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In the preceding chapters, we have seen examples of interacting systems where mean-field
theory is a good starting point. In many cases however, fluctuations about the mean-field
approximation are important and cannot be neglected. In low dimensions, they often play a
crucial role and tend to suppress long-range order. In a more subtle way, they can also affect
the correlation functions near a second-order phase transition and invalidate the mean-field
predictions regarding their long-distance and long-time behavior.

In this chapter, we give a general introduction to the theory of second-order phase
transitions (i.e. transitions with a continuous order parameter and a diverging correlation
length). After a brief introduction to critical phenomena (Sec. 10.1), we review Landau’s
mean-field theory for a (classical) (ϕ2)2 theory with O(N) symmetry (Sec. 10.2). By study-
ing fluctuations about the mean-field approximation, we find that Landau’s theory becomes
inapplicable near the transition for dimensions below the upper critical dimension d+c = 4,
while long-range order is suppressed at and below the lower critical dimension d−c = 2
(Sec. 10.3). We then discuss second-order phase transitions in the framework of the scaling
hypothesis and derive relations between critical exponents (scaling laws). The RG - with the
important notions of RG flows, fixed points and critical exponents - is discussed in Sec. 10.5.
We show how the RG naturally leads to universality and scaling. The critical exponents are
computed perturbatively near the upper critical dimension (Sec. 10.6), and near the lower
critical dimension in the framework of the NLσM (Sec. 10.7). The Berezinskii-Kosterlitz-
Thouless transition is discussed in section. 10.8. In section 10.9, we give a brief introduction
to the functional RG, the Wilson-Polchinski equation and its solution in the local poten-
tial approximation.1 Details about the perturbative calculation of critical exponents and
the large-N limit of the (ϕ2)2 theory or NLσM can be found in the appendices. We con-
sider only classical (thermal) phase transtions; (zero-temperature) quantum phase will be
discussed in chapter 12.

1The functional RG will be discussed at length in chapter 11.
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10.1 Introduction to critical phenomena 605

10.1 Introduction to critical phenomena

Let us consider a system with the partition function

Z(K) = Tr e−βĤ , (10.1)

where K = {Ki} denotes a set of parameters or “coupling constants” (external fields,
microscopic parameters, etc.) of the Hamiltonian Ĥ, as well as temperature. We assume
that the thermodynamic limit exists, i.e. that the limit

f(K) = lim
V→∞

F (K)

V
= − lim

V→∞

1

βV
lnZ(K) (10.2)

is defined.2 When this is not the case, surface effects remain important in the limit V → ∞
and it is not possible to define a bulk free energy density f(K).

A region in the K = {Ki} space where f(K) is analytic defines a phase of the system.
Phase transitions correspond to non-analyticities of f(K).3 In general, the free energy of
a finite-size system is analytic. We are interested in the case where non-analyticities arise Commenter davan-

tage? Pourquoi pas
toujours?

from the thermodynamic limit V → ∞ in which the number of degrees of freedom becomes
infinite, and focus on thermal phase transitions (i.e. transitions driven by thermal fluctua-
tions). Quantum fluctuations do not play an important role in the low-energy behavior of
a system near a finite-temperature phase transition and we therefore only consider classi-
cal models. Quantum phase transitions, i.e. zero-temperature phase transitions driven by
quantum fluctuations, are discussed in chapter 12.

10.1.1 Spontaneous symmetry breaking

There are different kinds of phase transitions. Some, such as the liquid-gas transition or
the Mott transition in solids,4 do not break any symmetry. Others, e.g. the ferromagnetic
transition in a magnetic system (chapter 8) or the superfluid transition in a Bose gas (chapter
7), are associated with spontaneous symmetry breaking. We are interested in the case
where one of the phases has the full symmetry of the Hamiltonian, while the other one has
a reduced symmetry. It is then possible to introduce an order parameter which vanishes
in the “disordered” (symmetric) phase and takes a nonzero value in the “ordered” phase.5

Since the state of the system is determined by the minimum of the free energy F = E−TS,
the disordered phase usually corresponds to the high-temperature phase (where entropy
effects dominate) and the ordered phase to the low-temperature phase.

In the following, we mostly use the language of the ferromagnetic transition and, unless
otherwise specified, consider an easy-axis ferromagnet (the easy axis determines the direction
of the magnetization). While the system is paramagnetic at high temperatures, below the
transition temperature Tc there appears a spontaneous magnetization M in zero magnetic
field (Fig. 10.1). To understand the nature of the broken symmetry, we assume that the

2A necessary condition for the thermodynamic limit to exist is that the interactions are sufficiently short
range.

3This definition is in fact ambiguous since it is sometimes possible to go from one phase to the other
without crossing a phase boundary. This is possible when, as in the liquid-gas transition, both phases have
the same symmetry.

4The Mott transition is a metal-insulator transition induced by the Coulomb repulsion.
5In the liquid-gas transition, although there is no spontaneous symmetry breaking, it is possible to define

an order parameter, namely the density of the fluid (or the difference between the density of the fluid and
that of the gas).
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606 Chapter 10. Renormalization group and critical phenomena

Figure 10.1: Magnetization density of an easy-axis ferromagnet vs temperature in zero field
(left panel), and vs magnetic field below, above and at the transition temperature (right
panel).

Figure 10.2: Phase diagram of an easy-axis ferromagnet. The discontinuous transition line
(thick line) between states with magnetization density m(T ) and −m(T ) terminates at the
critical point (Tc, H = 0).

© N. Dupuis, 2022



10.1 Introduction to critical phenomena 607

Figure 10.3: Free energy density f(H) = F (H)/V and magnetization density m(H) =
M(H)/V of an easy-axis ferromagnet as a function of the magnetic field for finite and
infinite systems.

ferromagnet consists of a collection of spins Sr located at the sites r of a lattice and parallel
to the easy axis. Because of time reversal symmetry in the absence of an external field,
the Hamiltonian H(Sr) is invariant under spin inversion Sr → −Sr. In the ferromagnetic
phase, spin inversion is spontaneously broken. On the other hand, if the ferromagnet has no
easy axis but is isotropic, then the Hamiltonian is invariant under a simultaneous rotation
of all the spins, H(Sr) = H(R(Sr)), where R is an arbitrary rotation matrix acting in
spin space and the spin variables are now three-dimensional vectors. In the ferromagnetic
phase, spin rotation invariance is spontaneously broken: m = 〈Sr〉 6= 0. In this case, the
broken symmetry is continuous. We shall see that the nature (discrete or continuous) of
the spontaneously broken symmetry plays a crucial role in the low-energy properties of the
system.

The phase diagram of a ferromagnet is shown in figure 10.2. There is a discontinuity
in the magnetization density m as the magnetic field H goes trough zero for T < Tc (the
magnetic field is assumed to be along the easy axis of the ferromagnet). This discontinuity
terminates at the “critical” point (Tc, H = 0).6

Because of time reversal invariance, the free energy does not change if we reverse the
direction of the field, F (H) = F (−H). This implies

m(H) = −∂f(H)

∂H
= −∂f(−H)

∂H
=
∂f(−H)

∂(−H)
= −m(−H), (10.3)

so that it seems that the zero-field magnetization density m(H = 0) = M(H = 0)/V must
vanish. This argument however requires f(H) = F (H)/V to be analytic at H = 0, i.e.
∂f(H)/∂H to be smooth at H = 0. While this is true if the volume is finite, this is violated
in the infinite volume limit when T < Tc:

lim
V→∞

lim
H→0

1

V

∂F (H)

∂H
= 0, (10.4)

but

lim
H→0

lim
V→∞

1

V

∂F (H)

∂H
6= 0, (10.5)

6See footnote 11 page 609.
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608 Chapter 10. Renormalization group and critical phenomena

as illustrated in figure 10.3. Spontaneous broken symmetry is possible only in the thermo-
dynamic limit where the free energy density f(H) becomes non-analytic at H = 0.

To illustrate this point, let us consider spins Sr located at the sites of a lattice (with N
the number of sites). The probability to find the system in the state {Sr} is given by the
Boltzmann distribution

P ({Sr}) =
e−βH({Sr})

Z
. (10.6)

If P ({Sr}) is invariant under Sr → −Sr (time-reversal invariance), then 〈Sr〉 = TrP ({Sr})Sr =
0 and it seems that spontaneous symmetry breaking is impossible. At low temperature, for
a ferromagnetic coupling between spins, the latter are either “up” (〈Sr〉 = +m) or “down”
(〈Sr〉 = −m). These two configurations are related by time reversal symmetry and their
probabilities are equal: P⊕ = P⊖. Now apply an external positive field H (H > 0). Due to
the coupling term −H∑r Sr,

P⊖
P⊕

= e−2βNHm (10.7)

and

lim
N→∞

P⊖
P⊕

= 0 (10.8)

Thus the presence of an infinitesimal field H → 0+, together with the thermodynamic limit
N → ∞, is sufficient to select the configuration ⊕. The configuration ⊖ is inaccessible.
Equivalently, we could set H = 0 and use a restricted ensemble where the configuration ⊖,
and more generally all microstates with a negative magnetization, is not allowed. The fact
that some part of the phase space is forbidden is known as ergodicity breaking.7,8

10.1.1.1 Gibbs free energy

The stability of the system requires the isothermal susceptibility

χ =
∂m

∂H
= − 1

V

∂2F (H)

∂H2
(10.9)

to be positive. Thus F ′′(H) ≤ 0 and the free energy is a convex function of the magnetic
field. This allows us to invert the relation m = − 1

V
∂F
∂H and introduce the Gibbs free energy

G(m) = F (H) + V Hm, (10.10)

defined as the Legendre transform of F (H). G(m) satisfies the equation of state

∂G(m)

∂m
= V H. (10.11)

From figure 10.3, one easily deduces the general form of the Gibbs free energy (Fig. 10.4).
The convexity of F (H) ensures that G(m) is also a convex function. In the ordered phase,
the (absolute value of the) magnetization is always larger than the zero-field result m0 =
−∂f/∂H|H=0+ . The region ]−m0,m0[ is not physically accessible.

7A detailed discussion of ergodicity breaking may be found in Ref. [19].
8Spontaneous symmetry breaking is further discussed in Sec. 3.6.2.
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10.1 Introduction to critical phenomena 609

Figure 10.4: Gibbs free energy G(m): high-temperature (left) and low-temperature (right)
phase.

10.1.2 Landau’s classification of phase transitions

Landau distinguishes between discontinuous (or first-order) and continuous (or second-
order) phase transitions.9 In a first-order transition, the order parameter is discontinuous
at the transition (Fig. 10.5). The correlation length ξ is finite,10 and the two phases (or-
dered and disordered) coexist at the transition temperature Tc. In a second-order phase
transition, the order parameter is continuous (Fig. 10.5) and the correlation length diverges.
Fluctuations become correlated over all distances, which forces the whole system to be in a
unique phase. The two phases of either side of the transition must therefore become identi-
cal at Tc; as the correlation length diverges, the order parameter in the ordered phase goes
smoothly to zero. The ferromagnetic transition we have discussed above is an example of a
second-order phase transition.

When the correlation length is finite, we can view the system as a collection of subsystems
of size ξd (with d the space dimension) with no mutual interaction. By the central limit
theorem, we expect the fluctuations at large distances (≫ ξ) to have a Gaussian probability
distribution. By contrast, all degrees of freedom become correlated at a second-order phase
transition where ξ diverges (Sec. 10.1.4). We will see that standard perturbation theories
break down in the vicinity of a second-order phase transition unless the dimension is high
enough or the interactions sufficiently long range (Secs. 10.2.1 and 10.3). The temperature
regime where the mean-field or Gaussian theories (Secs. 10.2 and 10.3) are not valid any
more is called the critical regime.11

On the other hand, the divergence of the correlation length at a second-order phase
transition renders microscopic details irrelevant for the long-distance properties. As a con-
sequence, near the critical point, the singular part of the free energy and the asymptotic
behavior of the correlation functions depend only on general properties such as the space
dimension, the dimension of the order parameter or the symmetry and range of the inter-
actions. This essential property of second-order phase transitions is called universality. We
shall see that universal properties of a system near a second-order phase transition can be
accurately described within an effective theory involving only long-distance fluctuations.

Unless otherwise specified, we will only consider second-order (continuous) phase tran-
sitions in the following.

9Landau’s classification differs from Ehrenfest’s classification where a transition is said to be nth order
if all (n − 1)th-order derivatives of the free energy are continuous while there is at least one nth-order
derivative which is discontinuous. (Ehrenfest did not realize that some thermodynamic quantities (e.g. the
specific heat) can diverge rather than exhibiting a simple discontinuity.)

10The correlation length ξ is a measure of the distance over which correlations are important; it will be
precisely defined in Sec. 10.1.4.

11Second-order phase transitions are often called critical phenomena; the transition temperature is then
referred to as the critical temperature/point.
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610 Chapter 10. Renormalization group and critical phenomena

Figure 10.5: Temperature dependence of the order parameter m(T ) in a first-order (left)
and second-order (right) phase transition.

10.1.3 Critical behavior

The singular behavior at the critical point is characterized by a set of critical exponents
(Table 10.1). Below Tc, the magnetization density m(T,H) varies as12

m(T, 0) ∼ (−t)β (T → T−
c ), (10.12)

where

t =
T − Tc
Tc

(10.13)

is the reduced temperature. At the transition temperature,

m(Tc, H) ∼ H1/δ (H → 0), (10.14)

which defines the exponent δ. Near the critical point, when the system is about to sponta-
neously order, the susceptibility (i.e. the response to an external magnetic) becomes very
large and diverges at Tc,

χ =
∂m

∂H

∣

∣

∣

∣

H=0

∼
{

t−γ (T → T+
c ),

(−t)−γ′

(T → T−
c ),

(10.15)

where the two exponents γ and γ′ refer to the high- and low-temperature phases, respec-
tively. The critical behavior is also characterized by a divergence of the specific heat

CV ∼
{

t−α (T → T+
c ),

(−t)−α′

(T → T−
c ),

(10.16)

with an exponent α or α′. In most cases, the exponents on both sides of the transition
coincide: γ = γ′ and α = α′ (Sec. 10.4.2). The divergence of the correlation length and the
singular behavior of the correlation function are discussed in the next section.

10.1.4 Long-range order

A nonzero order parameter implies not only spontaneous broken symmetry but also long-
range order. In most cases of interest, the order parameter is the mean value of an observable
ϕ(r). Besides m = 〈ϕ(r)〉, one can also consider the correlation function of the ϕ field. In

12Note that we use the same notation for the critical exponent defined in (10.12) and the inverse temper-
ature β = 1/T .
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10.1 Introduction to critical phenomena 611

Order parameter m(T, 0) ∼ (−t)β (T → T−
c )

m(Tc, H) ∼ H1/δ (H → 0)

Susceptibility χ =
∂m

∂H

∣

∣

∣

H=0
∼
{

t−γ (T → T+
c )

(−t)−γ′

(T → T−
c )

Specific heat CV ∼
{

t−α (T → T+
c )

(−t)−α′

(T → T−
c )

Correlation length ξ ∼
{

t−ν (T → T+
c )

(−t)−ν′

(T → T−
c )

Correlation function G(r) ∼ 1

|r|d−2+η
(T = Tc)

G(p) ∼ 1

|p|2−η
(T = Tc)

Table 10.1: Critical exponents at a second-order (continuous) phase transition.

the disordered phase, the order parameter vanishes and the correlation function decays
exponentially at large distances,

C(r− r′) = 〈ϕ(r)ϕ(r′)〉 ∼ exp

(

−|r− r′|
ξ

)

. (10.17)

Equation (10.17) defines the correlation length ξ. For |r − r′| → ∞, there should be no
correlation between the magnetization densities at point r and r′, so that

lim
|r−r′|→∞

C(r− r′) = 〈ϕ(r)〉〈ϕ(r′)〉 = 0, (10.18)

in agreement with (10.17). In the ordered phase, one finds instead

lim
|r−r′|→∞

C(r− r′) = 〈ϕ(r)〉〈ϕ(r′)〉 = m2. (10.19)

Equation (10.19) is the mathematical definition of long-range order; it suggests that ξ There can be LRO
without SSB!diverges as T → T+

c . This can be shown to be a consequence of the (classical) fluctuation-
dissipation theorem (3.60),13

χ = β

ˆ

ddr〈ϕ(r)ϕ(0)〉 ≤ β

ˆ

ddr e−|r|/ξ ∼ βξd. (10.20)

Since the susceptibility χ diverges at the transition [Eq. (10.15)], ξ ∼ t−ν must also diverge
when T → T+

c , which defines the exponent ν.
In the ordered phase, it is convenient to work with the connected correlation function

G(r− r′) = 〈(ϕ(r)−m)(ϕ(r′)−m)〉 = C(r− r′)−m2 ∼ e−|r−r′|/ξ, (10.21)

which defines the correlation length ξ for T < Tc. Both χ = βG(p = 0) ∼ (−t)−γ′

and
ξ ∼ (−t)−ν′

diverge when T → T−
c .14 In almost all cases, the correlation length critical

exponents ν and ν′ are equal (and γ′ = γ) (Sec. 10.4.2).

13The correlation function C(r) ∼ e−|r|/ξ/|r|p generally decays faster then e−|r|/ξ.
14The divergence of ξ in the ordered phase as T → T−

c is obtained from the same argument as that used
for the ordered phase with the correlation function C replaced by its connected part G.
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612 Chapter 10. Renormalization group and critical phenomena

N-component order parameter. For a N -component order parameter m = 〈ϕ(r)〉
(e.g. N = 3 for a Heisenberg ferromagnet), the connected correlation function is
defined by

Gij(r− r′) = 〈(ϕi(r)−mi)(ϕj(r
′)−mj)〉 = Cij(r− r′)−mimj . (10.22)

If the system is isotropic (O(N) symmetry), the Fourier transformed correlation func-
tion takes the form

Gij(p) =
mimj

m2
G‖(p) +

(

δi,j −
mimj

m2

)

G⊥(p), (10.23)

where the longitudinal and transverse components, G‖ and G⊥, are functions of |p|. We
shall see later on that when N ≥ 2 and d ≤ 4 neither G‖ nor G⊥ decays exponentially
in space below Tc,

15 so that the susceptibility χ diverges in the whole low-temperature
phase and it is not possible to define a correlation length. It is nevertheless possible
to define a characteristic length, the Josephson length ξJ , which diverges as T → T−

c

with an exponent ν′ = ν (Sec. 10.7.2).

10.1.4.1 Scale invariance

At the critical point (T = Tc), the correlation length ξ is infinite and the correlation function
decays as a power law,

G(r) ∼ 1

|r|d−2+η
, (10.24)

where η is called the anomalous dimension (this terminology is explained in Sec. 10.4).16

Equation (10.24) will be derived in section 10.4. Under a change of scale, G(r) behaves as

G(r/s) = sd−2+ηG(r) (10.25)

and is therefore invariant (apart from a multiplication by a factor sd−2+η). A critical system
exhibits scale invariance or self-similarity. The concept of scale invariance at the critical
point is central in the renormalization-group approach (Sec. 10.5).

10.2 Landau’s theory of phase transitions

10.2.1 Landau’s theory as a mean-field theory

10.2.1.1 Microscopic Landau’s theory
Faire le lien avec Γ
dans FRG? In a microscopic description, one would like to start from the partition function Z =

Tr e−βĤ . While the (quantum) Hamiltonian Ĥ is certainly necessary to understand the
microscopic origin of a phase transition, it is not crucial to understand the role of thermal
or quantum fluctuations in the vicinity of the phase transition. It appears more appropri-
ate to have a simplified description which emphasizes the role of the order parameter field
ϕ(r) associated with the order parameter m(r) = 〈ϕ(r)〉. ϕ(r) is a quantum field or a
function of the classical dynamical variables. The order parameter field is usually defined

15Mean-field and Gaussian fluctuation theories predict G‖(r) to decay exponentially below Tc for any
value of N . For N ≥ 2 and d ≤ 4, this result is an artifact coming from neglecting the coupling between
transverse and longitudinal fluctuations (see Sec. 10.7.3).

16In Fourier space, Eq. (10.24) gives G(p) ∼ 1/|p|2−η .
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10.2 Landau’s theory of phase transitions 613

at a mesoscopic scale Λ−1 which is much larger than the lattice spacing (assuming that the
microscopic model is defined on a lattice) but small wrt macroscopic scales.17

The process of obtaining a low-energy effective description by averaging over many unit
cells is called “coarse graining”. The averaging procedure ensures that ϕ(r) is a continuous
variable, and the partition function can be expressed as a functional integral,18,19

Z =

ˆ

D[ϕ] e−S[ϕ], (10.26)

where the momentum of the Fourier transformed field ϕ(p) satisfied |p| ≤ Λ. Formally,
we can obtain the low-energy effective action S[ϕ] from a partial trace over all microscopic
configurations compatible with a given configuration of the coarse grained field ϕ(r). In
general the partial integration involves a finite number of degrees of freedom and S[ϕ] is
an analytic function of ϕ. In some cases, it is possible to explicitly derive S[ϕ] from a
microscopic action as in the example of classical spin models discussed in section 10.2.2.
In many cases however, we simply include in S[ϕ] all terms allowed by symmetry within a
derivative expansion. For example, for a N -component field, the simplest action with O(N)
symmetry reads

S[ϕ] =

ˆ

ddr

{

1

2
(∇ϕ)2 +

r0
2
ϕ2 +

u0
4!

(

ϕ2
)2
}

, (10.27)

corresponding to the so-called (ϕ2)2 theory (or linear O(N) model).
Such an approach is clearly inappropriate to compute the transition temperature (which

depends on microscopic parameters of the system) but is sufficient to understand the behav-
ior of the system near the critical point and in particular the universal properties (Sec. 10.5).

We can compute the partition function (10.26) using the perturbative methods intro-
duced in chapter 1. The simplest approach is to perform a mean-field (or saddle-point)
approximation,

ZMF ≃ e−S[ϕ], (10.28)

where the field ϕ is determined from the saddle-point equation δS/δϕ = 0. The free energy
is simply given by

F = − 1

β
lnZMF =

1

β
S[m], (10.29)

where the actual value of the order parameter m = 〈ϕ(r)〉 is obtained by minimizing the
action.

10.2.1.2 Phenomenological Landau’s theory

It is possible to rephrase the preceding discussion from a more phenomenological point of
view with no reference to any microscopic model. In the phenomenological Landau theory
one postulates that the free energy density f = F/V is an analytic function of the order
parameter, whose absolute minimum specifies the state of the system. Near the critical point
of a second-order phase transition, the order parameter is small and f can be expanded in

17In practice, Λ−1 is often identified with the lattice spacing.
18The action S[ϕ] is sometimes written as βH[ϕ], or merelyH[ϕ], whereH[ϕ] is the effective Hamiltonian.

It is often (somewhat improperly) referred to as the “microscopic” action.
19In a quantum description, the field ϕ would also depend on an imaginary time τ ∈ [0, β]. A classical

description is nevertheless sufficient to study the critical behavior at a finite-temperature phase transition
(Sec. 12).

© N. Dupuis, 2022



614 Chapter 10. Renormalization group and critical phenomena

Figure 10.6: Free energy density f(m) in zero field (h = 0) near a second-order phase
transition [Eq. (10.30)].

a power series. The form of f and its expansion must be consistent with the symmetries of
the system.

Let us consider the case of a N -component real order parameter m(r) and assume the
system to be O(N) symmetric: the free energy density is invariant if we uniformly rotate
the order parameter. For a uniform order parameter and in the absence of magnetic field,
f must be a function of the O(N) invariant m2. Near the phase transition, assuming that
the free energy density is an analytic function of m, we write

βf = βf0 +
r0
2
m2 +

u0
4!

(

m2
)2 − h ·m, (10.30)

where the last term, which breaks the O(N) symmetry, is due to the coupling to an external
field H = h/β (i.e. the external magnetic field in the case of a ferromagnet). When the
order parameter is inhomogeneous, we must include in f a term corresponding to the energy
coast due to deviations from spatial uniformity. For a slowly varying order parameter, this
leads to the Ginzburg-Landau free energy

F [m] =

ˆ

ddr f(m,∇m), (10.31)

where

βf = βf0 +
1

2
(∇m)2 +

r0
2
m2 +

u0
4!

(

m2
)2 − h ·m. (10.32)

We will see below that higher-order terms such as (m2)3 or (m·∇m)2 are negligible near the
phase transition. It is always possible to rescale the order parameter to set the coefficient of
(∇m)2 equal to 1/2. The free energy functional (10.31) is identical to that obtained from a
saddle-point approximation of the (ϕ2)2 theory [Eqs. (10.27,10.29)] and is to be identified
with the coarse-grained action S[m] of the order parameter field.

f0 is the free energy density in the disordered phase in the absence of magnetic field.
Since it is expected to vary smoothly with temperature, it is usually omitted. We assume

r0 = r̄0(T − Tc0) (10.33)

and neglect the temperature dependence of u0 which, as we shall see, is unimportant near
the phase transition. The stability of the system requires u0 > 0 (otherwise the free energy
is minimized for |m| → ∞).

The minimization of the free energy is straightforward (Fig. 10.6). In the presence of a
uniform field along the e1 axis (h = he1), the magnetization density m = me1 satisfies

∂βf

∂m
= r0m+

u0
6
m3 − h = 0. (10.34)
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10.2 Landau’s theory of phase transitions 615

For a vanishing field, one finds

m =







0 if T ≥ Tc0,
√−6r0

u0
if T ≤ Tc0,

(10.35)

i.e. a phase transition at the temperature Tc0 (referred to as the mean-field transition
temperature). It usually differs from the actual transition temperature Tc. Right at the
transition and in the presence of an external field, the order parameter takes the value

m(Tc0, h) =

(

6h

u0

)1/3

. (10.36)

From (10.32) and (10.35), we deduce the singular part of the free energy,

f =







−3

2

T r̄20
u0

(T − Tc0)
2 if T ≤ Tc0,

0 if T ≥ Tc0.
(10.37)

The regular part of the free energy comes from the term f0 in (10.32), which we have omitted
in our discussion.

Equations (10.35) and (10.36) yield the critical exponents β = 1/2 and δ = 3. Differen-
tiating (10.34) with respect to H = β−1h, one obtains the uniform susceptibility

χ = β
∂m

∂h
=

β

r0 +
u0

2 m
2
=











β

r0
if T > Tc0,

β

2|r0|
if T < Tc0,

(10.38)

and a critical exponent γ = γ′ = 1. The singular part of the specific heat per unit volume,20

cV = −T ∂
2f

∂T 2
=







0 if T > Tc0,

3
r̄20
u0
T 2 if T < Tc0,

(10.39)

is discontinuous at the transition.
Let us now we consider the equation

0 =
δβF [m]

δmi(r)
= r0mi(r)−∇

2mi(r) +
u0
6
m(r)2mi(r)− hi(r) (10.40)

in an arbitrary field h(r). From (10.40), we see that for r0 and h small,

|m| ∼ |r0|1/2, |h| ∼ |r0|3/2,
|∇m|
|m| ∼ |r0|1/2, (10.41)

so that all terms in (10.32) are of order r20. Terms not included are of higher order and can
be neglected: (m2)3, (m ·∇m)2 ∼ r30, (m

2)4 ∼ r40, etc.
To compute the susceptibility

χij(r− r′) =
δmi(r)

δHj(r′)

∣

∣

∣

∣

H=0

= β
δmi(r)

δhj(r′)

∣

∣

∣

∣

h=0

, (10.42)

20The regular part of the specific heat comes from the term f0 in (10.32).
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616 Chapter 10. Renormalization group and critical phenomena

Landau approximation Gaussian model

ν = ν′ 1/2 1/2

β 1/2 1/2

γ = γ′ 1 1

δ 3 3

α = α′ cV discontinuous 2− d/2

η 0 0

Table 10.2: Critical exponents of the (ϕ2)2 theory with O(N) symmetry [Eq. (10.27)] in the
Landau approximation (Sec. 10.2) and in the Gaussian approximation for d ≤ 4 (Sec 10.3).
(For d > 4, the Gaussian approximation predicts the specific heat to be discontinuous.)

we take the functional derivative δ/δhj(r
′) in (10.40) and set h(r) = 0 (i.e. m(r) = me1),

(

r0 −∇
2 +

u0
6
m2 + δi,1

u0
3
m2
)

χij(r− r′) = βδi,jδ(r− r′). (10.43)

In Fourier space, we finally obtain

χ‖(p) = χ⊥(p) =
β

p2 + r0
if T > Tc0 (10.44)

and










χ‖(p) =
β

p2 + 2|r0|
χ⊥(p) =

β

p2

if T < Tc0, (10.45)

where χ‖ and χ⊥ are the longitudinal and transverse components of the susceptibility (see

Eq. (10.23)).21 Equations (10.44) and (10.45) imply χ‖(r) ∼ e−|r|/ξ with22

ξ =

{

r
−1/2
0 if T > Tc0,

|2r0|−1/2 if T < Tc0,
(10.46)

and therefore a critical exponent ν = ν′ = 1/2. The connected correlation functions G‖(p)
and G⊥(p) of the order parameter field ϕ can be deduced from (10.44) and (10.45) by using
the (classical) fluctuation-dissipation theorem χij(p) = βGij(p) [Eq. (3.60)]. We deduce
that the anomalous dimension η vanishes: G(p, Tc) = 1/p2. The critical exponents obtained
within the Landau approximation are sometimes referred to as “classical” exponents (Ta-
ble 10.2). The 1/p2 divergence of the transverse susceptibility for p → 0 is a manifestation
of Goldstone theorem; it will be further discussed in section 10.3.2.

21Since the magnetization is along the e1 axis, χ‖ = χ11 and χ⊥ = χ22.
22See footnote 15 page 612.

© N. Dupuis, 2022



10.2 Landau’s theory of phase transitions 617

10.2.1.3 Effective action Γ[m] within the Landau approximation

It is sometimes convenient to work with the effective action Γ[m] (or the Gibbs free energy
G[m] = β−1Γ[m]) rather than the Helmholtz free energy F [h] or the microscopic action
S[ϕ].23 When the system is coupled to an external field, the partition function reads

Z[h] =

ˆ

D[ϕ] e−S[ϕ]+
´

ddr h·ϕ (10.47)

and the order parameter is given by

mi(r) = 〈ϕi(r)〉 =
δ lnZ[h]

δhi(r)
. (10.48)

The effective action is defined as the Legendre transform

Γ[m] = − lnZ[h] +

ˆ

ddr h ·m, (10.49)

where h ≡ h[m] is obtained by inverting (10.48). It satisfies the equation of state

δΓ[m]

δmi(r)
= hi(r). (10.50)

In the mean-field approximation, lnZ[h] = −S[ϕ]+
´

ddr h ·ϕ, where ϕ satisfies the saddle-
point equation

δS[ϕ]

δϕi(r)
− hi(r) = 0. (10.51)

We deduce

mi(r) =
δ lnZ[h]

δhi(r)

= −
ˆ

ddr′
∑

j

δS[ϕ]

δϕj(r′)

δϕj(r
′)

δhi(r)
+

ˆ

ddr′
∑

j

hj(r
′)
δϕj(r

′)

δhi(r)
+ ϕi(r)

= ϕi(r), (10.52)

so that the effective action
Γ[m] = S[m] (10.53)

reduces to the microscopic action within the Landau (mean-field) approximation, in agree-
ment with the general discussion of section 1.7.2. The zero-field (connected) correlation
function Gij(r− r′) = 〈ϕi(r)ϕj(r

′)〉− 〈ϕi(r)〉〈ϕj(r
′)〉 [Eq. (10.21)] is given by the inverse of

the two-point vertex

Γ
(2)
ij (r− r′) =

δ(2)Γ[m]

δmi(r)δmj(r′)

∣

∣

∣

∣

m(r)=m

=
δ(2)S[m]

δmi(r)δmj(r′)

∣

∣

∣

∣

m(r)=m

(10.54)

(see Sec. 1.6.2), i.e.

Γ
(2)
‖ (p) = p2 + r0 +

u0
2
m2,

Γ
(2)
⊥ (p) = p2 + r0 +

u0
6
m2,

(10.55)

where m is determined from the stationarity condition δΓ[m]/δm = 0 [Eq. (10.50)]. We
thus recover the mean-field propagator Gij = Tχij [Eqs. (10.44) and (10.45)].

23The effective action Γ[m] is introduced in Sec. 1.6.2.
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618 Chapter 10. Renormalization group and critical phenomena

10.2.1.4 Universality

Within mean-field theory, the critical exponents of the (ϕ2)2 theory (10.27) are independent
of the values of the coupling constants r̄0 and u0. Two apparently different systems share the
same set of critical exponents: this is called universality. Two systems with the same critical
exponents are said to be in the same universality class. We shall see that the universality
predicted by the Landau theory is too strong. The critical exponents take their mean-field
(“classical”) value only above the upper critical dimension d+c . When d < d+c , they generally
depend on the dimension d, the number N of components of the order parameter as well
as the symmetries and range of the interactions. The explanation of universality and the
computation of the critical exponents is one of the great successes of the renormalization
group (Sec. 10.5).

10.2.1.5 Breakdown of mean-field theory

Mean-field theory is a good approximation if fluctuations of the order parameter about its
mean value are small. Since we have been able, using the fluctuation-dissipation theorem,
to obtain the correlation functions from the mean-field theory, we can check the internal
consistency of the theory. Let us consider a coherence volume V ∼ ξd ∼ |r0|−d/2 in which
the fluctuations are correlated. The average magnetization is

M ∼ V m ∼ ξd

√

6|r0|
u0

∼ ξd−1 (10.56)

and the fluctuation

∆M2 ∼
ˆ

ddr ddr′〈(ϕ(r)−m)(ϕ(r′)−m)〉 ∼ V

ˆ

ddr G(r) ∼ ξd+2 (10.57)

(for simplicity we assume a scalar order parameter, i.e. N = 1) can be related to the
correlation function24

G(r) =

ˆ

ddp

(2π)d
eip·r

p2 + ξ−2
∼ e−|r|/ξ

|r|d−2
(|r| . ξ). (10.58)

We therefore obtain
∆M2

M2
∼ ξ4−d. (10.59)

When d > 4, the rhs of (10.59) vanishes as T → T−
c0 and ξ → ∞, and the mean-field theory

appears internally consistent. When d < 4, the mean-field theory is clearly not reliable in
the vicinity of the critical point. The dimension d+c = 4 where the mean-field theory breaks
down is called the upper critical dimension. The criterion ∆M2 ∼ M2 giving the size of
the critical region is known as the Ginzburg criterion; it will be discussed in more detail in
section 10.3.4.

10.2.2 (ϕ2)2 theory for classical spin models.

Let us first consider the Hamiltonian

βH = −1

2

∑

i,j

σiKijσj −
∑

i

hiσi (10.60)

24Correlation functions in real space are discussed in Sec. 10.3.1.
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10.2 Landau’s theory of phase transitions 619

of the Ising model, where σi = ±1 is a classical spin variable and i denotes a site of a
d-dimensional cubic lattice. hi/β is an external magnetic field and Kij = βJij . We assume
the exchange coupling constant Jij to be equal to J for nearest-neighbor spins and to vanish
otherwise. The mean-field Hamiltonian is obtained by writing σi = (σi −mi) +mi, with
mi = 〈σi〉, and linearizing wrt the fluctuation term σi −mi,

βHMF = −
∑

i

(

hi +
∑

j

Kijmj

)

σi +
1

2

∑

i,j

miKijmj . (10.61)

A self-consistent equation formi is obtained by computing the mean value 〈σi〉 with (10.61),

mi =
Tr
(

σie
−βHMF

)

Tr
(

e−βHMF
) = tanh

(

hi +
∑

j

Kijmj

)

. (10.62)

In the absence of external field (hi = 0) and for a uniform order parameter mi = m, we
obtain

m = tanh(2dKm), (10.63)

where K = βJ . Equation (10.63) admits a nonzero solution when 2dK > 1, i.e. below the
mean-field transition temperature Tc0 = 2dJ .

To rewrite the Ising model as a functional integral over a continuous field ϕi, we use the
identity

e
1
2

∑
i,j σiKijσj =

ˆ ∞

−∞

∏

i

dϕi e
− 1

2

∑
i,j ϕiK

−1
ij ϕj+

∑
i ϕiσi (10.64)

(Hubbard-Stratonovich transformation) and rewrite the partition function as

Z =
∑

{σi}

ˆ ∞

−∞

∏

i

dϕi e
− 1

2

∑
i,j(ϕi−hi)K

−1
ij (ϕj−hj)+

∑
i ϕiσi (10.65)

(we have shifted the field ϕi → ϕi−hi). The sum over the discrete variables σi can be done,

∑

{σi}
e
∑

i ϕiσi =
∏

i

2 cosh(ϕi), (10.66)

which leads to

Z =

ˆ ∞

−∞

∏

i

dϕi e
− 1

2

∑
i,j(ϕi−hi)K

−1
ij (ϕj−hj)+

∑
i ln(2 coshϕi). (10.67)

The Fourier transform of Kij is given by

K(p) = 2K

d
∑

ν=1

cos(qν) = 2K

(

d− p2

2

)

+O(p4ν), (10.68)

so that

K−1(p) = (2Kd)−1

(

1 +
p2

2d

)

+O(p4ν), (10.69)
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where we have taken the lattice spacing as the unit length. Assuming the field ϕ to be small
(which allows us to expand ln(2 coshϕi)) and slowly varying (which justifies the continuum
limit), we obtain the action

S[ϕ] =

ˆ

ddr

[(

1

4Kd
− 1

2

)

ϕ2 +
1

8Kd2
(∇ϕ)2 +

1

12
ϕ4

]

(10.70)

in zero magnetic field. With an appropriate rescaling of the field, equation (10.70) takes
the form (10.27) with a momentum cutoff Λ ∼ π, N = 1, and

r0
2

≃ d

Tc0
(T − Tc0),

u0
4!

≃ 4J2d4

3T 2
c0

=
d2

3
(10.71)

for T near the mean-field transition temperature Tc0. It should be noted that the derivation
of (10.70) is questionable since the matrix Kij has no inverse. This difficulty is circumvented
in (10.68) and (10.69) by considering the small p limit of K(p).

This derivation can easily be generalized to a spin Hamiltonian H = 1
2

∑

i,j Ji,jSi · Sj

where Si is a N -component spin with S2
i = 1. N = 2 (N = 3) corresponds to the classical

XY (Heisenberg) model. The long-distance physics of this model is described by the action
(10.27) of the (ϕ2)2 theory with ϕ a N -component field.

The (ϕ2)2 theory is not strictly equivalent to the original spin model since we have ne-
glected (ϕ2)3, (ϕ2)4, etc., as well as higher-order derivative terms. However these terms can
be ignored at the mean-field level in the close vicinity of the phase transition (Sec. 10.2.1).
Furthermore, they do not affect the long-distance (universal) physics. In particular, the
value of the critical exponents is the same in the spin model and in the (ϕ2)2 theory. In the
renormalization group sense, both models belong to the same universality class (Sec. 10.5).
The utility of the (ϕ2)2 theory is that it allows us to use powerful field theoretical methods
to study the critical behavior (Secs. 10.6 and 10.B).25

10.2.3 First-order phase transitions

The Landau theory can also be used to study first-order phase transitions although the
order parameter is not necessarily small at the transition (unless the transition is weakly
first order). Let us consider the free energy density

βf = βf0 +
r0
2
m2 − u3m

3 +
u0
4!
m4 (10.72)

for a scalar order parameter, where r0 = r̄0(T − T0) and u0, u3 > 0 are independent of
temperature.26 The cubic term in (10.72) makes the transition first order: the order pa-
rameter is discontinuous at the transition (Fig. 10.7). The phase of the system is determined
by requiring the free energy to be minimum. In the high-temperature phase, m = 0 and
f = f0. The first-order transition temperature Tc and the value of the order parameter mc

at Tc are obtained by requiring that f(mc) is a minimum of f(m) and that the ordered and
disordered phases have the same free energy,

βf ′(m) = m
(

r0 − 3u3m+
u0
6
m2
)

= 0,

βf(m) = m2
(r0
2

− u3m+
u0
4!
m2
)

= 0,
(10.73)

25See also chapter 11.
26Note that if the order parameter vanishes in the disordered phase, then ∂f/∂m|m=0 = 0 and there is

no linear term in the free energy density f(m).
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10.2 Landau’s theory of phase transitions 621

Figure 10.7: Free energy density f(m) near a first-order phase transition. f(m) is defined
by (10.72) (top) and (10.77) (bottom).

where we have assumed that f0(Tc) = 0. This yields

r0c = r̄0(Tc − T0) = 12
u23
u0
,

mc = 12
u3
u0
.

(10.74)

In the disordered phase, the entropy density s = S/V = −∂f/∂T is simply given by
s = −∂f0/∂T . In the ordered phase, an elementary calculation gives

s = −∂f0
∂T

− r̄0
2
m2T. (10.75)

The entropy density is therefore discontinuous at the transition from the low- to the high-
temperature phase,

∆s = 2Tcr̄0

(

6u3
u0

)2

, (10.76)

which corresponds to a latent heat Q/V = Tc∆s per unit volume.
Another exemple of first-order phase transition is provided by the free energy density

βf = βf0 +
r0
2
m2 +

u0
4!

(

m2
)2

+ u6
(

m2
)3
. (10.77)

When u0 > 0, the phase transition is second order and the sixth-order term can be neglected
when the order parameter is small. If u0 < 0, the sixth-order term is necessary to maintain
stability. In this case, the transition is first order (Fig. 10.7). The transition temperature Tc
and the value of the order parameter at Tc can be calculated as in the preceding example,

r0c = r̄0(Tc − T0) =







0 if u0 ≥ 0,
1

2u6

(u0
4!

)2

if u0 ≤ 0,
(10.78)

and

m2
c =







0 if u0 ≥ 0,
|u0|
48u6

if u0 ≤ 0.
(10.79)
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622 Chapter 10. Renormalization group and critical phenomena

Figure 10.8: Phase diagram obtained from the free energy density (10.77).

The phase diagram in the plane (r0, u0) is shown in figure 10.8. The line of second-order
transitions (u0 > 0) and that of first-order transitions (u0 < 0) meet at the tricritical point
r0 = u0 = 0.

10.3 Gaussian model

The simplest improvement of Landau’s theory consists in taking into account Gaussian
fluctuations of the field ϕ about its saddle-point value. For T > Tc0, this amounts to
neglecting the interacting part of the action. For T < Tc0, we write the field as

ϕ(r) =

(
√

−6r0
u0

+ ϕ′
1(r)

)

e1 +
N
∑

i=2

ϕ′
i(r)ei (10.80)

(with e1 the direction of the order parameter) and expand the action to quadratic order in
ϕ′. This gives

S[ϕ] =























1

2

∑

p,i

|ϕi(p)|2(p2 + r0) if T > Tc0,

SMF +
1

2

∑

p

[

|ϕ′
1(p)|2(p2 − 2r0) +

N
∑

i=2

|ϕ′
i(p)|2p2

]

if T < Tc0,

(10.81)

for the (ϕ2)2 theory (10.27).

10.3.1 Correlation functions

The propagator Gij = Tχij deduced from the action (10.81) agrees with (10.44) and (10.45).
The longitudinal propagator reads27

G‖(p) =
1

p2 + ξ−2
, (10.82)

with ξ = r
−1/2
0 (|2r0|−1/2) if T > Tc0 (T < Tc0). In the disordered phase, G⊥ = G‖, while

G⊥(p) =
1

p2
(10.83)

27See footnote 15 page 612.
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10.3 Gaussian model 623

in the ordered phase. The Gaussian fluctuations do not change the value of the order
parameter m = 〈ϕ(r)〉 and the transition temperature is still given by Tc0. The critical
exponents β, δ, γ, ν and the anomalous dimension η keep their mean-field value (Table 10.1).

Correlation functions in direct space (d ≥ 2).28 To obtain G‖(r) and G⊥(r), we
need to Fourier transform 1/p2 and 1/(p2+ ξ−2). The Fourier transform G(r) of 1/p2

satisfies
−∇

2G(r) = δ(r). (10.84)

Since G(r) = G(|r|), ∇G(r) = G′(|r|) r

|r|
and equation (10.84) can be solved by con-

sidering29

ˆ

V

ddr δ(r) = −
ˆ

V

ddr∇2G(r) = −
ˆ

S

dS ·∇G(r) = −|r|d−1SdG
′(|r|), (10.85)

where V and S are the volume and the surface of the sphere of radius |r| centered at
the origin. Sd = 2πd/2/Γ(d/2) is the surface of the unit sphere in d dimensions. From
(10.85), we deduce G′(|r|) = −|r|1−d/Sd and

G(r) =

ˆ

ddp

(2π)d
eip·r

p2
=











1

(d− 2)Sd|r|d−2
if d > 2,

− 1

2π
ln |r|+ const if d = 2,

(10.86)

where we have used lim|r|→∞ G(r) = 0 when d > 2. When d = 2, the constant can be
fixed if one knows the long- or short-distance behavior of G(r).

We now consider the Fourier transform G(r) = G(|r|) of 1/(p2 + ξ−2). It satisfies

(

−∇
2 + ξ−2)G(r) =

(

− ∂2

∂|r|2 − d− 1

|r|
∂

∂|r| + ξ−2

)

G(|r|) = δ(r). (10.87)

Let us try a solution G(|r|) ∝ e−|r|/ξ/|r|p which decays exponentially at large distance.
For |r| 6= 0, equation (10.87) is satisfied if

p(p+ 1)

|r|2 +
2p

|r|ξ +
1

ξ2
− d− 1

|r|

(

p

|r| +
1

ξ

)

− 1

ξ2
= 0. (10.88)

The choice of ξ as the decay length ensures that the constant term vanishes. For |r| ≪ ξ,
the 1/|r|2 terms are the most important and we must have p(p+1)− p(d− 1) = 0, i.e.
p = d− 2 or p = 0. Since for |r| ≪ ξ we must reproduce the result (10.86), we deduce
p = d− 2 and

ˆ

ddp

(2π)d
eip·r

p2 + ξ−2
≃ e−|r|/ξ

(d− 2)Sd|r|d−2
if |r| ≪ ξ and d > 2. (10.89)

The |r| dependence is logarithmic when d = 2 [Eq. (10.86)] and the assumptionG(|r|) ∝
e−|r|/ξ/|r|p is not correct. For |r| ≫ ξ, the 1/|r|ξ terms dominate in (10.88) and
therefore 2p− (d− 1) = 0. We thus obtain

ˆ

ddp

(2π)d
eip·r

p2 + ξ−2
∼ ξ(3−d)/2

(d− 2)Sd

e−|r|/ξ

|r|(d−1)/2
if |r| ≫ ξ, (10.90)

where the prefactor is fixed from the condition that (10.89) and (10.90) match for
|r| ∼ ξ.

28In one dimensional, a straightforward calculation gives
´∞
−∞

dq
2π

eiqx

q2+ξ−2 = ξ
2
e−|x|/ξ.

29Eq. (10.84) is Poisson’s equation satisfied by the potential G(|r|) created by a charge located at r = 0
and (10.85) is nothing but Gauss’ theorem.
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624 Chapter 10. Renormalization group and critical phenomena

These results can also be obtained from the exact solution

G(r) = (2π)−d/2 ξ(2−d)/2

|r|(d−2)/2
K(d−2)/2(|r|/ξ), (10.91)

where Kn is the modified Bessel function of the second kind. Equations (10.89) and
(10.90) are then simply obtained from the following asymptotic properties,

Kn(x) ≃
( π

2x

)1/2

e−x (x ≫ |n2 − 1/4|),

Kn(x) ≃
Γ(n)

2

(x

2

)−n

(x ≪
√
n+ 1 and n > 0),

K0(x) ≃ − ln
(x

2

)

− γ (x ≪ 1),

(10.92)

where γ ≃ 0.5772 is the Euler constant and Γ(z) the Gamma function. The last
equation gives the behavior of the two-dimensional correlation function in the limit
|r|/ξ ≪ 1 in agreement with (10.86). For d = 3, one deduces from (10.92) with
n = 1/2 that

G(r) =
e−|r|/ξ

4π|r| . (10.93)

10.3.2 Goldstone’s theorem

In the broken-symmetry phase, G⊥(p) = 1/p2 and the uniform transverse susceptibility
χ⊥ = βG⊥(p = 0) is infinite: it requires an infinitesimal field to rotate the direction of the
magnetization. This result is due to the existence of soft modes, i.e. field configurations
ϕ(p) whose action S[ϕ] vanishes in the long-wavelength limit p → 0. It can also be seen
as a manifestation of Goldstone’s theorem for quantum systems discussed in section 3.6.3:
a spontaneously broken continuous symmetry implies the existence of a low-energy mode
whose energy ωp vanishes for p → 0.30 For the (ϕ2)2 theory with O(N) symmetry, there
are N − 1 Goldstone modes.31 These modes play a crucial role since they often give theFaire démonstration

de la footnote? main contribution to the observables of the system. When N = 1, the broken symmetry is
discrete and there are no Goldstone modes (as expected since it is not possible to produce
slowly varying rotations from one state to an equivalent one).

Another important consequence of a spontaneously broken continuous symmetry is the
emergence of rigidity. Let us write the field as ϕ(r) = m(e1 + δϕ̃‖(r)e1 + δϕ̃⊥(r)), where
δϕ̃‖ denotes a longitudinal fluctuation and δϕ̃⊥ ⊥ e1 a transverse fluctuation, i.e., in the
limit δϕ̃⊥ → 0, a fluctuation of the direction of the magnetization. According to (10.81),
the action corresponding to transverse fluctuations reads

S[δϕ̃⊥] =
ρs
2

∑

p

δϕ̃⊥(−p)G−1
⊥ (p)δϕ̃⊥(p) =

ρs
2

ˆ

ddr (∇δϕ̃⊥)
2 (10.94)

(with ρs = m2), which implies that the transverse correlation function is given by

G⊥(p) =
m2

ρsp2
, (10.95)

30Goldstone’s theorem requires the interactions to be short range (Sec. 3.6.3).
31More generally, let us consider a model with a symmetry group G, and call H the subgroup of G which

leaves the order parameter m = 〈ϕ(r)〉 invariant. Then there are g−h Goldstone modes, where g and h are
the number of generators of the Lie algebras of G and H. For the (ϕ2)2 theory, G = O(N), H = O(N − 1),
g = 1

2
N(N − 1) and h = 1

2
(N − 1)(N − 2), so that there are g − h = N − 1 Goldstone modes.
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10.3 Gaussian model 625

in agreement with the general discussion of section 3.6.3 on spontaneous symmetry break-
ing and Goldstone’s theorem (see Eq. (3.322)). Equation (10.94) shows that any spatial
variation of the order parameter in the direction perpendicular to the ordering raises the
energy of the system. In the mean-field (Landau) approximation, the stiffness ρs = m2 is
simply given by the square of the order parameter. The stiffness plays an essential role in
superfluid systems where it determines the superfluid density (chapter 7). We shall see in
section 10.8 that in certain two-dimensional systems, the stiffness can be finite although
there is no broken symmetry.

10.3.3 Mermin-Wagner theorem – Lower critical dimension

For the ordered phase to be stable, the fluctuations of the ϕ field must be finite. For N ≥ 2,
we can study the stability by looking at the most dangerous modes, namely the transverse
fluctuations δϕ⊥ = mδϕ̃⊥,

〈δϕ⊥(r)
2〉 = (N − 1)

ˆ

ddp

(2π)d
G⊥(p) = (N − 1)

Sd

(2π)d

ˆ Λ

0

d|p|
|p|3−d

. (10.96)

When d ≤ 2, the integral is infrared divergent and the assumption of spontaneous symmetry
breaking cannot be maintained: thermally excited transverse fluctuations destroy long-
range order. We recover the Mermin-Wagner theorem discussed in section 3.6.4: at finite
temperature, a continuous symmetry cannot be broken in dimension d ≤ 2 in systems with
sufficiently short-range interactions. The dimension at and below which fluctuations prevent
long-range order is called the lower critical dimension d−c . For the (ϕ

2)2 theory with N ≥ 2,
d−c = 2. The Mermin-Wagner theorem does not, however, preclude a phase transition
(without long-range order) in two-dimensional systems with a continuous symmetry. The
most famous example of such a transition is the Berezinskii-Kosterlitz-Thouless transition
in the two-dimensional XY model (Sec. 10.8). Dire qu’on parle

ici de droplets:
most dangerous
excitations

When N = 1, the broken symmetry is discrete and there are no Goldstone modes. It is
nevertheless possible to determine the lower critical dimension from a simple argument based
on the Ising model. We assume a d-dimensional hypercubic lattice, a coupling constant J
between nearest-neighbor spins (Sec. 10.2.2), and periodic boundary conditions. In the
ground state, all the spins are up. Let us now consider a configuration with an island of
down spins with a linear size L equal to a fraction of the linear size N of the system. The
energy of such a configuration is E ∼ 2JLd−1, while the entropy (related to the number of
ways to locate the island in the system) S ∼ ln(N−L) ∼ lnL. In one dimension, the entropy
term always dominates in the thermodynamic limit L,N → ∞, and we expect the formation
of islands of down spins to lower the free energy, which makes the magnetization vanish.
In contrast, for d > 1, the energy term dominates and the presence of islands increases
the free energy.32 We then expect the magnetization to remain finite at sufficiently low
temperatures.33 We conclude that the lower critical dimension of the Ising model (and the
(ϕ2)2 theory with N = 1) is d−c = 1. Commentaires

sur O(1) model:
kinks restore the
symmetry, analog
to instantons for
double well.

32This argument does not say anything about islands with typical sizes L≪ N (e.g. a single down spin).
For d > 1, a small density of such defects does not destroy long-range order.

33The existence of a finite temperature phase transition in the two-dimensional Ising model is confirmed
by Onsager’s exact solution [48].
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626 Chapter 10. Renormalization group and critical phenomena

Figure 10.9: Long-range order and critical behavior vs lower (d−c ) and upper (d+c ) critical
dimensions.

10.3.4 Breakdown of mean-field theory – Upper critical dimension

In the preceding section, we have seen that the mean-field theory breaks down at the lower
critical dimension d−c since it erroneously predicts long-range order for d ≤ d−c . In this
section, we show that mean-field theory also breaks down below the upper critical dimension
d+c (d+c > d−c ) in a slightly more subtle way. Although long-range order is not suppressed
for d−c < d < d+c , the critical behavior in the vicinity of a second-order phase transition is
not given by mean-field theory (as already anticipated in section 10.2.1) (Fig. 10.9).

10.3.4.1 Fluctuation corrections to the specific heat – Ginzburg criterion

In the Gaussian approximation, we can integrate out the ϕ field and compute the free
energy. In the disordered phase, one finds

Z =
∏

p

(

r0 + p2
)−N/2

(10.97)

(see equation (10.81)), where we have neglected an unimportant multiplicative constant.

The (most) singular part of the specific heat (per unit volume) cV = −T ∂2f
∂T 2 reads

csingV =
NT 2

2V

∑

p

r̄20
(p2 + r0)2

=
N

2
T 2r̄20Kd

ˆ Λ

0

d|p| |p|d−1

(p2 + r0)2
, (10.98)

where Kd = Sd/(2π)
d = 1/2d−1πd/2Γ(d/2). Setting x = |p|ξ = |p|r−1/2

0 , this result can be
rewritten as

csingV =
N

2
T 2r̄20Kdξ

4−dI(Λξ), (10.99)

where

I(Λξ) =

ˆ Λξ

0

dx
xd−1

(1 + x2)2
. (10.100)

If d > 4, the integral I is dominated by the upper cutoff, I ≃ (Λξ)d−4/(d − 4), while
I ∼ ln(Λξ) for d = 4. If d < 4, the integral is independent of Λξ. We therefore obtain

csingV ≃ N

2
(T r̄0)

2Kd ×















Λd−4

d− 4
if d > 4,

ln(Λξ) if d = 4,
Iξ4−d if d < 4.

(10.101)

When d ≤ 4, the specific heat diverges as T → T+
c0,

csingV ∼ ξ4−d ∼ (T − Tc0)
−α, (10.102)
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Figure 10.10: Specific heat below and above d = 4 in the Gaussian model. The dashed line
shows the result of the mean-field approximation. The smooth contribution coming from
f0 in (10.30) is not shown.

with a critical exponent α = 2− d/2 (the divergence is logarithmic for d = 4).
A similar analysis can be made below the transition temperature Tc0. From (10.81), we

obtain
Z = ZMF

∏

p

(

p2 − 2r0
)−1/2 (

p2
)−(N−1)/2

. (10.103)

We deduce the singular part of the specific heat

csingV = csingV,MF + 2(T r̄0)
2Kdξ

4−dI(Λξ),

= csingV,MF + 2(T r̄0)
2Kd ×















Λd−4

d− 4
if d > 4,

ln(Λξ) if d = 4,
Iξ4−d if d < 4,

(10.104)

where ξ = |2r0|−1/2. While for d > 4 the specific heat remains discontinuous at the
transition, the fluctuation corrections to the mean-field result yields a divergence when
d ≤ 4 (Fig. 10.10). As far as the critical behavior is concerned, this is the only change
wrt mean-field theory, since all other critical exponents are unchanged (Table 10.2). The
divergence of the specific heat implies that the mean-field results are not reliable below
d = 4 in the vicinity of the phase transition: fluctuations dominate the thermodynamics
and the predictions of Landau’s theory are not valid. We therefore recover our previous
result that the upper critical dimension is d+c = 4 for the (ϕ2)2 theory (Sec. 10.2.1).

Below the upper critical dimension, the mean-field theory remains valid sufficiently far
away from the transition. One can estimate the temperature at which the mean-field the-
ory breaks down by comparing the mean-field discontinuity to the fluctuation correction,
∆cV,MF ∼ cV,fl, i.e.

∆cV,MF ∼ N

2
Kdξ

−d
0 |t|d/2−2 (10.105)

(the factor N/2 is absent for t < 0), where t is defined in (10.13). ξ0 ∼ (r̄0Tc0)
−1/2 is a

microscopic length, of the order of the correlation length far away from the transition. Thus,
for the mean-field theory to be valid below the upper critical dimension, the temperature
must satisfy the Ginzburg criterion

|t| ≫ tG ∼
(

NKd

2ξd0∆cV,MF

)1/(2−d/2)

. (10.106)
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628 Chapter 10. Renormalization group and critical phenomena

tG = |TG−Tc|/Tc is related to the Ginzburg temperature TG, the temperature corresponding
to the onset of the critical regime where fluctuations become important.34

In practice, the mean-field theory can be valid very close to the transition temperature
if ξ0 is large. This is the case in systems with long-range forces or in conventional super-
conductors where ξ0 ∼ 1000 Angströms corresponds to the BCS coherence length (Sec. 7.5)
and is sufficiently large to make the critical regime unobservable. In many systems however,
ξ0 is of the order of a few Angströms, and the crossover from mean-field to critical behavior
is observable.

One can also define a Ginzburg length ξG = ξ(tG) ∼ ξ0t
−1/2
G , i.e.

ξG ∼ ξ0

(

2ξd0∆cV,MF

NKd

)1/(4−d)

∼
(

6

NKdu0

)1/(4−d)

. (10.107)

Below the upper critical dimension d+c , ξ becomes larger than ξG when |t| . tG (critical
regime). We shall see in section 10.6 that for a critical system (T = Tc), ξG separates a
high-momentum (perturbative) regime |p| & ξ−1

G where the Gaussian model is essentially
correct from a low-momentum (critical) regime where the propagator acquires an anomalous
dimension.

The fact that Gaussian fluctuations yield strong corrections to the mean-field results
calls into question the validity of the Gaussian model itself when d < 4. One could try
to perform a systematic loop expansion about the mean-field solution (see Sec. 1.7.2) and
see whether it converges or not. Simple dimensional analysis is sufficient to answer this
question. In the high-temperature phase, the loop expansion is merely an expansion wrt
u0. The actual expansion parameter can be identified by dimensional analysis. Since S[ϕ]
is dimensionless, we must have [(∇ϕ)2] = d, and therefore [ϕ] = (d− 2)/2.35 Similarly, one
finds [r0] = 2 and [u0] = 4− d.36 In terms of the dimensionless variables

r̃ =
r

ξ
, ϕ̃(r̃) = ξ(d−2)/2ϕ(r), ũ0 = ξ4−du0 (10.108)

(with ξ = r
−1/2
0 ), the action becomes

S[ϕ̃] =

ˆ

ddr̃

[

1

2
(∇r̃ϕ̃)

2 +
1

2
ϕ̃2 +

ũ0
4!

(

ϕ̃2
)2
]

. (10.109)

In dimension d > 4, since ũ0 → 0 when T → Tc0, it is reasonable to expect mean-field
theory to become increasingly accurate as the transition is approached. For d < 4 on theIl faut aussi vérifier

que les intégrales
convergent

other hand, ũ0 diverges as T → Tc0 and perturbation theory becomes meaningless. If we
estimate that perturbation theory breaks down when ũ0 ∼ (ξ/ξG)

4−d becomes of order 1,
we recover the Ginzburg criterion (10.106).

34Stricto sensu there are two Ginzburg temperatures, one (T+
G ) above and one (T−

G ) below Tc. Fluc-

tuations are important in the temperature range [T−
G , T

+
G ]. In Sec. 10.7.3, we shall see that for N ≥ 2

(continuous broken symmetry) the Gaussian approximation breaks down in the whole temperature phase.
35The notation [A] = n means that the quantity A is expressed in units of L−n (with L the unit length).

For example, [r] = −1 and [p] = 1.
36[r0] = 2 and [u0] = 4− d are referred to as the naive scaling dimensions of r0 and u0 (see Sec. 10.4).
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10.3.4.2 One-loop correction to the two-point vertex Γ(2)(p)

Let us consider the lowest-order (one-loop) correction to the two-point vertex Γ(2)(p) =
G(p)−1 [Eq. (10.55)]. In the high-temperature phase (m = 0), one finds

Γ(2)(p) = p2 + r0 +
N + 2

6
u0

ˆ

ddq

(2π)d
G0(q)

= p2 + r0 +
N + 2

6
Kdu0

ˆ Λ

0

d|q| |q|
d−1

q2 + r0
, (10.110)

where G0(q) = (q2 + r0)
−1 is the bare propagator. We deduce

Γ(2)(p = 0) = r = r0 +
N + 2

6
Kdu0

ˆ Λ

0

d|q| |q|
d−1

q2 + r0

≃ r0 +
N + 2

6
Kdu0

ˆ Λ

0

d|q| |q|
d−1

q2 + r
, (10.111)

where the replacement of r0 by r in the last term introduces corrections of order u20 which
are beyond the one-loop accuracy. The critical temperature is obtained from the condition

0 = r = r̄0(Tc − Tc0) +
N + 2

6
Kdu0

ˆ Λ

0

d|q| |q|d−3. (10.112)

For d > 2, the integral in the rhs is convergent and the perturbative calculation of the shift
Tc − Tc0 of the transition temperature makes sense. Subtracting (10.112) from (10.111) to
eliminate Tc0, we obtain

r = r̄0(T − Tc)−
N + 2

6
Kdu0r

ˆ Λ

0

d|q| |q|d−1

q2(q2 + r)
. (10.113)

If d > 4, the integral converges even when r = 0. In the limit r → 0, we then obtain

r = r̄0(T − Tc)− Cr =
r̄0(T − Tc)

1 + C
, (10.114)

with C a constant. Since χ−1 ∼ r ∼ T − Tc, the susceptibility critical exponent keeps its
mean-field value γ = 1. On the other hand, the integral in (10.113) diverges when d ≤ 4
and r → 0, thus signaling the breakdown of the perturbative expansion. For d < 4, we can
write

r = r̄0(T − Tc)−
N + 2

6
u0K̃dr(

√
r)d−4, (10.115)

where

K̃d = Kd

ˆ Λ/
√
r

0

dx
xd−1

x2(x2 + 1)
≃ Kd

ˆ ∞

0

dx
xd−1

x2(x2 + 1)
= −π

2

Kd

sin(πd/2)
. (10.116)

Since the integral is convergent for |x| → ∞, we have taken the limit Λ → ∞. Equa-
tion (10.115) is incompatible with r ∼ T − Tc and the value of the critical exponent γ
cannot be equal to the mean-field prediction γ = 1. We can recover the Ginzburg crite-
rion (10.106) for the validity of the mean-field approximation by demanding the last term
in (10.115) to be a small correction,

N + 2

6
u0K̃d(

√
r)d−4 ≃ N + 2

6
u0K̃d[r̄0(T − Tc)]

d/2−2 ≪ 1. (10.117)
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10.4 The scaling hypothesis

An essential feature of second-order phase transitions is the divergence of the correlation
length ξ ∼ |t|−ν . The scaling hypothesis states that this divergence is responsible for the
singular dependence on t = |T −Tc|/Tc of physical quantities. It leads to “scaling laws”, i.e.
relations between critical exponents (Table 10.3). The scaling hypothesis will be justified
by the RG approach in section 10.5.3.

If ξ were the only relevant length scale stricto sensu, the singular behavior could be
simply obtained from (naive) dimensional analysis. For a physical quantity X with naive
scaling dimension d0X = [X] (also called engineering dimension),37 the singular part would

indeed be given by X ∼ ξ−d0
X . We shall see below that the singular behavior is determined

by a scaling dimension dX which may differ from d0X . The difference between dX and d0X
determines the “anomalous” dimension of X. For the latter to be nonzero without violating
dimensional analysis, another characteristic length a must necessarily be involved (besides

the correlation length ξ) to yield the (dimensionally correct) result X ∼ ξ−dXadX−d0
X .38

10.4.1 Scaling form of the correlation function

Let us first consider the propagator G(p) = 〈ϕ(p)ϕ(−p)〉 in the ϕ4 theory with a one-
component field. From (naive) dimensional analysis, [ϕ(r)] = d/2− 1 and [G(p)] = −2, one
can write the singular part of G(p) in the scaling form

G(p) =
1

p2
G
(

|p|ξ, a
ξ

)

, (10.118)

where a is a characteristic length which does not diverge at the transition.39 The following
discussion can be straightforwardly generalized to the case where the function G depends
on several lengths a1, a2... We assume that in the limit |p|ξ → ∞, |p|a → 0 and a/ξ → 0,
G behaves as

G
(

|p|ξ, a
ξ

)

∼ (|p|ξ)x1(a/ξ)x2 (ξ → ∞). (10.119)

For G(p) to be defined and nonzero at the critical point, we must have x1 = x2 ≡ η. We
deduce

G(p, Tc) ∼
aη

|p|2−η
. (10.120)

More generally, in the vicinity of the critical point, one can write40

G(p) =
1

|p|2−η
G
(

|p|ξ, a
ξ

)

=
1

|p|2−η
[G(|p|ξ, 0) + higher powers of a/ξ] , (10.121)

37Recall that a quantity X has (naive) scaling dimension d0X = [X] if it is expressed in physical units of

L−d0X (with L the unit length).
38For a thorough discussion of anomalous dimensions, see [8].
39a is typically the Ginzburg length ξG (Sec. 10.3.4), which in many model is of the order of the lattice

spacing (i.e. the inverse of the upper momentum cutoff Λ of the theory).
40To avoid a proliferation of symbols, we denote different scaling functions by the same symbol. For

instance, in Eqs. (10.118,10.121,10.124) G denote different functions.
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where the scaling function G has a well-defined limit when ξ → ∞ (G ∼ aη). Consider now
the change p → sp, ξ → ξ/s and a→ a/s. Recalling that G ∼ aη, we have G(spξ/s, a/s) =
s−2G(p, ξ, a) in agreement with the naive scaling dimension [G(p)] = −2 of the propagator.

If we are interested in the long-distance physics near the phase transition, we can take
the limit ξ/a→ ∞ while keeping |p|ξ fixed. From (10.121) we then obtain

G(p, ξ) =
1

|p|2−η
G(|p|ξ), G(sp, ξ/s) = s−2+ηG(p, ξ), (10.122)

and it appears that the field has acquired an anomalous dimension,

[ϕ(p)] = −1 + η/2, i.e. dϕ = [ϕ(r)] =
d

2
− 1 +

η

2
= d0ϕ +

η

2
. (10.123)

d0ϕ = d/2 − 1 is often referred to as the canonical dimension of the ϕ field and η/2 as its
anomalous dimension.41 The correlation function can also be written in the form

G(p, ξ) = TχG(|p|ξ), (10.124)

where χ = T−1G(p = 0, ξ) is the susceptibility. The function G(x) is then a universal
scaling function (independent of the parameters of the model). In particular, G(0) = 1.

If we consider the propagator to be a function of (p, t), instead of (p, ξ), one has

G(p, t) =
1

|p|2−η
G±(|p||t|−ν), G(sp, s1/νt) = s−2+ηG(p, t), (10.125)

or, in real space,

G(r, t) =
1

|r|d−2+η
G±(|r||t|ν), G(r/s, s1/νt) = sd−2+ηG(r, t). (10.126)

In the presence of a magnetic field, equations (10.126) become

G(r, t, h) = s−d+2−ηG(r/s, s1/νt, sdhh)

=
1

|r|d−2+η
G±

(

|r||t|ν , h

|t|∆
)

, (10.127)

where dh denotes the scaling dimension of the field (see Sec. 10.4.2) and ∆ = νdh is some-
times referred to as the gap exponent. We now allow for different scaling functions, G+ and
G−, above and below the critical temperature Tc, and assume ν = ν′ (this assumption will
be justified below). Equations (10.125-10.127) show that the correlation function satisfies a
generalized homogeneity relation.42 Using (10.125) with p = 0 and s = |t|−ν , one obtains
χ ∼ G(p = 0, t) ∼ |t|ν(η−2), i.e.

γ = γ′ = ν(2− η). (10.128)

This result,43 which relates the critical exponents γ, ν and η, is called a scaling law.

41It is customary to refer to η (and not η/2) as the anomalous dimension.
42A function f(x) is said to be homogeneous if it satisfies f(sx) = skf(x) for any rescaling factor s. More

generally, a function f(x1, · · · , xn) is homogeneous if f(sk1x1, · · · , sknxn) = skf(x1, · · · , xn).
43Similarly, from (10.125) with t = 0 and s = 1/|p|, one obtains G(p, t = 0) ∼ 1/|p|2−η in agreement

with (10.120).
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632 Chapter 10. Renormalization group and critical phenomena

Fisher γ = ν(2− η)

Rushbrooke α+ 2β + γ = 2

Widom β(δ − 1) = γ

Josephson α = 2− νd

Table 10.3: Scaling laws [Eqs. (10.128,10.131,10.136,10.138)]. All exponents are the same
above and below Tc.

In practice, we never consider explicitly microscopic lengths, as we did in this section,
to derive scaling forms of correlation functions or thermodynamic quantities. We simply
consider the scaling dimensions of the quantity of interest and its argument. For instance,
in the case of the correlation function G(p), we use dϕ = (d − 2 + η)/2, [p] = 1, [ξ] = −1
and dimensional analysis to directly obtain equation (10.122), where the scaling function G
is universal (in a sense that will be thoroughly explained in section 10.5.3) except for its
amplitude.44 The anomalous dimension η introduced here is a priori unknown and could in
fact be zero. We shall now show that all other critical exponents defined in section 10.1.3,
namely α, β, γ and δ, are fully determined by ν and η.

10.4.1.1 Scaling of the stiffness

The preceding discussion applies with no change to the disordered phase of the O(N)-
symmetric (ϕ2)2 theory where Gij = δi,jG. The ordered phase is characterized by long-
range transverse correlations and a finite stiffness ρs [Eq. (10.95)]. ρs vanishes as t → 0−

with an exponent x which can be obtained from dimensional analysis. From (10.94), since
the action is dimensionless while [δϕ̃⊥(r)] = 0, we deduce that

[ρs] = d− 2, (10.129)

i.e.

ρs ∼ ξ−(d−2) ∼ (−t)ν(d−2) ∼ (−t)2β−νη (10.130)

for t → 0−, where the last result is obtained using the scaling law (10.131) derived in
section 10.4.2.45,46 When the anomalous dimension vanishes, one obtains ρs ∼ (−t)2β as in
Landau’s theory (ρs = m2).

10.4.2 Scaling form of the free energy density

The magnetization density m being the average value of the field, one expects m ∼ ξ−dϕ ∼
(−t)νdϕ for t < 0,46 i.e.

β = νdϕ =
ν

2
(d− 2 + η). (10.131)

44Note that for a scaling function to be universal (possibly up to a nonuniversal normalization) its argu-
ments must have both vanishing scaling dimensions and dimensionless physical units.

45In Eq. (10.130) ξ should be understood as the Josephson length; see Secs. 10.1.4 and 10.7.2.
46Since ρs vanishes in the high-temperature phase, it has no regular part for t → 0−. The same is true

for the order parameter m.
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Since lnZ is dimensionless and [V ] = −d, the free energy density f = −T lnZ/V does
not carry an anomalous dimension and has scaling dimension d. Its singular part satisfies
fs ∼ ξ−d.47 From

m = −∂fs
∂H

= − 1

T

∂fs
∂h

, (10.132)

we deduce that the magnetic field has scaling dimension

dh = d− dϕ =
1

2
(d+ 2− η). (10.133)

In practice, the anomalous dimension η is small and dh is positive. Using dimensional
analysis, we can therefore write the singular part of the free energy density in the scaling
form

fs(t, h) = ξ−dF±(hξ
dh). (10.134)

In zero field, fs = ξ−dF±(0) ∼ |t|dν , and we obtain

cV = T
∂2fs
∂T 2

∼ |t|dν−2, (10.135)

i.e.
α = α′ = 2− νd. (10.136)

For the magnetization m ∼ ξdh−dF ′
±(hξ

dh) to be defined at Tc, we must have F ′
±(x) ∼

x(d−dh)/dh = xdϕ/dh for x→ ∞. This implies

m(Tc) ∼ hdϕ/dh , (10.137)

and a critical exponent

δ =
dh
dϕ

=
d+ 2− η

d− 2 + η
. (10.138)

The scaling form (10.134) of the free energy density is often written as

fs(t, h) = |t|2−αF±

(

h

|t|∆
)

, (10.139)

where ∆ = νdh = 2 − α − β is the gap exponent. The equation of state then takes the
form48

m = − 1

T

∂fs
∂h

= −|t|β
T

F ′
±

(

h

|t|∆
)

. (10.140)

It seems that we could postulate a more general form,

fs(t, h) = |t|2−α±F±

(

h

|t|∆±

)

, (10.141)

with different exponents for t > 0 and t < 0. For h 6= 0, i.e. away from the critical point
t = h = 0, the free energy density must be analytic in t,

fs(t, h) = f0(h) + tf1(h) +O(t2) (h 6= 0). (10.142)

47It would be more correct to write f ∼ Tξ−d. However, the factor T is not singular and can be omitted.
48In Eq. (10.140) the scaling function F± cannot be “fully” universal for reasons given in footnote 44.
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Expanding (10.141) for t→ 0, we obtain

fs(t, h) = |t|2−α±

[

A±

(

h

|t|∆±

)p±

+B±

(

h

|t|∆±

)q±

+ · · ·
]

, (10.143)

where p±, q± are the leading powers in the expansion of g± for large arguments (∆± is
positive). Equations (10.142) and (10.143) require p±∆± = 2−α± and q±∆± = 1−α±, so
that

fs(t, h) = A±h
(2−α±)/∆± +B±h

(1−α±)/∆± |t|+O(t2). (10.144)

Continuity at t = 0 forces (2−α+)/∆+ = (2−α−)/∆− and (1−α+)/∆+ = (1−α−)/∆−,
which implies α+ = α− and ∆+ = ∆−. We conclude that the critical exponents are
necessary the same for t > 0 and t < 0, which justifies the assumption ν = ν′ used earlier.

Scaling laws, summarized in Table 10.3, imply that there are only two independent
critical exponents, e.g. ν and η. Relations involving d are called hyperscaling relations.
They apply only to transitions that are fluctuation dominated, i.e. at or below the upper
critical dimension d+c . Hyperscaling is satisfied by the mean-field exponents only at the
upper critical dimension. Above d+c , it breaks down because of the existence of a dangerously
irrelevant variable in the renormalization-group sense (see Sec. 10.6.1).

Scaling functions in mean-field theory. For N = 1, we can rewrite the correlation
function obtained within Landau’s theory [Eqs. (10.44,10.45)] in the scaling form

G(p) = TχG(|p|ξ), (10.145)

with χ = T−1ξ2 and G(x) = (1 + x2)−1. This Lorentzian form of the correlation
function was first proposed by Ornstein and Zernicke. The free energy density

f(r0, h) =















−3

2

Tr20
u0

if h = 0 and r0 ≤ 0,

−3
61/3

4

Th4/3

u
1/3
0

if r0 = 0,
(10.146)

can be written in the scaling form

f(r0, h) = r20F
(

h

|r0|3/2
)

, (10.147)

where the scaling function F satisfies

lim
x→0

F(x) = − 3T

2u0
,

lim
x→∞

F(x) = −3
61/3

4

Tx4/3

u
1/3
0

.
(10.148)

10.4.3 Finite-size scaling

Experiments, as well as many numerical calculations, use finite systems.49 How does the
finite size of a system affect the various scaling forms discussed above and suppress a phase
transition that would exist in the infinite-size limit? To answer this question one simply

49Finite-size scaling plays also an important role in the study of quantum phase transitions (Sec. 12.2).
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considers the size L of the system as an additional relevant length scale. Since [L] = −1 the
scaling form of the free energy, in the absence of a magnetic field, becomes

fs(t, L) =
1

ξ∞
F±

(

ξ∞
L

)

or, equivalently, fs(t, L) = |t|2−αF±

( |t|−ν

L

)

, (10.149)

where ξ∞(t) ∼ |t|−ν is the correlation length of the infinite system. We expect F±(x ≪
1) ≃ const so that when L ≫ ξ∞ the thermodynamic properties are those of the infinite-
size system. By contrast, when L ≪ ξ∞, the system is no longer governed by the critical
point. The actual correlation length ξ(t, L) cannot grow beyond L and the phase transition
appears rounded.

One can write the correlation length of the finite-size system in the scaling form

ξ(t, L) = LΞ

(

ξ∞
L

)

or ξ(t, L) = LΞ

( |t|−ν

L

)

. (10.150)

We expect Ξ(x ≪ 1) ≃ x and Ξ(x ≫ 1) ≃ const so that ξ(t, L) ≃ ξ∞ for L ≫ ξ∞ and
ξ(t, L) ∼ L for L≪ ξ∞. In the latter case, ξ(t, L) should be an analytic function of t, i.e.

L

ξ(t, L)
= A+BtL1/ν +O(t2). (10.151)

Thus if we plot L/ξ(t, L) vs t (i.e., in practice, vs a coupling constant K) for various values
of L, all the curves will pass through the same point when t = 0 (i.e. K = Kc). This allows
us to determine Kc and the critical exponent ν using

ln
∂

∂K

L

ξ(t, L)

∣

∣

∣

∣

K=Kc

= const +
1

ν
lnL. (10.152)

10.5 The renormalization group

In the previous sections, we have seen that standard perturbation theory and mean-field
approaches break down below the upper critical dimension. In this section, we discuss an
alternative method, Wilson’s renormalization group (RG). Instead of considering all degrees
of freedom on the same footing, one first integrates out short-distance (or high-energy)
degrees of freedom. This leads to an effective theory for the long-distance (low-energy)
degrees of freedom. This approach is interesting in particular (but not only) for the study
of critical phenomena where (at least for universal quantities) an effective description based
on the low-energy degrees of freedom should be sufficient.

10.5.1 Renormalization-group transformations

A transformation whereby a subset of (short-distance) degrees of freedom is integrated out is
called a RG transformation. For definiteness we consider a field theory with a N -component
real field ϕ(r) as in the (ϕ2)2 theory discussed in previous sections and assume an ultraviolet
momentum cutoff Λ. We denote by S[ϕ;K] the action with K = {Ki} a set of coupling
constants. A RG transformation consists in two steps:

• Mode elimination.50 In the first step, one eliminates the short-distance (or high-
energy) degrees of freedom. This is achieved by writing the field as

ϕ(r) = ϕ<(r) +ϕ>(r), (10.153)

50Also called decimation or coarse graining.
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where ϕ<(r) has Fourier components in the range 0 ≤ |p| ≤ Λ/s and ϕ>(r) in
Λ/s ≤ |p| ≤ Λ (with s > 1). One then integrates out the “fast” modes ϕ> to obtain
an effective action for the “slow” modes ϕ<. The action S[ϕ<;K<] governing the
dynamics of the slow modes is defined by a new set K< of coupling constants. In
general, the functional form of the action is not preserved, and the set K< is larger
than K.51

• Rescaling. In the second step of the RG transformation, one rescales momenta and
coordinates,

p′ = sp and r′ = r/s, (10.154)

thus restoring the momentum cutoff to its original value (0 ≤ |p′| ≤ Λ). One also
defines a rescaled field,

ϕ′(r′) = λs(K)ϕ<(r), (10.155)

or

ϕ′(p′) =
1√
V ′

ˆ

ddr′e−ip′·r′ϕ′(r′) = s−d/2λs(K)ϕ<(p). (10.156)

Equation (10.156) defines a linear RG transformation, since the new field depends
linearly on the old one. We will see below how to determine the value of the rescaling
parameter λs(K), which is conveniently written as

λs(K) = sd
0
ϕ

√

Zs(K), (10.157)

where d0ϕ is the canonical dimension of the field ϕ(r) (Sec. 10.4). Zs(K) determines
the anomalous dimension η when the system is critical (Sec. 10.5.2).52 The rescaling
(10.154) and (10.156) transforms K< into a new set K ′ of coupling constants.

These two steps can be summarized by53

e−S[ϕ′;K′] =

{

ˆ

Λ/s≤|p|≤Λ

D[ϕ] e−S[ϕ;K]

}

ϕ(p)→sd/2λs(K)−1ϕ′(p′)

. (10.158)

The coupling constants K ′
i are naturally associated with the momentum scale Λ/s and are

often referred to as the coupling constants at the scale Λ/s.
The momentum-shell RG we have described so far is not the only possible RG procedure.

In particular, for some models such as classical spin models, it is possible to implement a
real-space RG following Kadanoff’s idea of block spins. This approach has played a very
important role in the genesis of Wilson’s RG. Quite generally, we can therefore view a RG
transformation as a transformation

K(s) = Rs(K) (10.159)

(s > 1) acting in the space of possible actions {S[ϕ;K]} (or Hamiltonians {H(K)}). Since
two successive transformations Rs1 and Rs2 should be equivalent to Rs1s2 , the actions

51For instance, if the initial action corresponds to a (ϕ2)2 theory, the renormalized action is likely to
include a (ϕ2)3 term, etc.

52Zs is the inverse of the so-called wave-function renormalization factor.
53We ignore any additive contributions to the action S[ϕ′;K′] coming from the mode elimination or the

Jacobian due to the change of variables ϕ → ϕ
′. These matter only when considering the free energy and

will be discussed at the end of section 10.5.3.
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S[ϕ;Rs1(Rs2(K))] and S[ϕ;Rs1s2(K)] should agree up to a global rescaling of the fields.
One can always choose the rescaling parameter λs(K) so that

Rs1s2 = Rs1Rs2 . (10.160)

The RG transformations {Rs} then form a semi-group. This term refers to the action of the
RG transformations in the space of field configurations. As some short-scale information
is lost in the mode elimination, the procedure cannot be inverted. There is however no
problem in inverting the transformation K 7→ K(s) = Rs(K) in the space of the parameters
of the action.

10.5.1.1 Infinitesimal RG transformations

In practice, one often chooses s = edl with dl → 0 and integrates out fields with momenta
in the infinitesimal shell Λ(1− dl) ≤ |p| ≤ Λ. After l/dl infinitesimal RG transformations,
momenta have been rescaled by a factor s = limdl→0(1 + dl)l/dl = el. With s1 = 1 + ǫ and
s2 = s (ǫ→ 0), equation (10.160) gives the differential RG transformation

s
∂K(s)

∂s
= β

(

K(s)
)

, (10.161)

where the beta function

β
(

K(s)
)

=
∂Rs′(K(s))

∂s′

∣

∣

∣

∣

s′=1

(10.162)

is a function of K(s) only (and not of both K(s) and s). It is sometimes convenient to
consider K(s) as a function K(l) of the variable l = ln s (and similarly for the field rescaling
factor Zl ≡ Zs(K)). We can define a “running” (l-dependent) anomalous dimension ηl by

ηl = ∂l lnZl (10.163)

i.e.

Zl+dl = Zle
ηldl or Zl = exp

(

ˆ l

0

dl′ηl′

)

, (10.164)

so that λl+dl = λle
(d0

ϕ+ηl/2)dl. ηl is a function of the running coupling constants Ki(l). We
shall see below how it is related to the actual anomalous dimension η when the system is
critical.

10.5.1.2 Advantages of the RG approach

There are several advantages in computing the partition function by means of RG transfor-
mations rather than e.g. standard perturbation theory:

• Since a RG transformation involves only a finite number of degrees of freedom, no
singularity (divergence) is expected. Singular behavior can arise only after an infinite
number of iterations in which all degrees of freedom in the thermodynamic limit have
been integrated.

• The RG turns out to be an efficient computational tool which often goes well be-
yond standard perturbation theory. Suppose for instance that we compute the change
d
dsKi(s) of the coupling constants to a given order in a series expansion wrt Kj(s).
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Solving the flow equations βi(K(s)) = s d
dsKi(s) =

d
dlKi(l) partially resums the per-

turbation series to infinite order. For this reason, perturbative RG approaches (i.e.
based on a perturbative calculation of the beta functions βi(K)) are sometimes re-
ferred to as RG improved perturbation theories. However, the computation of the
beta functions need not be based on perturbation theory, and the RG provides a
natural framework to set up non-perturbative approaches. This will be illustrated in
section 10.9 and more generally in chapter 11.

• A RG transformation is not a mere scale transformation as the coarse graining (mode
elimination) changes the coupling constants of the action. By iterating the RG trans-
formations, one generates a trajectory K(s) in the coupling constant space. The set
of all such trajectories, obtained from different initial conditions K(s = 1) generates a
RG flow. One generally finds that the trajectories flow into fixed points K∗ = Rs(K

∗)
of the RG transformation. We shall see in the following sections that the fixed points
govern the long-distance physics and explain scaling and universality observed in the
vicinity of a second-order phase transition.

10.5.2 Fixed points

In a RG transformation Rs, the correlation length transforms as ξ(K(s)) = ξ(K)/s.54 At
a fixed point K∗ = Rs(K

∗) of the transformation, we must have ξ(K∗) = ξ(K∗)/s which
implies that ξ(K∗) can only be zero or infinity. We refer to a fixed point with ξ = ∞
as a critical fixed point, and a fixed point with ξ = 0 as a trivial fixed point. Critical
fixed points describe the singular behavior at a second-order phase transition (Sec. 10.5.3),
whereas trivial fixed points describe the various phases of the system (see below).

The set of initial conditions K which flow to a given fixed point is called the basin of
attraction of that fixed point. The basin of attraction of a critical fixed point is often called
the critical manifold or critical surface. Let us consider a physical system represented by
a point K in the coupling constant space. A point K(s) = Rs(K) of the RG trajectory
originating from K has a correlation length ξ(K(s)) = ξ(K)/s < ξ(K). If the point K
belongs to the critical surface, lims→∞Rs(K) = K∗ and in turn lims→∞ ξ(K(s)) = ∞,
which implies that ξ(K) = ∞. We conclude that all points on the critical surface have
infinite correlation length.

10.5.2.1 Local behavior of RG flows near a fixed point

Near a fixed point K∗ the RG transformation K ′ = Rs(K) can be linearized,

K ′
i ≃ K∗

i +
∑

j

∂K ′
i

∂Kj

∣

∣

∣

∣

K∗

(Kj −K∗
j )

= K∗
i +

∑

j

Tij(s)(Kj −K∗
j ), (10.165)

where

Tij(s) =
∂K ′

i

∂Kj

∣

∣

∣

∣

K∗

. (10.166)

54In the low-temperature phase of the O(N) model with N ≥ 2, ξ should be understood as the Josephson
length ξJ . See Secs. 10.1.4 and 10.7.2.
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The matrix Tij(s) is real, but in general not symmetric and therefore not necessary diago-
nalizable.55 We nevertheless assume that the right eigenstates e(α) form a complete basis

with real eigenvalues λ
(α)
s ,

∑

j

Tij(s)e
(α)
j = λ(α)s e

(α)
i . (10.167)

The group property (10.160) implies that the matrices T (s) for different s commute. It is
thus possible to diagonalize them simultaneously in a basis {e(α)} which does not depend

on s. Equation (10.160) also implies that λ
(α)
s = syα . Writing δKi =

∑

α tαe
(α)
i , we can

express the action near the fixed point as

S[ϕ;K] = S[ϕ;K∗] +
∑

i

δKiAi[ϕ] = S[ϕ;K∗] +
∑

α

tαOα[ϕ], (10.168)

where Oα =
∑

i e
(α)
i Ai. The tα’s are called the scaling fields (or scaling variables) and the

Oα’s the scaling operators (or scaling directions). In the linearized RG transformation T (s),
the scaling field tα is multiplied by syα . We are then led to distinguish three cases:

1. yα > 0: the scaling field increases with s. tα is called a relevant scaling field.

2. yα = 0: the scaling field does not change as s varies and is called a marginal field. To
determine its behavior, one must go beyond the linear approximation. If tα turns out
to be (ir)relevant, it is said to be marginally (ir)relevant. Marginal scaling fields are
responsible for logarithmic corrections to scaling and are important at the upper and
lower critical dimensions (Secs. 10.6.2 and 10.7.2).

3. yα < 0: the scaling field decreases as s increases and is called an irrelevant field.

It should be remembered that the terms relevant, marginal and irrelevant should always
be specified with respect to a particular fixed point. To complete the description of
the linearized RG transformation T (s), one should determine the rescaling parameter λs
[Eq. (10.156)]. Since a field rescaling multiplies Ki by some power of λs(K),56 the only pos-

sible form compatible with λ
(α)
s = syα is λs = sdϕ . With s = el, we obtain λl = eld

0
ϕ
√
Zl =

eldϕ , which implies that the running anomalous dimension ηl ≡ η is independent of l and
dϕ = d0ϕ + η/2. We will see below that dϕ is nothing but the dimension of the field and η
the anomalous dimension (Sec. 10.4.1).

Thus if we start with a set of coupling constants near the fixed point K∗ but not in the
basin of attraction, the flow along the relevant directions e(α) (yα > 0) will go away from
the fixed point. The irrelevant directions e(α) (yα < 0) correspond to direction of the flow
into the fixed point (for an example, see Fig. 10.11 below). If there are N relevant scaling
fields t1, · · · , tN , we need to fix t1 = · · · = tN = 0 to be in the basin of attraction in the
linear approximation. This condition defines the plan tangent to the basin of attraction at
the fixed point.

10.5.2.2 Global properties of RG flows

The global behavior of the RG flow determines the phase diagram of the system. In general,
any point in the coupling constant space flows to some fixed point. The state of the system

55If Tij(s) is not symmetric, there is no guaranty that the eigenvalues are real and that the right or left
eigenstates form a complete basis.

56For instance, if Ki appears in the action as Kiϕj1 · · ·ϕjn , Ki → λ−n
s Ki when ϕj → λ−1

s ϕj .
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Figure 10.11: RG flow near a critical fixed point (for simplicity, only one of the two relevant
directions is shown). Two RG trajectories are shown (thick solid lines): one on the critical
surface (gray area) flowing into the fixed point, the other one near the critical surface. The
physical line meets the critical surface at the critical point Kc.

described by this fixed point represents the phase at the original point in the coupling
constant space. The phase diagram is therefore determined by the global topology of the
RG flow.57

The distinction between relevant and irrelevant scaling fields, as well as between critical
(ξ = ∞) and trivial (ξ = 0) fixed points, implies a classification of different types of fixed
points. Let us briefly list the most important ones:58

• Stable fixed points (or sinks) have only irrelevant scaling fields and trajectories can
only flow into them. Sinks correspond to stable bulk phases (ξ = 0), and the nature
of the coupling constants at the fixed point characterize the phase. All points in the
basin of attraction of the sink correspond to physical systems in the same phase.

• Unstable fixed points have only relevant scaling fields and all trajectories flow away
from them. These fixed points have no direct physical meaning but play a role in the
global topology of the RG flow.

• There are also fixed points with both relevant and irrelevant scaling fields. Of particular
interest are the fixed points with two relevant scaling fields and an infinite correlation
length (critical fixed point). In this case, two variables (e.g. temperature and magnetic
field) must be tuned to reach the fixed point. Trajectories which start slightly off the
critical surface initially flow towards the fixed point, but are ultimately repelled from
the fixed point along the two relevant directions to flow into a stable fixed point
(sink) corresponding to the phase of the system (Fig. 10.11). Such a critical fixed
point corresponds to a phase transition between two stable phases of matter and
the RG flow in its vicinity determines the critical behavior at the phase transition
(Sec. 10.5.3). When the temperature changes, K varies along a line in the space of
coupling constants, the physical line, which (in zero field) meets the critical surface at
the critical point Kc (T = Tc).

Critical fixed points with more than two relevant variables are generically called mul-
ticritical fixed points. Tricritical fixed points have three relevant variables; three

57This point will be illustrated in Sec. 10.6 and following ones.
58The following list is not exhaustive. For a more complete discussion, see Ref. [8].
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parameters (e.g. temperature, magnetic field and pressure) must be tuned to hold the
system at the critical point.

In some cases, it is possible to obtain a continuum of fixed points in the coupling constant
space. A well-known example is the line of fixed points in the RG flow of the two-dimensional
XY model (Sec. 10.8). RG flows can also exhibit more exotic behavior such as limit cycles
or even chaotic behavior.

10.5.3 Universality and scaling
Expliquer pourquoi
exposants uni-
versels: cf. Wein-
berg article sur
gravitation, article
a venir d’Adam?,
Polchinski sur
actions effectives,
Wegner

Let us consider a critical fixed point K∗. We denote by h and t1 the two relevant scaling
fields, and by t2, · · · , irrelevant scaling fields. We assume that there are no marginal fields.59

If t1 and h are initially very small, thenK first moves towardsK∗ and remains a long “time”
near K∗ before eventually going away along the relevant directions. The critical behavior
emerges from the long time where the flow is determined by the vicinity of the fixed point.
Now the fixed point K∗ = Rs(K

∗) and the linear approximation to Rs (i.e. the eigenvalues
syα and the eigendirections e(α)) are properties of the RG transformation itself. Thus the
dynamics near the fixed point is independent of the initial conditions of the RG trajectory. Ici on anticipe le

fait que le com-
portement critique
est dicté par le
point fixe

All systems represented by a point K near the critical surface of the fixed point K∗ therefore
exhibit the same critical behavior (universality). We show below how, by considering a RG
transformation near a critical point, we can justify the results obtained from the scaling
hypothesis (Sec. 10.4). Low-energy effective

theories and large-
river effect

10.5.3.1 Correlation length

Let us first consider the correlation length ξ in the absence of magnetic field, and assume
that the relevant field t1 vanishes linearly with T − Tc: t1 ∼ t = (T − Tc)/Tc. In a RG
transformation, ξ(K) = sξ(K ′), so that

ξ(t1, t2, · · · ) = sξ(sy1t1, s
y2t2, · · · ) (10.169)

in the region near K∗ where the transformation can be linearized,60 with y1 > 0 and
0 > y2 > y3 > · · · . Setting s ∼ |t1|−1/y1 , we obtain61

ξ(t1, t2, · · · ) ∼ |t1|−1/y1ξ(±1, |t1|−y2/y1t2, · · · ). (10.170)

In the critical region, defined by |t1|−y2/y1t2 ≪ 1, all irrelevant scaling fields can be set
to zero to leading order and we deduce ξ ∼ |t1|−1/y1 ∼ |T − Tc|−1/y1 .62 The correlation
length diverges at the transition with the exponent ν = 1/y1. The correction-to-scaling
exponent ω = −y2, defined as the absolute value of the largest negative eigenvalues yi, not
only determines the size of the critical region but also gives the leading correction to the
critical behavior ξ ∼ |t|−1/y1 . From (10.170), provided that ξ(±1, t′2, · · · ) is analytic in t′2,62
we deduce

ξ ∼ |t|−1/y1
(

1 +A±|t|ω/y1 + · · ·
)

, (10.171)

59Marginal fields are considered in Secs. 10.6.2 and 10.7.2.
60An (approximate) condition is that |ti| and syi |ti| are at most of order 1.
61Here and in the following, we do not write the microscopic length scale that is needed to make dimen-

sional sense of these equations.
62We can set t′2 = |t1|−y2/y1 t2 = 0 in (10.170) only if ξ is an analytic function of t2. If not, t2 is called a

dangerously irrelevant variable (see Sec. 10.6.1 for an example).
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where A± is a non-universal constant.

If the point K representing the system is too far away from the fixed point K∗ for the
RG transformation to be linearized, one must first consider a RG transformation K(s̃) =
Rs̃(K) which brings K(s̃) = K̃ near the fixed point where its subsequent evolution can
be obtained from the linearized RG transformation. The previous argument then gives
ξ(t̃1) = sξ(s1/ν t̃1) ∼ |t̃1|−ν in the critical region. But t̃1, which vanishes for t = 0, is
expected to be proportional to t = (T − Tc)/Tc, and therefore ξ(t1) = s̃ξ(t̃1) ∼ |t|−ν .

The scaling dimension dh of the other relevant field (the magnetic field) is easily obtained
from the following argument. Since the magnetic field contributes to the action a term
−
´

ddr h · ϕ(r), it couples only to the p = 0 mode and is not affected by the partial
integration of fields with momenta Λ/s ≤ |p| ≤ Λ. The renormalization of h is therefore
entirely due to rescaling of momenta (or lengths) and fields,

ˆ

ddr h ·ϕ(r) = sdλs(K)−1

ˆ

ddr′ h ·ϕ′(r′), (10.172)

i.e. h′ = sdhh (h = |h|) with

dh = d− dϕ =
1

2
(d+ 2− η) (10.173)

(we use λs(K) = sdϕ in the critical regime). In practice, the smallness of η ensures that dh
is positive and h a relevant scaling field.

10.5.3.2 Order parameter

The RG transformation K 7→ K ′ [Eq. (10.158)] implies

mi(K) =
1

Z

ˆ

D[ϕ]ϕi(r) e
−S[ϕ;K]

=
1

Z

ˆ

D[ϕ′]λs(K)−1ϕ′
i(r/s) e

−S[ϕ′;K′]

= λs(K)−1mi(K
′), (10.174)

wheremi(K
′) is the mean value of ϕ′

i(r
′) = ϕ′

i(r/s) computed with the action S[ϕ′;K ′]. Ne-
glecting irrelevant scaling fields (assuming that there is no dangerously irrelevant variable62),
we obtain

m(t, h) = s−dϕm(s1/νt, sdhh) (10.175)

in the critical regime. For t = 0 and h 6= 0, we obtain m(0, h) ∼ hdϕ/dh , i.e. a critical
exponent

δ =
dh
dϕ

=
d+ 2− η

d− 2 + η
. (10.176)

For h = 0 and t < 0, m(t, 0) ∼ (−t)νdϕ so that

β = νdϕ =
ν

2
(d− 2 + η). (10.177)
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10.5.3.3 Correlation function

The two-point correlation function satisfies

Gij(p;K) =
1

Z

ˆ

D[ϕ]ϕi(p)ϕj(−p) e−S[ϕ;K]

=
1

Z

ˆ

D[ϕ′] sdλs(K)−2ϕ′
i(sp)ϕ

′
j(−sp) e−S[ϕ′;K′]

= sdλs(K)−2Gij(sp;K
′) (10.178)

when |p| ≤ Λ/s, and in turn

Gij(r/s;K
′) =

ˆ

|p′|≤Λ

ddp′

(2π)d
eip

′·r/sGij(p
′;K ′)

=

ˆ

|p|≤Λ/s

ddp

(2π)d
eip·rλs(K)2Gij(p;K)

≃ λs(K)2Gij(r;K) for |r| ≫ s

Λ
. (10.179)

For a linearized RG transformation, equation (10.179) implies

Gij(r; t1, t2, · · · ) = s−2dϕGij(r/s; s
y1t1, s

y2t2, · · · ). (10.180)

Thus Gij satisfies a generalized homogeneity relation in agreement with the scaling hypoth-
esis (Sec. 10.4). On the critical surface (t1 = 0), setting s = |r|, we obtain63

Gij(r; 0, t2, · · · ) = |r|−2dϕGij(r/|r|; 0, |r|y2t2, · · · ). (10.181)

If |r|y2 |t2| ≪ 1 then all irrelevant scaling fields can be neglected and one obtains

Gij(r; 0, t2, · · · ) ∼
1

|r|2dϕ
=

1

|r|d−2+η
. (10.182)

The more negative y2, the larger the critical region (in coordinate space) |r|y2 |t2| ≪ 1 where
(10.182) holds. Away from the critical surface (t1 6= 0), setting s = |t1|−1/y1 in (10.180),
one finds

Gij(r; t1, t2, · · · ) = |t|2dϕ/y1Gij(|t1|1/y1r;±1, |t1|−y2/y1t2, · · · ). (10.183)

In the limit where |t1|−y2/y1t2 can be set to zero, we obtain the scaling form

Gij(r; t1, t2, · · · ) =
1

|r|d−2+η
f±ij

(

r

ξ

)

, (10.184)

where ξ ∼ |t1|−y1 ∼ |t|−ν is the correlation length (in agreement with (10.126)).
A similar analysis can be made for the Fourier transformed correlation function, starting

from

Gij(p; t1, t2, · · · ) = sd−2dϕGij(sp; s
y1t1, s

y2t1, · · · ), (10.185)

63Because of space isotropy, Gij(r/|r|; 0, |r|y2 t2, · · · ) is independent of r/|r|.
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where d− 2dϕ = 2− η. At the critical point t1 = 0,

Gij(p; 0, t2, · · · ) = |p|−2+ηGij(p/|p|; 0, |p|−y2t2, · · · ). (10.186)

In the critical regime (in momentum space) |p|−y2 |t2| ≪ 1, one obtains

Gij(p; 0, t2, · · · ) ∼
1

|p|2−η
. (10.187)

On the other hand, for p = 0,

Gij(0; t1, t2, · · · ) = |t1|−(d−2dϕ)/y1Gij(0; 1, |t1|−y2/y1t2, · · · ), (10.188)

so that the susceptibility χ ∼ Gij(p = 0) ∼ |t|−γ diverges with an exponent64

γ =
d− 2dϕ
y1

= ν(2− η). (10.189)

Finally, in the presence of an external field,

Gij(r, t, h) = s−2dϕGij(r/s, s
1/νt, sdhh) (10.190)

in the critical regime, where we use the scaling variable t rather than t1. With s = |r|, we
obtain

Gij(r, t, h) =
1

|r|d−2+η
g±ij

(

r

ξ
,
h

|t|∆
)

, (10.191)

where ∆ = νdh is the gap exponent introduced in section 10.4.2.

10.5.3.4 Free energy

To obtain the critical exponent α we must consider the free energy. So far we did not keep
track of any possible additive contribution to the action produced by the RG transforma-
tion. Let us follow the convention that the action vanishes for ϕ = 0 and write additive
contributions explicitly. The first step in the RG transformation (coarse graining) will in
general yield an additive contribution to the action,

Z =

ˆ

D[ϕ] e−S[ϕ;K] =

ˆ

D[ϕ<] e
−S[ϕ<;K<]−βV A(K,s). (10.192)

When rescaling the momenta and fields, ϕ′(p′) = s−d/2λs(K)ϕ<(p), one should take into
account the Jacobian,

Z =

ˆ

D[ϕ′] e−S[ϕ′;K′]−βV A(K,s)−βV B(K,s), (10.193)

where

e−βV B(K,s) =
∏

p

(0≤|p|≤Λ/s)

[

λs(K)−1sd/2
]N

. (10.194)

64If N ≥ 2, this result holds only in the high-temperature phase, since the susceptibility χ = βG‖(p = 0)
diverges in the whole low-temperature phase (see Secs. 10.1.4 and 10.7.2.
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If we denote by f(K) and f(K ′) the free energy densities associated with S[ϕ;K] and
S[ϕ′;K ′],

e−βV f(K) =

ˆ

D[ϕ] e−S[ϕ;K],

e−βV ′f(K′) =

ˆ

D[ϕ′] e−S[ϕ′;K′]

(10.195)

(V ′ = s−dV ), we then obtain

f(K) = s−df(K ′) +A(K, s) +B(K, s), (10.196)

i.e.

f(t, h) = s−df(s1/νt, sdhh) +A(t, s) +B(t, s) (10.197)

if we ignore the irrelevant fields. Note that A + B cannot depend on h, since the latter
couples only to the uniform part ϕ(p = 0) of the field. With s = |t|−ν ∼ ξ, we deduce

f(t, h) = |t|dνg±
(

h

|t|∆
)

+A(t, |t|−ν) +B(t, |t|−ν). (10.198)

If we could discard the term A + B, we would have derived the scaling form of the free
energy. There is however no reason for A(t, |t|−ν) (which represents the free energy density
of the modes |p| & ξ−1) and B(t, |t|−ν) to be less singular than the free energy density
|t|dνg± of the modes |p| . ξ−1. A detailed calculation (see below) shows that Revoir la phrase

precedente! Elle
contradit D.
Bernard et Mus-
sardo. Considerer
modele Gaussien
pour comprendre.

f(t, h) = |t|dνg±
(

h

|t|∆
)

+ |t|dν g̃±, (10.199)

from which we deduce the specific heat per unit volume

cV = −T ∂
2f

∂T 2
∼ |t|−α (10.200)

in zero field, with α = 2− dν.
It should be noted that A or B type terms did not appear in the calculation of m(t, h)

or Gij(p, t, h). The reason is that Gij(p, t, h) (for |p| < Λ/s) and mi(t, h) = 〈ϕi(r)〉 =
V −1/2〈ϕi(p = 0)〉 do not directly involve the fast modes |p| ≥ Λ/s and are affected by the
RG transformation only through the renormalization of the coupling constantsK ′ = Rs(K).
By contrast, the free energy involves all Fourier components in a direct manner.

To derive (10.199), let us first consider a RG transformation with s = e∆l,

f(K) = e−d∆lf
(

R∆l(K)
)

+ Ã(K,∆l), (10.201)

where R∆l = Rs=e∆l and Ã(K,∆l) = A(K, e∆l) +B(K, e∆l). Using

f
(

R∆l(K)
)

= e−d∆lf
(

R2
∆l(K)

)

+ Ã
(

R∆l(K),∆l
)

, (10.202)

we obtain

f(K) = e−d∆l
[

e−d∆lf
(

R2
∆l(K)

)

+ Ã
(

R∆l(K),∆l
)

]

+ Ã(K,∆l). (10.203)
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After l/∆l iterations, we have

f(K) = e−dlf
(

Rl(K)
)

+

l/∆l−1
∑

m=0

e−md∆lÃ
(

Rm
∆l(K),∆l

)

. (10.204)

Comparing with (10.196), we deduce

A(K, el) +B(K, el) =

l/∆l−1
∑

m=0

e−md∆lÃ
(

Rm
∆l(K),∆l

)

=

ˆ l

0

dl′ e−l′d lim
∆l→0

1

∆l
Ã
(

Rl′(K),∆l
)

, (10.205)

where we have taken the limit ∆l → 0. Since A(K, 1) +B(K, 1) = 0,

C(K) = lim
∆l→0

1

∆l
Ã(K,∆l) = ∂s[A(K, s) +B(K, s)]

∣

∣

s=1
(10.206)

and equation (10.205) can be rewritten as

A(K, s) +B(K, s) =

ˆ ln s

0

dl′ e−l′dC
(

Rl′(K)
)

=

ˆ s

0

ds′

s′
s′

−d
C
(

Rs′(K)
)

. (10.207)

Equation (10.207) implies

s
∂

∂s
[A(t, s) +B(t, s)] = s−dC

(

Rs(K)
)

= s−dC(s1/νt) (10.208)

and, setting s = |t|−ν ∼ ξ,

ξ
∂

∂ξ
(A+B) = |t|dνC(±1) ∼ ξ−d. (10.209)

We finally obtain
∂

∂t
(A+B) =

1

ξ

∂ξ

∂t
ξ
∂

∂ξ
(A+B) ∼ |t|dν−1 (10.210)

and

A(t, |t|−ν) +B(t, |t|−ν) ∼ |t|dν . (10.211)

Together with (10.198), this proves equation (10.199).

Remarque

[Ecrire fonctions d’echelle sous la forme F(h/h0, ...) avec h0 facteur metrique. Les facteurs
metriques s’eliminent dans certains rapports, e.g. rapports d’amplitude.]

10.5.3.5 Universal scaling function and two-scale universality

10.6 Perturbative renormalization group

In this section we show how the critical exponents can be computed perturbatively wrt
ǫ = 4 − d near 4 dimensions (see also Appendix 10.A). We start with the RG solution of
the Gaussian model before considering the (ϕ2)2 theory.
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10.6.1 RG solution of the Gaussian model

10.6.1.1 RG equation

In the high-temperature phase, the Gaussian model is defined by the action

S[ϕ] =
1

2

ˆ

ddr
[

(∇ϕ)2 + r0ϕ
2
]

=
1

2

∑

p,i

ϕi(−p)(p2 + r0)ϕi(p), (10.212)

where r0 = r̄0(T − Tc0). The integration of fields with momenta Λ/s ≤ |p| ≤ Λ yields a
constant contribution to the action (i.e. a contribution to the free energy) which we ignore
in the following. Rescaling the momenta, p → p′ = sp, to restore the original value of the
cutoff, we obtain

S[ϕ] =
1

2

∑

p,i

ϕi(−p)(s−2p2 + r0)ϕi(p). (10.213)

We then rescale the field, ϕ(p) → sd/2−d0
ϕϕ(p) with d0ϕ = d−2

2 the naive scaling dimension
of ϕ, to restore the coefficient 1/2 of the (∇ϕ)2 term,

S[ϕ] =
1

2

∑

p,i

ϕi(−p)(p2 + s2r0)ϕi(p). (10.214)

We deduce the RG equation

r′0 = s2r0. (10.215)

In the presence of an (external) magnetic field h, we must include in the action the term
−
´

ddrh ·ϕ(r). The RG equation satisfied by the field is given by (10.173),

h′ = sd
0
hh, (10.216)

where d0h = d − d0ϕ = d/2 + 1. Equations (10.215,10.216), together with the vanishing
anomalous dimension η (dϕ = d0ϕ), could have been anticipated on purely dimensional
ground. The RG transformation for the Gaussian model is a mere scale transformation.

10.6.1.2 Fixed points

For h = 0, equation (10.215) admits two fixed points:

• a critical fixed point r∗0 = 0 (to be referred to as the Gaussian fixed point) obtained
for T = Tc0 and corresponding to the scale invariant action S[ϕ] = 1

2

´

ddr(∇ϕ2) (ξ =
∞). r0 is a relevant scaling field with eigenvalue y = 2, which yields ν = 1/y = 1/2.

• a high-temperature fixed point r∗0 → ∞ with the action S[ϕ] =
r∗0
2

´

ddrϕ2 corre-

sponding to a vanishing correlation length ξ = 1/
√

r∗0 → 0.

The RG flow is shown in figure 10.12.
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Figure 10.12: RG flow for the Gaussian model. The Gaussian fixed point is located at the
origin r0 = h = 0.

10.6.1.3 Critical exponents

One can obtain the correlation length from ξ(r0) = sξ(r′0) = sξ(s2r0). With s = r
−1/2
0 , one

obtains ξ(r0) = r
−1/2
0 ξ(1) ∝ r

−1/2
0 , i.e. ν = 1/2. Similarly, the susceptibility exponent is

derived from the scaling law

Gii(p, r0) = sd−2d0
ϕGii(sp, r

′
0) = s2Gii(sp, s

2r0) = r−1
0 Gii(pr

−1/2
0 , 1), (10.217)

where the last result is obtained with s = r
−1/2
0 . We deduce that the susceptibility χ =

βGii(p = 0, r0) ∼ 1/r0 diverges with the exponent γ = 1 when r0 → 0.

10.6.1.4 Stability of the Gaussian fixed point

The Gaussian model ignores the u0(ϕ
2)2 term of the O(N) model (10.27) as well as other

terms which would then be generated by the RG procedure, e.g. u6(ϕ
2)3, v0ϕ

2(∇ϕ)2, etc.
At the Gaussian fixed point, the field has scaling dimension d0ϕ = d−2

2 , and we deduce

[u0] = 4− d, [u6] = 6− 2d, [v0] = 2− d, etc. (10.218)

In a RG transformation,

u′0 = s4−du0 + · · ·
u′6 = s6−2du6 + · · ·
v′0 = s2−dv0 + · · ·

(10.219)

For small coupling constants, the leading terms in (10.219) come from the rescaling of mo-
menta and fields, and reflect the canonical dimensions (10.218) (i.e. the scaling dimensions
at the Gaussian fixed point). The ellipses stand for higher-order (at least quadratic) terms
which are generated in the coarse graining step of the RG transformation when the starting
action is not quadratic. Since all canonical dimensions, except [r0] = 2, are negative for
d > 4, the Gaussian fixed point r0 = u0 = u6 = v0 = · · · = 0 is stable (i.e. has only one
relevant direction besides the magnetic field) and the critical exponents take their classical
values. Note that this conclusion (which merely follows from a dimensional analysis of theIl faut s’assurer que

les corrections à une
bouche sont conver-
gentes.

action) has already been reached in section 10.3.4. In section 10.6.2, we shall see that at
the upper critical dimension d+c = 4, the Gaussian fixed point is still stable but the critical
behavior is modified by logarithmic corrections.
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10.6.1.5 A dangerously irrelevant variable in Landau’s theory

From the analysis of the Gaussian model, we conclude that the hyperscaling law

δ =
d0h
d0ϕ

=
d+ 2

d− 2
(10.220)

agrees with the mean-field result δ = 3 only for d = 4 whereas one expects it to be also
valid for d > 4 since the Gaussian fixed point is then stable. This discrepancy is due to the
fact that u0 is a dangerously irrelevant variable for d > 4; although irrelevant, it cannot
be ignored. Dangerously irrelevant variables lead to a breakdown of hyperscaling relations
above the upper critical dimension d+c .

We observe that the partition function with u0 = 0 is not defined for T < Tc0 so that
in this case u0 has to be included into the analysis one way or the other. Let us try
to understand the role of the irrelevant variable u0 (we now assume d > 4) in the RG
framework.

The singular part of the free energy satisfies the scaling law

f(t, h, u0) = s−df(s1/νt, sd
0
hh, sǫu0) (10.221)

(with ν = 1/2), where t ∼ T − Tc0 and ǫ = 4− d (ǫ < 0 for d > 4). We deduce

m(t, h, u0) = − 1

T

∂f

∂h
= s−d0

ϕm(s1/νt, sd
0
hh, sǫu0). (10.222)

For h = 0 and with s = |t|−ν , we obtain

m(t, 0, u0) = |t|νd0
ϕm(±1, 0, |t|−νǫu0). (10.223)

Since ǫ < 0, it is tempting to set |t|−νǫu0 = 0 when |t| → 0. If we do so, we obtain a
critical exponent β = νd0ϕ = d−2

4 in disagreement with the exact result β = 1/2 for d > 4.
The reason for this disagreement can be understood from Landau’s theory. The mean-field
result m =

√

−6r0/u0 clearly shows that we cannot set u0 = 0 in the scaling law (10.223).
The correct result is obtained if we write

m(t, 0, u0) = |t|νd0
ϕg±(|t|−νǫu0) (10.224)

with g−(x) ∼ x−1/2 for x→ 0. Then

m(t, 0, u0) ∼
|t|ν(d0

ϕ+ ǫ
2 )

√
u0

for t < 0 (10.225)

so that

β = ν
(

d0ϕ +
ǫ

2

)

= ν =
1

2
. (10.226)

The fact that the function g−(x) is not analytic for x → 0 shows that u0 is a dangerously
irrelevant variable; although irrelevant it cannot be set to zero.

The value of δ can be obtained in a similar way. For t = 0,

m(0, h, u0) = s−d0
ϕm(0, sd

0
hh, sǫu0)

= hd
0
ϕ/d0

hm(0, 1, h−ǫ/d0
hu0)
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≡ hd
0
ϕ/d0

hg(h−ǫ/d0
hu0). (10.227)

Again it is not possible to set h−ǫ/d0
hu0 = 0 in the scaling function g(x) even though

h−ǫ/d0
hu0 → 0 for h→ 0. Landau’s theory gives g(x) ∼ x−1/3 for x→ 0 so that

m(0, h, u0) ∼ h(d
0
ϕ+ ǫ

3 )/d
0
h , (10.228)

i.e.

δ =
d0h

d0ϕ + ǫ
3

= 3, (10.229)

in agreement with the mean-field result.

10.6.2 The ǫ expansion

We now consider the (ϕ2)2 theory (10.27). For d < 4, u0 becomes a relevant variable and
the Gaussian fixed point r0 = u0 = 0 does not describe the phase transition. We expect
the transition to be described by another fixed point with only one relevant scaling field
(besides the magnetic field). We will see that the fixed point value u∗0 is of order ǫ = 4− d
for d near 4. This enables us to compute the critical exponents below the upper critical
dimension d+c = 4 within a systematic ǫ expansion. Furthermore, to order ǫ, it is sufficient
to compute the RG equations to one-loop order.

10.6.2.1 One-loop RG equations

Following the general RG procedure (Sec. 10.5.1), we split the field ϕ(r) = ϕ<(r) + ϕ>(r)
into slow and fast modes and rewrite the action as

S[ϕ< +ϕ>] = S0[ϕ<] + Sint[ϕ<] + S0[ϕ>] + Sint[ϕ<,ϕ>]. (10.230)

The first two terms in the rhs denote the action in the absence of fast modes (ϕ> = 0), while
the last term denotes the interacting part of the action involving fast modes (Sint[ϕ<,ϕ> =
0] = 0). The integration over the fast modes can be done using the linked cluster theorem
(Sec. 1.5),

ˆ

D[ϕ>] exp
{

−S0[ϕ>]− Sint[ϕ<,ϕ>]
}

= Z0,> exp

{ ∞
∑

n=1

(−1)n

n!
〈Sint[ϕ<,ϕ>]

n〉0,>,c

}

= Z0,> exp
{

∑

connected graphs
}

, (10.231)

where

〈· · ·〉0,> =
1

Z0,>

ˆ

D[ϕ>] · · · e−S0[ϕ>] and Z0,> =

ˆ

D[ϕ>] e
−S0[ϕ>]. (10.232)

The notation 〈· · ·〉0,>,c means that only the connected graphs are to be considered. The
action Sint[ϕ<,ϕ>] contains several types of vertex depending on the number of legs corre-
sponding to slow and fast modes,
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where a slashed line indicates a fast mode. The cumulants 〈· · ·〉0,>,c either contribute to
the free energy or renormalize the action of the slow modes.

Let us first discuss the case N = 1. The one-loop correction to the self-energy of the
slow modes is obtained from a vertex with two lines corresponding to fast modes,

i.e.

dΣ(p) =
u0
2

 

q

G0(q), (10.233)

where G0(q) = (q2 + r0)
−1. We use the notation

ffl

q
to indicate that the momentum

integration is restricted to fast modes Λ/s ≤ |q| ≤ Λ. Similarly, the one-loop correction to
the (bare) 4-point vertex

Γ(4)(p1,p2,p3,p4) =
u0
V
δ∑

i pi,0 (10.234)

of the slow modes is represented diagrammatically by

i.e.

dΓ(4)(0, 0, 0, 0) = − 3

2V
u20

 

q

G2
0(q) (10.235)

for vanishing momenta p1 = · · · = p4 = 0. Equations (10.233) and (10.235) follow from
standard diagrammatic rules (Sec. 1.5). The momentum dependence of dΓ(4)(p1,p2,p3,p4)
generates new terms in the action, e.g. ϕ2(∇ϕ)2, which do not modify the critical exponents
to O(ǫ) and can therefore be ignored (see the discussion below).

For the O(N) model, the bare 4-point vertex is given by

Γ
(4)
ijkl(p1,p2,p3,p4) =

δ(4)Sint[ϕ]

δϕi(−p1)δϕj(−p2)δϕk(−p3)δϕl(−p4)

=
u0
3V

δ∑
i pi,0 (δi,jδk,l + δi,kδj,l + δi,lδj,k) . (10.236)

It convenient to represent this (fully symmetrized) vertex as

= + +

i

j k

l

where
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+

+ + + +

(a)

(b)

Figure 10.13: One-loop corrections to the self-energy (a) and the 4-point vertex (b).

i

j k

l

=
u0
3
δi,jδk,l

The one-loop corrections to the self-energy and the 4-point vertex are shown in figure 10.13.
This leads to

dΣ(p) =
N + 2

6
u0

 

q

G0(q) (10.237)

and

dΓ
(4)
ijkl(0, 0, 0, 0) = − (δi,jδk,l + δi,kδj,l + δi,lδj,k)

N + 8

18V
u20

 

q

G2
0(q). (10.238)

For N = 1, one recovers the previous results (10.233) and (10.235). The one-loop correction
due to the fast modes leads to a change of the parameters r0 and u0 of the action of the
slow modes,

r′0 = r0 +
N + 2

6
u0

 

q

G0(q),

u′0 = u0 −
N + 8

6
u20

 

q

G2
0(q).

(10.239)

To complete the RG procedure we must rescale momenta (p → p′ = sp) and fields.
Since the (∇ϕ)2 term is not renormalized (the self-energy correction dΣ(p) is momentum

independent), the field rescaling is simply ϕ(p) → ϕ′(p)s−d/2+d0
ϕϕ(p). Finally, it is also

convenient to multiply r0 by Λ−2 and u0 by Λd−4 to obtain coupling constants in dimen-
sionless units. This yields the flow equations

r̃′0 = s2
[

r̃0 +
N + 2

6
ũ0Λ

2−d

 

q

G0(q)

]

,

ũ′0 = sǫ
[

ũ0 −
N + 8

6
ũ20Λ

ǫ

 

q

G2
0(q)

] (10.240)
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for the dimensionless variables r̃0 and ũ0.
65 Using

 

q

G0(q) = Kd

ˆ Λ

(1−dl)Λ

d|q| |q|
d−1

q2 + r0
= Kd

Λd−2

1 + r̃0
dl,

 

q

G2
0(q) = Kd

ˆ Λ

(1−dl)Λ

d|q| |q|d−1

(q2 + r0)2
= Kd

Λ−ǫ

(1 + r̃0)2
dl,

(10.241)

for s = edl (with dl → 0), we finally obtain the equations

dr̃0
dl

= 2r̃0 +
N + 2

6
Kd

ũ0
1 + r̃0

,

dũ0
dl

= ǫũ0 −
N + 8

6
Kd

ũ20
(1 + r̃0)2

(10.242)

satisfied by r̃0(l) and ũ0(l).

10.6.2.2 Fixed points and critical exponents

The RG equations (10.242) admit two fixed points: the Gaussian fixed point r̃∗0 = ũ∗0 = 0
obtained in section 10.6.1 and the Wilson-Fisher fixed point

r̃∗0 = −1

2

N + 2

N + 8
ǫ+O(ǫ2),

ũ∗0 =
6

N + 8

ǫ

K4
+O(ǫ2),

(10.243)

where K4 = 1/8π2. To obtain the critical exponents associated with these fixed points,
we need to find the eigenvalues ey1dl and ey2dl of the linearized RG transformation T (dl)
defined by

(

δr̃0(l + dl)
δũ0(l + dl)

)

= T (dl)

(

δr̃0(l)
δũ0(l)

)

, (10.244)

where δr̃0 = r̃0 − r̃∗0 and δũ0 = ũ0 − ũ∗0. Equation (10.244) can be rewritten as

d

dl

(

δr̃0
δũ0

)

=
T (dl)− 1

dl

(

δr̃0
δũ0

)

, (10.245)

where the matrix T (dl)−1
dl has eigenvalues y1 and y2 for dl → 0. From the linearized RG

equations
d

dl

(

r̃0
ũ0

)

=

(

2 N+2
6 Kd

0 ǫ

)(

r̃0
ũ0

)

(10.246)

about the Gaussian fixed point, we obtain the eigenvalues y1 = 2 and y2 = ǫ and the
corresponding eigenvectors

e1 =

(

1
0

)

, e2 =

( −1
12

(N+2)K4

)

, (10.247)

65Even without the last rescaling (which implies that r̃0 and ũ0 are expressed in dimensionless physical
units), r0 and u0 are “dimensionless” to the extent where they are expressed in units of (Λ′/Λ)[r0] and
(Λ′/Λ)[u0], respectively, i.e. in units of the running cutoff Λ′ = Λ/s. This property, which is a consequence
of the rescaling of momenta and fields, is crucial for the existence of a fixed point of the RG equations at
criticality.
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to O(ǫ0). The linearized RG equations about the Wilson-Fisher fixed point read

d

dl

(

δr̃0
δũ0

)

=

(

2− N+2
N+8ǫ

N+2
6

Kd

1+r̃∗0
0 −ǫ

)(

δr̃0
δũ0

)

, (10.248)

to order ǫ. We thus obtain the eigenvalues y1 = 2 − N+2
N+8ǫ + O(ǫ2) and y2 = −ǫ + O(ǫ2).

To O(ǫ0), the eigenvectors are given by (10.247). The Wilson-Fisher fixed point is in the
direction e2 from the origin (Gaussian fixed point) since

(

r̃∗0
ũ∗0

)

WF

=
1

2

N + 2

N + 8
ǫe2 +O(ǫ2). (10.249)

For d > 4, the Gaussian fixed point has one relevant direction (e1) and governs the
critical behavior. The correlation length critical exponent takes the classical value ν =
1/y1 = 1/2. On the other hand, the Wilson-Fisher fixed point is not physical since ũ∗0 < 0
for ǫ < 0, and has two relevant directions (besides the magnetic field). For d < 4, the
Gaussian fixed point has two relevant directions. The critical behavior is governed by the
Wilson-Fisher fixed point which has only one relevant direction. The critical exponent ν is
given by

ν =
1

y1
=

1

2
+
N + 2

N + 8

ǫ

4
+O(ǫ2), (10.250)

whereas the correction-to-scaling exponent (Sec. 10.5.3) takes the value

ω = −y2 = ǫ+O(ǫ2). (10.251)

The anomalous dimension η vanishes to O(ǫ) since the field has been trivially rescaled in
the RG procedure. All other exponents can then be deduced from the scaling laws derived
in sections 10.4 and 10.5.3,

γ = 1 +
N + 2

N + 8

ǫ

2
+O(ǫ2),

β =
1

2
− 3

2

ǫ

N + 8
+O(ǫ2),

δ = 3 + ǫ+O(ǫ2),

α =
4−N

N + 8

ǫ

2
+O(ǫ2).

(10.252)

If u0 vanishes, the phase transition is governed by the Gaussian fixed point even when
d < 4. If u0 is finite but small and T = Tc, the RG trajectory spends a lot of “time” near the
Gaussian fixed point before eventually flowing into the Wilson-Fisher fixed point. We can
describe this crossover behavior with two relevant scaling fields t̃1 and t̃2 at the Gaussian
fixed point, defined by

(

r̃0
ũ0

)

= t̃1e1 + t̃2e2 =

(

r̃0 +
(N + 2)K4

12
ũ0

)

e1 +
(N + 2)K4

12
ũ0e2. (10.253)

The singular part of the free energy satisfies66

f(t1, u0) = s−df(sy1t1, s
y2u0) = |t1|d/y1g±

(

u0|t1|−φ
)

(10.254)

66Eq. (10.254) can be alternatively written as f(t̃1(1), ũ0(1)) = s−df(t̃1(s), ũ0(s)).
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(we consider ũ0 rather than t̃2), where y1 = 2 and y2 = ǫ. The crossover exponent φ is
given by

φ =
y2
y1

> 0. (10.255)

Thus we expect to see effective Gaussian behavior when u0|t1|−φ ≪ 1 and critical behavior
(governed by the Wilson-Fisher fixed point) when u0|t1|−φ ≫ 1.

To ensure that the preceding discussion is correct, we have to verify that the omitted
coupling constants do not modify the critical exponents to O(ǫ).67 Even if we start from the
(ϕ2)2 theory, the RG procedure will generate all coupling constants allowed by symmetry.
An arbitrary coupling w̃, different from r̃0 and ũ0, satisfies the RG equation

dw̃

dl
=
(

d0w +O(ǫ2)
)

w̃ +O(ũ20, ũ0w̃, w̃
2, · · · ), (10.256)

where d0w is the engineering dimension of w̃ while the O(ǫ2) term comes from the anomalous
dimension η of the ϕ field. There is no term linear in ũ0 in (10.256) since the only O(ũ0)
terms enter the RG equation of r̃0 and ũ0.

68 The fixed point value w̃∗ is of order ǫ2

or higher. Thus the Wilson-Fisher fixed point is characterized by an infinite number of
nonzero coupling constants, but only r̃∗0 and ũ∗0 are of order ǫ.

We must now ask whether the O(ǫ2) couplings can change the values of the critical
exponents to order ǫ. Only terms of order ǫ are important for the equation fixing r̃∗0 , so that
w̃ = O(ǫ2) is negligible. By contrast, if a O(ǫ2) term enters the equation dũ0/dl linearly,
ũ∗0 will change to order ǫ and in turn the critical exponents. Thus the u6(ϕ

2)3 term, which
contributes to dũ0/dl, is potentially dangerous. The leading contribution to dũ6/dl comes
from69

q

p1

p2

p3

p′
1

p′
2

p′
3

−q

p1

p2

p3 p′
3

p′
1

p′
2

q −q

where q = −p1 − p2 − p3 = p′
1 + p′

2 + p′
3, |q| ∈ [Λ(1 − dl),Λ] and |pi|, |p′

i| < Λ(1 − dl)
(i = 1, 2, 3). Now the ũ6 term contribution to dũ0/dl must have p1 = p2 = p′

1 = p′
2 = 0:

0

0 0

0

But the condition p1 = p2 = p′
1 = p′

2 = 0 implies that p3 = −p′
3 = −q, which is

in contradiction with |p3|, |p′
3| < Λ(1 − dl) and |q| ∈ [Λ(1 − dl),Λ]. Thus ũ6 does not

contribute an O(ǫ2) term to the equation for ũ∗0, and the critical exponents to order ǫ are
unchanged.

67See Ref. [3] for a thorough discussion.
68The only diagrams of order ũ0 are the one-loop self-energy diagram (which contributes to dr̃0/dl) and

the bare vertex ũ0 (which gives the term linear in ũ0 in dũ0/dl).
69There is also a contribution to ũ6 coming from the ũ8(ϕ2)4 term which turns out to be O(ǫ3) for

ũ8 ≃ ũ∗8.
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Figure 10.14: Solution of the RG equations (10.242) for initial conditions near the critical
surface (d = 3, N = 1, Λ = 1, r̃∗0 ≃ −0.1 and ũ∗0 ≃ 10.66): T > Tc (top) and T < Tc
(bottom). The vertical dotted lines show the Ginzburg scale lG = ln(ΛξG) ≃ 3 and the
correlation length scale lξ = ln(Λξ) ≃ 12.

10.6.2.3 Flow diagrams

The analysis of the RG equations (10.242) is not restricted to the determination of fixed
points and critical exponents. In figure 10.14 we show typical solutions for generic initial
conditions near the critical surface (i.e. T ≃ Tc) for d = 3 and N = 1 (boldly extrapolating
the result of the ǫ-expansion to ǫ = 1). The top plots correspond to T > Tc and the
bottom ones to T < Tc. In both cases, one can identify a critical regime (in momentum
space) where r̃0 and ũ0 are nearly equal to their fixed point values r̃∗0 and ũ∗0. Note that
r̃0 can take negative values as long as G0(p) = (p2 + r0)

−1 remains positive for |p| = Λ(l),

i.e. 1 + r̃0 > 0. The critical regime begins when Λ(l) ∼ ξ−1
G ∼ u

1/(d−4)
0 , where ξG is the

Ginzburg length introduced in section 10.3.4. It ends when Λ(l) ∼ ξ−1 where ξ is the
correlation length. The critical regime is preceded by a perturbative regime Λ(l) ≫ ξ−1

G

where the Gaussian approximation is essentially correct (Sec. 10.3.4).70

Since the relevant scaling field t̃1 ∝ el/ν grows exponentially near the fixed point (which
implies δr̃0 ∝ el/ν and δũ0 ∝ el/ν), it is possible to obtain the value of the critical exponent
ν from the behavior of r̃0 and ũ0 in the critical regime. To this end it is convenient to define
a “running” critical exponent νl by

1

νl
=

d

dl
ln |r̃0 − r̃∗0 |, (10.257)

in the same way as we have defined a running anomalous dimension ηl [Eq. (10.163)]. Near

70Strictly speaking, ũ0(l) must be small for the perturbative regime to exist. The fact that ũ∗0 = O(ǫ) for

d = 4− ǫ does not say anything about the value of ũ0(l) for Λ(l) ≫ ξ−1
G .
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Figure 10.15: Schematic flow diagrams in the (r̃0, ũ0) plane obtained from the linearized
one-loop RG equations for d > 4 (left) and d < 4 (right). G indicates the Gaussian fixed
point and WF the Wilson-Fisher fixed point. The gray areas correspond to the nonphysical
region ũ0 ≤ 0.

the end of the critical regime, we observe that νl takes a constant value which can be
identified with the actual value of the exponent ν; the obtained value clearly differs from
the mean-field value ν = 1/2 (Fig. 10.14). In principle, the anomalous dimension η can be
obtained by a similar method, since the (running) anomalous dimension ηl coincides with η
when ξ−1 ≪ Λ(l) ≪ ξ−1

G . It is however necessary to go beyond the one-loop RG equations
to obtain a nonzero anomalous dimension (see chapter 11).

When T > Tc, the flow for Λ(l) ≪ ξ−1 is characteristic of the disordered phase. r̃0
takes a large value (r̃0 ≫ 1) which suppresses the perturbative corrections to the coupling
constants. The flow of r̃0 and ũ0 is then purely dimensional, i.e. r̃0 ∝ e2l and ũ0 ∝ eǫl,
while the “dimensionful” variables satisfies dr0/dl ≃ du0/dl ≃ 0 [Eq. (10.239)]. νl takes
the mean-field value 1/2. This is a general feature of Wilson’s RG: a “gapped” fluctuation
mode, with propagator G(p) ∼ (p2 + ξ−2)−1, does not contribute to the RG flow once
Λ(l) ≪ ξ−1.

When T < Tc, the critical regime is followed by a decrease of r̃0 until 1 + r̃0 = 0,
which corresponds to a pole in the propagator G0(q) = (q2 + r0)

−1 for |q| = Λ. One
could try to circumvent this difficulty by expanding the action about one of its degenerate
minima. For N ≥ 2 however, one would have to deal with the nontrivial physics of the low-
temperature phase due to the (gapless) Goldstone modes associated with the spontaneous
broken symmetry, an impossible task within the framework of the perturbative RG we have
discussed so far. The ordered phase of the (ϕ2)2 theory with N ≥ 2 will be studied in
section 10.7 from the NLσM (see also Secs. 10.B and 10.C).

By solving the RG equations (10.242) for various initial conditions, we obtain the flow
diagrams shown in figure 10.15 for d > 4 and d < 4. The critical line (or, more precisely,
the line tangent to the critical line at the fixed point) is determined by

t̃1 = δr̃0 +
N + 2

12
K4δũ0 = 0, (10.258)

where the relevant scaling field t̃1 is defined by
(

δr̃0
δũ0

)

= t̃1e1 + t̃2e2. (10.259)
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We see that fluctuations lead to a reduction of the transition temperature compared to the
mean-field result. For a given value of ũ0(0), we need to choose r̃0(0) < 0, i.e. Tc < Tc0, to
be on the critical line (Fig. 10.15).

10.6.2.4 The upper critical dimension

At the upper critical dimension d+c = 4, ũ0 is a marginal variable. To obtain the critical
behavior, one must go beyond the linear approximation. We shall see that the Gaussian
fixed point governs the critical behavior (ũ0 is marginally irrelevant at the Gaussian fixed
point) but the mean-field predictions are modified by logarithmic corrections.

Expanding the one-loop RG equations (10.242) to quadratic order in r̃0 and ũ0, we
obtain

dt̃1
dl

= 2t̃1 −
N + 2

6
K4t̃1ũ0 +O(ũ20),

dũ0
dl

= −N + 8

6
K4ũ

2
0,

(10.260)

where t̃1 is the relevant scaling field defined in (10.259). The second equation gives

ũ0(l) =
ũ0(0)

1 + N+8
6 K4ũ0(0)l

. (10.261)

ũ0(l) vanishes for l → ∞, but only logarithmically wrt the running momentum cutoff
Λ(l) = Λe−l. From

d ln t̃1
dl

= 2− N + 2

6
K4ũ0, (10.262)

we then deduce

t̃1(l) ∝ t̃1(0)e
2ll−

N+2
N+8 (10.263)

when N+8
6 K4ũ0(0)l ≫ 1.

To obtain the correlation length (or the Josephson length ξJ for N ≥ 2 and T < Tc) we
use ξ(t̃1(0), ũ0(0)) = elξ(t̃1(l), ũ0(l)) and choose l such that |t̃1(l)| ∼ 1 and ũ0(l) ≪ 1, i.e.

e2l ∼ 1

|t̃1(0)|
∣

∣ln |t̃1(0)|
∣

∣

N+2
N+8 . (10.264)

We then have ξ(t̃1(l), ũ0(l)) ∼ ξ(1, 0) ∼ 1 and therefore

ξ ∼ 1
√

|T − Tc|
∣

∣ln |T − Tc|
∣

∣

N+2
2(N+8) , (10.265)

where we have used t̃1(0) ∝ T − Tc. Thus the marginal variable ũ0 leads to a logarithmic
correction to the mean-field result ξ ∼ 1/

√

|T − Tc|.
Similarly, we can compute the uniform susceptibility71 χ = βGii(p = 0) starting from

χ(t̃1(0), ũ0(0)) = e(d−2d0
ϕ)lχ(t̃1(l), ũ0(l)), (10.266)

71The uniform susceptibility is defined in the ordered phase only for N = 1 (see Sec. 10.7.3).
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Figure 10.16: RG trajectories on the critical surface (e1 is a relevant direction): without
marginal variable, y2, y3 < 0 (left), and with a marginally irrelevant variable, y2 = 0 and
y3 < 0 (right).

where d − 2d0ϕ = 2 (η = 0). When |t̃1(l)| ∼ 1 and ũ0 ≪ 1, the rhs in (10.266) can be
calculated by perturbation theory, which yields

χ ∼ 1

|T − Tc|
∣

∣ln |T − Tc|
∣

∣

N+2
N+8 . (10.267)

Again, we obtain a logarithmic correction to the mean-field result χ ∼ 1/|T −Tc|. Note that
there is no logarithmic (ln |p|) correction to the critical correlation function Gii(p) ∼ 1/p2

since the anomalous dimension η vanishes for d = 4 (see Appendix 10.A).
To obtain the singular part of the free energy, we use

f(t̃1(0), ũ0(0)) = e−4lf(t̃1(l), ũ0(l)). (10.268)

Let us assume that the system is in the low-temperature phase. For |t̃1(l)| ∼ 1 and ũ0(l) ≪ 1,
the rhs in (10.268) can be calculated within mean-field theory,72

f(t̃1(0), ũ0(0)) ∼ −e−4l r̃0(l)
2

ũ0(l)
∼ −|t̃1(0)|2l1−2N+2

N+8 , (10.269)

where we have used r̃0(l) ∼ t̃1(l) ∼ 1, ũ0(l) ∼ 1/l ≪ 1 and (10.263). With l given
by (10.264), we finally obtain

f(t̃1(0), ũ0(0)) ∼ −|t̃1(0)|2
∣

∣ln |t̃1(0)|
∣

∣

4−N
N+8 . (10.270)

Since t̃1(0) ∝ T − Tc, we deduce the (most) singular part of the specific heat,73

CV ∼
∣

∣ln |T − Tc|
∣

∣

4−N
N+8 . (10.271)

Thus the singular part of CV diverges for N < 4 but vanishes for N > 4. These results
significantly differ from the Gaussian model predictions CV ∼

∣

∣ln |T − Tc|
∣

∣ (Sec. 10.3.4).
Logarithmic corrections are a generic consequence of a marginally irrelevant variable.

Figure 10.16 shows two trajectories on the critical surface with and without a marginal

72The singular dependence of f(t̃1(l), ũ0(l)) on ũ0(l) is due to ũ0(l) being a dangerously irrelevant variable
in the low-temperature phase (see Sec. 10.6.1).

73This result can also be obtained from the high-temperature phase using f(t̃1(l), ũ0(l)) ≃ f(t̃1(l)) for
ũ0(l) → 0 and s(4−d) ≡ ln s for d→ 4 (s = el).
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Exponent Gaussian model O(ǫ) O(ǫ5) Numerics

ν 1/2 0.583 0.6290(25) 0.6302(1)

β 1/2 0.333 0.3257(25)

γ 1 1.167 1.2380(50)

δ 3 4

α 1/2 0.167

η 0 0 0.0360(50) 0.0368(2)

Table 10.4: Critical exponents obtained from the ǫ expansion [49] and numerical methods
(Monte Carlo and high-temperature series) [50] (d = 3 and N = 1).

variable. In the absence of a marginal variable, the trajectory rapidly converges to the fixed
point. On the other hand, when there is a marginally irrelevant variable, the trajectory first
moves closer to the corresponding axis (because the irrelevant variables rapidly decrease
to zero) before converging to the fixed point due to the slow vanishing of the marginally
irrelevant variable. When the relevant field t̃1 is nonzero but small, the trajectory eventually
runs away from the fixed point. Nevertheless, the marginal irrelevant variable still controls
the (slow) approach to the fixed point and leads to logarithmic corrections.

10.6.2.5 Utility of the ǫ expansion

The ǫ expansion to first order does not yield reliable estimates of the critical exponents of
three-dimensional systems. Its great virtue is to provide a technically easy way of deter-
mining what kind of universality classes one can expect. Although the value of the critical
exponents changes when one goes away from the upper critical dimension, the topology of
the flow diagram does not. One can therefore investigate the phase transitions and their
universality classes in various models. Furthermore, the ǫ expansion can also be applied to
the analysis of systems near the lower critical dimension (see Sec. 10.7).

Calculating the critical exponents to order ǫ2 and beyond in the Wilson approach is
quite complicated as one must keep track of additional coupling constants besides r̃0 and
ũ0. In practice, higher-order calculations are carried out using field theoretical perturbative
methods (see Appendix 10.A for an introduction to this type of approach). The expansion
has been pushed to O(ǫ5). Although the series in ǫ is only asymptotic, it can be evaluated
by the Borel summation method. Results for three-dimensional systems are in very good
agreement with numerical approaches. Table 10.4 shows the critical exponents obtained
from various methods for d = 3 and N = 1.74 Note that the crude estimates obtained from
the O(ǫ) expansion with ǫ = 1 are closer to the exact results than those of the Gaussian
model.

74In chapter 11 we shall see that the non-perturbative RG is also a powerful tool to compute the critical
exponents with high precision.
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10.6.2.6 The large-river effect and the field-theoretical approach

-large-river effect: universality in a broader sense. -continuum limit possible thanks to
Gaussian fixed-point. Trajectories parametrized by a single parameter (at criticality): field-
theoretical approach -non-critical quantities not accessible in that case, by contrast to the
Wilson RG, in particular in its functional version (cf. Ising model in NPRG chapter).

10.7 The nonlinear σ model

In section 10.2.2, we have argued that the critical behavior of the lattice classical spin model
H = J

∑

〈r,r′〉 Sr · Sr′ (S
2
r = 1) with O(N) symmetry is described by a (ϕ2)2 field theory.

In this section, we study the former model at low temperatures in the ordered phase by
expanding about the classical configuration Sr = (1, 0, · · · , 0). We assume N ≥ 2. For
T < Tc, the spontaneous symmetry breaking gives rise to a nontrivial physics due to the
(gapless) Goldstone modes. We shall see that, rather surprisingly, the low temperature
expansion allows us to study the critical behavior near d = 2 when N > 2.

We thus start from the partition function

Z =

ˆ

D[n]
∏

r

δ(n2
r − 1) exp

{

− 1

2g

∑

r,µ

(Dµnr)
2 +

h

g
·
∑

r

nr

}

(10.272)

of the NLσM on a d-dimensional hypercubic lattice, where

Dµnr =
nr+µ − nr

a
(10.273)

(with a the lattice spacing) denotes a discrete derivative, g = T/Ja2, h is an external field
and µ = 1, · · · , d. In the continuum limit, the partition function of the NLσM is often
written as

Z =

ˆ

D[n] δ(n2 − 1) exp

{

− 1

2g

ˆ

ddr(∇n)2 +
h

g
·
ˆ

ddr n

}

. (10.274)

However, a proper handling of the measure requires to define the model on a lattice and
take the continuum limit only at a later stage (see below).

10.7.1 Perturbative expansion

In the limit of a vanishing coupling constant, g → 0, the dominant field configuration is
nr = (1, 0, · · · , 0) if the field h = (h, 0, · · · , 0) (h > 0). To study the fluctuations about this
configuration, it is convenient to use the parametrization

nr = (σr,πr), (10.275)

where σr denotes the component of nr along h and πr is a (N −1)-component field perpen-
dicular to h. For small fluctuations, |πr| ≪ 1 and σr > 0, we can express σr = (1− πr)

1/2

in terms of πr using n2
r = 1. It is then possible to derive an effective action for the π field

by integrating out σr,

Z =

ˆ

D[σ,π]
∏

r

δ(σ2
r + π2

r − 1) exp

{

− 1

2g

∑

r,µ

[

(Dµσr)
2 + (Dµπr)

2
]

+
h

g

∑

r

σr

}
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=

ˆ

D[π] exp

{

− 1

2g

∑

r,µ

[

(Dµπr)
2 + (Dµ

√

1− π2
r)

2
]

+
h

g

∑

r

√

1− π2
r −

1

2

∑

r

ln(1− π2
r)

}

, (10.276)

where the integration over πr is restricted to |πr| ≤ 1. The last term in (10.276) comes
from the measure D[n]

∏

r δ(n
2
r − 1) in the functional integral (10.272).75

We are now in a position to take the continuum limit a → 0 whereby r becomes a
continuous position variable and Dµπr = ∂µπ a standard derivative. The term coming
from the measure becomes

ρ

2

ˆ

ddr ln(1− π2) where ρ =
1

V

∑

p∈BZ

= a−d (10.277)

is the number of degrees of freedom per unit volume. In the continuum limit, the Brillouin
zone (BZ) is replaced by a spherical region of radius Λ with the same volume,

ρ = a−d ≡
ˆ

ddp

(2π)d
Θ(Λ− |p|) = Kd

d
Λd. (10.278)

The final form of the action therefore reads

S[π] =
1

2g

ˆ

ddr
[

(∇π)2 + (∇
√

1− π2)2
]

− h

g

ˆ

ddr
√

1− π2 +
ρ

2

ˆ

ddr ln(1− π2) (10.279)

(we set the lattice spacing a equal to unity), where the π field satisfies the constraint |π| ≤ 1.
The minimum of the action is reached for π = 0. For small g, we expect the dominant

fluctuations to satisfy |π| ∼ √
g. Field configurations with |π| ∼ 1 give exponentially small

contributions (of order exp(−const/g)) to the partition function that can be neglected in
the perturbative approach (g ≪ 1). This allows us to ignore the constraint |π| ≤ 1 and
freely integrate over πµ from −∞ to ∞. The expansion wrt g is then similar to a loop
expansion (Sec. 1.7), the only difference being that the term coming from the measure is
not multiplied by 1/g. To leading order (using |π| ∼ √

g),

S0[π] =
1

2g

ˆ

ddr
[

(∇π)2 + hπ2
]

, (10.280)

and the propagator of the π field reads

G0(p) = 〈πµ(p)πµ(−p)〉 = g

p2 + h
. (10.281)

Alternatively, one can obtain the action (10.280) by introducing a rescaled field πr = g−1/2π

and then setting g = 0. For h = 0, the state with n = (1, 0, · · · , 0) spontaneously breaks
the O(N) symmetry, and S0[π] is nothing but the action of the N − 1 Goldstone modes (to
leading order). A nonzero field h explicitly breaks the O(N) symmetry and gives a “mass”

75We have used
´

dσ δ(σ2 + π
2 − 1) =

´

dσ 1
2σ
δ(σ −

√
1− π2) ∝ exp

{

− 1
2
ln(1− π

2)
}

.
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term to the Goldstone modes. From (10.280) and (10.281), we deduce the (bare) stiffness
of the NLσM,76

ρ0s =
1

g
. (10.282)

In the RG language, the action (10.280) corresponds to the Gaussian fixed point g = 0.
This fixed point is stable if the O(N) symmetry remains spontaneously broken for g = 0+

and h → 0. We can repeat the argument of section 10.3.3 to show that this should be the
case for d > 2. The reduction of the order parameter by fluctuations is given by

〈σ(r)〉 = 1− 1

2
〈π(r)2〉+O(g2)

= 1− (N − 1)g

2

ˆ

ddp

(2π)d
1

p2
+O(g2) (10.283)

for h = 0. The momentum integral in (10.283) is infrared divergent for d ≤ 2, so that
long-range order cannot exist in that case (Mermin-Wagner theorem; Sec. 10.3.3). On the
other hand we expect long-range order for d > 2 when g is small enough. This suggests that
higher-order vertices neglected in (10.280) are irrelevant at the Gaussian fixed point when
d > 2.

Alternatively, one can check the stability of the Gaussian fixed point using dimensional
analysis. By expanding the various terms in (10.279), we find two types of vertices: (π ·
∇π)2(π2)n and (π2)n. At the Gaussian fixed point, the π field has scaling dimension77

[π] =
d− 2

2
. (10.284)

A vertex with 2n fields and 2r derivatives has then dimension

ynr = d− n(d− 2)− 2r. (10.285)

The vertices (π ·∇π)2(π2)n are relevant for d < 2 and irrelevant for d > 2. The vertices
(π2)n are relevant for d < 2. Surprisingly, a finite number of them are relevant also for
d > 2, which seems to contradict our expectation that the Gaussian fixed point should
be stable for d > 2. In fact, the vertices coming from the measure maintain the O(N)
symmetry of the action and ensure that the propagator of the π field remains gapless to
all orders in perturbation theory. Their relevance does not, as we shall see, invalidate the
conclusion that the Gaussian fixed point is stable for d > 2.

10.7.2 RG approach

To implement the RG procedure, we proceed as in the case of the (linear) O(N) model
(Sec. 10.6.2). We split the field π(r) = π<(r) + π>(r) into slow (|p| ≤ Λ/s) and fast
(Λ/s ≤ |p| ≤ Λ) modes and integrate out the latter. Since the renormalization procedure
maintains the O(N) symmetry for h = 0, the action of the slow modes must be of the form

S[n] = 1
2g′

´

ddr(∇n)2 − h′

g′

´

ddr n up to higher-order (irrelevant) terms in the derivative

expansion. It therefore depends only on the two renormalized coupling constants g′ and h′

76Eq. (10.282) follows from ρ0s = σ2/g with σ = 1 the order parameter in the classical configuration
nr = (1, 0, · · · , 0).

77To define the scaling dimension of the field, it is convenient to use the rescaled field πr = g−1/2
π. Since

S[πr] =
1
2

´

ddr
[

(∇πr)2 + hπ2
r

]

, [πr] = d/2− 1.
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(b)

1
2g
(πν1∂µπν1)(πν2∂µπν2)

h
8g
π2
ν1
π2
ν2

(a) ν1 ν2 ν1 ν2

ρ
2
πνπν

Figure 10.17: (a) Diagrammatic representation of the three terms of S1[π]. The slashed
lines represent the spatial derivative ∂µ. (b) One-loop diagrams obtained from the diagrams
shown in (a).

as well as on a field renormalization factor necessary to keep the normalization n2 = 1. This
implies that the vertices in the action (10.279) are not independent. For instance, the ratio
of the coefficients of (π · ∇π)2 and (∇π)2 is one. If this ratio were different, the action
would not have O(N) symmetry. Thus we need only consider RG equations for the two
independent coupling constants g and h/g.

10.7.2.1 One-loop RG equations

To obtain the RG equations to lowest order, it is sufficient to consider the O(g) correction
to S0,

S1[π] =
1

2g

ˆ

ddr
[

(π ·∇π)2 +
h

4
(π2)2

]

− ρ

2

ˆ

ddrπ2. (10.286)

The three terms in S1 are diagrammatically represented in figure 10.17a. Integrating out
the fast modes, one finds

Z =

ˆ

D[π<] e−S0[π
<]

ˆ

D[π>] e−S0[π
>]−S1[π

<+π>]+O(g2)

=

ˆ

D[π<] e−S0[π
<]−〈S1[π

<+π>]〉0,>+O(g2), (10.287)

where

〈S1[π
< + π>]〉0,> =

1

2gV

∑

p,ν

π<
ν (−p)π<

ν (p)

′
∑

p′

[

p2 + p′2]G0(p
′)

+
h

4gV

∑

p,ν

[(N − 1) + 2]π<
ν (−p)π<

ν (p)

′
∑

p′

G0(p
′)

− 1

2
ρ>
∑

p,ν

π<
ν (−p)π<

ν (p). (10.288)
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The notation
∑′

p′ means the sum over p′ is restricted to the fast modes Λ/s ≤ |p′| ≤ Λ.
The first two terms are represented by the diagrams of figure 10.17b. The last term in
(10.288) is obtained from ρ

2

´

ddr (π<)2 by writing ρ = ρ< + ρ> with

ρ> =
1

V

′
∑

p′

≡
 

p′

(V → ∞) (10.289)

and including the contribution − 1
2ρ

>
´

ddr (π<)2 in the action of the slow modes. We
therefore obtain the following action of the slow modes to leading order,

S[π<] =
1

2g
(1 + dI)

ˆ

ddr(∇π<)2 +
h

2g

(

1 +
N − 1

2
dI

)
ˆ

ddr(π<)2, (10.290)

where

dI =

 

p

G0(p) (10.291)

and we have used
 

p

p2G0(p) = gρ> − hdI. (10.292)

Rescaling momenta and field, i.e. r → r′ = r/s and π< → π<′ = λπ<, we reproduce the
original action S0[π

<] +O(g) but with renormalized coupling constants,

1

g′
=

1

g
(1 + dI)λ−2sd−2,

h′

g′
=
h

g

(

1 +
N − 1

2
dI

)

λ−2sd.

(10.293)

To obtain the field rescaling factor λ, one could compute the renormalized coefficient of
(π< · ∇π<)2. Because of the O(N) symmetry, this coefficient should be equal to the
coefficient of (∇π<)2. Alternatively, one can notice that h/g scales trivially. The O(N)
symmetry implies that the renormalization of h/g does not depend of the direction of the
field h. If one couples h to πµ (rather than to σ), one obtains the following term in the
action,

− h

g

ˆ

ddr πµ(r). (10.294)

Since h/g couples to π<
µ (p = 0), it is not affected by the integration of π> and its renor-

malization is entirely due to the rescaling of momenta and field,

h′

g′
=
h

g
sdλ−1. (10.295)

Comparing (10.295) with (10.293), we deduce

λ = 1 +
N − 1

2
dI,

g′ = g

(

1 + N−1
2 dI

)2

1 + dI
s2−d.

(10.296)
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Figure 10.18: β function β(g̃) = dg̃/dl of the NLσM for d ≤ 2 and d > 2.

Taking s = edl (dl → 0) and using

dI = gKdΛ
d−2dl (10.297)

for h = 0, we can transform the RG equations (10.296) into a differential equation for the
coupling constant g(l). Introducing a dimensionless coupling constant g̃ = Λ2−dg, we finally
obtain

dg̃

dl
= −ǫg̃ + (N − 2)Kdg̃

2 +O(g̃3), (10.298)

where ǫ = d− 2.
It is possible to deduce the (running) dimension dπ(l) of the field from the rescaling

factor λ [Eq. (10.296)]. Because the propagator G0(p) depends explicitly on the coupling
constant g, one should however disentangle the contribution to λ coming from the running
of g̃. Let us consider the rescaled fields πr = g(l)−1/2π and π′

r = g(l + dl)−1/2π′, where
π′ = λπ. The scaling dimension dπ = [πr] can be deduced from the behavior of the πr

field in the renormalization process, i.e.

π′
r = edπ(l)dlπr = λ

(

g(l)

g(l + dl)

)1/2

πr (10.299)

(see Sec. 10.5.1) with

λ = 1 +
N − 1

2
g̃(l)Kddl +O(dl2). (10.300)

Equation (10.299) gives

dπ(l) =
d− 2

2
+
Kd

2
g̃(l) (10.301)

and in turn the (running) anomalous dimension

η(l) = Kdg̃(l). (10.302)

10.7.2.2 Fixed points and critical exponents

As expected, g̃ is irrelevant at the Gaussian fixed point g̃ = 0 for d > 2 and relevant for
d ≤ 2 (Fig. 10.18). In the following, we assume N > 2; the case N = 2 will be discussed
later.

For d ≤ 2, the growing of the coupling constant invalidates the perturbation approach
and indicates that the system is disordered for any finite value of g̃ in agreement with
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the Mermin-Wagner theorem. Let us consider the two-dimensional case where g̃ = g is
marginally relevant,On utilise K2 =

1/2π???

g(l) =
g(0)

1− N−2
2π g(0)l

. (10.303)

We can obtain the correlation length from

ξ(g(0)) = ξ(g(l))el = ξ(g(l)) exp

{
ˆ g(l)

g(0)

dg

β(g)

}

(10.304)

where β(g) = dg/dl is β function. For g(l) . 1, we can use (10.298) to obtain

ξ(g(0)) = ξ(g(l)) exp

{

2π

N − 2

(

1

g(0)
− 1

g(l)

)}

(10.305)

For g(l) ∼ 1, we expect ξ(g(l)) ∼ Λ−1, so that

ξ ∼ Λ−1 exp

(

2π

(N − 2)g

)

= Λ−1 exp

(

2πρ0s
N − 2

)

(10.306)

for g ≡ g(0) ≪ 1. The correlation length diverges exponentially with 1/g.
For d > 2, there is a critical fixed point g̃∗ located away from the origin corresponding

to a second-order phase transition between an ordered phase (described by the Gaussian
fixed point g̃ = 0) and a disordered phase (Fig. 10.18). Near the lower critical dimension
d−c = 2, this fixed point and the associated critical exponents can be obtained within an ǫ
expansion (ǫ = d− 2). To leading order in ǫ, one finds78

g̃∗ =
2π

N − 2
ǫ+O(ǫ2),

η =
g̃∗

2π
+O(ǫ2) =

ǫ

N − 2
+O(ǫ2).

(10.307)

We can determine a characteristic length ξ from (10.304). If g̃(0) is close to g̃∗, we linearize
the β function,

dg̃

dl
= (g̃ − g̃∗)β′(g̃∗) +O

(

(g̃ − g̃∗)2
)

, (10.308)

to obtain

ξ = ξ(l)

∣

∣

∣

∣

g̃(l)− g̃∗

g̃(0)− g̃∗

∣

∣

∣

∣

1/β′(g̃∗)

, (10.309)

which holds provided that |g̃(l)− g̃∗| . 1 (thus allowing the linearized form (10.308) to be
used). To eliminate the dependence on l in (10.309), we note that we expect ξ(l) ∼ Λ−1 for
g̃(l) ∼ 2g̃∗ (the factor 2 is somewhat arbitrary here) in the disordered phase, and ξ(l) ∼ Λ−1

for g̃(l) ∼ g̃∗/2 in the ordered phase. We conclude that

ξ ∼ |g̃ − g̃∗|−ν (10.310)

(g̃ ≡ g̃(0)) diverges at the transition with an exponent

ν =
1

β′(g̃∗)
=

1

ǫ
. (10.311)
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Figure 10.19: Solution of the RG equation (10.298) for g̃(0) smaller but very close to the
critical point g̃∗ (d = 3 and N = 3). The dotted vertical line indicates the Josephson scale
lJ = ln(ξJΛ) separating the critical regime l ≪ lJ from the Goldstone regime l ≫ lJ .

10.7.2.3 Josephson length and stiffness

While the characteristic length ξ is naturally identified with the correlation length in the
disordered phase, its physical meaning is less clear in the ordered phase. Let us consider
the coupling constant g̃(l) in the ordered phase. When g̃(0) is close to g̃∗, one can identify a
critical regime l ≪ lJ where g̃(l) is very close to the critical value g̃∗ and ηl ≃ η (Fig. 10.19).
For l ≫ lJ , g̃(l) goes to zero and the long-distance physics is governed by the Gaussian
fixed point g̃ = 0. Thus the Josephson length ξJ ≃ Λ−1elJ separates a critical regime and
a “Goldstone” regime where the Goldstone modes are effectively non-interacting.

Since the stiffness has scaling dimension [ρs] = d − 2 (Sec. 10.4.1), the renormalized
stiffness satisfies

ρs(g̃(l)) = ρs(g̃(0))e
(d−2)l. (10.312)

In the low-temperature phase, the coupling constant g̃(l) goes to zero for l → ∞ and we
can read off the renormalized stiffness directly from the renormalized action,

ρs(g̃(l)) ≃ ρ0s(g̃(l)) =
Λd−2

g̃(l)
(l → ∞), (10.313)

so that

ρs ≡ ρs(g̃(0)) = Λd−2 lim
l→∞

e−(d−2)l

g̃(l)
. (10.314)

Using the solution

g̃(l) =
g̃∗

1− e(d−2)l
(

1− g̃∗

g̃(0)

) (10.315)

of the RG equation (10.298), we finally obtain

ρs = ρ0s

(

1− g̃(0)

g̃∗

)

. (10.316)

At the transition (g̃(0) → g̃∗), the stiffness vanishes with an exponent ν(d− 2) = 1.

78Note that the one-loop RG equations (giving β(g̃) to O(g̃2)) are sufficient to obtain the fixed-point
value g̃∗ and the anomalous dimension η to O(ǫ).
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In the Goldstone regime, one can also compute the connected propagator of the longi-
tudinal field σ using σ ≃ 1− π2/2 for small transverse fluctuations,

〈σ(r)σ(0)〉c ≃
1

4
〈π(r)2π(0)2〉c ≃

1

4

∑

ν,ν′

〈π2
ν(r)π

2
ν′(0)〉c ≃

N − 1

2
〈πν(r)πν(0)〉2

∼ 1

|r|2d−4
, (10.317)

where 〈πν(r)πν(0)〉 ∼ 1/|r|d−2 is the Goldstone modes propagator in the limit g → 0
obtained from the Fourier transform of 1/p2. The last result in (10.317) is obtained using
Wick’s theorem (which holds at the Gaussian fixed point). We therefore deduce that the
longitudinal propagator

〈σ(p)σ(−p)〉c ∼







ln |p| for d = 4,
1

|p|4−d
for d < 4,

(10.318)

is singular for p → 0 below four dimensions. (Equations (10.318) hold for |p| ≪ ξ−1
J .)

This result should be contrasted with the predictions of the Gaussian approximation (which
neglects the coupling between transverse and longitudinal fluctuations) to the (ϕ2)2 the-
ory, according to which the longitudinal fluctuation mode is gapped and the longitudinal
propagator finite in the limit p → 0 [Eq. (10.82)]. The longitudinal propagator singularity
∼ 1/|p|4−d is weaker than that (∼ 1/|p|2) of the transverse propagator for d > d−c . Both
singularities would coincide at the lower critical dimension d−c = 2 if long-range order were
not suppressed by fluctuations thus making the propagator of the n field gapped and O(N)
symmetric.

10.7.2.4 Non-linear sigma model vs (ϕ2)2 theory

The ǫ = d − 2 expansion of the NLσM near the lower critical dimension bears some sim-
ilarities with the ǫ = 4 − d expansion of the (linear) O(N) model near the upper critical
dimension (section 10.6.2). In both approaches, we find a second-order phase transition and
are able to compute the critical exponents to order ǫ using a perturbative (one-loop) RG.
In the linear O(N) model near criticality, we found two characteristic lengths, the correla-
tion length (or the Josephson length in the ordered phase) ξ and the Ginzburg length ξG.
These two characteristic lengths, which determine the critical regime ξ−1 ≪ |p| ≪ ξ−1

G in
momentum space, are related to the two (bare) parameters, r0 and u0, of the model. By
contrast, there is only one coupling constant in the NLσM and therefore one characteristic
length, the correlation length (or the Josephson length) ξ, the critical regime being defined
by ξ−1 ≪ | p| ≤ Λ.

Since the (ϕ2)2 theory and the NLσM derive from the same spin modelH = J
∑

〈r,r′〉 Sr ·
Sr′ , they should belong to the same universality class. There are two limits where this
can be shown explicitly. i) In the large N limit: to all orders of the 1/N expansion, the
correlation functions in the critical regime have the same asymptotic behavior in both
models (Appendix 10.B). ii) Near two dimensions: when d → d−c , amplitude fluctuations
play no role in the critical behavior of the (ϕ2)2 theory which then reduces to that of the
NLσM discussed in this section (chapter 11).

However, in contrast to the (ϕ2)2 theory, the NLσM does not yield estimates of the
critical exponents in three dimensions, the ǫ = d− 2 expansion being not Borel summable.
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10.7.2.5 The O(2) NLσM

If N = 2, the one-loop correction to the β function vanishes and β(g̃) = dg̃/dl reduces
to the purely dimensional term −ǫg̃ (coming from the rescaling of momenta and fields)
[Eq. (10.298)]. With the parametrization n = (cos θ, sin θ), one can write the NLσM as a
free field theory,

S[θ] =
1

2g

ˆ

ddr(∇θ)2. (10.319)

The result β(g̃) = −ǫg̃ is therefore exact (to all orders in the loop expansion) for the O(2)
model.

For d > 2, the continuous symmetry remains broken for any value of g (the fixed point
g̃∗ = 2πǫ/(N − 2) → ∞ for N → 2+), with a mean value of the field given by |〈n(r)〉| =
〈eiθ(r)〉, i.e.

|〈n(r)〉| = exp

(

−1

2
〈θ(r)2〉

)

= exp

(

−1

2

ˆ

p

g

p2

)

. (10.320)

Spin-wave excitations alone are not able to disorder the system. There is however no
doubt that the original lattice model (10.272) (XY model) is disordered at sufficiently high
temperature (i.e. sufficiently large g).79 This apparent paradox can be explained by the
observation that the NLσM ignores the fact that θ is a cyclic variable, which can be justified
only at small g (up to exponentially small corrections in 1/g).

In two dimensions, the β function of the O(2) NLσM vanishes identically. Mermin-
Wagner theorem forbids long-range order. However, the fact that the expression g∗ =
2πǫ/(N − 2) becomes undetermined when ǫ → 0 and N → 2 suggests that this case might
be special (see Sec. 10.8).

10.7.3 Low-temperature limit of the (ϕ2)2 theory

In section 10.3, we have studied the (ϕ2)2 theory with O(N) symmetry in the Gaussian
approximation. This approximation breaks down in the vicinity of the phase transition
because of critical fluctuations. We shall see below that when d ≤ 4 the Gaussian approx-
imation breaks down in the whole low-temperature phase for N ≥ 2 due to the presence
of Goldstone modes. It is however possible to circumvent the difficulties of the perturba-
tion theory by considering the “good” hydrodynamic variables, namely the amplitude and
the direction of the N -component field ϕ. While amplitude fluctuations are gapped, the
effective theory describing the low-energy direction fluctuations is a NLσM.

10.7.3.1 Breakdown of perturbation theory

Within the mean-field (or saddle-point) approximation, the order parameter ϕ0 = 〈ϕ(r)〉
has an amplitude ϕ0 = (−6r0/u0)

1/2 in the low-temperature phase (r0 < 0). By expanding
the action to quadratic order about the mean-field solution, one finds the (zero-loop) self-
energy

Σ
(0)
ii (p) =

{

−3r0 if i = 1,
−r0 if i 6= 1,

(10.321)

79See, e.g., the argument given in Sec. 10.8.
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10.7 The nonlinear σ model 671

Figure 10.20: One-loop correction Σ(1) to the self-energy. The dots represent the bare
interaction, the zigzag lines the order parameter ϕ0, and the solid lines the connected
propagator G(0).

and the longitudinal and transverse propagators

G
(0)
‖ (p) = G

(0)
11 (p) =

1

p2 + 2|r0|
,

G
(0)
⊥ (p) = G

(0)
22 (p) =

1

p2

(10.322)

(see Sec. 10.3.1). We assume the order parameter ϕ0 to be parallel to the direction
(1, 0, · · · , 0). In agreement with Goldstone’s theorem, the transverse propagator is gap-
less whereas the longitudinal susceptibility G‖(p = 0) = 1/|2r0| is finite.

Let us now consider the one-loop correction Σ(1) to the self-energy shown in figure 10.20.
While the first diagram is finite, the second one gives a diverging contribution to Σ11 in the
infrared limit p → 0 when d ≤ 4. The divergence arises when both internal lines correspond
to transverse fluctuations (which is possible only for Σ11). Retaining only the divergent
contribution, we obtain

Σ
(1)
11 (p) ≃ −N − 1

18
u20ϕ

2
0

ˆ

q

1

q2(p+ q)2
. (10.323)

The momentum integration in (10.323) gives80

ˆ

q

1

q2(p+ q)2
=

{

Ad|p|d−4 if d < 4,
A4[1 + ln(Λ/|p|)] if d = 4,

(10.324)

for |p| ≪ Λ, where [51]

Ad =











−21−dπ1−d/2

sin(πd/2)

Γ(d/2)

Γ(d− 1)
if d < 4,

1

8π2
if d = 4.

(10.325)

The one-loop correction (10.323) diverges for p → 0 and the perturbation expansion about
the Gaussian approximation breaks down. By comparing the one-loop correction to the

zero-loop result, i.e. |Σ(1)
11 (p)| ∼ Σ

(0)
11 (p), one can extract the characteristic momentum

scale

pG ∼
{

[Ad(N − 1)u0]
1/(4−d) if d < 4,

Λexp
(

−1
A4(N−1)u0

)

if d = 4.
(10.326)

80For simplicity, in the following we approximate 1 + ln(Λ/|p|) ≃ ln(Λ/|p|) for |p| ≪ Λ.
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p−1
G is nothing but the Ginzburg length ξG introduced in section 10.3.4. In the critical

regime, pG is the momentum scale associated with the breakdown of the Gaussian approx-
imation and the onset of critical fluctuations (Sec. 10.6.2). Here we see that in the whole
low-temperature phase, the Ginzburg momentum scale pG signals the breakdown of the
Gaussian approximation: while the Gaussian or perturbative approach remains valid for
|p| ≫ pG, the limit |p| ≪ pG cannot be studied perturbatively. We shall see below that,
when the system is away from the critical regime, the breakdown of perturbation theory is
due to the coupling between transverse and longitudinal fluctuations.

10.7.3.2 Amplitude-direction representation

To distinguish between amplitude and direction fluctuations in the ordered phase, we use
the parametrization

ϕ(r) = ρ(r)n(r), (10.327)

with n(r)2 = 1. The partition function becomes

Z =

ˆ

D[ρ,n]
∏

r

ρN−1(r) e−S[ρ,n], (10.328)

where the action is given by

S[ρ,n] =

ˆ

ddr

[

1

2
ρ2(∇n)2 +

1

2
(∇ρ)2 +

r0
2
ρ2 +

u0
4!
ρ4
]

. (10.329)

In the low-temperature phase (r0 < 0), the mean-field theory yields a finite order parameter
ρ0 = (−6r0/u0)

1/2. To quadratic order in the fluctuations ρ′ = ρ− ρ0, we obtain the action

S[ρ′,n] =

ˆ

ddr

[

ρ20
2
(∇n)2 +

1

2
(∇ρ′)2 + |r0|ρ′2

]

(10.330)

and deduce that the amplitude fluctuations are gapped,

〈ρ′(p)ρ′(−p)〉 = 1

p2 + p2c
. (10.331)

If we are interested only in momenta |p| ≪ pc =
√

2|r0|, to first approximation we can
ignore the higher-order terms in ρ′ that were neglected in (10.330), since they would only
lead to a finite renormalization of the coefficients of the action S[ρ′,n].

Equation (10.330) shows that in the “hydrodynamic” regime |p| ≪ pc direction fluctu-
ations are described by a NLσM. It is convenient to use the parametrization n = (σ,π)
introduced in section 10.7.1. Integrating over σ, one then obtains

S[ρ′,π] =

ˆ

ddr

[

1

2
(∇ρ′)2 + |r0|ρ′2 +

1

2
ρ20(∇π)2

]

(10.332)

for small transverse fluctuations π (i.e. to leading order in the coupling constant 1/ρ20 of
the NLσM). From (10.332), we deduce the propagator of the π field,

〈πi(p)πj(−p)〉 = δi,j
ρ20p

2
. (10.333)
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Again we note that the terms neglected in (10.332) would only lead to a finite renormal-
ization of the (bare) stiffness ρ20 of the NLσM at sufficiently low temperature. In fact,
equation (10.332) gives an exact description of the low-energy behavior |p| ≪ pc if one
replaces ρ20 by the exact stiffness and p−1

c = (2|r0|)−1/2 by the exact correlation length of
the ρ′ field.

We are now in a position to compute the longitudinal and transverse propagators using

ϕ‖ = ρσ = ρ
√

1− π2 ≃ ρ0 + ρ′ − 1

2
ρ0π

2,

ϕ⊥ = ρπ ≃ ρ0π.
(10.334)

Since the long-distance physics is governed by transverse fluctuations, we have retained in
(10.334) the leading contributions in π. Making use of (10.333), one readily obtains

G⊥(p) ≃ ρ20〈πi(p)πi(−p)〉 = 1

p2
. (10.335)

The longitudinal propagator is given by

G‖(r) = 〈ρ′(r)ρ′(0)〉+ 1

4
ρ20〈π(r)2π(0)2〉c

= 〈ρ′(r)ρ′(0)〉+ N − 1

2ρ20
G⊥(r)

2, (10.336)

where 〈· · ·〉c stands for the connected part of 〈· · ·〉. The second line is obtained using Wick’s
theorem. In Fourier space, this gives

G‖(p) =
1

p2 + p2c
+
N − 1

2ρ20

ˆ

q

1

q2(p+ q)2
, (10.337)

where the momentum integral is given by (10.324) for |p| ≪ Λ and d ≤ 4. By comparing the
two terms in the rhs of (10.337), we recover the Ginzburg momentum scale (10.326). For
|p| ≫ pG (Gaussian regime), the longitudinal propagator G‖(p) ≃ 1/(p2+p2c) is dominated
by amplitude fluctuations and we reproduce the result of the Gaussian approximation. On
the other hand, for |p| ≪ pG (Goldstone regime), G‖(p) ∼ 1/|p|4−d is dominated by
direction fluctuations and diverges for p → 0:

G‖(p) ∼
{

1
p2+p2

c
if |p| ≫ pG,

1
|p|4−d if |p| ≪ pG,

(10.338)

for d ≤ 4 (the divergence is logarithmic for d = 4).
The divergence of the longitudinal propagator is a direct consequence of the coupling

between longitudinal and transverse fluctuations. In the long-distance limit, amplitude-
Maria Chamarro ¡edpif.su@edpif.org¿ fluctuations become frozen so that |ϕ| = ρ ≃ ρ0.
This implies that the longitudinal and transverse components ϕ‖ and ϕ⊥ cannot be con-
sidered independently as in the Gaussian approximation (Sec. 10.3) but satisfy the con-

straint ϕ2
‖ + ϕ2

⊥ ≃ ρ20. To leading order, ϕ‖ ≃ ρ0(1 − π2

2 )1/2 and G‖(r) ∼ G⊥(r)2, i.e.

G‖(p) ∼ 1/|p|4−d for d ≤ 4 [Eq. (10.338)].
Equations (10.335) and (10.337) imply that in the limit p → 0 the self-energies are given

by Discuter relations
exactes à p = 0?
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Σ11(p) = −r0 + C1|p|4−d +O(p2),

Σ22(p) = −r0 +O(p2),
(10.339)

for d < 4, and

Σ11(p) = −r0 +
C1

ln(Λ/|p|) +O(p2),

Σ22(p) = −r0 +O(p2),

(10.340)

for d = 4. Σ11(p) contains a non-analytic term that is dominant for p → 0, in marked
contrast with the prediction of the Gaussian approximation [Eq. (10.321)].

10.8 The Berezinskii-Kosterlitz-Thouless phase transition

In two dimensions thermal fluctuations prevent the spontaneous breaking of a continuous
symmetry at finite temperature (Mermin-Wagner theorem). In this section we shall see that
a phase transition without symmetry breaking, driven by topological defects (vortices), can
nevertheless occur in two-dimensional systems with a two-component order parameter and
an O(2) symmetry. Although the following discussion holds for all systems in that category,
we shall consider the XY model defined on a square lattice (with lattice spacing a) by the
Hamiltonian

H = −J
∑

〈r,r′〉
Sr · Sr′ , (10.341)

where Sr = (cos θr, sin θr) is a classical spin of unit length and we assume J > 0. We
shall first show that the existence of a finite-temperature phase transition can be inferred
from the high- and low-temperature expansions and discuss the role of vortices from simple
arguments. We shall then turn to the Coulomb-gas and sine-Gordon models for a detailed
study of the transition.

10.8.1 Finite-temperature phase transition

10.8.1.1 High-temperature expansion

At high temperatures, the spin-spin correlation function can be determined using the ex-
pansion

〈Sr · Sr′〉 =
1

Z

(

∏

r′′

ˆ 2π

0

dθr′′

2π

)

cos(θr − θr′) e
K

∑
〈ri,rj〉

Sri
·Srj

=
1

Z

(

∏

r′′

ˆ 2π

0

dθr′′

2π

)

cos(θr − θr′)
∏

〈ri,rj〉

[

1 +K cos(θri − θrj ) +O(K2)
]

,

(10.342)

where K = J/T and Z is the partition function. Since

ˆ 2π

0

dθr′′

2π
cos(θr1 − θr′′) = 0,

ˆ 2π

0

dθr′′

2π
cos(θr1 − θr′′) cos(θr′′ − θr2) =

1

2
cos(θr1 − θr2),

(10.343)
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for the numerator in (10.342) not to vanish one must associate with every factor cos(θr1−θr2)
another factor cos(θr2 − θr3). To every nonzero term one can therefore assign a path on
the lattice going from site r to site r′, which gives a contribution (K/2)N where N is the
number of bonds along the path. The dominant contribution in the high-temperature limit
is found by choosing the shortest path, i.e. N ∼ |r− r′|/a. We thus obtain

〈Sr · Sr′〉 ∼
(

K

2

)

|r−r
′|

a

∼ e−
|r−r

′|
ξ (10.344)

where ξ ∼ a/ ln(2/K).81 The exponential decay of correlations means that the system is
disordered at sufficiently high temperatures.

10.8.1.2 Low-temperature expansion

Since the ground state of the XY model exhibits ferromagnetic order, at low temperatures
we expect the dominant fluctuations to be long-wavelength fluctuations (spinwaves) where
the phase θr varies slowly in space. This allows us to approximate the XY model by a
continuum model with Hamiltonian

H =
ρ0s
2

ˆ

d2r (∇θ)2, (10.345)

where ρ0s = J is the (bare) spinwave stiffness. At sufficiently low temperatures, we can
ignore the periodicity of the phase and consider θ in equation (10.345) as a variable varying
between −∞ and ∞. We can then use the standard rules of Gaussian integration to obtain

〈Sr · Sr′〉 = 〈ei(θr−θ
r′ )〉 = e−

1
2 〈(θr−θ

r′ )
2〉 = eG(r−r′)−G(0), (10.346)

where G(r) is the (bare) spinwave propagator,

G(r) =

ˆ

d2q

(2π)2
eiq·r

Kq2
=

1

2πK

ˆ Λ

0

dq

q
J0(q|r|). (10.347)

J0 is the zeroth-order Bessel function and we have introduced a UV momentum cutoff
Λ ∼ 1/a since the continuum approximation is valid only at length scales larger than a. We
thus obtain

G(0)−G(r) =
1

2πK

ˆ Λ

0

dq

q
[1− J0(q|r|)] ≃

1

2πK
ln
∣

∣

∣

r

a

∣

∣

∣
(10.348)

and therefore

〈Sr · Sr′〉 ∼
∣

∣

∣

∣

a

r− r′

∣

∣

∣

∣

1
2πK

. (10.349)

Since 〈Sr · Sr′〉 → 〈Sr〉 · 〈Sr′〉 for |r − r′| → ∞, we conclude that there is no long-ranger
order, 〈Sr〉 = 0, in agreement with the Mermin-Wagner theorem. However, the decay
of correlations is algebraic rather than exponential as is usually the case in the absence

81We assume here that the path of shortest length is unique. Taking into account the multiplicity of
shortest lattice paths would modify the correlation length ξ but not the exponential decay of the correlation
function.
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Figure 10.21: A vortex and an antivortex with winding numbers +1 and −1, respectively.

of spontaneous symmetry breaking; the system is said to exhibit (algebraic) quasi-long-
range order.82 In higher dimensions (d > 2), an algebraic decay of correlation functions
is characteristic of a critical point. Here it arises from the angular growth of angular
fluctuations, which is specific to two dimensions, and is expected to hold at sufficiently
low temperatures. In other words, rather than a critical point at a given temperature
Tc, one finds at low temperatures a critical line characterized by a temperature-dependent
anomalous dimension83

η(T ) =
1

2πK
=

T

2πρ0s
(10.350)

and an infinite correlation length.

This simple analysis suggests the existence of a phase transition at a finite tempera-
ture Tc separating the low-temperature phase with quasi-long-range order from the high-
temperature phase characterized by a finite correlation length.

10.8.2 The role of vortices

What are the fluctuations responsible for the phase transition? Berezinskii, and Kosterlitz
and Thouless, showed that the transition is driven by the unbinding of vortices. A vortex is
a topological defect that cannot be obtained from a continuous deformation of the ground
state (Sr = n with n an arbitrary unit vector) and therefore cannot be described by the
long-wavelength Hamiltonian (10.345).

Because of the 2π periodicity of the phase θ it is possible to construct spin configurations
for which the line integral

˛

C
dl ·∇θ = 2πk (k ∈ Z) (10.351)

does not vanish when the closed path C encloses the vortex center (Fig. 10.21). The integer
k is known as the topological charge or the winding number of the vortex. Far away from
the center, the lattice structure does not matter and we can use a continuum description

82The existence of quasi-long-range order at low temperatures follows from the Gaussian Hamilto-
nian (10.345). Higher-order terms in the derivative expansion, e.g. [(∇θ)2]2, are irrelevant in the RG
sense and would not modify this conclusion.

83Recall that in a critical d-dimensional system, the correlation function of the order parameter field
decays as 1/|r|d−2+η .
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as in (10.351). If, furthermore, the phase varies slowly in space, one can use the Hamilto-
nian (10.345) to determine the phase field of the vortex. Minimizing the energy, we obtain

0 =
δ

δθ(r)

ρ0s
2

ˆ

d2r′
(

∇r′θ(r
′)
)2

= −ρ0s∇2θ(r). (10.352)

The phase field θ(r) = kϕ, where ϕ = arctan(y/x), satisfies both the topological con-
straint (10.351) and the equilibrium condition (10.352). The corresponding velocity field84

v(r) = ∇θ(r) =
k

r2
(−y, x) = −k∇× (ẑ ln |r|) (10.353)

(ẑ is a unit vector in the z direction) is tangential, v(r) · r = 0, and its Fourier transform

v(q) =

ˆ

d2r e−iq·rv(r) = 2πk
iq× ẑ

q2
(10.354)

is a transverse vector, v(q) · q = 0.
The energy of a vortex is given by

Ev ≃ Ec(k) +
ρ0s
2

ˆ

|r|>a

d2r(∇θ)2

≃ Ec(k) + πρ0sk
2 ln

(

R

a

)

, (10.355)

where Ec(k) is the core energy (which cannot be obtained from the continuummodel (10.345))
and the size of the core is approximated by a. Thus the energy of a vortex diverges with the
size of the system (assumed here to be a disk of radius R, the vortex being at the center).
The free energy Fv = Ev − TSv of an isolated vortex is therefore

Fv = Ec + πρ0s ln(R/a)− T ln(R/a)2

= Ec + (πρ0s − 2T ) ln(R/a), (10.356)

where the entropy Sv = lnW is obtained by noting that there are W ∼ πR2/πa2 indepen-
dent configurations for a vortex whose core has a surface πa2.85 In (10.356) we consider
only vortices with winding number k = ±1 since they have the smallest energy. When
T < πρ0s/2, the free energy cost of creating an isolated vortex diverges when R → ∞, and
we do not expect isolated vortices to be present in the system at equilibrium. On the con-
trary, when T > πρ0s/2, the free energy is smaller when an isolated vortex is present and
we do expect vortices to spontaneously appear in the system. Each time a vortex of charge
k = ±1 appears between two points A and B, the corresponding phase difference θA − θB
varies by ±π. The presence of thermally excited vortices therefore randomizes the phase
and destroys the algebraic order. The temperature Tc = πρ0s/2 can thus be interpreted as
the transition temperature between the low-temperature phase with quasi-long-range order
and the disordered high-temperature phase.

84This terminology comes from boson systems where θ is the phase of the boson field ψ(r) and v(r) ∼
∇θ(r) the superfluid velocity; see the remark at the end of Sec. 10.8.2 and chapter 7.

85The expression (10.355) of the energy assumes the vortex to be at the center of the system. When
this is not the case, we expect that it is still possible to use (10.355) since the dependence on R is only
logarithmic.
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The preceding analysis can easily be extended to the case of a set of vortices with
topological charges k1, k2, · · · If the total charge ktot is nonzero, the preceding results are
essentially unchanged; far away from the vortices (assumed to be located near r = 0),
|v| ∼ 1/|r|, and the energy E ∼ k2tot ln(R/a) diverges logarithmically with the size of the
system. By contrast the energy remains finite when ktot = 0, so that the corresponding
vortex configuration has a nonzero probability at any finite temperature. Consider for
instance a pair of vortices with opposite winding numbers k and −k and located at r± ℓ/2
(vortex-antivortex pair). Assuming that far away from the dipole center the velocity field
is given by the sum of the fields created independently by the isolated vortices, one finds

vpair(r) = ∇θ+

(

r+
ℓ

2

)

+∇θ−

(

r− ℓ

2

)

≃ (ℓ ·∇)∇θ+(r) = k(ℓ ·∇)
r̂× ẑ

|r| (10.357)

for |r| ≫ |ℓ|. θ±(r ± ℓ/2) denotes the phase field of the vortex with charge = ±k and is
given by (10.353). Thus vpair(r) decays as 1/r

2 far away from the dipole center, which leads
to a finite energy,86

Epair(ℓ) = 2Ec(k) + 2πρ0sk
2 ln

∣

∣

∣

∣

ℓ

a

∣

∣

∣

∣

. (10.358)

Since the energy is minimum for k = ±1, at low temperatures we can ignore vortex-
antivortex pairs with larger topological charges (i.e. |k| > 1). The probability P (ℓ)d2ℓ
for the vortex and antivortex to be separated by ℓ, within d2ℓ, is determined by

P (ℓ) = N e−2βEc−2πK ln |ℓ/a| = N y2
∣

∣

∣

a

ℓ

∣

∣

∣

2πK

, (10.359)

where y = e−βEc is the fugacity of vortices of charge ±1 and N a normalization constant
that is determined from the condition

´

d2ℓ P (ℓ) = 1. The mean square distance is

〈ℓ2〉 =
ˆ

d2ℓ P (ℓ)ℓ2 =

´∞
a
dℓ ℓ3(a/ℓ)2πK

´∞
a
dℓ ℓ(a/ℓ)2πK

= a2
πK − 1

πK − 2
(10.360)

for πK > 2. Thus 〈ℓ2〉 is finite at low temperatures and diverges when T approaches
Tc = πρ0s/2.

The low-temperature phase should therefore be visualized as a phase of bound vortex-
antivortex pairs with a characteristic size 〈ℓ2〉1/2 <∞. These pairs are expected to reduce
the spinwave stiffness at short distance, but the long-distance behavior should be determined
only by the spinwaves albeit with a renormalized temperature-dependent stiffness ρs ≡
ρs(T ) < ρ0s, i.e. by the effective Hamiltonian

Heff =
ρs
2

ˆ

d2r (∇θsw)
2, (10.361)

where the notation θsw (“sw” stands for spinwave) emphasizes that the phase should be
considered as a slowly varying variable whose 2π periodicity does not matter. This Hamil-
tonian leads to a power-law decay of the spin-spin correlation function with an anomalous
dimension η(T ) = T/2πρs (see Eq. (10.349)). The number and size of the vortex-antivortex
pairs increase with temperature. The pairs unbind at the BKT transition temperature
Tc = πρs(Tc)/2, above which individual vortices can move freely in the system leading to

86Eq. (10.358) is derived in Sec. 10.8.3; see Eq. (10.373).
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a finite correlation length and a vanishing stiffness.87 In the following section, we shall see
how this picture can be confirmed by a more rigorous study.

Let us finally point out that the continuum description of the XY model bears an obvious
similarity with the description of a Bose superfluid by a classical field ψ(r) =

√

n(r)eiθ(r).
The spinwaves of the XY model correspond to the phonon modes of the superfluid and the
stiffness ρs can be identified with the superfluid density ns. The density field n(r) = |ψ(r)|2
is crucial to describe the core of the vortices (see Sec. 7.3.2) but away from the core n(r) ≃ n
and a description in terms of the phase field θ alone is possible.

Being characterized by the suppression of the topological vortex defects, the low-tempe-
rature phase is sometimes said to have topological order, and the BKT transition is identified
as a topological phase transition.

10.8.3 The Coulomb gas model

A detailed study of the BKT transition requires to take into account the long-wavelength
fluctuations of the phase (spinwaves) as well as the vortices and their interactions. In
the continuum description (valid at length scales larger than a) the phase variable can be
written as the sum of an analytic part θa and a singular θs part arising from vortices. The
regular field θa is generally associated with the spinwave fluctuations (i.e. the field θsw in
equation (10.361)). Although this is true in the absence of vortices, the field θa does not
have a clear physical meaning in the presence of vortices and the decomposition θ = θa+ θs
should be seen as a mere mathematical trick [39, 40].88 We shall nevertheless follow the
standard terminology and refer to θa as the “spinwave” variable.

We thus write the velocity field as the sum of a longitudinal part v‖ = ∇θa and a
transverse part v⊥ = ∇θs,

v = v‖ + v⊥, ∇× v‖ = 0, ∇ · v⊥ = 0. (10.362)

For a collection of vortices with charges ki located at ri, we must have
ˆ

C
dℓ · v =

ˆ

Σ

d2r ẑ · (∇× v) =
∑

i∈Σ

2πki (10.363)

(see Eq. (10.351)) for any surface Σ spanned by the closed path C. Equation (10.363) implies

∇× v = ∇× v⊥ = 2π
∑

i

kiδ(r− ri)ẑ. (10.364)

If we write v⊥ = −∇× (ẑψ), by taking the curl of (10.364) we obtain

∇
2ψ = 2π

∑

i

kiδ(r− ri), (10.365)

which is the Poisson equation associated with a set of charges 2πki located at ri. The
solution reads

ψ(r) = −2π
∑

i

kiVC(r− ri) ≃
∑

i

ki ln

∣

∣

∣

∣

r− ri
a

∣

∣

∣

∣

, (10.366)

87The stiffness being the response to twisted boundary conditions (see the following section and Sec. 7.2.2
for a discussion in the context of superfluidity), it should vanish when the correlation length is finite.

88This will appear clearly in the following analysis, e.g. by the fact that the “spinwave” variable θa does
not couple to the vortex excitations [Eq. (10.374)] and the associated stiffness (the coefficient ρ0s in (10.369))
does not renormalize, at odds with the physical picture given at the end of the preceding section. The true
spinwave variable θsw should therefore be a mixture of θa and θs [40].
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where

VC(r) =

ˆ

q

eiq·r

q2
≃ − 1

2π
ln
∣

∣

∣

r

a

∣

∣

∣
(10.367)

is the two-dimensional Coulomb potential. The short-distance cutoff a in (10.367) follows
from the UV cutoff 1/a that we impose in the momentum integral since the continuum
description is not valid at length scales smaller than a. ψ(r) is simply the superposition of
the potentials created by isolated vortices (see Eq. (10.353)).

We can now write the energy as

H =
ρ0s
2

ˆ

d2r (v‖ + v⊥)
2 =

ρ0s
2

ˆ

d2r (v2
‖ + v2

⊥). (10.368)

If we impose periodic boundary conditions for θa it is readily seen, by an integration by
part, that

´

d2r v‖ · v⊥ = 0. The Hamiltonian then splits into a spinwave part

Hsw =
ρ0s
2

ˆ

d2r v2
‖ (10.369)

and a vortex part

Hv =
ρ0s
2

ˆ

d2r v2
⊥ =

ρ0s
2

ˆ

d2r (∇ψ)2. (10.370)

By an integration par part, we obtain

ˆ

d2r (∇ψ)2 = −
ˆ

d2r ψ∇2ψ +

ˆ L

0

dy (ψ∂xψ)
∣

∣

x=L

x=0
+

ˆ L

0

dx (ψ∂yψ)
∣

∣

y=L

y=0
(10.371)

(with the notation f(x)|L0 = f(L) − f(0)), where L is the linear size of the system. Us-
ing (10.366) we see that the surface term in (10.371) gives a contribution to the energy which
grows as ρ0s(

∑

i ki)
2 lnL. In a large system, one therefore needs to consider only states with

a vanishing total vorticity ktot =
∑

i ki = 0. From (10.365) and (10.366) we then obtain the
vortex energy

Hv = −πρ0s
∑

i,j

kikj ln

∣

∣

∣

∣

ri − rj
a

∣

∣

∣

∣

, (10.372)

where it is understood that the minimal distance between vortices is of order a. The energy
is not defined for i = j; this is an artefact of the continuum treatment which is not valid at
small distances. The self-interaction of the vortex is simply its core energy Ec(ki) = k2iEc.
This finally leads to

Hv =
∑

i

Ec(ki)− πρ0s
∑

i 6=j

kikj ln

∣

∣

∣

∣

ri − rj
a

∣

∣

∣

∣

=
∑

i

Ec(ki) + 2π2ρ0s

ˆ

|r−r′|>a

d2r d2r′ nv(r)VC(r− r′)nv(r
′), (10.373)

where nv(r) =
∑

i kiδ(r − ri) is the vortex density. One can further simplify the problem
by considering only vortices with charges ki = ±1, which are the most likely at low temper-
atures due to their lower core energy Ec(±1) ≡ Ec. Apart from the core contribution, Hv

is identical to the Hamiltonian of a two-dimensional Coulomb gas with point charges 2πki.
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A state of the XY model is thus specified by the phase field θa describing spinwaves and
the charge ki = ±1 and location ri of the vortices, i.e. the vortex density nv(r) (with the
condition of vanishing total vorticity

∑

i ki = 0). Spinwaves and vortices are uncoupled and
the partition function takes the simple form

Z = ZswZv (10.374)

with

Zsw =

ˆ

D[θa] exp

{

−K
2

ˆ

d2r (∇θa)
2

}

,

Zv =
∞
∑

N=0

y2N

(N !)2

ˆ N
∏

i=1

(d2r+i d
2r−i ) exp

{

−2π2K

ˆ

|r−r′|>a

d2rd2r′ nv(r)VC(r− r′)nv(r
′)

}

(10.375)

where we denote by r±i the positions of the charge k±i = ±1 and nv(r) =
∑

i,α k
α
i δ(r− rαi ).

The fugacity y = e−βEc controls the density of vortices. The factor 1/(N !)2 is necessary to
prevent overcounting of states that differ only by a permutation of vortices with the same
charge.

10.8.3.1 Spinwave stiffness

A quantity of central importance is the (renormalized) spinwave stiffness ρs since, as an-
ticipated at the end of the previous section and shown below, it takes a finite value in the
low-temperature phase but vanishes above Tc. ρs can be easily computed from the electro-
static analogy. Performing a Hubbard-Stratonovich transformation, we write the partition
function of the vortices as

Zv =
∞
∑

N=0

1

(N !)2

ˆ

D[ϕ]

ˆ N
∏

i=1

(d2r+i d
2r−i )

ˆ

D[ϕ] e−
1

2K

´

d2r (∇ϕ)2+2iπ
´

d2r ϕ(r)nv(r),

(10.376)
which shows that ϕ is the scalar potential with ǫ0 ≡ 1/K the dielectric constant in the
absence of charges (see Sec. 1.9.3). In the presence of charges, the renormalized propagator
of the scalar potential,

〈ϕ(q)ϕ(−q)〉 = KR(q)

q2
, (10.377)

defines a renormalized momentum-dependent stiffness KR(q) or, equivalently, the dielectric
constant ǫ(q) = K/KR(q). From the relation (3.126) between ǫ(q) and the density-density
correlation function, one obtains89

KR(q)

K
= 1− 4π2KVC(q)〈nv(q)nv(−q)〉 = 1− 4π2K

q2
〈nv(q)nv(−q)〉. (10.378)

Using ∇
2v⊥ = −2π∇× (nvẑ), one has

v⊥(q) = 2πnv(q)
iq× ẑ

|q|2 , v⊥(q) · v⊥(−q) =
4π2

q2
nv(q)nv(−q), (10.379)

89The factor 4π2 is due to the fact that the actual charge density is 2πnv(r).
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so that
KR(q) = K −K2〈v⊥(q)v⊥(−q)〉. (10.380)

If we now introduce the current density j = ρ0sv and its correlation function

χil(q) = 〈ji(q)jl(−q)〉 = qiql
|q|2χ‖(q) +

(

δi,l −
qiql
|q|2

)

χ⊥(q), (10.381)

we obtain

KR(q) =
1

T 2
[χ‖(q)− χ⊥(q)], (10.382)

where we have used χ‖(q) = T 2K.90 The renormalized stiffness ρs = TKR, defined from
the zero-momentum limit of KR(q), is then given by

ρs = T lim
q→0

KR(q) =
1

T
[χ‖(0)− χ⊥(0)], (10.383)

which is analoguous to the expression (7.10) of the superfluid density of a quantum fluid
obtained in chapter 7. This confirms the interpretation of ρs as the renormalized stiffness of
the XY model or, equivalently, the superfluid density of a superfluid at finite temperatures.91

Let us show that the renormalized stiffness ρs, when it is nonzero, controls the long-
distance behavior of the spin-spin correlation function

G(r) = 〈S(r) · S(0)〉 = 〈ei[θa(r)+θs(r)−θa(0)−θs(0)]〉 = e−gsw(r)−gv(r), (10.384)

where the spinwave contribution

gsw(r) =
1

2
〈[θa(r)− θa(0)]

2〉 =
ˆ

q

1− eiq·r

Kq2
(10.385)

is given by equations (10.347) and (10.348). We determine gv to lowest nontrivial order in
the fugacity.92 The leading contribution is then given by the second-order cumulant in the
functional integral over θs,

gv(r) =
1

2
〈[θs(r)− θs(0)]

2〉, (10.386)

since θs = O(nv) = O(y). Noting that equations (10.378) and (10.379) imply

q2〈θs(q)θs(−q)〉 = 〈v⊥(q)v⊥(−q)〉 = 1

K
− KR(q)

K2
≃ 1

K
− KR

K2
(q → 0), (10.387)

we obtain

gv(r) =

ˆ

q

1− eiq·r

Kq2

(

1− KR

K

)

(10.388)

and

gsw(r) + gv(r) =

ˆ

q

1− eiq·r

Kq2

(

1− KR −K

K

)

≃
ˆ

q

1− eiq·r

KRq2
(10.389)

90This follows from j‖ = ρ0s∇θa, 〈θa(q)θa(−q)〉 = T/ρ0sq
2 and 〈j‖i(q)j‖l(−q)〉 = Tρ0sqiql/|q|2.

91The expression (10.380) of the stiffness can also be obtained from the response of the system to an
imposed twist (via appropriate boundary conditions) of the phase field θ [7, 41].

92The RG equations below are also derived to lowest order in the fugacity.
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to leading order in y since KR/K − 1 = O(y2). From (10.389) we conclude that

G(r) ∼
∣

∣

∣

a

r

∣

∣

∣

1
2πKR , (10.390)

which corresponds to a temperature-dependent anomalous dimension,93

η(T ) =
1

2πKR
=

T

2πρs
, (10.391)

determined by ρs.
A convenient expression ofKR is obtained by expanding the correlation function in (10.378)

as follows,

〈nv(q)nv(−q)〉 =
ˆ

d2r e−iq·r〈nv(r)nv(0)〉

=

ˆ

d2r
[

1− iq · r− 1

2
(q · r)2 + · · ·

]

〈nv(r)nv(0)〉

= −1

2

∑

i,j

qiqj

ˆ

d2r rirj〈nv(r)nv(0)〉+O(|q|4)

= −1

4
q2

ˆ

d2r r2〈nv(r)nv(0)〉+O(|q|4) (10.392)

using parity and charge neutrality
´

d2r nv(r) = 0. We can thus rewrite the stiffness as

KR = K − 4π2K2C2 with C2 = −1

4

ˆ

d2r r2〈nv(r)nv(0)〉. (10.393)

10.8.3.2 RG equations

In the low-temperature limit, where the density of vortices is small, it makes sense to
compute the renormalized stiffnessKR in powers of the fugacity. To obtain 〈nv(r)nv(0)〉, one
must consider the various vortex configurations and their Boltzmann weight e−βE(C) where
the energy of the configuration C is determined by the vortex Hamiltonian (10.373). To
lowest nontrivial order in y, it is sufficient to consider the configuration with a vortex located
at r and an antivortex located at the origin (or the reverse). The associated Boltzmann
weight is

1

Z
e−β(2Ec+2πρ0

s ln |r/a|) = y2
∣

∣

∣

a

r

∣

∣

∣

2πK

+O(y4) (10.394)

since Z = 1 +O(y2). This gives94

〈nv(r)nv(0)〉 ≃ −2
y2

a4

∣

∣

∣

a

r

∣

∣

∣

2πK

+O(y4), C2 ≃ y2

2

ˆ

d2r
|r|2
a4

∣

∣

∣

a

r

∣

∣

∣

2πK

+O(y4). (10.395)

We deduce the renormalized stiffness or, equivalently, its inverse

K−1
R = K−1 + 4π3y2

ˆ ∞

a

dr

a

( r

a

)3−2πK

+O(y4), (10.396)

93See footnote 83 page 676.
94The minus sign in the first of equations (10.395) comes from the opposite charges of the vortex and

antivortex and the factor 2 from the two equivalent configurations (obtained by interchanging the vortex
and the antivortex). Note also that the product of the vortex densities gives a factor ∼ 1/a4.
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where r = |r|. The integral on the rhs converges at low temperatures when 2 − πK < 0,
i.e. K = ρ0s/T > 2/π, but diverges when K < 2/π, and perturbation theory in y breaks
down. The difficulty associated with the divergence at small K can be overcome with the
following renormalization procedure. We split the integral in (10.396) into two parts,

ˆ ∞

a

dr =

ˆ a edl

a

dr +

ˆ ∞

a edl
dr. (10.397)

The nonsingular small-r part is evaluated and incoporated into K−1, i.e.

K−1
R = K ′−1 + 4π3y2

ˆ ∞

a edl

dr

a

( r

a

)3−2πK

+O(y4), (10.398)

with

K ′−1 = K−1 + 4π3y2
ˆ a edl

a

dr

a

( r

a

)3−2πK

. (10.399)

We then rescale the distance r → r e−dl in order to obtain an equation similar to (10.396),

K−1
R = K ′−1 + 4π3y′2

ˆ ∞

a

dr

a

( r

a

)3−2πK′

+O(y4), (10.400)

but with new parameters

y′ = y e(2−πK)dl,

K ′−1 = K−1 + 4π3y2
ˆ a edl

a

dr

a

( r

a

)3−2πK

.
(10.401)

In (10.400) we have replaced K by K ′ in the exponent of r, which does not modify the
equation to order y2. For dl → 0, this yields the RG equations

d

dl
y(l) = [2− πK(l)]y(l) +O

(

y(l)3
)

,

d

dl
K−1(l) = 4π3y(l)2 +O

(

y(l)4
)

(10.402)

satisfied by y(l) and K(l). Initially a corresponds to the minimal distance between vortices
(which is of the order of the lattice spacing in the XY model) and K(l = 0) ≡ K and y(l =
0) ≡ y are “coupling constants” at this length scale. Solving the flow equations (10.402)
amounts to coarse graining the system by integrating out the short-distance fluctuations.
Thus K(l) and y(l) stand for the renormalized stiffness and fugacity once vortices with
separation less than a(l) = a el have been integrated out in the partition function.

Since the renormalized stiffness KR is invariant in the renormalization procedure, KR =
KR(K, y) = KR(K(l), y(l)) and

KR = lim
l→∞

K(l). (10.403)

The flow diagram is shown in figure 10.22. K(l) is a decreasing function of l, in agreement
with the fact that vortices tend to decrease the stiffness. There is an attractive line of fixed
points, defined by y = 0 and K ≥ 2/π. All trajectories attracted to this line correspond to
the low-temperature phase where vortices exist only in bound pairs, the effective fugacity
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1

(π/2)K

y

Figure 10.22: Flow diagram of the Coulomb gas model near the BKT point as a function
of the stiffness K and fugacity y. The red dashed line shows the critical trajectory.

vanishes at large distance and the renormalized stiffness takes a nonzero value KR ≥ 2/π.
The line of fixed points become repulsive when K < 2/π and the fugacity increases with
l. The same long-distance behavior is obtained when K > 2/π if the initial fugacity is
sufficiently large. Although the flow cannot be continued up to arbitrarily large values of l
since the RG equations become invalid once y(l) = O(1), it is clear that this part of the flow
diagram describes the high-temperature phase where unbound pairs of vortices can exist
(hence the increasing effective fugacity) and the renormalized stiffness KR vanishes.

To study in more detail the vicinity of the BKT fixed point (Kc = 2/π, y = 0), i.e. the
end point of the attractive line of fixed points corresponding to the low-temperature phase,
we introduce the variable x = 2/πK − 1. To leading order in x and y, the RG equations
become

dx

dl
= 8π2y2,

dy

dl
= 2xy.

(10.404)

Contrary to the flow equations we encountered earlier in this chapter, these equations have
no linear terms and, as we shall see, lead to a non-standard critical behavior. From (10.404),
we deduce that

y2 =
1

4π2
(x2 + C), (10.405)

where C is a constant that depends on the initial conditions of the flow at l = 0. The
RG trajectories in the plane (x, y) are therefore given by hyperbolas. The case C > 0
corresponds to the high-temperature phase, K(l) → 0 for l → ∞, while C < 0 corresponds
to the low-temperature phase: K(l) → KR = (2/π)(1 +

√
−C). The critical trajectory is

defined by C = 0 and ends at the BKT point. Thus C measures the distance from the
critical point and one can set

C = b2(T − Tc) (10.406)

assuming that it vanishes linearly with T − Tc, with Tc being the BKT transition tempera-
ture. In the low-temperature phase, the renormalized stiffness is then given by

KR =
2

π

[

1 + b
√

Tc − T
]

(T ≤ Tc). (10.407)
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At the transition, where KR = 2/π, the anomalous dimension (10.391) takes the universal
value η = η(Tc) = 1/4.95 Since KR(T

+
c ) = 0, there is a universal jump of the stiffness at

the transition,96

K(T−
c )−K(T+

c ) =
∆ρs
Tc

=
2

π
. (10.408)

In a superfluid, this corresponds to a jump ∆ns/Tc = 2m/π of the superfluid density ns

(with m the boson mass). From (10.404) and (10.405), one can derive an equation for x
alone,

dx

dl
= 2(x2 + C). (10.409)

In the high-temperature phase (C > 0), we deduce

1√
C

[

arctan

(

x(l)√
C

)

− arctan

(

x(0)√
C

)]

= 2l. (10.410)

If C → 0+, i.e. T → T+
c , arctan(x(0)/

√
C) → −π/2 since x(0) < 0, and

1√
C

[

arctan

(

x(l)√
C

)

+
π

2

]

= 2l. (10.411)

The correlation length ξ ∼ a el
∗

can be estimated from the criterion x(l∗) ∼ 1 (which signals
the end of the critical regime where equations (10.404) are valid),

ξ ∼ a exp

(

π

2
√
C

)

∼ a exp

(

π

2b
√
T − Tc

)

. (10.412)

Unlike any of the phase transitions discussed so far, the correlation length does not diverge
as a power law but exhibits an essential singularity. On approaching the transition from
the high-temperature side, the singular part of the free energy density,

fsing ∼ ξ−2 ∼ exp

(

− π

b
√
T − Tc

)

(10.413)

has only an essential singularity. All temperature derivatives are finite at Tc. In particular,
the singularity in the specific heat is very weak and essentially unobservable. The usual
exponents ν, α, β and γ cannot be defined for the BKT transition.97 We may however
define δ from equation (10.138),

δ =
d+ 2− η

d− 2 + η
= 15 (10.414)

using d = 2 and η = 1/4.

95At the transition temperature Tc, the scaling of the momentum-dependent stiffness KR(q) implies a
logarithmic correction to the spin-spin correlation function: G(r) ∼ (ln |r|)1/8/|r|1/4 [7].

96To what extent is the result 2/π truly universal, i.e. independent of the RG procedure? On can try to
convince oneself that the exponent 3 − 2πK in (10.396) is robust and independent of our approximations.
A more convincing proof comes from the RG analysis of the sine-Gordon model in the following section.

97In the Ehrenfest classification, the BKT phase transition is an infinite-order phase transition.
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10.8.4 The sine-Gordon model

In this section we show that the Coulomb gas model can be mapped onto the sine-Gordon
model. The advantage of the latter is that it is amenable to standard (momentum-shell)
perturbative RG analysis.

10.8.4.1 From the Coulomb gas model to the sine-Gordon model

Let us consider the expression (10.376) of the partition function Zv of the Coulomb gas and
compare it with that of the sine-Gordon model,

ZSG =

ˆ

D[ϕ] e−
1

2K

´

d2r (∇ϕ)2−2 y

a2

´

d2r cos(2πϕ). (10.415)

Expanding ZSG wrt y, we find

ZSG =

ˆ

D[ϕ] e−S0[ϕ]
∞
∑

N+,N−=0

(−y)N++N−

N+!N−!

×
ˆ N+
∏

i=1

d2r+i

ˆ N−
∏

i=1

d2r−i e
2iπ

∑N+
j=1 ϕ(r+j )−2iπ

∑N−
j=1 ϕ(r−j ), (10.416)

where we have used 2 cos(2πϕ) = e2iπϕ + e−2iπϕ. We must therefore compute

〈

e2iπ
∑N+

j=1 ϕ(r+i )−2iπ
∑N−

j=1 ϕ(r−i )
〉

0
, (10.417)

where the average is taken with the Gaussian part S0[ϕ] of the sine-Gordon action. Since
the latter is invariant in the shift ϕ(r) → ϕ(r)+α, the average value (10.417) vanishes unless
N+ = N−.98 With this condition, it is easy to see that ZSG = Zv (up to a multiplicative
constant), which shows that the sine-Gordon model has a transition in the same universality
class as the Coulomb gas model.

10.8.4.2 RG approach to the sine-Gordon model

The sine-Gordon model is traditionally defined by the action

S[ϕ] =

ˆ

d2r

{

1

2
(∇ϕ)2 − u cos(βϕ)

}

(10.418)

where u/Λ2, β > 0 are dimensionless parameters and Λ is a UV momentum cutoff. In-
troducing the “Luttinger parameter”99 K = β2/8π and rescaling the field, we rewrite the
action as

S[ϕ] =

ˆ

d2r

{

1

2πK
(∇ϕ)2 − u cos(

√
8ϕ)

}

. (10.419)

Note that the parameter K ≡ KSG should be compared with the parameter (π/2)K ≡
(π/2)KC used in the Coulomb gas model.

98If we compute (10.417) from the standard rules of Gaussian integration, it seems that we always find
a nonzero result. The reason is that ϕ is more than a collection of harmonic oscillators; it also possesses a
zero mode, which is responsible for the vanishing of (10.417) when N+ 6= N−.

99This terminology comes from one-dimensional quantum fluids, see chapter 15.
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For u = 0, we obtain a Gaussian field theory with propagator G(q) = πK/q2. In real
space, the propagator

G(r) = πK

ˆ

q

eiq·r

q2
= −K

2
ln
∣

∣

∣

r

a

∣

∣

∣
(10.420)

is nothing but the two-dimensional Coulomb potential VC(r) (up to a prefactor). To make
contact with the Coulomb gas model, we have taken the cutoff Λ of the order of 1/a (a
being the lattice spacing in the XY model). Of interest is also the correlation function

〈ei
√
8[pϕ(r)−p′ϕ(r′)]〉 = δp,p′e−8p2[G(0)−G(r−r′)] ∼ δp,p′

∣

∣

∣

∣

a

r− r′

∣

∣

∣

∣

4p2K

. (10.421)

This power-lay decaying correlation function is characteristic of a critical system. The sine-
Gordon model therefore exhibits a line of critical points defined by u = 0 and parametrized

by K. Equation (10.421) shows that the field ei
√
8ϕ has scaling dimension 2K. Since the

action is dimensionless, we obtain the scaling dimension

[u] = 2− [ei
√
8ϕ] = 2− 2K (10.422)

of the perturbation u to the Gaussian theory. We conclude that the line of fixed points at
u = 0 is stable if K > 1 (i.e. β2 > 8π) and unstable if K < 1 (β2 < 8π). In the former case
the line is attractive, in the latter case it is repulsive.

To study the sine-Gordon model away from the line u = 0, we use the momentum-shell
RG approach following the general principles described in sections 10.5 and 10.6. We split
the field ϕ(q) = ϕ<(q) + ϕ>(q) into slow (|q| ≤ Λe−dl) and fast (Λe−dl ≤ |q| ≤ Λ) modes,

Z =

ˆ

D[ϕ<] e
−S0[ϕ<]

ˆ

D[ϕ>] e
−S0[ϕ>]−Sint[ϕ<,ϕ>], (10.423)

where

Sint[ϕ<, ϕ>] = −u
ˆ

d2r(cos
√
8ϕ< cos

√
8ϕ> − sin

√
8ϕ< sin

√
8ϕ>). (10.424)

The integration over ϕ> is performed using a cumulant expansion so that the action of the
slow modes becomes

S0[ϕ<] + 〈Sint[ϕ<, ϕ>]〉0,> − 1

2
〈Sint[ϕ<, ϕ>]

2〉0,>,c (10.425)

to order u2, with

〈Sint〉0,> = −u
ˆ

d2r cos
√
8ϕ<〈cos

√
8ϕ>〉0,> (10.426)

and100

〈S2
int〉0,>,c = u2

ˆ

d2r d2r′
[

cos
√
8ϕ< cos

√
8ϕ′

<〈cos
√
8ϕ> cos

√
8ϕ′

>〉0,>,c

+ sin
√
8ϕ< sin

√
8ϕ′

<〈sin
√
8ϕ> sin

√
8ϕ′

>〉0,>
]

(10.427)

100〈S2
int〉0,>,c = 〈S2

int〉0,> − 〈Sint〉20,> stands for the connected expectation value obtained with the action

S0[ϕ>].
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using the notation ϕ ≡ ϕ(r), ϕ′ ≡ ϕ(r′) and the fact that an expectation value with an odd
number of fields vanishes. Introducing the function

g>(r− r′) = 〈ϕ>(r)ϕ>(r
′)〉0,>, (10.428)

one easily finds

〈cos
√
8ϕ>〉0,> = e−4g>(0),

〈cos
√
8ϕ> cos

√
8ϕ′

>〉0,> = e−8g>(0) cosh[8g>(r− r′)],

〈sin
√
8ϕ> sin

√
8ϕ′

>〉0,> = e−8g>(0) sinh[8g>(r− r′)]

(10.429)

and in turn

S[ϕ<] = S0[ϕ<]− u e−4g>(0)

ˆ

d2r cos
√
8ϕ<

− u2

4
e−8g>(0)

ˆ

d2r d2r′
{

(e8g>(r−r′) − 1) cos[
√
8(ϕ< − ϕ′

<)]

+ (e−8g>(r−r′) − 1) cos[
√
8(ϕ< + ϕ′

<)]
}

. (10.430)

Since g>(r−r′) has only Fourier modes near Λ, it is rapidely suppressed when |r−r′| ≫ Λ−1.
We can therefore approximate the integrand in (10.430) using

cos[
√
8(ϕ< − ϕ′

<)] ≃ 1− 4[(r− r′) ·∇ϕ<]
2,

cos[
√
8(ϕ< + ϕ′

<)] ≃ cos(2
√
8ϕ<) +

√
8 sin(2

√
8ϕ<)[(r

′ − r) ·∇ϕ<].
(10.431)

The second line in (10.431) corresponds to higher-order harmonics in the action and is
irrelevant for small u.101 We therefore obtain the action

S[ϕ] = S0[ϕ]− u e−4g>(0)

ˆ

d2r cos
√
8ϕ

+
u2

2
e−8g>(0)

ˆ

d2r′ (e8g>(r′) − 1)r′2
ˆ

d2r (∇ϕ)2, (10.432)

where we now drop the index <. The last step of the renormalization procedure is to rescale
the coordinates, r → r e−dl, in order to restore the original value of the cutoff,

S[ϕ] = S0[ϕ]− u e2dl−4g>(0)

ˆ

d2r cos
√
8ϕ

+
u2

2
e−8g>(0)

ˆ

d2r′ (e8g>(r′) − 1)r′2
ˆ

d2r (∇ϕ)2. (10.433)

Since g> is O(dl), it can be written as g>(r) = KI(r)dl. We also introduce the notation
J = Λ4

´

d2r I(r)r2. Both I(r) and J are dimensionless and independent of K and Λ.
We then see that the action (10.433) can be cast in the original form (10.419) but with
renormalized parameters,

1

K ′ =
1

K
+ 8πΛ−4u2KJdl,

u′ = u[1 + (2− 4KI(0))dl]
(10.434)

101Since [cos(2
√
8ϕ)] = 4K, the coupling constants associated with both terms of the second line of (10.431)

have scaling dimension 2− 4K and are irrelevant near the BKT point K = 1.
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in the limit dl → 0. An elementary calculation gives

I(0) =
1

dl

ˆ

Λ e−dl≤|q|≤Λ

π

q2
=

1

2
, (10.435)

which leads to the flow equations102

d

dl
K(l)−1 = 8πJK(l)ũ(l)2 +O(ũ(l)4),

d

dl
ũ(l) = [2− 2K(l)]ũ(l) +O(ũ(l)3)

(10.436)

satisfied by the dimensionless parameters K(l) and ũ(l) = u(l)/Λ2. These equations are
identical to the RG equations (10.402) of the Coulomb gas model, once the difference
in the definition of the parameter K has been taken into account (see the discussion af-
ter (10.419)),103 with ũ playing the role of the fugacity. They lead to the same flow diagram
(Fig. 10.22) and their physical interpretation is similar.

Although equations (10.436) are obtained for a sharp cutoff Λ, it is possible to consider
an arbitrary cutoff defined by a function f(q2/Λ2) satisfying f(0) = 1 and f(∞) =
0. All momentum integrals appearing in the perturbation expansion should then be
understood as

ˆ

q

≡
ˆ

q

f

(

q2

Λ2

)

. (10.437)

The sharp cutoff corresponds to f(x) = Θ(1 − x); an example of a soft cutoff is
f(x) = e−x. In the momentum-shell RG analysis, integration over the fast modes is
defined by

 

q

≡
[

f

(

q2

Λ2

)

− f

(

q2

(Λ e−dl)2

)]

≡ −2
dl

Λ2

ˆ

q

q2f ′

(

q2

Λ2

)

. (10.438)

One then finds that

I(0) =
1

dl

 

q

π

q2
= −1

2

ˆ ∞

0

dx f ′(x) = −1

2
[f(∞)− f(0)] =

1

2
(10.439)

is independent of the cutoff function f(x). This confirms the fact that the jump
∆KR = 1 (or, equivalently, ∆KR = 2/π in the Coulomb gas model) is universal, i.e.
independent of the details of the RG procedure.

The general expression for J is

J = −π

ˆ ∞

0

dy y3

ˆ ∞

0

dx f ′(x)J0(
√
xy). (10.440)

For a sharp cutoff

J = π

ˆ ∞

0

dy y3J0(y) (10.441)

is infinite since J0(y) ∼ y−1/2 cos(y − π/4) for y → ∞. It is nevertheless well defined
for the soft cutoff f(x) = e−x: J = 8π.

102The invariance of the sine-Gordon action (10.419) in the change u → −u and ϕ → ϕ + π/
√
8 implies

that the next-order terms in (10.436) are of order ũ4 and ũ3, respectively.
103Because of the difference in the definition of K, the BKT point is now located at K = 1 while it was
defined by K = 2/π in the Coulomb gas model.
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10.9 Functional renormalization group

In this section, we discuss a RG approach which, contrary to the study of sections 10.6 and
10.7, is not based on perturbation theory. This approach relies on an exact RG equation for
the action which can be approximately solved within a derivative expansion. It deals with
functions rather than a limited set of coupling constants and is intrinsically non-perturbative
(no small parameter is assumed).

10.9.1 Wilson-Polchinski equation

We consider the partition function

Z =

ˆ

D[ϕ] e−
1
2ϕ·C−1

Λ ·ϕ−VΛ[ϕ], (10.442)

where we use the notation

ϕ · C−1
Λ ·ϕ =

ˆ

ddr

ˆ

ddr′
∑

i

ϕi(r)C
−1
Λ (r− r′)ϕi(r

′)

=
∑

p,i

ϕi(−p)C−1
Λ (p)ϕi(p). (10.443)

Λ is an arbitrary momentum cutoff and

CΛ(p) =
1

p2
K

(

p2

Λ2

)

(10.444)

a cutoff function which ensures that only modes with momenta |p| . Λ are included in the
partition function. In the perturbative RG (section 10.6), we took a sharp cutoff K(x) =
Θ(1 − x). In this section, we consider a smooth cutoff as shown in figure 10.23. K(0) = 1
and K(x) decays rapidly (typically exponentially) for x≫ 1.104 If we take Λ0 as the initial
value of the cutoff, then

SΛ0 [ϕ] =
1

2
ϕ · C−1

Λ0
·ϕ+ VΛ0 [ϕ] (10.445)

is the (bare) microscopic action.
As Λ is reduced to Λ′, fluctuation modes with momenta Λ′ . |p| . Λ are integrated

out, which changes the form of the action SΛ[ϕ]. Instead of considering a finite number
of coupling constants as in section 10.6 (by expanding SΛ[ϕ] in powers of ϕ), we want to
determine the full action SΛ′ . Let us show that VΛ′ is related to VΛ by

e−VΛ′ [ϕ] =

ˆ

D[ϕ′] e−
1
2ϕ

′·D−1

Λ,Λ′ ·ϕ′−VΛ[ϕ+ϕ′]
, (10.446)

where
DΛ,Λ′ = CΛ − CΛ′ . (10.447)

Here and in the following we ignore any multiplicative constant which only affects the field-
independent part of VΛ[ϕ]. From (10.446), we deduce

ˆ

D[ϕ] e−
1
2ϕ·C−1

Λ′ ·ϕ−VΛ′ [ϕ]

104The sharp cutoff version of the Wilson-Polchinski equation is known as the Wegner-Houghton equa-
tion [44].
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Figure 10.23: Cutoff function K(x) [Eq. (10.444)].

=

ˆ

D[ϕ,ϕ′] e−
1
2ϕ·C−1

Λ′ ·ϕ− 1
2ϕ

′·D−1

Λ,Λ′ ·ϕ′−VΛ[ϕ+ϕ′]

=

ˆ

D[ϕ,ϕ′] e−
1
2 (ϕ−ϕ′)·C−1

Λ′ ·(ϕ−ϕ′)− 1
2ϕ

′·D−1

Λ,Λ′ ·ϕ′−VΛ[ϕ]
. (10.448)

The integral over ϕ′ gives
ˆ

D[ϕ′] e−
1
2ϕ

′·(C−1

Λ′ +D−1

Λ,Λ′ )·ϕ′+ϕ·C−1

Λ′ ·ϕ′

= e
1
2ϕ·C−1

Λ′ (C−1

Λ′ +D−1

Λ,Λ′ )
−1C−1

Λ′ ·ϕ
, (10.449)

with
C−1

Λ′ (C
−1
Λ′ +D−1

Λ,Λ′)
−1C−1

Λ′ = C−1
Λ′ − C−1

Λ , (10.450)

and we recognize in (10.448) the partition function, which proves equation (10.446).
We can write equation (10.446) in differential form by choosing Λ′ = Λ+ dΛ. Then

DΛ,Λ′ = −dCΛ

dΛ
dΛ +O(dΛ2) (10.451)

and the fields ϕ′ contributing to the functional integral (10.446) are O(
√
dΛ). In the limit

dΛ → 0, it is sufficient to expand VΛ[ϕ+ϕ′] to second order in ϕ′,

VΛ[ϕ+ϕ′] = VΛ[ϕ] +

ˆ

ddr
∑

i

δVΛ[ϕ]

δϕi(r)
ϕ′
i(r)

+
1

2

ˆ

ddr

ˆ

ddr′
∑

i,j

δ(2)VΛ[ϕ]

δϕi(r)δϕj(r′)
ϕ′
i(r)ϕ

′
j(r

′). (10.452)

Integrating out ϕ′ in (10.446) within a cumulant expansion gives

exp {−VΛ+dΛ[ϕ]} = exp

{

− VΛ[ϕ]−
1

2

ˆ

ddr

ˆ

ddr′
∑

i

(

δ(2)VΛ[ϕ]

δϕi(r)δϕi(r′)

− δVΛ[ϕ]

δϕi(r)

δVΛ[ϕ]

δϕi(r′)

)

DΛ,Λ+dΛ(r− r′)

}

, (10.453)

where we have used

〈ϕ′
i(r)ϕ

′
j(r

′)〉 = δi,jDΛ,Λ+dΛ(r− r′) = −δi,j
dCΛ

dΛ
(r− r′)dΛ. (10.454)

CΛ(r) denotes the Fourier transform of CΛ(p). We thus obtain the differential equation

dVΛ[ϕ]

dΛ
= −1

2

ˆ

ddr

ˆ

ddr′
∑

i

dCΛ

dΛ
(r− r′)

(

δ(2)VΛ[ϕ]

δϕi(r)δϕi(r′)
− δVΛ[ϕ]

δϕi(r)

δVΛ[ϕ]

δϕi(r′)

)
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≡ −1

2
Tr
dCΛ

dΛ

(

δ(2)VΛ[ϕ]

δϕδϕ
− δVΛ[ϕ]

δϕ

δVΛ[ϕ]

δϕ

)

. (10.455)

With elementary algebra, equation (10.455) can be rewritten as a differential equation for
the action (Wilson-Polchinski equation),

dSΛ[ϕ]

dΛ
= − 1

2
Tr
dCΛ

dΛ

(

δ(2)SΛ[ϕ]

δϕδϕ
− δSΛ[ϕ]

δϕ

δSΛ[ϕ]

δϕ

)

−ϕ · d lnCΛ

dΛ
· δSΛ[ϕ]

δϕ
. (10.456)

To complete the RG procedure, we still have to rescale momenta and fields. We postpone
this step to section 10.9.2.

An alternative derivation of the Wilson-Polchinski equation. Let us consider
the functional WΛ[h] defined by

eWΛ[h] =

ˆ

D[ϕ] e
− 1

2
ϕ·D−1

Λ0,Λ·ϕ−VΛ0
[ϕ]+h·ϕ

. (10.457)

Using

dWΛ[h]

dΛ
eWΛ[h] = −1

2

ˆ

D[ϕ]ϕ ·
dD−1

Λ0,Λ

dΛ
·ϕ e

− 1
2
·ϕD−1

Λ0,Λ·ϕ−VΛ0
[ϕ]+h·ϕ

= −1

2
Tr

dD−1
Λ0,Λ

dΛ

δ(2)eWΛ[h]

δhδh
, (10.458)

we obtain the flow equation

dWΛ[h]

dΛ
= −1

2
Tr

dD−1
Λ0,Λ

dΛ

(

δ(2)WΛ[h]

δhδh
+

δWΛ[h]

δh

δWΛ[h]

δh

)

. (10.459)

One can then relate WΛ to VΛ using (10.446),

e−VΛ[ϕ] =

ˆ

D[ϕ′] e
− 1

2
ϕ

′·D−1
Λ0,Λ·ϕ′−VΛ0

[ϕ+ϕ
′]

=

ˆ

D[ϕ′] e
− 1

2
(ϕ′−ϕ)·D−1

Λ0,Λ·(ϕ′−ϕ)−VΛ0
[ϕ′]

= e
− 1

2
ϕ·D−1

Λ0,Λ·ϕ+WΛ[D−1
Λ0,Λ·ϕ]

. (10.460)

We can now use (10.459) to derive a flow equation for VΛ,

dVΛ[ϕ]

dΛ
=

1

2
ϕ ·

dD−1
Λ0,Λ

dΛ
·ϕ− δWΛ[h]

δh

∣

∣

∣

∣

h=D−1
Λ0,Λϕ

· d

dΛ
(D−1

Λ0,Λ
ϕ)

+
1

2
Tr

D−1
Λ0,Λ

dΛ

(

δ(2)WΛ[h]

δhδh
+

δWΛ[h]

δh

δWΛ[h]

δh

)

h=D−1
Λ0,Λϕ

. (10.461)

From the relation (10.460) between VΛ and WΛ, we obtain

δWΛ[h]

δh

∣

∣

∣

∣

h=D−1
Λ0,Λϕ

= ϕ−DΛ0,Λ · δVΛ[ϕ]

δϕ
,

δ(2)WΛ[h]

δhδh

∣

∣

∣

∣

h=D−1
Λ0,Λϕ

= DΛ0,Λ −DΛ0,Λ
δ(2)VΛ[ϕ]

δϕδϕ
DΛ0,Λ,

(10.462)
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and in turn

dVΛ[ϕ]

dΛ
= − 1

2
Tr

dD−1
Λ0,Λ

dΛ
DΛ0,Λ

δ(2)VΛ[ϕ]

δϕδϕ
DΛ0,Λ

+
1

2

δVΛ[ϕ]

δϕ
·DΛ0,Λ

dD−1
Λ0,Λ

dΛ
DΛ0,Λ · δVΛ[ϕ]

δϕ

=
1

2
Tr

dDΛ0,Λ

dΛ

(

δ(2)VΛ[ϕ]

δϕδϕ
− δVΛ[ϕ]

δϕ

δVΛ[ϕ]

δϕ

)

, (10.463)

which is nothing but equation (10.455) since
dDΛ0,Λ

dΛ
= − dCΛ

dΛ
.

10.9.2 Local potential approximation

The Wilson-Polchinski equation cannot be solved exactly. A possible approximation relies
on a field expansion of the functional VΛ[ϕ],

VΛ[ϕ] =

∞
∑

n=0

1

n!

ˆ

ddr1 · · · ddrn V (n)
Λ (r1, · · · , rn)ϕ(r1) · · ·ϕ(rn) (10.464)

(in this section we consider a scalar field), truncated to a given order. Such an expansion is
reminiscent of the perturbative RG studied in section 10.6. To reproduce the O(ǫ) results,

it is sufficient to retrain V
(2)
Λ , V

(4)
Λ and V

(6)
Λ in the expansion (10.464).Faire calcul à O(ǫ)?

The functional Wilson-Polchinski equation suggests a different kind of approximation,
namely a derivative expansion. To leading order, the action reads

SΛ[ϕ] =
1

2
ϕ · C−1

Λ · ϕ+

ˆ

ddr UΛ

(

ϕ(r)
)

. (10.465)

The approximation (10.465) is called is the local potential approximation (Local-potential
approximation (LPA)). In the LPA, the action is entirely determined by the function UΛ,
whose RG equation follows from the Wilson-Polchinski equation. Using

δVΛ[ϕ]

δϕ(r)
=
∂UΛ

(

ϕ(r)
)

∂ϕ(r)
,

δ(2)VΛ[ϕ]

δϕ(r)δϕ(r′)
=
∂2UΛ

(

ϕ(r)
)

∂ϕ(r)2
δ(r− r′),

(10.466)

one finds

d

dΛ

ˆ

ddr UΛ

(

ϕ(r)
)

= − 1

2

ˆ

ddr
dCΛ

dΛ
(r = 0)U ′′

Λ

(

ϕ(r)
)

+
1

2

ˆ

ddrddr′
dCΛ

dΛ
(r− r′)U ′

Λ

(

ϕ(r)
)

U ′
Λ

(

ϕ(r′)
)

. (10.467)

If we consider this equation for a uniform field ϕ(r) = ϕ, one obtains a differential equation
for the function UΛ(ϕ),

d

dΛ
UΛ = −1

2

dCΛ

dΛ
(r = 0)U ′′

Λ +
1

2

dCΛ

dΛ
(p = 0)U ′

Λ
2. (10.468)
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Using (10.444), one finally obtains

d

dΛ
UΛ = −Λd−3I1U

′′
Λ + Λ−3I0U

′
Λ
2, (10.469)

where

I0 =
Λ3

2

dCΛ

dΛ
(p = 0) = −K ′(0),

I1 =
Λ3−d

2

dCΛ

dΛ
(r = 0) = −Kd

2

ˆ ∞

0

dx xd/2−1K ′(x)

(10.470)

are Λ-independent parameters depending on the cutoff function K. To obtain a fixed point
solution of (10.469), one must first eliminate the explicit dependence on Λ. This corresponds
to the momentum and field rescaling step in the perturbative RG of section 10.6. Since
[ϕ] = d−2

2 and [U(ϕ)] = d,105 one is lead to introduce the dimensionless variables

ϕ̃ = Λ(2−d)/2ϕ, ŨΛ(ϕ̃) = Λ−dUΛ(ϕ), (10.471)

which then yields the RG equation

Λ
d

dΛ
ŨΛ = −dŨΛ +

(

d

2
− 1

)

ϕ̃Ũ ′
Λ − I1Ũ

′′
Λ + I0Ũ

′
Λ
2. (10.472)

The constant I0 and I1 can be eliminated by a trivial rescaling, ϕ̃ → √
I1ϕ̃ and ŨΛ →

(I1/I0)ŨΛ, leading to

∂lŨΛ = dŨΛ +

(

1− d

2

)

ϕ̃Ũ ′
Λ + Ũ ′′

Λ − Ũ ′
Λ
2, (10.473)

with Λ = Λ0e
−l. Finally, to get rid of the field independent part of ŨΛ, it is convenient to

consider the function f = Ũ ′
Λ,

ḟ = f ′′ − 2ff ′ +

(

1 +
d

2

)

f +

(

1− d

2

)

xf ′, (10.474)

where ḟ = ∂lf , f
′ = ∂xf and we denote the dimensionless field ϕ̃ by x.

We are now in a position to look for the fixed point solutions ḟ∗ = 0 and the correspond-
ing critical exponents. The RG equation (10.474) admits the trivial fixed point f∗ = 0 that
we first discuss before considering nontrivial fixed points.

10.9.2.1 The Gaussian fixed point in the LPA

The solution f∗ = 0 corresponds to a vanishing function Ũ∗
Λ and is therefore associated with

the Gaussian fixed point.106 To obtain the critical exponents, we linearize the flow equation
about the solution f∗ = 0,

ḟ = f ′′ +

(

1 +
d

2

)

f +

(

1− d

2

)

xf ′. (10.475)

105The scaling dimension of ϕ field is obtained by noting that [CΛ(p)] = −2.
106The condition f∗ = 0 implies Ũ∗

Λ = const. Eq. (10.473) with ∂lŨΛ = 0 shows that the only solution is

Ũ∗
Λ = 0.
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To solve this equation, we write
fl(x) = h(βx)eλl, (10.476)

where β =
√
d− 2/2 (we assume d > 2), which leads to

h′′(y)− 2yh′(y) +
2

d− 2
(2 + d− 2λ)h(y) = 0 (10.477)

with y = βx. This equation is known to have polynomial solutions,107 given by the Hermite
polynomials h(y) = Ĥ2k−1(y) = 2k−1/2H2k−1(y) of degree 2k−1, only for the set of discrete
values of λ satisfying

2k − 1 =
d+ 2− 2λk

d− 2
i.e. λk = d− k(d− 2) (k = 1, 2, 3, · · · ). (10.478)

If one considers symmetric perturbations, even degree Hermite’s polynomials are not allowed
since in that case the function f(x) must be odd (ŨΛ(ϕ̃) is even). Note that the λk’s coincide
with the scaling dimension [v2k] of the vertex v2k

´

ddr (ϕ)2k about the Gaussian fixed point.
When d > 4, all eigenvalues λk are negative except λ1 = 2, which determines the

correlation-length critical exponent ν = 1/λ1 = 1/2. The corresponding relevant eigenvector
is given by Ĥ1(y) ∝ y (which corresponds to a ϕ2 term in UΛ). The less negative eigenvalue
λ2 = 4 − d determines the correction-to-scaling exponent ω = −λ2 = d − 4, i.e. the speed
at which Ũk approaches the fixed-point solution Ũ∗ when the system is critical. For d < 4,
the eigenvalue λ2 = 4 − d becomes relevant108 and we expect the phase transition to be
described by a nontrivial fixed point with a single relevant field. For the ϕ4 theory, we shall
see below that this fixed point is the Wilson-Fisher fixed point found in the perturbative
RG (Sec. 10.6).

10.9.2.2 Non-trivial fixed points in the LPA

Non-Gaussian fixed points cannot be found analytically and one must solve the fixed point
equation

0 = f∗′′ − 2f∗f∗′ +

(

1 +
d

2

)

f∗ +

(

1− d

2

)

xf∗′ (10.479)

numerically. Since equation (10.479) is a second-order differential equation, a solution is a
priori parametrized by two arbitrary constants. But since UΛ(ϕ) is even, f∗(0) = 0, and
there is only one free parameter, e.g. γ = f∗′(0). However, most solutions are singular at
some xc,

f∗(x) ∼ 1

x− xc
for x→ xc. (10.480)

By requiring f∗(x) to be defined for all x, the numerical solution of (10.479) shows that
only a finite set of values of γ is obtained. In practice, the fixed point solution f∗(x) is
therefore determined by fine tuning γ = f∗′(0) until a regular solution is obtained (shooting
method). Note that one can easily determine the large x behavior of f∗(x),

f∗(x) ≃ x+ Cx(d−2)/(d+2) for x→ ∞, (10.481)

where C is a constant.
107It can be shown that non-polynomial solutions imply a continuum of eigenvalues and are therefore non
physical [43].
108To see whether the field associated with the eigenvalue λ2 = 4 − d is relevant or irrelevant in four
dimensions, one must go beyond the linear approximation (10.475). We do not discuss the case d = 4 here.
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0 1 2 3 4 5

0

1

2

x

f∗(x)

γ ≃ −0.2286

γ ≃ −0.2375

γ ≃ −0.21

Figure 10.24: Fixed point solution f∗(x) obtained by the shooting method for d = 3 vs
γ = f∗′(0). The actual (regular) solution is obtained for γ ≃ −0.2286.

For d > 4 only the Gaussian fixed point f∗(x) = 0 is found. For 3 ≤ d < 4, a nontrivial
fixed point (the Wilson-Fisher fixed point) is found for a nonzero value of γ (γ ≃ −0.2286 for
d = 3). Figure 10.24 shows f∗(x) obtained by the shooting method. Note that the vanishing
of f∗(x) (i.e. the minimum of Ũ(x)) at some x0 > 0 is not in contradiction with the system
being critical. Going back to dimensionful variables, one finds that the potential U∗(ϕ) has
a minimum at ϕ0 ∝ Λ(d−2)/2x0 → 0 for Λ → 0. A new nontrivial fixed point emanates from
the Gaussian fixed point each time that one of the eigenvalues λk [Eq. (10.478)] vanishes,
which occurs at the dimensional thresholds Signification

physique de ces
nouveaux points
fixes? Discuter par
ex. pt fixe (tricri-
tique) apparaissant
à d = 3.

dk =
2k

k − 1
(k ≥ 2). (10.482)

Once a fixed point is identified, one can determine the critical exponents by linearizing
the flow equation about f∗. Setting

fl(x) = f∗(x) + eλlg(x), (10.483)

one finds

λg = g′′ +

(

1 +
d

2

)

g +

(

1− d

2

)

xg′ − 2f∗g′ − 2f∗′g (10.484)

to linear order in g. Again one expects solutions to be labeled by two parameters. However,
one can choose g(0) = 0 (since fl(x) is odd) and g′(0) = 1 (arbitrary normalization of the
eigenvectors). The solution is then unique for a given λ. Now it is easy to see that for large
x,

g(x) ∼ x(d−2−2λ)/(d+2) or g(x) ∼ e
d+2
4 x2

. (10.485)

Discarding the solutions with exponential asymptotic behavior,107 one finds a regular solu-
tion only for a countable set of λ’s that can be determined by the shooting method. For
3 ≤ d < 4, the Wilson-Fisher fixed point possesses only one positive eigenvalue λ1 = 1/ν.
The less negative eigenvalue λ2 determines the correction-to-scaling exponent ω = −λ2
(Sec. 10.5.3). For d = 3, this gives

ν ≃ 0.6496,

ω ≃ 0.6557,
(10.486)
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698 Chapter 10. Renormalization group and critical phenomena

with η = 0 in the LPA. These results improve over the O(ǫ) perturbative results obtained in
section 10.6. To compete with the best estimates obtained from the ǫ expansion (table 10.4),
one must however go beyond the LPA.109

10.9.2.3 Beyond the LPA

The LPA is the leading order of a derivative expansion. To next order,

VΛ[ϕ] =

ˆ

ddr

{

UΛ

(

ϕ(r)
)

+
1

2

[

ZΛ

(

ϕ(r)
)

− 1
] (

∇ϕ(r)
)2
}

(10.487)

and

SΛ[ϕ] =

ˆ

ddr

{

UΛ

(

ϕ(r)
)

+
1

2
ZΛ

(

ϕ(r)
)(

∇ϕ(r)
)2
}

+O
(

(∇ϕ)4
)

, (10.488)

where we have used (10.444) withK(0) = 1. The action is now determined by two functions,
UΛ and ZΛ, whose RG equations can be obtained by inserting (10.487) into the Wilson-
Polchinski equation (10.455). Contrary to the LPA, these equations are not independent
of the cutoff function K [Eq. (10.444)], but depend on two K-dependent parameters A
and B.110 To eliminate the cutoff dependence, one could try to compute the anomalous
dimension as well as other critical exponents for various functionsK and then use a principle
of minimum sensitivity to choose the “best” function: if K depends on several parameters
αi, then the best value of the anomalous dimension must satisfy dη/dαi = 0, i.e. dη/dA =
dη/dB = 0. Unfortunately, it appears that such a principle of minimum sensitivity cannot
be used since η depends approximately linearly on B. This shortcoming seriously limits
the use of the Wilson-Polchinski approach beyond the LPA. It should also be noted that
the correlation functions of the “fast” modes (with momenta larger than Λ) cannot be
computed from the action SΛ. To obtain correlation functions with arbitrary momenta,
it is necessary to introduce a spatially-varying external field h(r) in the action SΛ and
compute the resulting flow, which is technically difficult. In chapter 11, we shall see how
the non-perturbative RG enables to circumvent the difficulties of the Wilson-Polchinski
approach.

Appendix 10.A Perturbative calculation of critical exponents

It is difficult to push the RG calculation of critical exponents beyond order ǫ using the
approach of section 10.6. Although the perturbation theory breaks down near the critical
point (Sec. 10.3.4), it turns out to be an efficient tool to compute the critical exponents if one
admits that the correlation functions take the form predicted by the RG. In this section, we
compute the anomalous dimension η to O(ǫ2) and O(1/N) using the perturbative approach.

10.A.1 ǫ expansion

Let us consider the two-point vertex

Γ
(2)
ii (p) = p2 + r0 +Σ(p) (10.A.1)

109It is also possible to determine the critical exponents by solving the flow equation (10.474) for a system
near criticality. This method will be discussed in section 11.2.2.
110More generally, the cutoff dependence can be absorbed into 2k parameters at the kth order of the
derivative expansion [43].
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at the critical temperature Tc (we assume a (ϕ2)2 theory with O(N) symmetry). The RG
predicts

Γ
(2)
ii (p) ∝ |p|2−η

[

1 +O(|p|−y2)
]

∝ p2
[

1− η ln |p|+O(|p|−y2) + · · ·
]

(10.A.2)

(see Eq. (10.186)), where y2 < 0 refers to the dominant irrelevant field t2. Thus it seems
that we can extract the anomalous dimension η from the coefficient of p2 ln |p| in the small
p expansion of Γ(2)(p). But for d < 4, y2 = −ǫ+O(ǫ2) (Sec. 10.6) and the O(|p|−y2) term
will also appear as a series in ln |p|, i.e. |p|−y2 = 1+ ǫ ln |p|+ · · · , when expanded in powers
of ǫ. If we compute Γ(2)(p) in powers of ǫ, we will not only obtain powers of ln |p| coming
from |p|2−η but also powers of ln |p| coming from |p|−y2 . If, however, we are able to set the
scaling field t2 to zero, then we can directly deduce η (as well as other critical exponents)
from the perturbative calculation of the two-point vertex. This can be done by choosing a
particular value u0(ǫ) of the coupling constant u0.

u0(ǫ) can be determined by considering the 4-point vertex Γ(4). Near the fixed point,

Γ
(4)
ijkl(0,K

′) = sd−4dϕΓ
(4)
ijkl(0,K), (10.A.3)

i.e.

Γ
(4)
ijkl(0, t

′
1, t

′
2) = sd−4dϕΓ

(4)
ijkl(0, t1, t2) (10.A.4)

if we retain only the leading irrelevant field t2. The first argument of Γ
(4)
ijkl indicates that

all momenta are set to zero. Equation (10.A.4) can be rewritten as

Γ
(4)
ijkl(0, t1, t2) = sd−4+2ηΓ

(4)
ijkl(0, s

1/νt1, s
y2t2). (10.A.5)

Instead of t1, we take the scaling field r = χ−1 ∼ tγ and restrict ourselves to the high-
temperature phase (t ≥ 0),

Γ
(4)
ijkl(0, r, t2) = s−ǫ+2ηΓ

(4)
ijkl(0, s

1/νr1/γ , sy2t2). (10.A.6)

With s = r−ν/γ , equation (10.A.6) gives

Γ
(4)
ijkl(0, r, t2) = r(ǫ−2η)ν/γΓ

(4)
ijkl(0, 1, r

−y2ν/γt2). (10.A.7)

To O(ǫ), η = 0 and ν = γ/2, so that

Γ
(4)
ijkl(0, r, t2) = rǫ/2Γ

(4)
ijkl(0, 1, r

−y2/2t2)

= Aijkl

(

1 +
ǫ

2
ln r +Bijklt2

ǫ

2
ln r +O(ǫ2)

)

. (10.A.8)

Let us compare this expression with the one-loop result

Γ
(4)
ijkl(0) = (δi,jδk,l + δi,kδj,l + δi,lδj,k)

1

V

[

u0
3

− u20
N + 8

18

ˆ

q

1

(q2 + r0)2

]

≃ (δi,jδk,l + δi,kδj,l + δi,lδj,k)
u0
3V

[

1− u0
N + 8

12
K4 ln

Λ2

r

]

(10.A.9)
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for r ≪ Λ. Since u0 will eventually be of order ǫ, we have set d = 4 and replaced r0 by
r. Equation (10.A.9) is then correct to order ǫ2. Comparing (10.A.8) and (10.A.9), we see
that t2 vanishes if u0 takes the value111

u0(ǫ) =
6

(N + 8)K4
ǫ+O(ǫ2). (10.A.10)

We are now in a position to compute the critical exponents from the perturbation theory.
To compute γ to O(ǫ) we use equation (10.113),

r = r̄0(T − Tc)−
N + 2

6
K4u0r

ˆ Λ

0

d|q| |q|
q2 + r

+O(ǫ2)

= r̄0(T − Tc)−
N + 2

12
K4u0r ln

Λ2

r
+O(ǫ2), (10.A.11)

i.e.

t ∼ r̄0(T − Tc) = r

(

1− N + 2

12
K4u0r ln

r

Λ2

)

+O(ǫ2), (10.A.12)

where u0 ≡ u0(ǫ). This expression must be compared with

t ∼ r1/γ = r

[

1 +

(

1

γ
− 1

)

ln r

]

+O(ǫ2). (10.A.13)

We deduce

γ = 1 +
N + 2

N + 8

ǫ

2
+O(ǫ2), (10.A.14)

in agreement with the result obtained in section 10.6.
To compute the anomalous dimension η to O(ǫ2), we must consider the two-loop con-

tributions

to the self-energy:

Σ(p) = −N + 2

18
u20

ˆ

ddr e−ip·rG3
0(r) (10.A.15)

(other two-loop diagrams, as well as one-loop diagrams, give self-energy corrections inde-
pendent of the external momentum). This expression cannot be directly used since the

bare propagator G0(p) = (p2 + r0)
−1 has a finite correlation length r

−1/2
0 when T = Tc

(Tc 6= Tc0). To circumvent this difficulty, we include Σ(0) in the “bare” propagator, i.e. we
take G0(p) = [p2 + r0 +Σ(0)]−1.112 At the critical point, Γ(2)(p = 0) = r0 +Σ(0) = 0, and
the propagator G0(p) has now an infinite correlation length. The two-point vertex reads

Γ
(2)
ii (p) = p2 +Σ(p)− Σ(0) (10.A.16)

111To make dimensional sense of (10.A.8), we must interpret ln r as ln r
aΛ2 . The expression of u0(ǫ) is

independent of the constant a in the limit r → 0.
112For a justification of this procedure (in particular regarding combinatorial factors in the Feynman
diagrams), see Sec. 1.6.3.
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when T = Tc, where Σ(p) is given by (10.A.15) to two-loop order.
To obtain the p2 ln |p| term in Σ(p), it is sufficient to expand

e−ip·r = 1− ip · r− 1

2
(p · r)2 + · · · (10.A.17)

in (10.A.15). This gives

ˆ

d4r (e−ip·r − 1)G3
0(r) = − p2

8(2S4)3

ˆ

d4r |r|−4 +O(|p|4)

= − p2

64S2
4

ˆ

d|r| |r|−1 +O(|p|4) (10.A.18)

(S4 = 2π2), where we have used the expression (10.86) of G0(r) =
´

p
eip·rp−2. We have

also set d = 4, since we are interested in the result to O(ǫ2) while u0 ≡ u0(ǫ) = O(ǫ) in
(10.A.15). The lower and upper limits in the last integral of (10.A.18) are approximately
given by Λ−1 and 1/|p|, so that

Γ
(2)
ii (p) = p2 − u20

N + 2

18

p2

64S2
4

(ln |p|+ const) +O(|p|4). (10.A.19)

Comparing this result with (10.A.2) (without the O(|p|−y2 term) and using (10.A.10), we
finally obtain

η =
1

2

N + 2

(N + 8)2
ǫ2 +O(ǫ3). (10.A.20)

10.A.2 1/N expansion

Perturbation theory can also be used to calculate the critical exponents within a 1/N
expansion. We start from the action

S[ϕ] =

ˆ

ddr

{

1

2
(∇ϕ)2 +

r0
2
ϕ2 +

u0
4!N

(

ϕ2
)2
}

(10.A.21)

where the factor 1/N is introduced to obtain a meaningful limitN → ∞. The 1/N expansion
is not a mere expansion in u0 since for each closed loop there is a factor N coming from the
sum over internal O(N) index.

10.A.2.1 Leading order

To leading order, the self-energy is given by the “Hartree” approximation (Fig. 10.25),

Σ =
u0
6

ˆ

q

1

q2 + r0 +Σ
. (10.A.22)

The two-point vertex is then given by

Γ
(2)
ii (p) = p2 + r0 +Σ = p2 + r, (10.A.23)

where r = r0 +Σ. The critical temperature is determined by r = 0,

0 = r̄0(T − Tc0) +
u0
6

ˆ

q

1

q2
, (10.A.24)
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+ + + · · · =

Figure 10.25: Self-energy Σ to leading order in the limit N → ∞. The thick solid line stands
for G = (G−1

0 +Σ)−1.

which allows us to express r as

r = r̄0(T − Tc) +
u0
6

ˆ

q

(

1

q2 + r
− 1

q2

)

= r̄0(T − Tc) +
u0r

6

ˆ

q

1

q2(q2 + r)
. (10.A.25)

For d > 4, the integral converges when r → 0 so that r ∼ T − Tc when T → Tc, i.e.
γ = 1, in agreement with the mean-field result. For d = 4, one finds

ˆ

q

1

q2(q2 + r)
= K4

ˆ Λ

0

d|q| |q|
q2 + r

≃ K4

2
ln

Λ2

r
(10.A.26)

for Λ/
√
r ≫ 1. From (10.A.25), we then deduce

r̄0(T − Tc) ≃
u0
12
K4r ln

Λ2

r
, (10.A.27)

i.e.

r ≃ 12

u0K4

r̄0(T − Tc)

ln
(

u0K4Λ2

12r̄0(T−Tc)

) (10.A.28)

for T → Tc. As expected at the upper critical dimension, there are logarithmic corrections
to the mean-field result r ∼ T − Tc.

For d < 4, we use

ˆ

q

1

q2(q2 + r)
= Kd

ˆ Λ

0

d|q| |q|
d−3

q2 + r
= rd/2−2K̃d, (10.A.29)

where K̃d is defined in (10.116). From (10.A.25), we then deduce

r̄0(T − Tc) ≃
u0
6
rd/2−1K̃d (10.A.30)

for T → Tc and d < 4, i.e.
r ∼ (T − Tc)

γ (10.A.31)
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= +

= +

+ · · ·

+

Figure 10.26: Self-energy to order 1/N .

with the susceptibility critical exponent

γ =
2

d− 2
+O(N−1). (10.A.32)

Since η = 0 (the self-energy is momentum independent), we obtain all other critical expo-
nents using the scaling laws (Sec. 10.4),

ν =
1

d− 2
+O(N−1),

β =
1

2
+O(N−1),

α =
d− 4

d− 2
+O(N−1),

δ =
d+ 2

d− 2
+O(N−1).

(10.A.33)

10.A.2.2 1/N corrections

The self-energy to order 1/N is shown in figure 10.26. As in the case of the ǫ expansion, we
include Σ(0) in the “bare” propagator G(p) = (p2 + r)−1. The effective vertex u (the wavy
line in Fig. 10.26) is defined by113

u(p) =
u0

1 + u0

6 Π(p)
, Π(p) =

ˆ

q

G(q)G(p+ q). (10.A.34)

Since the first diagram in figure 10.26 is independent of p, we obtain

Σ(p)− Σ(0) =
1

3N

ˆ

q

u(q) [G(p+ q)−G(q)] . (10.A.35)

113This result is easily obtained by considering the expansion for the 4-point vertex,

Γ
(4)
ijkl(p1, · · · ,p4) = δ∑

i pi,0

(

δi,jδk,l + δi,kδj,l + δi,lδj,k
)

×
[

u0

3N
− N

2

( u0

3N

)2
ˆ

q

G(q)G(p1 + p2 + q) + · · ·
]

.
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At the critical point (r = 0), we can use

Π(p) =

ˆ

q

1

q2(p+ q)2
≃ Ad|p|d−4 (10.A.36)

in the limit |p| ≪ Λ and for d < 4 (see Eq. (10.324)). Thus, for p → 0,

u(p) ≃ 6

Π(p)
≃ 6

Ad|p|d−4
(10.A.37)

and

Σ(p)− Σ(0) ≃ 2

NAd

ˆ

q

|q|4−d

[

1

(p+ q)2
− 1

q2

]

≃ Ap2 ln

(

Λ

|p|

)

. (10.A.38)

A can be obtained by expanding (10.A.38) for small p since the p2 ln Λ term is due to large
values of q. Using

1

(p+ q)2
− 1

q2
= −2

p · q
|q|4 − p2

|q|4 + 4
(p · q)2
|q|6 +O(|p|3), (10.A.39)

we obtain
ˆ

q

|q|4−d

[

1

(p+ q)2
− 1

q2

]

≃ p2 4− d

d

ˆ

q

|q|−d = p2 4− d

d
Kd ln Λ (10.A.40)

and

Γ
(2)
ii (p) = p2 +

2

NAd

4− d

d
Kdp

2 ln
Λ

|p| , (10.A.41)

which leads to

η =
2

NAd

4− d

d
Kd +O(N−2). (10.A.42)

Appendix 10.B The (ϕ2)2 theory in the large-N limit

In this section we reconsider the large-N limit of the (ϕ2)2 theory [Eq. (10.A.21)] and show
how we can extend the results of section 10.A.2 to the low-temperature phase.

Using
ˆ ∞

−∞
dρ

ˆ ∞

−∞
dλ e−iλ

2 (ϕ2−ρ) =

ˆ ∞

−∞
dρ δ(ϕ2 − ρ) = 1 (10.B.1)

(we ignore any multiplicative constant), we rewrite the partition function as

Z =

ˆ

D[ϕ, ρ, λ] exp

{

−
ˆ

ddr

[

1

2
(∇ϕ)2 +

r0
2
ρ+

u0
4!N

ρ2 + i
λ

2
(ϕ2 − ρ)

]}

=

ˆ

D[ϕ, λ] exp

{

−1

2

ˆ

ddr
[

(∇ϕ)2 + iλϕ2
]

+
3N

2u0

ˆ

ddr (iλ− r0)
2

}

, (10.B.2)

where the second line is obtained by integrating out the ρ field. We now split ϕ = (σ,π)
into a scalar field σ and a (N − 1)-component field π. As in the NLσM (Sec. 10.7), this
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10.B The (ϕ2)2 theory in the large-N limit 705

parametrization will allow spontaneous symmetry breaking. The integration over the π

field gives

ˆ

D[π] exp

{

−1

2

ˆ

ddr
[

(∇π)2 + iλπ2
]

}

=
(

det g−1
)−(N−1)/2

, (10.B.3)

where

g−1(r, r′) = −∇
2δ(r− r′) + iλ(r)δ(r− r′) (10.B.4)

is the propagator of the πi field in the presence of a fluctuating λ field. We thus obtain the
partition function

Z =

ˆ

D[σ, λ] exp

{

− 1

2

ˆ

ddr
[

(∇σ)2 + iλσ2
]

+
3N

2u0

ˆ

ddr (iλ− r0)
2 − N − 1

2
Tr ln g−1

}

. (10.B.5)

If we rescale the σ field, σ →
√
Nσ,114 then the action becomes proportional to N in

the limit N → ∞ and the saddle-point approximation becomes exact. For uniform fields
σ(r) = σ and λ(r) = λ, the action is given by

1

V
S[σ, λ] =

i

2
λσ2 − 3N

2u0
(iλ− r0)

2 +
N

2V
Tr ln g−1 (10.B.6)

(we use N − 1 ≃ N for large N), with g−1(p) = p2 + iλ in Fourier space. Since σ and λ
do not fluctuate when N → ∞, g(p) is the propagator of the field πi.

115 From (10.B.6), we
deduce the saddle-point equations

σm2 = 0,

σ2 =
6N

u0
(m2 − r0)−N

ˆ

p

1

p2 +m2
,

(10.B.7)

where we use the notation m2 = iλ (iλ is real at the saddle point). These equations
show that the component σ of the ϕ field which was singled out plays the role of an order
parameter. In the disordered phase, σ = 0 and m 6= 0 (the N − 1 πi field are gapped). The
saddle-point equation for m2 reproduces our previous result (10.A.22) with Σ = m2−r0. In
the ordered phase, σ is nonzero and the propagator g(p) = 1/p2 is gapless, thus identifying
the πi fields as the N − 1 Goldstone modes associated with spontaneous rotation symmetry
breaking.

10.B.1 Correlation functions in the low-temperature phase

In the broken-symmetry phase,m = 0 and the saddle-point equation for the order parameter
reads

σ2 = −6N

u0
(r0 − r0c), (10.B.8)

114In the following, we work with the “unrescaled” field which is therefore O(
√
N).

115If σ and λ were fluctuating, one would have to integrate them out to obtain the propagator of the π

field.
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where

r0c = −u0
6

ˆ

p

1

p2
= −u0

6

KdΛ
d−2

d− 2
(10.B.9)

is the critical value of r0 defining the critical temperature: r0c = r̄0(Tc − Tc0).
116 The cor-

rection to the mean-field result σ2 = −6Nr0/u0 in (10.B.8) is due to the Goldstone modes.
Since σ ∼ √

Tc − T , the critical exponent β is equal to 1/2 in agreement with (10.A.33).
The action being obtained from a saddle-point approximation, the effective action Γ[σ, λ]

is simply given by the action S[σ, λ] defined by (10.B.5).117,118 We deduce

Γ(2)(r− r′) =

(

Γ
(2)
σσ (r− r′) Γ

(2)
σλ(r− r′)

Γ
(2)
λσ (r− r′) Γ

(2)
λλ (r− r′)

)

=

( −∇
2δ(r− r′) iσδ(r− r′)

iσδ(r− r′) N
2 Π(r− r′) + 3N

u0
δ(r− r′)

)

, (10.B.10)

where
Π(r− r′) = g(r− r′)g(r′ − r) (10.B.11)

and we use the notation Γ
(2)
σσ (r− r′) = δ(2)Γ/δσ(r)δσ(r′), etc. The two-point vertex Γ(2) is

computed for the saddle-point values of the σ and λ fields. In Fourier space, we obtain

Γ(2)(p) =

(

p2 iσ
iσ N

2 Π(p) + 3N
u0

)

, (10.B.12)

where Π(p) =
´

q
g(q)g(p+ q). The propagator G = Γ(2)−1 takes the form

G(p) =
1

det Γ(2)(p)

(

N
2 Π(p) + 3N

u0
−iσ

−iσ p2

)

, (10.B.13)

with

det Γ(2)(p) = p2

[

N

2
Π(p) +

3N

u0

]

+ σ2. (10.B.14)

The last equation, together with the small p behavior (10.A.36) of Π(p), leads us to intro-
duce three characteristic momentum scales,

pG =

(

u0Ad

6

)1/(4−d)

,

pJ =

(

2σ2

NAd

)1/(d−2)

=

[

12

u0Ad
(r0c − r0)

]1/(d−2)

,

pc =

(

u0σ
2

3N

)1/2

= [2(r0c − r0)]
1/2,

(10.B.15)

which will be referred to as the Ginzburg scale, the Josephson scale and the correlation
scale, respectively (pG and pc were previously defined in section 10.7.3 while the Josephson

116We assume r0 = r̄0(T − Tc0).
117The equality between the effective action Γ and the “microscopic” action S within a saddle-point
approximation has been shown in Sec. 10.2.1 when discussing the Landau theory.
118To simplify the notations, we note σ and λ the arguments of both the action S and the effective action
Γ.
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10.B The (ϕ2)2 theory in the large-N limit 707

Figure 10.27: Characteristic momentum scales pG, pJ and pc [Eq. (10.B.15)] vs r0c − r0 =
r̄0(Tc − T ) for fixed u0.

length ξJ = p−1
J was discussed in Sec. 10.7.2). Here and in the following we assume d < 4

and postpone the case d = 4 to section 10.B.3. These momentum scales are not independent
since

p2c = p2G

(

pJ
pG

)d−2

. (10.B.16)

If we vary r0 (i.e. the temperature) with u0 fixed, we find that the three characteristic scales
(10.B.15) are equal for a temperature TG defined by

r0c − r0G = r̄0(Tc − TG) =
1

2

(

u0Ad

6

)2/(4−d)

(10.B.17)

(see Fig. 10.27). Equation (10.B.17) is similar to the Ginzburg criterion (10.117) obtained
from the one-loop calculation of the two-point vertex in the disordered phase. As we show
below, TG separates a critical regime from a non-critical regime in the ordered phase.

In the critical regime (Tc − T ≪ Tc − TG or pJ ≪ pG), using pJ ≪ pc ≪ pG one finds

Gσσ(p) =















p2−d
J

|p|4−d
if |p| ≪ pJ ,

1

p2
if |p| ≫ pJ ,

(10.B.18)

while in the non-critical regime (Tc − TG ≪ Tc − T or pG ≪ pc),

Gσσ(p) =















1

p2c

(

pG
|p|

)4−d

if |p| ≪ pG,

1

p2 + p2c
if |p| ≫ pG.

(10.B.19)

In the non-critical regime, we recover the results of section 10.7.3. We find two characteristic
momentum scales (pG and pc) and two regimes for the behavior of Gσσ(p): i) a Goldstone
regime (|p| . pG) characterized by a diverging longitudinal propagator Gσσ(p) ∼ 1/|p|4−d

in the limit p → 0, ii) a Gaussian regime (|p| & pG) where the Gaussian approximation
(and the perturbative approach) is essentially correct. The critical regime is characterized
by two momentum scales (pJ and pG). The Josephson length diverges at the phase transition
with the exponent ν = 1/(d − 2). The same exponent was found for the divergence of the
correlation length ξ in the disordered phase [Eq. (10.A.33)]. There are three regimes for
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708 Chapter 10. Renormalization group and critical phenomena

Figure 10.28: Momentum dependence of the longitudinal correlation function Gσσ(p) in the
critical and non-critical regimes of the low-temperature phase (2 < d < 4). Note that η = 0
in the limit N → ∞.

the behavior of Gσσ(p): i) a Goldstone regime (|p| . pJ) with a diverging longitudinal
propagator, ii) a critical regime (pJ . |p| . pG) with a vanishing anomalous dimension η (η
is O(1/N) in the large-N limit, see Sec. 10.A.2), iii) a Gaussian regime (pG . |p|). These
results are summarized in figure 10.28.

10.B.1.1 The NLσM

At the critical point in the limit N → ∞, from the preceding results we deduce

Gλλ(p) =
2

NAd|p|d−4
,

Gσσ(p) =
1

p2
,

(10.B.20)

so that [σ] = (d − 2)/2 and [λ] = 2. It follows that the perturbation
´

ddr λ2 is irrelevant
for d < 4. Thus, if we shift the λ field by its fixed-point value, iλ → iλ+m2, we can omit
the λ2 term in the action,

S[σ, λ] =
1

2

ˆ

ddr
[

(∇σ)2 + (m2 + iλ)σ2
]

− 3N

u0

ˆ

ddr iλ(m2 − r0) +
N − 1

2
Tr ln g−1. (10.B.21)

We can now reintroduce the π field using

exp

{

−N − 1

2
Tr ln g−1

}

=

ˆ

D[π] exp

{

−1

2

ˆ

ddr
[

(∇π)2 + (iλ+m2)π2
]

}

(10.B.22)

to obtain

S[ϕ, λ] =
1

2

ˆ

ddr
[

(∇ϕ)2 + iλϕ2
]

− 3N

u0

ˆ

ddr (iλ−m2)(m2 − r0), (10.B.23)
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where we have shifted λ back to its original value. Integrating over λ, we eventually obtain

Z =

ˆ

D[ϕ] δ(ϕ2 −ϕ2
0) exp

{

−1

2

ˆ

ddr (∇ϕ)2
}

(10.B.24)

with ϕ2
0 = 6N

u0
(m2 − r0), which is nothing but the action of the NLσM (see Sec. 10.7). We

conclude that in the limit N → ∞, the correlation functions of the (ϕ2)2 theory and the
NLσM have the same asymptotic long-distance behavior at the critical point. It can be
shown that this equivalence holds to all orders in the 1/N expansion [51]. The NLσM in
the large-N limit is studied in section 10.C.

10.B.2 Gibbs free energy

Let us consider the system in the presence of an external field,

Z[h] =

ˆ

D[σ, λ] e−S[σ,λ]+
´

ddr hσ, (10.B.25)

where the action S[σ, λ] is defined by (10.B.5). The Gibbs free energy reads

Γ[M ] = − lnZ[h] +

ˆ

ddr hM, (10.B.26)

where h is related to the order parameter M(r) = 〈σ(r)〉 by

M(r) =
δ lnZ[h]

δh(r)
. (10.B.27)

In the large-N limit, the saddle-point approximation in (10.B.25) is exact so that Γ[M ] =
S[M,λ]. For a uniform order parameter,

1

V
Γ(M) =

1

2
m2M2 − 3N

2u0
(m2 − r0)

2 +
N

2

ˆ

p

ln(p2 +m2). (10.B.28)

The momentum integral in (10.B.28) diverges for small m and should be regularized, e.g.
by considering

D(m2) =

ˆ

p

[ln(p2 +m2)− ln(p2)], (10.B.29)

which amounts to removing an infinite normalization constant in the partition function. For
m→ 0 and d < 4,119

D(m2) = −2
K̃d

d
md +Kd

Λd−2

d− 2
m2 +

Kd

2

Λd−4

4− d
m4, (10.B.30)

where K̃d is defined in (10.116). For d < 4, we can neglect m4 wrt md for small m and we
obtain120

1

NV
Γ(M) = − 3r20

2u0
+

3

u0
(r0 − r0c)m

2 +
m2M2

2N
− K̃d

d
md. (10.B.31)

119Eq. (10.B.30) is obtained from D(0) = 0, D′(m2) = Λd

dm2 2F1

(

1, d
2
, d
2
+ 1,− Λ2

m2

)

, and the expansion of

the hypergeometric function 2F1 for small m2.
120We use 1

2
Kd
d−2

Λd−2 = − 3r0c
u0

.
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The value of m2 is obtained by requiring that Γ[M ], as − lnZ[h], is extremum.121 The
condition ∂

∂m2Γ[M ] = 0 gives

m2 =

[

1

K̃d

(

6τ

u0
+
M2

N

)]2/(d−2)

(10.B.32)

with τ = r0 − r0c = r̄0(T − Tc). This expression makes sense only if 6τ
u0

+ M2

N > 0. If not,

the extremum is reached for m2 = 0.
In the high-temperature phase, τ ≥ 0 and m2 6= 0 for any value of M . This yields

1

NV
Γ(M) = − 3r20

2u0
+
d− 2

2d
K̃

2/(2−d)
d

(

6τ

u0
+
M2

N

)d/(d−2)

. (10.B.33)

The minimum of the Gibbs free energy is reached for M = 0. We deduce the specific heat

CV = −T ∂2

∂T 2
β−1Γ(M = 0) ∼ τ−α, (10.B.34)

with a critical exponent α = (d− 4)/(d− 2). At the transition (τ = 0),

1

NV
Γ(M) ∼M2d/(d−2) + const and h =

1

V

∂Γ

∂M
∼M δ (10.B.35)

with a critical exponent δ = (d+ 2)/(d− 2). The values of α and δ agree with (10.A.33).
In the low-temperature phase, τ ≤ 0 and m2 can be zero or nonzero depending on the

value of M . Thus

1

NV
Γ(M) =















− 3r20
2u0

if |M | ≤M0,

− 3r20
2u0

+
d− 2

2d
K̃

2/(2−d)
d

(

M2 −M2
0

N

)d/(d−2)

if |M | ≥M0,

(10.B.36)

where

M0 =

√

6N |τ |
u0

(10.B.37)

is equal to the saddle point value of the σ field [Eq. (10.B.8)]. Thus the large-N approach
gives a convex Gibbs free energy both in the high- and low-temperature phases (see Fig. 10.4
in Sec. 10.1.1).

10.B.3 The upper critical dimension

The results obtained in sections 10.B.1 and 10.B.3 for 2 < d < 4 can easily be extended to
the case d = d+c = 4. Using the small p behavior (10.A.36) of Π(p) when d = 4, the three
characteristic momentum scales introduced in section 10.B.1 become

pG = Λexp

( −6

u0A4

)

,

pJ =





24(r0c − r0)

u0A4 ln
(

u0A4Λ2

24(r0c−r0)

)





1/2

,

pc = [2(r0c − r0)]
1/2.

(10.B.38)

121This follows from the property
∂Γ[M,m2]

∂m2

∣

∣

M
= − ∂ lnZ[h,m2]

∂m2

∣

∣

h
, which is a direct consequence of the

definition (10.B.26) of the effective action.
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As expected, we find a mean-field like divergence of the Josephson length (ξJ = p−1
J ∼

(Tc − T )−1/2) with logarithmic corrections. The three momentum scales (10.B.38) satisfy

p2J ≃ p2c
ln(Λ/pG)

ln(Λ/pc)
. (10.B.39)

and therefore coincide at the Ginzburg temperature TG defined by

r0c − r0G = r̄0(Tc − TG) ≃
Λ2

2
exp

( −12

u0A4

)

. (10.B.40)

In the critical regime (Tc − T ≪ Tc − TG or pJ ≪ pG), one finds

Gσσ(p) =











ln(Λ/|p|)
p2J ln(Λ/pJ)

if |p| ≪ pJ ,

1

p2
if |p| ≫ pJ ,

(10.B.41)

while in the non-critical regime (Tc − TG ≪ Tc − T or pG ≪ pc),

Gσσ(p) =











ln(Λ/|p|)
p2c ln(Λ/pG)

if |p| ≪ pG,

1

p2 + p2c
if |p| ≫ pG.

(10.B.42)

The behavior of the longitudinal correlation function is similar to the case d < 4 (Fig. 10.28)
except that the divergence ∼ 1/|p|4−d in the Goldstone regime is now logarithmic, and the
anomalous dimension η vanishes (Sec. 10.A).

To compute the Gibbs free energy Γ(M) [Eq. (10.B.28)], we use

D(m2) =
K4

2

[

m2Λ2 +m4

(

ln
m

Λ
− 1

4

)]

+O(m6). (10.B.43)

Minimizing Γ(M) wrt m2, we then obtain

m2 ≃











2X

K4 ln
(

K4Λ2

2X

) if X ≥ 0,

0 if X ≤ 0,

(10.B.44)

where

X =
M2

N
+

6τ

u0
(10.B.45)

and τ = r0 − r0c = r̄0(T − Tc). In the high-temperature phase, this leads to

1

NV
Γ(M) = − 3r20

2u0
+

X2

2K4 ln
(

K4Λ2

2X

) . (10.B.46)

The minimum is reached for M = 0 and the singular part of Γ(M = 0) is given by τ2/ ln τ .
The singular part of the specific heat in the large-N limit, CV ∼ 1/| ln τ |, agrees with the
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general result (10.271) of section 10.6.2. In the low-temperature phase, we find

1

NV
Γ(M) =



















− 3r20
2u0

if |M | ≤M0,

− 3r20
2u0

+
1

2K4N2

(M2 −M2
0 )

2

ln
(

Λ2K4N
2(M2−M2

0 )

) if |M | ≥M0,
(10.B.47)

where M0 is equal to the saddle-point value of the σ field [Eq. (10.B.37)].

10.B.4 1/N correction

The O(1/N) correction to the propagator Gσσ comes from the one-loop self-energy diagram

where the dot stands for the vertex iλσ2 (see Eq. (10.B.5)). Gσσ (solid line) and Gλλ (wavy
line) are the propagators in the limit N → ∞. Thus,

Γ(2)
σσ (p) = p2 +

ˆ

q

Gλλ(q) [Gσσ(p+ q)−Gσσ(q)] +O
(

1

N2

)

(10.B.48)

at the critical point (T = Tc). As in Sec. 10.A.1, the subtraction of Gσσ(q) in (10.B.48)

ensures that Γ
(2)
σσ (p = 0) = 0 when T = Tc. Using (10.B.20) we finally obtain

Γ(2)
σσ (p) = p2 +

2

NAd

ˆ

q

1

|q|d−4

[

1

(p+ q)2
− 1

q2

]

+O
(

1

N2

)

, (10.B.49)

which agrees with our previous result (10.A.38) and yields the result (10.A.42) for the
anomalous dimension η to O(1/N).

Appendix 10.C The nonlinear σ model in the large-N limit

In section 10.B, we have studied the (ϕ2)2 theory in the large-N limit and shown that the
critical behavior is the same as that of the NLσM. In this section, we directly consider the
NLσM in the large-N limit (along similar lines). We start from the partition function

Z =

ˆ

D[n]δ(n2 − 1) exp

{

−N

2g

ˆ

ddr (∇n)2
}

(10.C.1)

with an implicit ultraviolet cutoff Λ on the momenta. The factor N in (10.C.1) is introduced
to yield a meaningful limit N → ∞. As in section 10.7 we write the field n = (σ,π) in terms
of a scalar field σ and a (N − 1)-component field π. Introducing a Lagrange multiplier field
λ to impose the constraint n2 = 1, we obtain

Z =

ˆ

D[σ,π, λ] exp

{

−i
ˆ

ddr
λ

2
(σ2 + π2 − 1)− N

2g

ˆ

ddr
[

(∇σ)2 + (∇π)2
]

}

=

ˆ

D[σ, λ] exp

{

−i
ˆ

ddr
λ

2
(σ2 − 1)− N

2g

ˆ

ddr (∇σ)2 − N − 1

2
Tr ln g−1

π

}

, (10.C.2)
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where g−1
π (r, r′) = −N

g ∇
2δ(r− r′) + iλ(r)δ(r− r′). The second line in (10.C.2) is obtained

by integrating out the π field. If we take the limit N → ∞ (and rescale the field λ→ Nλ),
the action becomes proportional to N and the saddle-point approximation is then exact.
For uniform fields σ and λ, the saddle-point equations read

σm2 = 0,

σ2 = 1− g

ˆ

p

1

p2 +m2
,

(10.C.3)

wherem2 = iλg/N . The critical coupling constant separating the low- and high-temperature
phases is given by

gc =
d− 2

KdΛd−2
. (10.C.4)

gc vanishes in two dimensions and the system is always in the disordered phase in agreement
with the Mermin-Wagner theorem.

10.C.1 The high-temperature phase

In the high-temperature phase, σ = 0 and m is determined by the equation

1

gc
− 1

g
= md−2Kd

ˆ Λ/m

0

dx
xd−3

x2 + 1
. (10.C.5)

For d < 4, one can take the limit Λ/m → ∞ since the integral is convergent. This gives a
correlation length

ξ = m−1 ∼ (g − gc)
−1/(d−2) (10.C.6)

for g → gc so that ν = 1/(d − 2). In two dimensions, the correlation length is determined
from

1

g
=

ˆ

p

1

p2 +m2
≃ 1

2π
ln

(

Λ

m

)

, (10.C.7)

which gives

ξ ∼ Λ−1 exp

(

2π

g

)

. (10.C.8)

ξ diverges exponentially for small g in agreement with the RG analysis of section 10.7.2 in
the large-N limit.122

10.C.1.1 Upper critical dimension

At the upper critical dimension d+c = 4,

ξ−2 = m2 ∼ 2τ/g

K4 ln
(

Λ2K4g
τ

) , (10.C.9)

where τ = g/gc − 1. The mean-field expectation ξ ∼ 1/
√
τ is modified by logarithmic

corrections.

122Without the factor N in (10.C.1), we would obtain ξ ∼ Λ−1 exp
(

2π
Ng

)

in agreement with (10.306) for

N → ∞.
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714 Chapter 10. Renormalization group and critical phenomena

10.C.2 The low-temperature phase

In the low-temperature phase, m = 0 and the order parameter is determined by

σ2 = 1− g

ˆ

p

1

p2
= 1− g

gc
, (10.C.10)

which gives a critical exponent β = 1/2.
The propagator of π field is given by g(p) = g/Np2. To obtain the propagator of the

longitudinal field σ, we proceed as in section 10.B.1. In the limit N → ∞, the effective
action Γ[σ, λ] = S[σ, λ] and

Γ(2)(p) =





Np2

g
iσ

iσ N
2 Π(p)



 , (10.C.11)

where Π(p) =
´

q
gπ(q)gπ(p+ q). We deduce

det Γ(2)(p) =
1

2
Adg

(

|p|d−2 + pd−2
J

)

(10.C.12)

for |p| ≪ Λ and d < 4 (Ad is defined by (10.325)). The Josephson momentum scale is
defined by

pJ =

(

2σ2

Adg

)1/(d−2)

=

[

2

Ad

(

1

g
− 1

gc

)]1/(d−2)

(10.C.13)

and vanishes with the critical exponent ν = 1/(d− 2). By inverting Γ(2)(p), we obtain the
propagator

Gσσ(p) ≃
g|p|d−4/N

|p|d−2 + pd−2
J

=











g

Np2
if |p| ≫ pJ ,

g

N

p2−d
J

|p|4−d
if |p| ≪ pJ .

(10.C.14)

If g is sufficiently close to gc, then pJ ≪ Λ and the system is in the critical regime. One canMême rq pour phi4
theory? then distinguish two regimes for the behavior of Gσσ(p): i) a Goldstone regime |p| ≪ pJ

characterized by a diverging longitudinal susceptibility Gσσ(p) ∼ 1/|p|4−d, ii) a critical
regime |p| ≫ pJ where Gσσ(p) ∼ 1/|p|2−η (with η = O(1/N)). On the other hand, if
pJ & Λ, the system is in a non-critical regime and the longitudinal propagator exhibits the
behavior Gσσ(p) ∼ 1/|p|4−d for any value of the momentum. These results are similar to
those obtained from the large-N limit of the (ϕ2)2 theory. Note however that the Ginzburg
momentum scale pG does not show up in the NLσM. The same conclusion was reached from
the RG analysis of section 10.7.2.

10.C.3 Gibbs free energy

The Gibbs free energy can be obtained as in section 10.B.2. In the large-N limit and for a
uniform order parameter M ,

1

NV
Γ(M) =

m2

2g
(M2 − 1) +

1

2

ˆ

p

[

ln

(

p2 +m2

g

)

− ln

(

p2

g

)]

, (10.C.15)
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where the last (M independent) term is introduced to make the Gibbs free energy finite.
Using (10.B.30) for d < 4, one obtains

1

NV
Γ(M) =

m2

2g
(M2 − 1) +

m2

2

(

1

gc
− 1

g

)

− K̃d

d
md (10.C.16)

for small m, where K̃d is defined by (10.116). By requiring Γ(M) to be minimum wrt m2,
one deduces

m2 =

{

(

M2+τ
gK̃d

)2/(d−2)

if M2 + τ ≥ 0,

0 if M2 + τ ≤ 0.
(10.C.17)

This yields

1

NV
Γ(M) =

d− 2

2d
K̃

2/(d−2)
d

(

M2 + τ

g

)d/(d−2)

(10.C.18)

in the high-temperature phase (τ > 0) and

1

NV
Γ(M) = Θ(M2 −M2

0 )
d− 2

2d
K̃

2/(d−2)
d

(

M2 −M2
0

g

)d/(d−2)

(10.C.19)

in the low-temperature phase (τ < 0), whereM0 =
√−τ is equal to the saddle-point value of

the σ field [Eq. (10.C.10)]. The results (10.C.18) and (10.C.19) are similar to those obtained
in the large-N limit of the (ϕ2)2 theory (Sec. 10.B.2).
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Guide to the bibliography

• In addition toWilson’s original papers [1,2], there are many reviews [3–6] and books [7–
16] with a detailed presentation of the renormalization group (Ref. [7] contains a gen-
eral introduction to phase transitions). Many of these references discuss the ǫ = 4− d
expansion as well as the 1/N expansion.

• The field theoretical approach to critical phenomena is discussed in Refs. [11, 17, 18].

• For a discussion of the NLσM, see Refs. [7, 15, 17,18,28–32,51].

• The BKT phase transitions [33–37] is reviewed e.g. in [7, 15, 38].

• The functional renormalization group (FRG) is discussed at length in chapter 11.
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[30] E. Brézin and J. Zinn-Justin, Renormalization of the Nonlinear σ Model in 2 + ǫ Dimen-

sions—Application to the Heisenberg Ferromagnets, Phys. Rev. Lett. 36, 691 (1976).
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