iterated matrices under the action of K* lie on (5.9). This dimension could
not be larger than 35— 16 = 19,

Remark.1: Gauge groups like (6.7) can actually be introduced for birational transformations which
are not related to vertex models (1, 3], for instance for transformation K, = ¢ - I associated with
transposition ¢ which permutes two entries: R[1,2] « R[2,1] . Let us introduce the following N x N
matrices written in terms ol block matrices:

T 0 = T 0
dr = Ac D:v and gt = Ao Dm_v (6.20)

where T is the 2 % 2 identity malrix, Gap and G5} are (N = 2) x (N — 2) matrices and “0" dencte the
two rectangular 2 x (N — 2) and (N — 2) x 2 block matrices with zero entries. [t is straightforward to
verify that relations (6.16) ate still valid for these very transformations, and that one can get relations
similar to (6.13), (6.18) or (6.19). This is a simple consequence of the compatibility beiween (8.20) and
symmetry £:

Aaﬁ ‘z..«\mﬁv = gi UR)-g;*! (6.21)

Remark.2: Ti has been underlined that the analysis of 2m x 2m matrices can be soen as a preliminary
study for the 2% x 2% matrices corresponding d-dimensional problems (see sections (4) ... ). Oune can
similarly write down a d-dimensional “pre-Bethe ansatz” condition [10]:

Ryy@uw@---@n) = pvl@ee e (6.22)

The elimination of 2(d — 1) vectors (for instance vy~ vy and o) coewh) yields d algebraic curves
like (6.9). Among the various d-dimensional f-matrices, the ones for which the genus of the previons d
algebraic curves are all equal and smaller than (m—1)% = (2471 —1)? are of particular interest (accidental
degeneracy of the genus of one of these d curves is easy Lo find but will yield quite pathological models
breaking the symmetry between the d dircctions of the lattice).
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6.1 Representation of the shift doubling

One can also underline that this analysis for 2m x 2m matrices can alse be scem as o complementary
study for the N sites monodromy matrices'® corresponding to two-dimensional vertex models. These
monodromy matrices can be written as (5.1) where matrices A, 17, € and D are now 2V x 2% matrices,
Let us just consider the two sites case (N = 2):

Lo gl
[

b

One can write 2 “pre-Bethe-Ansatz” equation like (6.2) on each of these two B-matrices and get, after
elimination of the “vertical” vectors (wy,ws, wi,w)), two times the same biquadratic relation: namely
relution (6.3) und the same relation but where p is replaced by p’ and ' is replaced by p”. The resultant
of these two biquadraties, which amonnts to eliminating the variable p', is a biguartic relation between
pand p”. Lef us now consider a simpla ( Yang-Baxter integrable) example, namely the symmetric eight
vertex Baxter model [45, 46, 47]. For this model the biquadratic (6.3) has a simple form:

7 (6.23)

Qe (1 +p* ) +2Qu-pp - Q- (P +5%) =0 (6.24)
where the (J,'s are simple qnadratic expressions (with the canonical notations for the Baxter model):

- .
Q=cd, Q="TT"FT0 go=ab (6.25)
The elimination of p' in the two biguadratics of the type (6.24) yields a biquartic relation which factorizes
as follows:

=) (@) L+ 229" + 2Q5 2" — @4 (" +9™) (6.26)

This factorization is not surprising if one recalls the elliptic parameterization of (6.24). One has an
elliptic parametrization for biguadratic (6.24), as well as for the elliptic curve in CP; given by the
intersection of the two guadrics (Clebsch's biguadratic) [26, 47, 40]:

.M‘“ = v = constant, Nln = § = constant (6.27)
One can actually parameterize p and p/ as elliptic sinus [47): p = snu and p' = snf{u £ 1), where A is
othing bul e skift on the elliptic curve. Tt is straightforward to see that, if one also writes p” as sn(u"),
the argument ¢ of the elliptic sinus can be w £ 2X or v’ = u A FA = u . The fact that {p—p")?
factorizes comes from Lhe [act that 4" = u can be obtained in two ways'® . As a byproduct one gets &
representation of the shift doubling, A — 2, as & pelynomial transformation on the parameters of the
Inguadratic (6.24):

(@u@Qs) — (€1, = (6.28)
(~4Q1- G5 Qs, (@B - Q1 —203 (@ +Qh), - (@F - @)

This polynomial transformation is net birational It maps an elliptic curve of the parameter space CP;
onto another elliptic curve of CP;. Note that this polynomial representation of the shift doubling is
compatible with the weak-graph duality symmetries, as well s the lwo inversion relations on the model
or the action of K in the parameter space of the model. This will not be detailed here, It is also

1810 Lhis framework it is worth recalling the theory of the Quanium Inverse Scatlering where such monodromy matrices
play a key role, the Yang Baxter equations yielding an equation relaling two menodromy matrices: RTT = TTR

19T hig faciorization of (p — p'')? does not oceur for the general sixteen vertex model: in this general case the elin
of p’ yields a quite involved (at first dight) biquadratic relation.
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important to note that transformation (6.28) preserves the moedular invarsant of the elliptic curves, or
more simply, the modulus k of the elliptic functions encountered [26, 40]. Onc has the following relations
between k and the @;’s [40, 47]:

#+W _ QA+ -3 o edpiivalty ﬁr+mvu _ (@ + Q3+ Q) (@1 +Qa— Q)

k Q- Qs F—1/ T Q@ - Qu+ Q) (G~ Qs — Q)

1t is straightforward to see that expressions (6.29) are actually invariant under the polynomial wﬂﬁ.,_t.??
mation (6.28), This provides an interesting example of polynomial, but not birational, transformation
the iteration of which yields an algebraie (elliptic) curve (6.29)*°. This transformation underlines the
existence of new kind of symmetries and transformations in the parameter space of the model. These
isogenies should not he confused with the birational transformations K [40].

(6.29)

6.2 Turther generalizations

Finally let us note that the “pre-Bethe-Ansatz” condition (6.2) can be generalized to (n - m) x (n.m)
matrices. Again vectors w and w' have m coordinates instead of two, but, new, vectors » and v have n.

!
components. Let us just write here the n = 3 case. Lei us denote the components of vectors v and v

and the (3-m) x (3-m) Boltzmann matrix in terms of m % m matrices 4;, ... As, as follows:
1 1 Ay Ag Ay
v=|p |, o =19 ] gr= | A A5 Ag
P2 ol Ay As Ay

The elimination of vectors w and w’ yields two determinantal conditions (instead of one for n =2
and, generally, n — 1 conditions for arbitrary n):

chnn\: + Ay pr + Az ) ..._a".»L (Ar + Agpr + Agp)) = 0 (6.30)

det({4; + Azapy + Agms) Py — (As + Aspr + Aspa)) = 0 (6.31)

Curve (6.9) is thus replaced, for n =3 by an algebraic surface given by the two conditions a.u.cu and
(6.31), and, for arbitrary 7, by an (n — 1)-dimensional algebraic variety given by n — 1 “determinantal
conditions” bearing on - (n — 1) variables p;, -+, poy and Py s Py

This simple remark enables to better understand why the number of eolors 2 for the arrows of the
verlex models play such a special role for the occurrence uf polynomial growth.

7 Conclusion

We have used the methods introduced in [1, 2, 3] on various examples of vertex models of lattice mnwﬁwmanﬂ_
mechanics. In particular, we have analyzed the factorization properties of discrete symmetries of the
parameter space of these lattice models, represented as birational transformations.

Different features have emerged from this study, namely the polynomial growth of the complexity of
the iterations of these birational transformations, the existence of recurrences hearing un the factorized
polynomials f,, the existence of determinantal comipatibility conditions like (6.9). All these properties
have been shown to be related with the integrability or the “quasi-integrability” {10} of these lattice
maodels of statistical mechanics.

For all the examples introduced in this paper, which correspond to matrices of arbitrary size, it has
been shown that remarkable factorization relations independent of the matriz size ncenr (see for instance
(3.14), (5.5)).

0Phis provides a representation of the (semi-group) N, y A — 2" . ), which should not be
birational representations of the group Z, miven in this paper and in 11, 5, 6, 8, 1.

ed with Lhe
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The analysis of the factorizations corresponding o a specific two-dimensional vertex model has
shown how the generic exponential growth of the calculations does reduce to a polynomial growth when
the model becomes Yang-Baxter integrable. We hope hat the search for polynomial growth of the
complexity of the associated iterations will provide a new way to analyse three or higher dimensional
uertes models 8, 9, 31|, scarching systematically for madels where a Jacobian variety of an algebraic
curve oceurs®'. It has besn shown that the (determinantal) compatibility condition associated with
the “pre-Bethe-Ansatz” (6.9) naturally yields curves of quite high genus together with their associated
Jaeobian veriely: one could seek systematically for models {that is specific patterns of matrix Boltzmann
weight) for which this genus becores as wmall as possible, These compatibility conditions yield as many
curves (6.9) as the dimension d of the lattice: one should concentrate on the models for which the
d algebraic curves (6.9) are, as mnch as possible, on the same [ooting (same genus, same number of
coeflicients ... ).

The examples of birational transformations associated with verter models, detailed here, cnable to
clarify the ovcurrence of polynomial growth of the complexity of the iterations: in particular it has been
shown that a polynemial growth, nok only oceur with algebraic elliptic curves [3, 12] bul can also ovcur
for transformations yielding algebraic surfoces or even higher dimensional varieties. In fact, it will be
shown in forthcoming publications, that one can prove the polynomial growth of the ealeulations (48]
when transformation K can be represented as a shift on a Jacobian variety €7 /I, Let us recall that
Jacobian varieties of curves are particular abelian varicties depending only of 3¢ — 3 modnli among
the g (¢ + 1)/2 parameters® the abelian varieties depends on.

Conversely 11 is not clear to see if a polynomial growth necessarily implics the existence of an as
sociated Jacobien wariely (one can imagine a situation where abelian varietics which are not Jacobian
varieties occur together with polynomial growih, or K3 surfaces fogether with polynomial growth .. ).
We will try in further publications to see if this polynomial growlh is necessarily relaled to abelion
varieties, We will also try o see to what extend preduct of elliptic curves is a situation favored in lattice
stufistical mechanics,

Acknowledgement: We thank M. Bellon, C.M. Viallet for many discussions and encouragements,

*LA particular interest may be devoted ta the subcase of hyperelliplic curves: the (analyti 39 — 3-dimensional space
ol maduli (Teichmiiller space) has singularities corresponding to the hyperelliptic curves which only depend on 24 — 1
moduli.

**The period matrix ol

o theta Bunctions of g variables has to be symmetric,
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Appendix A

The X1

Ya and 7, defined in section (3.4), read up lon = 5;

"o

Xl = b-1, ¥i= 2041, Z, = b+1

\4%— =207 ~b—1+bec+ c, ¥y = Arm[ww\mlmﬁlnv Zy =26 —b—1—be—e¢,

X =4t + 202 —60° —be* —be+ 2 —c,
Vi = 4-3be— 1267+ 8h—2¢4 20+ 3% — 12F —3b® — 262 4 160t — 1647,
Zy = 2-be— Gl 4+ 4b—c+ 2h%c — b — & 85 — 847,

166° - 320"+ 16 b4 + 487 — 120% — 180% + 2002 — 82c% + 0202 — 3be® — b — b+ 8Be—4 4 6o — 267

Yy = 16— 3dbe ~ 966% + 326 — 162+ 1086% + 6207 4 20b%% — 27 he? — 120% 4 27207 — 19847
+8e" + 9667 — 32006° — 1106%¢ + 5705 + 19be® + T28% — 328 — B0 b%r — 8543 — 641e2
—190%¢* + 2% + 8b%* + 100t + 4t + 12807,

Zy = 8~ 16bc — 485 4+ 166~ B+ 48 6% + 320% + 100%¢% — 14 b —6¢° + 1361
—64b" 44t + 486" — 1600° — 56b%c + 306% + 95e? 4+ 32b% — 16672
~320%c — 4b%° — 4 b'e® — 9”4 bt 4%t 450t 20t 6447,

Xi = aBbo— 16+ 128 + 106" — 160+ 320+ 8% + 265 — 400°6% — 54%c" 4 19247x
+326%% £ 4%+ 1288° — 160b% — 1926% + 166%% — 16 be? — 467 — 400 1"

+325° — 206% + 176 8° 4 416 6" + 480 0%¢ + 56 H7¢” + 30 b5 — 3BhcT — 448 b5 — 4GB0 + 48 e
—176%® — 44 b8 + 7607~ 120%¢" + 0P + 126c + 4ot — 48T,

Ya

= —137c¢"0% - 130 — 32¢% + 24576 6™ — 128 + 1032 be + 11520% + 350 be® — 3840 + 320¢ + 2000%5

—5620%c® 1 1662 0%t — 6886 H°¢” — 794 et + 32448 6% — 2642417 ¢ — 78215CF — 696 bt

+5968 57" 4 1888 5% + 96 ¢® + 51206 ~ 34560 b° — 7368 b%c — 2096 b%c + 352 b2c2

—368 bo® — 96¢* ~ 5T60H* + 32000° — 272¢% — 10368 5° + 18816 6% + 7776 b'c + 2224 WP + 602 H¢® — 926 b
—20784 b%c — 5456 6% | 21048 b% + 28 h%6® — TO4 b%® ++ 4084 533 — 1646 69" + 27 W*e + 490 e

+128¢% + 1267207 + 7744 0% + 520057¢° — 19968 5% + 438 057 — 3104 5%2 4 950 65c 4 8210 + 44 b5
+6272bM e 4+ 11626 — 185667 — 3128%c* — 18432611 — 16¢7 + 4096 5" — 61417 — 1526 p%e?

13007 4 400 5% + 15855 + 86 6°C° + 154b°c" — 4857 — 284%7 — 76 6% — 1006%7 — Gdbe”
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Zs = —66c°h = 64 c®h— 166" + 1228851 — 64+ 5128+ 5766 + 176 be® — 1925+ 160 ¢ + 102 %
388057 — 3520c° — 28247¢° 4 81780 — 3456 57" — 361 b'ct + 16128 b¥c — 12864 b7

+2688b7c? 4 1056 1%* + 48 ¢" + 2560 8" — 17280 8% — 14447 — 38577 ~ BOK%T — 3207

—3648 b%c — 1056 0% 4+ 192 6°¢* — 176 be® — 48¢® — 2880 5" + 1600 6° — 136 ¢® — 5184 5% + 9408 p°
+3936 b + 1056 5°+% 4 300 1% — 484 be® — 10464 ¢ — 2544 5°% + 10368 ¢ + 166%¢° — 432542

+2048 6% — 759h%! + 28! + 240 be* + B4 ' 4 633667 -+ 3584 b¥e + 2608 b7c* — 9T28 b e + 24017t

1536 0% + 443 8% 4 40 7%c" + 23670 + 307286 ¢ - 5120'00% — 76817t — 144881 — 92164t
—8c 4+ 204802 — 302 57ct — T68 b’ + 66076 + 2020%° + TH%E + 4167 + TS B4 — 2%

Appendix B

Let us sketch here the analysis of the growth of the complexity of the iterations for the two and
three site interaction g-state standard scalar Pofts model on the triangular lattice [17, 35, 49], One can
introduce a g% ¢ matrix Boltzmann weight for this model [35, 49]. One inversion relation, transformation
Iy, is the {(homogeneous) matrix inversion, while other symmetries, playing the role of transformations
t; in this paper, are permutations of the entries of this ¢ x ¢ Boltzinann matrix (35}, Let us consider
an infinite order (homogeneous) birational transformation, we denote K, obtained from I and one of
these permutations (this transformation is transformation pyp /, in [35]). Similarly to the situation
encountered with the three-dimensional generalization of the six vertex model (sce section {4.5)), the
determinant is replaced by two of its factors we dencte P, and P>, One has the {ollowing factorization

K(Mq) = cncppr dnry - Mays (7.1)
where the r,’s and d,’s are (homogencous) facterizing polynomials, and:

Pi(My) = enen_ady_g (7.2)

(M) = Cnyens6h gdndna (7.3)

where P and P are polynomials, respectively of degree 1 and 2 in the entrics of malrix M,. These two
polyromials are in fact the two prime factors of the determinant of matrix M,

Introducing polynomials fi's such that (7.1) reads:
K(My) = fo-Map (7.4)

with: fars = catasrdnsa-
The produect of Py(My) and Py(M,) reads:

PuM,) Pi(Mn) = fi- fata (7.5)

Introducing e, the degree of the entries™ of M,,'s and f3, the degree of the f,’s one gets from (7.4)
and (7.5);

200 = PB4 Qi1 (7.6)

Ja, = 2, + Brsa A..q.d

in most part of this paper

THnstend of the degree of the determinant of the M,
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The elimination of the f,%s yields the recurrence:
Oppg — 2043+ 2004 — @ =0 (7.8)
or equivalently on the corresponding generating function a(z), the relation:
afe) (1— 224 22° —2') = afz) - 1-2* (1 +2) = P) (7.9)
where P(z) is a polynomial of degree 3. The first coctiicients of a(z) read:
alz) = 1+ 2z+4z% +82" +... (7.10)
From these first coefficients one gets the expression of P(z):

P(z) = 1 +24°

Relations (7.11) and (7.9) yicld the exact expression of the generating function afx) = Garalz) (
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