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In chapter 7 we discussed superfluidity in a dilute Bose gas in the framework of the Bo-
goliubov theory. We found a low-energy mode with linear dispersion (the Bogoliubov sound
mode) and computed the equation of state. In this chapter we show that perturbation the-
ory beyond the Bogoliubov theory is plagued with infrared divergences (Sec. 13.1.2). Even
though it allows us to derive the equation of state in the low-density limit, the Bogoliubov
theory violates some exact identities satisfied by the self-energy and does not enable us
to obtain the infrared behavior of the one-particle propagator (Sec. 13.1.3). In particular,
it misses the divergence of the longitudinal propagator. In this chapter, we discuss two
different approaches which do not suffer from the shortcomings of the Bogoliubov theory:
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858 Chapter 13. Interacting bosons

Popov’s hydrodynamic theory (Sec. 13.2) and the non-perturbative renormalization group
(NPRG) (Sec. 13.3).1 In section 13.4, we use the NPRG to compute the superfluid transi-
tion temperature to leading order in the interactions. Except in this last section, and unless
otherwise specified, we focus on the zero-temperature superfluid phase.

13.1 Breakdown of Bogoliubov’s theory

In section 7.4, we computed the equation of state of a Bose gas and other thermodynamic
quantities to one-loop order (Bogoliubov theory). To do so, it was sufficient to compute the
self-energy to leading (zero-loop) order. In this section, we focus on the self-energy and show
that in the superfluid state perturbation theory breaks down at one-loop order. Predictions
of the Bogoliubov theory regarding the infrared behavior of the one-particle Green function
are therefore not correct.2

Interacting bosons are described by the (Euclidean) action

S =

ˆ β

0

dτ

ˆ

ddr

[

ψ∗

(

∂τ − µ− ∇
2

2m

)

ψ +
g

2
(ψ∗ψ)2

]

, (13.1)

where ψ(x) is a bosonic (complex) field. The interaction is assumed to be local in space and
the model is regularized by a momentum cutoff Λ. We consider a space dimension d > 1
and restrict ourselves to zero temperature (T = 1/β → 0).

It is convenient to introduce the two-component field

Ψ(x) =

(

ψ(x)
ψ∗(x)

)

, Ψ†(x) =
(

ψ∗(x), ψ(x)
)

, (13.2)

where x = (r, τ). The one-particle (connected) propagator becomes a 2 × 2 matrix whose
inverse in Fourier space is given by

G−1(p) =

(

iω + µ− ǫp − Σn(p) −Σan(p)
−Σ∗

an(p) −iω + µ− ǫp − Σn(−p)

)

(13.3)

(with p = (p, iω) and ω a bosonic Matsubara frequency), where Σn and Σan are the normal
and anomalous self-energies, respectively, and ǫp = p2/2m.3

Alternatively, we can write the boson field

ψ(x) =
1√
2
[ψ1(x) + iψ2(x)] (13.4)

in terms of two real fields ψ1 and ψ2 and consider the (connected) propagator Gij(x, x
′) =

−〈ψi(x)ψj(x
′)〉c. The inverse propagator G−1

ij (p) then reads

G−1(p) =

(

−ǫp + µ− Σ11(p) −ω − Σ12(p)
ω − Σ21(p) −ǫp + µ− Σ22(p)

)

. (13.5)

1The NPRG approach is used in the following chapter to study strongly correlated bosons and the
superfluid–Mott-insulator transition in the framework of the Bose-Hubbard model.

2More precisely, we shall see that the predictions of the Bogoliubov theory are essentially correct for the
transverse propagator but not for the longitudinal one.

3See Sec. 1.7.2.
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13.1 Breakdown of Bogoliubov’s theory 859

Σ(0)
n = Σ(0)

an =

Figure 13.1: Normal and anomalous self-energies to zero-loop order [Eq. (13.11)]. The
zigzag line stands for ψ0 or ψ∗

0 and the dot for the interaction vertex g.

The self-energies in (13.3) and (13.5) are related by

Σ11(p) =
1

2
[Σn(p) + Σn(−p)] + ℜ[Σan(p)],

Σ22(p) =
1

2
[Σn(p) + Σn(−p)]−ℜ[Σan(p)],

Σ12(p) =
i

2
[Σn(p)− Σn(−p)] + ℑ[Σan(p)],

Σ21(p) = − i

2
[Σn(p)− Σn(−p)] + ℑ[Σan(p)].

(13.6)

Note that Σan(p) is real when the superfluid order parameter 〈ψ(x)〉 is real.

13.1.1 Bogoliubov’s theory

The Bogoliubov theory is a Gaussian fluctuation theory about the mean-field solution
(Sec. 7.4). The latter is obtained from a saddle-point approximation of the partition func-
tion. For a uniform and time-independent solution ψ(x) = ψ0,

SMF = βV
(

−µn0 +
g

2
n2
0

)

, (13.7)

where n0 = |ψ0|2 is the condensate density (at the mean-field level). Without loss of
generality, we can take ψ0 real. Requiring SMF to be stationary, ∂SMF/∂n0 = 0, we obtain

µ = gn0. (13.8)

To include Gaussian fluctuations about the mean-field solution, we expand the action
to quadratic order in the fluctuation field ψ′(x) = ψ(x)− ψ0,

S[ψ′∗, ψ′] = SMF +
∑

p

{

ψ′∗(p) (−iω − µ+ ǫp + 2gn0)ψ
′(p)

+
gn0
2

[ψ′(−p)ψ′(−p) + c.c.]
}

. (13.9)

The action can be put in the form

S[ψ′∗, ψ′] = SMF − 1

2

∑

p

(

ψ′∗(p), ψ′(−p)
)

G−1(p)

(

ψ′(p)
ψ′∗(−p)

)

, (13.10)

where G−1(p) is the inverse propagator (13.3) with the zero-loop self-energies (Fig. 13.1)

Σ(0)
n (p) = 2gn0 = 2µ, Σ(0)

an (p) = gn0 = µ, (13.11)
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860 Chapter 13. Interacting bosons

Σan = + + + · · ·

Σn = + + + · · ·

Figure 13.2: Normal and anomalous self-energies obtained from figure 13.1 by replacing
the bare interaction vertex g by a renormalized vertex gR obtained by summing bubble
diagrams.

or, equivalently,

Σ
(0)
11 (p) = 3µ, Σ

(0)
22 (p) = µ, Σ

(0)
12 (p) = 0. (13.12)

Equations (13.11) were previously obtained in section 7.4. They yield the propagators

G(0)
n (p) = −〈ψ(p)ψ∗(p)〉c =

−iω − ǫp − µ

ω2 + E2
p

,

G(0)
an (p) = −〈ψ(p)ψ(−p)〉c =

µ

ω2 + E2
p

,
(13.13)

where Ep = [ǫp(ǫp + 2µ)]1/2 is the Bogoliubov quasi-particle excitation energy. When |p|
is larger than the healing momentum ph = (2mµ)1/2, the spectrum Ep ≃ ǫp +µ is particle-

like, whereas it becomes sound-like for |p| ≪ ph with a velocity c =
√

µ/m (ph =
√
2mc).4

In the weak-coupling limit, we can neglect (to leading order) the condensate depletion, i.e.
n0 ≃ n̄ and µ ≃ gn̄ (n̄ is the mean boson density), so that ph can equivalently be defined
as ph = (2gmn̄)1/2. In the hydrodynamic regime |p| ≪ ph,

G
(0)
11 (p) = − ǫp

ω2 + c2p2
, G

(0)
22 (p) = − 2µ

ω2 + c2p2
, G

(0)
12 (p) =

ω

ω2 + c2p2
. (13.14)

Note that in the Bogoliubov approximation, the occurrence of a linear spectrum at low
energy (which implies superfluidity according to Landau’s criterion, see Sec. 7.1), is due to
Σan(0) being nonzero.

In section 7.4, all thermodynamic quantities were expressed in terms of the s-wave
scattering length a with no reference to the (bare) interaction g. This was achieved by
eliminating all dependencies on the ultraviolet cutoff Λ and the interaction g in favor of the
scattering length a ≡ a(g,Λ). A similar procedure can be followed here. We may replace g
by a renormalized interaction gR defined by the sum of the bubble diagrams (Fig. 13.2). In
the low-density limit, these diagrams can be evaluated in the vacuum limit (µ = 0), which
gives

1

gR
=

1

g
+

ˆ

p

1

(iω − ǫp)(−iω − ǫp)
=

1

g
+

ˆ

p

1

2ǫp
. (13.15)

In a three-dimensional system gR = 4πa/m is simply related to the scattering length a,
and we reproduce the results of the Bogoliubov theory to leading order in ma2µ: µ =
gRn̄ = 4πan̄/m, c =

√

gRn̄/m =
√
4πan̄/m, etc. In a two-dimensional system, gR vanishes

logarithmically in vacuum. At finite density, the vanishing is cut off by the nonzero chemical
potential. We will see that gR(µ) ≃ (2π/m)/| ln

√

2ma2µ| (Sec. 13.3.3) which again gives
the results of Bogoliubov’s theory.

4p−1
h is nothing but the healing length ξh introduced in Sec. 7.3.1.
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13.1 Breakdown of Bogoliubov’s theory 861

Figure 13.3: One-loop correction Σ(1) to the self-energy.

13.1.2 Infrared divergences and the Ginzburg scale

Let us now consider the one-loop correction Σ
(1)
ij (p) to the Bogoliubov result Σ

(0)
ij (p) (we use

the representation (13.4) of the boson field) (Fig. 13.3). The first diagram in figure 13.3,5

− g

2

ˆ

q

∑

i1,i2

Gi1i2(q)(δi,jδi1,i2 + δi,i1δj,i2 + δi,i2δj,i1), (13.16)

is always finite. For d ≤ 3 the second one,

−1

2
g2n0

ˆ

q

∑

i1···i4

Gi1i2(q)Gi3i4(p+ q)(δi,1δi2,i3 + δi2,1δi,i3 + δi3,1δi,i2)

× (δj,1δi4,i1 + δi4,1δj,i1 + δi1,1δj,i4), (13.17)

gives a divergent contribution when the two internal lines correspond to transverse fluctua-
tions (i1 = i2 = 2 and i3 = i4 = 2). This is possible only for Σ11, so that Σ22 is finite at the
one-loop level. Thus the normal and anomalous self-energies exhibit the same divergence,

Σ(1)
n (p) ≃ Σ(1)

an (p) ≃ −1

2
g2n0

ˆ

q

G
(0)
22 (q)G

(0)
22 (p+ q), (13.18)

where we use the notation q = (q, iω′) and
´

q
=
´∞

−∞
dω′

2π

´

q
. For small p, the main contri-

bution to the integral in (13.18) comes from momenta |q| . ph and frequencies |ω′| . cph,
so that we can use (13.14) to obtain

Σ(1)
n (p) ≃ Σ(1)

an (p) ≃ −2
g4n30
c3

ˆ

Q

1

Q2(Q+P)2
, (13.19)

where Q = (q, ω′/c) and P = (p, ω/c) are (d + 1)-dimensional vectors. The momentum
integral in (13.19) is restricted by |Q| . ph and is given by (for p→ 0)

ˆ

Q

1

Q2(Q+P)2
=







Ad+1(|p|2 + ω2/c2)(d−3)/2 if d < 3,

A4 ln
ph

√

p2 + ω2/c2
if d = 3, (13.20)

where

Ad =











−21−dπ1−d/2

sin(πd/2)

Γ(d/2)

Γ(d− 1)
if d < 4,

1

8π2
if d = 4,

(13.21)

5We do not write explicitly the convergence factors e±iω0+ in Eq. (13.16) (see chapter 1).
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862 Chapter 13. Interacting bosons

(see Eq. (10.324)).
The one-loop self-energy correction (13.19) diverges for (p, ω) → 0 when d ≤ 3 so that the

perturbation expansion about the Bogoliubov approximation breaks down. By comparing

the one-loop result to the zero-loop one, |Σ(1)
n (p)| ∼ Σ

(0)
n (p) or |Σ(1)

an (p)| ∼ Σ
(0)
an (p) for

|p| = pG and |ω| = cpG, one can define a characteristic (Ginzburg) momentum scale pG
above which the Bogoliubov approximation remains valid,

pG ∼







(Ad+1gmph)
1/(3−d) if d < 3,

ph exp

(

− 1√
2A4gmph

)

if d = 3.
(13.22)

This result can be rewritten as

pG ∼







ph(Ad+1g̃
d/2)1/(3−d) if d < 3,

ph exp

(

− 1

A4

√
2g̃3/2

)

if d = 3,
(13.23)

where

g̃ = gmn̄1−2/d ∼
( ph
n̄1/d

)2

∼
{

(pG/ph)
6/d−2

if d < 3,

[ln(ph/pG)]
−2/3

if d = 3,
(13.24)

is the dimensionless coupling constant obtained by comparing the mean interaction energy
per particle gn̄ to the typical kinetic energy 1/mr̄2 where r̄ ∼ n̄−1/d is the mean distance
between particles. A superfluid is weakly correlated if g̃ ≪ 1, i.e. pG ≪ ph ≪ n̄1/d. In this
case, the Bogoliubov theory applies to a large part of the spectrum where the dispersion is
linear (i.e. |p| . ph) and breaks down only at very small momenta |p| . pG ≪ ph.

6 When
the dimensionless coupling g̃ becomes of order unity, the three characteristic momentum
scales pG ∼ ph ∼ n̄1/d become of the same order. The momentum range [pG, ph] where the
linear spectrum can be described by the Bogoliubov theory is then suppressed. We expect
the strong-coupling regime g̃ & 1 to be governed by a single characteristic momentum scale,
namely n̄1/d.7

13.1.3 Hugenholtz-Pines theorem and infrared limit of the self-energy

Although the one-loop correction Σ(1) diverges when p → 0 for d ≤ 3, it is nevertheless
possible to obtain the exact value of Σ(p = 0) using the U(1) symmetry of the action, i.e.
the invariance under the field transformation

ψ(x) → eiθψ(x) and ψ∗(x) → e−iθψ∗(x). (13.25)

Let us consider the effective action

Γ[φ] = − lnZ[J1, J2] +

ˆ β

0

dτ

ˆ

ddr(J1φ1 + J2φ2), (13.26)

where Ji is an external (real) source which couples linearly to the boson field ψi and φi(x) =
〈ψi(x)〉 the superfluid order parameter (see Secs. 1.6.2 and 1.7.2). The U(1) symmetry

6In the next sections, we shall see that the weakly correlated superfluid bears many similarities with
the ordered phase of the classical O(N) model away from the critical regime (Secs. 10.7.3 and 11.3.3). The
healing scale ph plays the role of the hydrodynamic scale pc introduced in Sec. 10.7.3.

7This situation is realized in the Bose-Hubbard model near a quantum multicritical point where the
transition occurs at fixed density (chapter 14).
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13.1 Breakdown of Bogoliubov’s theory 863

of the action implies that Γ[φ] is invariant under a uniform rotation of the vector field
(φ1(x), φ2(x))

T [Eq. (13.25)]. For an infinitesimal rotation angle θ, this yields
ˆ β

0

dτ

ˆ

ddr
∑

i,j

δΓ[φ]

δφi(x)
ǫijφj(x) = 0, (13.27)

where ǫij is the totally antisymmetric tensor.
Taking the functional derivative δ/δφl(y) and setting φi(x) = δi,1

√
2n0 (which corre-

sponds to 〈ψ(x)〉 = √
n0 real) leads to

Γ
(2)
2l (p = 0) = 0, (13.28)

where Γ
(2)
ij denotes the two-point vertex (Sec. 1.6.2). Γ(2) is related to the one-particle

propagator by the (matrix) equation Γ(2) = −G−1. For l = 2, equation (13.28) yields the
Hugenholtz-Pines theorem

Γ
(2)
22 (p = 0) = Σ22(p = 0)− µ = Σn(p = 0)− Σan(p = 0)− µ = 0, (13.29)

which is nothing but the Goldstone theorem associated with the spontaneously broken U(1)
symmetry in the superfluid state.

If we now take the second-order functional derivative δ(2)/δφl(y)δφm(z) of (13.27) and
set φi(x) = δi,1

√
2n0, we obtain the Ward identity

∑

i

Γ
(2)
im(y, z)ǫil +

∑

i

Γ
(2)
il (z, y)ǫim −

√
2n0

ˆ β

0

dτ

ˆ

ddr Γ
(3)
2lm(x, y, z) = 0. (13.30)

Integrating over y and z and setting l = 2 and m = 1, we deduce

Γ
(3)
122(0, 0, 0) =

1√
βV

Γ
(2)
11 (0, 0)√
2n0

(13.31)

in Fourier space,8 making use of (13.29).
Let us now consider the exact diagrammatic representation of the self-energy shown in

figure 13.4 (see Sec. 1.6.2). We know from perturbation theory that the third diagram is
potentially dangerous when the two internal lines correspond to transverse fluctuations. We
therefore write the self-energy Σ11 as

Σ11(p) = Σ̃11(p)− g

√

n0
2βV

∑

q

G22(q)G22(p+ q)Γ
(3)
122(−p,−q, p+ q), (13.32)

where Σ̃11(p) denotes the regular part of the self-energy (i.e. the part that does not con-
tain pairs of lines corresponding to G22G22). If we assume that the transverse propagator
G22(q) ∼ −1/(ω2 + c2q2) at low energies (this result will be shown in the following sec-
tions), the integral

´

q
G22(q)

2 is infrared divergent for d ≤ 3. To obtain a finite self-energy

Σ11(p = 0), one must therefore require Γ
(3)
122(0, 0, 0) to vanish. The Ward identity (13.31)

then implies Γ
(2)
11 (p = 0) = 0 and in turn

Σn(p = 0) = µ+
1

2

[

Γ
(2)
11 (p = 0) + Γ

(2)
22 (p = 0)

]

= µ,

Σan(p = 0) =
1

2

[

Γ
(2)
11 (p = 0)− Γ

(2)
22 (p = 0)

]

= 0,

(13.33)

8In Eq. (13.31), Γ
(2)
11 (0, 0) ≡ Γ

(2)
11 (p1 = 0, p2 = 0), etc.
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864 Chapter 13. Interacting bosons

Γ(3)

Γ(4) Γ(3)

Γ(3)

Figure 13.4: Exact diagrammatic representation of the self-energy in terms of the three- and
four-leg vertices Γ(3) and Γ(4). Dots represent the bare interaction, zigzag lines the order
parameter, and solid lines the exact propagator.

using the Hugenholtz-Pines theorem (13.29). In marked contrast with Bogoliubov’s approxi-
mation, we find that the anomalous self-energy Σan(p) vanishes for p→ 0 (Nepomnyashchii
identity). We shall see in the next section that this result is not incompatible with the
existence of a sound mode with linear dispersion (Sec. 13.2.3).

13.2 Popov’s hydrodynamic theory

Popov’s hydrodynamic theory is based on the phase-density representation of the boson
field, ψ =

√
neiθ, and bears some similarities with the analysis of the (ϕ2)2 theory using the

amplitude-direction representation (Sec. 10.7.3). It is free of infrared divergence and yields
a simple derivation of the infrared behavior of the normal and anomalous propagators of
the boson field.

13.2.1 Perturbative approach

In terms of the density and phase fields, the action (13.1) reads

S[n, θ] =

ˆ β

0

dτ

ˆ

ddr

{

inθ̇ +
n

2m
(∇θ)2 +

(∇n)2

8mn
− µn+

g

2
n2

}

. (13.34)

At the saddle-point level, n(x) = n̄ = µ/g and θ = const. Expanding the action to second
order in δn = n− n̄, θ̇ and ∇θ, we obtain

S[δn, θ] =

ˆ β

0

dτ

ˆ

ddr

{

iδnθ̇ +
n̄

2m
(∇θ)2 +

(∇δn)2

8mn̄
+
g

2
(δn)2

}

. (13.35)

The equations of motion deduced from the action (13.35) have been discussed in sec-
tion 7.3.1. The dynamics of the system can also be deduced from the correlation functions

G0
nn(p) = 〈δn(p)δn(−p)〉0 =

n̄

m

p2

ω2 + E2
p

,

G0
nθ(p) = 〈δn(p)θ(−p)〉0 = − ω

ω2 + E2
p

,

G0
θθ(p) = 〈θ(p)θ(−p)〉0 =

p2

4mn̄ + g

ω2 + E2
p

,

(13.36)
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13.2 Popov’s hydrodynamic theory 865

G0
θθ(p) = 〈θ(p)θ(−p)〉0 =

G0
nn(p) = 〈δn(p)δn(−p)〉0 =

G0
θn(p) = 〈θ(p)δn(−p)〉0 =

a)

b)

p1

p2

−p1 − p2 = −p1·p2
2m

Figure 13.5: (a) Diagrammatic representation of the propagators obtained from the Gaus-
sian action (13.35). (b) Interaction vertex defined by equation (13.39).

Figure 13.6: Self-energy corrections to the propagators G0
θθ, G

0
nn and G0

θn.

where Ep is the Bogoliubov quasi-particle excitation energy defined in section 13.1.1. The
average 〈· · ·〉0 are taken with the Gaussian action (13.35). In the hydrodynamic regime
|p| ≪ ph =

√
2gmn̄,

G0
nn(p) =

n̄

m

p2

ω2 + c2p2
, G0

nθ(p) = − ω

ω2 + c2p2
, G0

θθ(p) =
mc2

n̄

1

ω2 + c2p2
, (13.37)

where c =
√

µ/m =
√

gn̄/m is the Bogoliubov sound mode velocity (ph =
√
2mc).

Contrary to the perturbation theory discussed in section 13.1, the perturbation theory
based on the phase-density representation is free of infrared divergences. Let us consider
the terms not included in the Gaussian action (13.35),

Sint[δn, θ] =

ˆ β

0

dτ

ˆ

ddr

{

δn

2m
(∇θ)2 +

(∇δn)2

8m

(

1

δn+ n̄
− 1

n̄

)}

=

ˆ β

0

dτ

ˆ

ddr

{

δn

2m
(∇θ)2 − δn(∇δn)2

8mn̄2
+ · · ·

}

. (13.38)

The most important term in Sint is the first one since it involves the (Goldstone) phase
variable. Thus, in Fourier space, we obtain

Sint[δn, θ] = − 1√
βV

∑

p1,p2

p1 · p2

2m
θ(p1)θ(p2)δn(−p1 − p2) + · · · (13.39)

The basic ingredients (propagators and interaction vertex) appearing in the perturbation
theory are shown diagrammatically in figure 13.5. The one-loop self-energy corrections
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866 Chapter 13. Interacting bosons

to G0
θθ, G

0
nn and G0

θn are shown in figure 13.6. It is easy to show that the perturbation
theory has no infrared divergences. The singularities of the propagators are canceled out
by the factor p1 · p2/2m coming from the vertex. Let us consider for example the one-loop
correction to G0

nn(p) (which is the most dangerous one since it involves G0
θθG

0
θθ). It is

proportional to
1

m2βV

∑

p′

[p′ · (p+ p′)]2G0
θθ(p

′)G0
θθ(p+ p′) (13.40)

and is manifestly convergent.Phase-only action
and Beliaev’s
damping?

13.2.2 Exact hydrodynamic description

Equations (13.37) are in fact exact in the low-energy limit |p|, |ω|/c≪ ph provided that c is
the exact sound mode velocity and n̄ the actual mean density (which may differ from µ/g).
Let us consider the effective action

Γ[n, θ] = − lnZ[Jn, Jθ] +

ˆ β

0

dτ

ˆ

ddr(Jnn+ Jθθ) (13.41)

defined as the Legendre transform of the free energy − lnZ[Jn, Jθ]. Jn and Jθ are external
sources that couple to n and θ.9 Since the microscopic action (13.34) is invariant in the
(semilocal) transformation

ψ(x) → ψ(x)eiα(τ), ψ∗(x) → ψ∗(x)e−iα(τ), µ→ µ+ i∂τα(τ) (13.42)

(α(τ) is an arbitrary time-dependent phase), the effective action Γ[n, θ] must be invariant
in the transformation

θ(x) → θ(x) + α(τ), µ→ µ+ i∂τα(τ) (13.43)

and the chemical potential must appear in the combination i∂τθ − µ. Moreover, at zero
temperature, Galilean invariance implies the invariance of the effective action in the trans-
formation

n′(x′) = n(x), θ′(x′) = θ(x)− i

2
mv2τ −mv · r (13.44)

(see Sec. 2.2.5), where r′ = r+ ivτ and τ ′ = τ . n(x) and its space derivatives are invariant
(but ∂τn is not) as well as i∂τθ +

1
2m (∇θ)2.

Thus, including all second-order derivatives, the most general effective action compatible
with symmetries reads10

Γ[n, θ] =

ˆ β

0

dτ

ˆ

ddr

{

Y (n)

8m
(∇n)2 + U(n) +

2
∑

p=1

cp(n)
[

i∂τθ − µ+
1

2m
(∇θ)2

]p
}

, (13.45)

up to an additive (field-independent) term. Y (n), U(n) and cp(n) are arbitrary functions
of n. By considering the mean boson density11

n̄ =
1

βV

d ln[Jn, Jθ]

dµ

∣

∣

∣

∣

Jn=Jθ=0

= − 1

βV

dΓ[n, θ]

dµ

∣

∣

∣

∣

n(x)=n̄,θ(x)=const

, (13.46)

9To alleviate the notations, we use the same symbols (n and θ) for the density and phase fields in S[n, θ]
and their average values in Γ[n, θ].

10∇
2θ is also invariant in the (semilocal) U(1) and Galilean transformations but is odd under time-reversal

symmetry.
11Since δΓ[n, θ]/δn(x) vanishes for n(x) = n̄ and θ(x) = const, dΓ[n̄, θ]/dµ = ∂Γ[n̄, θ]/∂µ where ∂µ does

not act on n̄ ≡ n̄(µ).
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13.2 Popov’s hydrodynamic theory 867

we obtain c1(n) = n and c2(n) = 0. We conclude that

Γ[n, θ] =

ˆ β

0

dτ

ˆ

ddr

{

Y (n)

8m
(∇n)2 + U(n) + n

[

i∂τθ − µ+
(∇θ)2

2m

]}

(13.47)

to second order in derivatives.
From (13.47), we obtain the two-point vertex in constant fields n(x) = n̄ and θ(x) =

const (with n̄ the actual boson density),

Γ(2)(p) =

(

Γ
(2)
nn(p) Γ

(2)
nθ (p)

Γ
(2)
θn (p) Γ

(2)
θθ (p)

)

=







Y (n̄)

4m
p2 + U ′′(n̄) ω

−ω n̄

m
p2






. (13.48)

By inverting Γ(2)(p), we recover the propagators (13.37) in the small momentum limit
|p| ≪ ph = [2mU ′′(n̄)/Y (n̄)]1/2 but with a sound mode velocity c given by

c =

√

n̄U ′′(n̄)

m
. (13.49)

Noting that the compressibility κ = n̄−2dn̄/dµ can also be expressed as12

κ =
1

n̄2U ′′(n̄)
, (13.50)

we conclude that the Bogoliubov sound mode velocity c is equal to the macroscopic sound
velocity (mn̄κ)−1/2.

The superfluid density can be defined as the rigidity of the system wrt a twist of the
order parameter (see Eq. (7.41) in Sec. 7.2.2), i.e.

Γ
(2)
θθ (p, 0) =

ns
m

p2 (p → 0). (13.51)

From (13.48) we then deduce that the superfluid density ns = n̄ is given by the fluid density
at zero temperature (see also Sec. 7.1).

13.2.3 Normal and anomalous propagators

To compute the propagator of the ψ field, we write

ψ(x) =
√

n0 + δn(x)eiθ(x), (13.52)

where n0 = |〈ψ(x)〉|2 = |〈
√

n(x)eiθ(x)〉|2 is the condensate density. For a weakly interacting
superfluid at zero temperature, n0 ≃ n̄, and we expect the fluctuations δn to be small.
Let us assume that the superfluid order parameter 〈ψ(x)〉 =

√
n0 is real. Transverse and

longitudinal fluctuations are then expressed as

δψ2 =
√
2n0θ + · · ·

δψ1 =
δn√
2n0

−
√

n0

2
θ2 + · · ·

(13.53)

12Equation (13.50) is the usual expression of the compressibility of a system with free energy density U(n̄)
in the canonical ensemble [Eq. (3.108)].
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868 Chapter 13. Interacting bosons

where the ellipses stand for subleading contributions to the low-energy behavior of the
correlation functions. ψ1 and ψ2 refer to the real and imaginary parts of the boson field
[Eq. (13.4)]. For the transverse propagator, we obtain

G22(p) ≃ −2n0Gθθ(p) = −2n0mc
2

n̄

1

ω2 + c2p2
(13.54)

to leading order in the hydrodynamic regime, while

G12(p) ≃ −Gnθ(p) =
ω

ω2 + c2p2
. (13.55)

The longitudinal propagator is given by

G11(x) = − 1

2n0
Gnn(x)−

n0
2
〈θ(x)2θ(0)2〉c

= − 1

2n0
Gnn(x)− n0Gθθ(x)

2, (13.56)

where the second line is obtained using Wick’s theorem (which is justified since the Gold-
stone (phase) mode is effectively non-interacting in the hydrodynamic limit). In Fourier
space,

G11(p) = − n̄

2mn0

p2

ω2 + c2p2
− n0Gθθ ⋆ Gθθ(p), (13.57)

where

Gθθ ⋆ Gθθ(p) =

ˆ

q

Gθθ(q)Gθθ(p+ q) (13.58)

with the dominant contribution to the integral coming from momenta |q| . ph and frequen-
cies |ω′|/c . ph. Using (13.21), we find

Gθθ ⋆ Gθθ(p) =











Ad+1c
(m

n̄

)2 (

p2 + ω2

c2

)(d−3)/2

if d < 3,

A4

2 c
(m

n̄

)2

ln

(

p2
h

p2+ω2

c2

)

if d = 3.
(13.59)

By comparing the two terms in the rhs of (13.57), we recover the Ginzburg scale (13.22).
For |p| ≫ pG or |ω|/c ≫ pG, the last term in the rhs of (13.57) can be neglected and we
reproduce the result of the Bogoliubov theory (noting that n̄ ≃ n0),

13 while

G11(p) ∼ − 1

(ω2 + c2p2)(3−d)/2
for |p|, |ω|/c≪ pG (13.60)

is dominated by phase fluctuations. The longitudinal susceptibility G11(p, iω = 0) ∼
−1/|p|3−d diverges for p → 0 in contrast to the Bogoliubov approximation whereG11(p, iω =
0) = −1/2mc2 for |p| ≪ ph. The divergence of G11 is similar to that of the longitudinal
propagator in the broken-symmetry phase of the classical O(N) model [Eq. (10.337)].14

13The Bogoliubov theory predicts G11(p) = −ǫp/(ω2 + c2p2) for |p| ≪ ph.
14Equation (13.60) follows from G‖(p → 0) ∼ −1/|p|4−d (longitudinal propagator in the ordered phase

of the classical O(N) model) by replacing d by d + 1 (which accounts for the imaginary-time dimension)
and p

2 by p
2 + ω2/c2. Note that the definition of Gij in chapter 10 differs from that used in this chapter

by a minus sign.
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13.2 Popov’s hydrodynamic theory 869

From these results, we deduce the hydrodynamic behavior of the normal propagator
Gn(p) = −〈ψ(p)ψ∗(p)〉,

Gn(p) =
1

2
[G11(p)− 2iG12(p) +G22(p)]

= − n0mc
2

n̄

1

ω2 + c2p2
− iω

ω2 + c2p2
+

1

2
G11(p), (13.61)

as well as that of the anomalous propagator Gan(p) = −〈ψ(p)ψ(−p)〉,

Gan(p) =
1

2
[G11(p)−G22(p)] =

n0mc
2

n̄

1

ω2 + c2p2
+

1

2
G11(p), (13.62)

where G11(p) is given by (13.57). As will be shown in section 13.3 the leading order terms
in (13.61) and (13.62) (coming from G22) are exact. They coincide with the predictions
of the Bogoliubov theory if n0 is identified with n̄. The iω term is also obtained from the
Bogoliubov theory but a factor (mc2/n̄)dn0/dµ is missing in (13.61) (see Sec. 13.3.1). On
the other hand, the Bogoliubov theory misses the divergence of the longitudinal propagator.

13.2.3.1 Normal and anomalous self-energies

To compute the self-energies Σn(p) and Σan(p), we use the relations

Σn(p) = G−1
0 (p)− Gn(−p)

Gn(p)Gn(−p)−Gan(p)2
,

Σan(p) =
Gan(p)

Gn(p)Gn(−p)−Gan(p)2
,

(13.63)

with G−1
0 (p) = iω − ǫp + µ and

Gn(p)Gn(−p)−Gan(p)
2 = G11(p)G22(p) +G12(p)

2

= G22(p)

[

n0Gθθ ⋆ Gθθ(p) +
n̄

2n0mc2

]

. (13.64)

Setting

Gn(p) ≃
1

2
G22(p), Gan(p) ≃ −1

2
G22(p) (13.65)

in the numerator of equations (13.63), we obtain

Σan(p) = Σn(p)−G−1
0 (p)

=















n̄2

2Ad+1c4−dn0m2
(ω2 + c2p2)(3−d)/2 if d < 3,

n̄2

A4cn0m2

[

ln
(

c2p2
h

ω2+c2p2

)]−1

if d = 3,

(13.66)

in the infrared limit |p|, |ω|/c≪ pG. Equations (13.66) agree with the exact results (13.33),
and show that Σn(p)−G−1

0 (p) and Σan(p) are dominated by non-analytic terms for p→ 0.
Let us now show that these results for the self-energies yield a sound mode with linear

dispersion in the low-energy limit. In the low-energy limit, the self-energies (13.63) can be
written as

Σn(p)−G−1
0 (p) = ∆Σ(p) + Σ̃n(p),

Σan(p) = ∆Σ(p) + Σ̃an(p),
(13.67)
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870 Chapter 13. Interacting bosons

where ∆Σ(p) denotes the singular part (13.66) while Σ̃n(p) and Σ̃an(p) are regular contribu-
tions of order p2, ω2. Using ∆Σ(p) ≫ Σ̃n(p)−G−1

0 (p), Σ̃an(p) for p→ 0 and inverting (13.3),
we obtain

Gn(p) = − ∆Σ(p) + Σ̃n(p)

2∆Σ(p)[Σ̃n(p)− Σ̃an(p)] + Σ̃n(p)2 − Σ̃an(p)2

≃ − 1

2[Σ̃n(p)− Σ̃an(p)]
(13.68)

and

Gan(p) =
∆Σ(p) + Σ̃an(p)

2∆Σ(p)[Σ̃n(p)− Σ̃an(p)] + Σ̃n(p)2 − Σ̃an(p)2

≃ 1

2[Σ̃n(p)− Σ̃an(p)]
(13.69)

to leading order. Since both Σ̃n(p) and Σ̃an(p) can be expanded to order p2, ω2, we conclude
that equations (13.68) and (13.69) predict the existence of a sound mode with linear disper-
sion. Of course, these equations are nothing but (13.54) and (13.65). As for the longitudinal
propagator, we obtain

G11(p) =
1

2
[Gn(p) +Gn(−p)] +Gan(p) ≃ − 1

2Σan(p)
(13.70)

for p→ 0. Thus we conclude that the singularity of the longitudinal propagator is directly
related to the vanishing of the anomalous self-energy. A similar result has been obtained in
the ordered phase of the classical O(N) model (Sec. 10.7.3).

A crucial point to obtain a sound mode despite the vanishing of Σan(p = 0) is the
cancellation of the iω term of G−1

0 (p) by the self-energy Σn(p). In the following section, we
shall see that indeed the superfluid phase exhibits a relativistic (Lorentz) invariance at low
energies.

In deriving the low-energy expression (13.66) of the self-energies, we have assumed
that the hydrodynamic description holds up to the momentum scale ph and ignored
the contribution of the non-hydrodynamic modes. In Popov’s original approach [13],
one introduces a momentum cutoff p0 satisfying pG ≪ p0 ≪ ph. Since p0 ≫ pG,
modes with momenta |p| ≥ p0 can be taken into account within standard perturbation
theory (see Sec. 13.1). On the other hand, low-momentum modes |p| ≤ p0 ≪ ph are
naturally treated in the hydrodynamic approach discussed in this section. The final
results are independent of p0. The only difference with our results (13.66) is that ph
in the expression of the self-energy for d = 3 [Eq. (13.66)] is replaced by a smaller
momentum scale.

13.2.4 One-dimensional interacting bosons
A faire!

13.3 Non-perturbative RG approach

In this section, we show how the NPRG enables us to overcome the difficulties of the
perturbative approach (Sec. 13.1) and determine the exact infrared behavior of the one-
particle propagator. We closely follow the NPRG approach to the classical O(N) model
(chapter 11).15

15As in the preceding sections, we focus on the T = 0 superfluid phase (unless otherwise specified).
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13.3 Non-perturbative RG approach 871

To implement the NPRG approach, we add the action (13.1) the infrared regulator term

∆Sk[ψ
∗, ψ] =

ˆ β

0

dτdτ ′
ˆ

ddrddr′ψ∗(x)Rk(x− x′)ψ(x′)

=
∑

p

ψ∗(p)Rk(p)ψ(p) (13.71)

and consider the k-dependent effective action

Γk[φ
∗, φ] = − lnZk[J

∗, J ] +

ˆ β

0

dτ

ˆ

ddr(J∗φ+ c.c.)−∆Sk[φ
∗, φ], (13.72)

where

φ(x) = 〈ψ(x)〉 = δ lnZ[J∗, J ]

δJ(x)
(13.73)

is the superfluid order parameter. J denotes a complex external source that couples linearly
to the boson field ψ. Γk satisfies the RG equation16

∂kΓ[φ
∗, φ] =

1

2
Tr
[

∂kRk

(

Γ
(2)
k [φ∗, φ] +Rk

)−1
]

, (13.74)

where Γ
(2)
k is the second-order functional derivative of Γk. In Fourier space, the trace

in (13.74) involves a sum over frequencies and momenta as well as a trace over the two
components (real and imaginary parts) of the complex field φ.

As in chapter 11, we choose the cutoff function Rk such that all fluctuations are sup-
pressed for k = Λ (so that ΓΛ[φ

∗, φ] = S[φ∗, φ]) and Rk=0(p) = 0. Rk(p) can act only on
momenta or on both momenta and frequencies, i.e.

Rk(p) = ZA,kǫpr

(

p2

k2

)

(13.75)

or

Rk(p) =
ZA,k

2m

(

p2 +
ω2

c2Λ

)

r

(

p2

k2
+

ω2

c2Λk
2

)

. (13.76)

The k-dependent variable ZA,k is defined below. A natural choice for the velocity cΛ would
be the actual (k-dependent) Goldstone mode velocity ck as in the quantum O(N) model
(Sec. 12.4). In the weak coupling limit, however, ck renormalizes only weakly and is well
approximated by its initial value cΛ =

√

µ/m. In general it is preferable to use a frequency-
independent cutoff function which not does violate the causality of the propagator in the
vacuum (µ ≤ 0 and T = 0).17 This is true in particular when one studies the thermody-
namics of the dilute Bose gas, whose universality follows from the existence of a quantum
critical point between the vacuum (µ ≤ 0) and the superfluid phase (µ ≥ 0) (see Sec. 7.4.4).
On the other hand, we will see that the infrared behavior of the propagator in the superfluid
phase is best understood using a “relativistic” cutoff such as (13.76).

16The derivation of Eq. (13.74) is similar to that of (11.30).
17In vacuum, the propagator G(p, τ) ∝ Θ(τ) is retarded.
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13.3.1 Derivative expansion

We consider the ansatz

Γk[φ
∗, φ] =

ˆ β

0

dτ

ˆ

ddr
[

φ∗
(

ZC,k∂τ − VA,k∂
2
τ − ZA,k

2m
∇

2
)

φ+ Uk(n)
]

(13.77)

based on a derivative expansion.18 It is similar to the LPA’ discussed for the classical O(N)
model in section 11.3. The effective action (13.77) contains a second-order time-derivative
term which is not present in the initial condition. We shall see that this term plays a
crucial role when d ≤ 3. Because of the U(1) symmetry of the microscopic action (13.1),
the effective potential Uk(n) is a function of the condensate density n = |φ|2. Its minimum
determines the condensate density n0,k and the thermodynamics potential per unit volume
U(n0,k) in the equilibrium state. The initial condition is given by19

UΛ(n) = −µn+
g

2
n2, ZA,Λ = ZC,Λ = 1, VA,Λ = 0. (13.78)

It is convenient to write the boson field

φ =
1√
2
(φ1 + iφ2) (13.79)

in terms of two real fields φ1 and φ2. The effective action then reads

Γk[φ] =

ˆ β

0

dτ

ˆ

ddr

{

1

2

∑

j,j′

φj
[

iǫj,j′ZC,k∂τ

− δj,j′

(

VA,k∂
2
τ + ZA,k

∇
2

2m

)

]

φj′ + Uk(n)

}

, (13.80)

where ǫj,j′ is the antisymmetric tensor and n = 1
2 (φ

2
1+φ

2
2). The two-point vertex is defined

as

Γ
(2)
k,ij [x;x

′;φ] =
δ(2)Γk[φ]

δφi(x)δφj(x′)
(13.81)

and is related to the one-particle propagator by20

Gk[φ] = −
(

Γ
(2)
k [φ] +Rk

)−1
(13.82)

(see Sec. 11.1.1). Because of the U(1) symmetry, the two-point vertex in a constant (i.e.
uniform and time-independent) field takes the form21

Γ
(2)
k,ij(p;φ) = δi,jΓA,k(p;n) + φiφjΓB,k(p;n) + ǫi,jΓC,k(p;n), (13.83)

18For a discussion of the symmetries of the effective action, see Appendix 13.A.1.
19Stricto sensu, the initial condition of the RG flow is not given by the mean-field solution ΓΛ = S since

RΛ < ∞ (see remark 1 in the discussion page 726). In the end, however, all physical properties will be
expressed in terms of “infrared” quantities (boson density, superfluid density, scattering length, etc.) with
no reference to the microscopic action.

20The minus sign in (13.82) is due to the definition of the one-particle propagator Gij(x, x
′) =

−〈ψi(x)ψj(x
′)〉 which differs from that used in chapter 11.

21δi,j , φiφj and ǫi,j are the three tensors that one can form from the two-dimensional vector (φ1, φ2)T .
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where ΓA,k, ΓB,k and ΓC,k are functions of the condensate density n. Parity and time-
reversal invariance imply22

ΓA,k(p;n) = ΓA,k(−p;n) = ΓA,k(p,−iω;n),
ΓB,k(p;n) = ΓB,k(−p;n) = ΓB,k(p,−iω;n),
ΓC,k(p;n) = −ΓC,k(−p;n) = −ΓC,k(p,−iω;n).

(13.84)

With the ansatz (13.80), we find

ΓA,k(p;n) = ZA,kǫp + VA,kω
2 + U ′

k(n),

ΓB,k(p;n) = U ′′
k (n), ΓC,k(p;n) = ZC,kω,

(13.85)

in agreement with the general symmetry properties (13.84).
The functions ΓA, ΓB and ΓC can be related to the normal and anomalous self-energies.

For a constant and real field φ(x) =
√
n, i.e. φi(x) = δi,1

√
2n,

Σk,n(p;n)−G−1
0 (p) = ΓA,k(p;n) + nΓB,k(p;n)− iΓC(p;n)

= U ′
k(n) + nU ′′

k (n) + ZA,kǫp − ZC,kiω + VA,kω
2, (13.86)

and the anomalous self-energy

Σk,an(p;n) = nΓB(p;n) = nU ′′
k (n) (13.87)

is real.

13.3.1.1 Hugenholtz-Pines theorem, sound mode velocity and superfluid den-

sity

From the effective action (13.80), we can extract the main physical properties of the super-
fluid phase. The condensate density n0,k is defined by U ′

k(n0,k) = 0. Using equations (13.86)
and (13.87), we then deduce

Σk,n(p = 0;n0,k)− Σk,an(p = 0;n0,k) = µ, (13.88)

which is nothing but the Hugenholtz-Pines theorem (Sec. 13.1.3).
The excitation spectrum is obtained from the zeros of the determinant of the 2×2 matrix

Γ
(2)
k (p;n0,k) (after analytic continuation iω → ω + i0+),

det Γ
(2)
k (p;n0,k) = ΓA,k(p;n0,k)[ΓA,k(p;n0,k) + 2n0,kΓB,k(p;n0,k)] + ΓC,k(p;n0,k)

2

≃ 2n0,kΓA,k(p;n0,k)ΓB,k(p;n0,k) + ΓC,k(p;n0,k)
2, (13.89)

The last result is valid in the low-energy limit |p| ≪ ph (ph is the healing momentum
scale; see Sec. 13.3.3) where (as we shall see) ΓA,k(p;n0,k) ≪ 2n0,kΓB,k(p;n0,k). Using
U ′
k(n0,k) = 0, we obtain

det Γ
(2)
k (p;n0,k) = 2n0,kλk(ZA,kǫp + VA,kω

2) + (ZC,kω)
2, (13.90)

22Time-reversal invariance follows from the invariance of the microscopic action (13.1) under ψ(r, τ) ↔
ψ∗(r,−τ). This implies Γ

(2)
k,ij(p, iω;φ) = (2δi,j−1)Γ

(2)
k,ij(p,−iω;φ∗) where φ = (φ1, φ2) and φ∗ = (φ1,−φ2).
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where λk = U ′′
k (n0,k). We deduce the existence of a Goldstone mode (the Bogoliubov sound

mode) with velocity

ck =

(

ZA,k/2m

VA,k + Z2
C,k/2λkn0,k

)1/2

. (13.91)

From det Γ
(2)
k (p;n0,k) = 0, we also obtain a gapped mode, with a gap which is larger than ckk

and therefore outside the domain of validity of the derivative expansion (|p|, |ω|/ck ≪ k).

The existence of two modes in the superfluid phase follows from det Γ
(2)
k (p) being of order

ω4. Pushing the derivative expansion to higher order in ω2 would yield additional modes,
beyond the domain of validity of the derivative expansion.

The superfluid density ns,k is defined by the rigidity against a (static) twist of the phase
of the order parameter. If φ(r) =

√

2n0,k(cos θ(r), sin θ(r)) varies slowly in space, the
effective action increases by

∆Γk =
1

2

∑

p

ΓA,k(p;n0,k)φ2(−p)φ2(p)

= n0,k

∑

p

ΓA,k(p, iω = 0;n0,k)θ(−p)θ(p)

= β
ZA,kn0,k

2m

ˆ

ddr(∇θ)2 (13.92)

to lowest order in ∇θ. Comparing with (7.41), we deduce

ns,k = ZA,kn0,k. (13.93)

13.3.1.2 Symmetries and thermodynamic relations

At zero temperature and in the superfluid phase, Galilean invariance and gauge invariance
imply the following Ward identities (see Appendix 13.A.2)

ZA,k =
∂

∂ǫp
ΓA,k(p;n0,k)

∣

∣

∣

p=0
=

n̄k
n0,k

,

VA,k =
∂

∂ω2
ΓA,k(p;n0,k)

∣

∣

∣

p=0
= − 1

2n0,k

∂2Uk

∂µ2

∣

∣

∣

∣

n0,k

,

ZC,k =
∂

∂ω
ΓC,k(p;n0,k)

∣

∣

∣

p=0
= − ∂2Uk

∂µ∂n

∣

∣

∣

∣

n0,k

,

(13.94)

where we consider the effective potential Uk(µ, n) as a function of the two independent
variables µ and n. The condensate density n0,k ≡ n0,k(µ) is then defined by

∂Uk

∂n

∣

∣

∣

∣

n0,k

= 0, (13.95)

while the mean boson density n̄k is obtained from

n̄k = − d

dµ
Uk(µ, n0,k) = −∂Uk

∂µ

∣

∣

∣

∣

n0,k

−∂Uk

∂n

∣

∣

∣

∣

n0,k

dn0,k

dµ
= −∂Uk

∂µ

∣

∣

∣

∣

n0,k

, (13.96)
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where d/dµ is a total derivative. Equation (13.95) being valid for any µ, we deduce

0 =
d

dµ

∂Uk

∂n

∣

∣

∣

∣

n0,k

=
∂2Uk

∂µ∂n

∣

∣

∣

∣

n0,k

+
∂2Uk

∂n2

∣

∣

∣

∣

n0,k

dn0,k
dµ

. (13.97)

From equations (13.94) and (13.97), we finally obtain

ns,k = ZA,kn0,k = n̄k, VA,k = − 1

2n0,k

∂2Uk

∂µ2

∣

∣

∣

∣

n0,k

, ZC,k = λk
dn0,k
dµ

. (13.98)

We recover the fact that the superfluid density is given by the full density at zero temper-
ature (see Secs. 7.1 and 13.2.2).

The compressibility κk = n̄−2
k dn̄k/dµ is given by

n̄2kκk = −∂
2Uk

∂µ2

∣

∣

∣

∣

n0,k

− ∂2Uk

∂µ∂n

∣

∣

∣

∣

n0,k

dn0,k

dµ
= 2n0,kVA,k +

Z2
C,k

λk
, (13.99)

which implies that the Bogoliubov sound mode velocity (13.91) takes the form

ck =

(

ns,k

mκkn̄2
k

)1/2

. (13.100)

Since ns,k = n̄k at zero temperature, the Bogoliubov sound mode velocity coincides with
the the macroscopic sound velocity 1/(mκkn̄k)

1/2.

13.3.2 Infrared behavior in the superfluid phase

As pointed out in section 11.2, the derivation expansion is correct only for momenta and
frequencies satisfying |p|, |ω|/ck ≪ k. It is nevertheless possible to obtain the infrared
behavior of the one-particle Green function by stopping the flow at a finite value k of order
max(|p|, |ω|/ck). In this section, we show that this can be done without actually solving
the RG equations (this will be done in Sec. 13.3.3).

Let us consider the anomalous self-energy Σk,an(p;n0,k) = λkn0,k in the equilibrium
state (Eq. (13.87) with U ′′

k (n0,k) = λk). Since Σk=0,an(p = 0;n0,k=0) = 0 [Eq. (13.33)], λk
must vanish when k → 0. Furthermore, assuming that the result obtained from Popov’s
hydrodynamic theory [Eq. (13.66)] is correct, we expect that

λk ∼
{

k3−d for d < 3,
| ln k|−1 for d = 3,

(13.101)

when k → 0. If we assume that the p dependence of the anomalous self-energy can
be retrieved by stopping the flow at k ∼

√

p2 + ω2/c2, then equation (13.66) follows
from (13.101) (c ≡ ck=0). The hypothesis (13.101) (which will be confirmed in section 13.3.3)
is sufficient, when combined with the thermodynamic relations (13.98), to obtain the ex-
act infrared behavior of the one-particle propagator. Furthermore we will see that this
hypothesis is internally consistent.

Since thermodynamic quantities, including the condensate “compressibility” dn0,k/dµ
must remain finite in the limit k → 0, we deduce from (13.98) that ZC,k ∼ λk ∼ k3−d

vanishes in the infrared limit. It follows that

lim
k→0

ck = lim
k→0

(

ZA,k

2mVA,k

)1/2

. (13.102)
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Both ZA,k = n̄k/n0,k and the macroscopic sound velocity ck being finite at k = 0, VA,k

(which vanishes in the Bogoliubov approximation) must be nonzero when k → 0. The
suppression of ZC,k, together with a finite value of VA,k, shows that the effective action
Γk exhibits a “relativistic” (Lorentz) invariance in the infrared limit and therefore becomes
equivalent to that of the classical O(2) model in dimension d+1. In the ordered phase, the
coupling constant of this model vanishes as λk ∼ k4−(d+1) (Sec. 11.3.3), which is nothing
but our starting assumption (13.101). Thus, for k → 0, we find that the existence of a linear
spectrum is due to the relativistic form of the action rather than a nonzero value of λk as
in the Bogoliubov theory.

We are now in a position to obtain the k → 0 limit of the propagator in the zero-
temperature superfluid phase. The one-particle propagator in a constant field can be written
in a form similar to (13.83) or in terms of its longitudinal and transverse components,

Gk,ij(p;φ) =
φiφj
2n

Gk,ll(p;n) +

(

δi,j −
φiφj
2n

)

Gk,tt(p;n) + ǫijGk,lt(p;n), (13.103)

where23

Gk,ll(p;n) = −ΓA,k(p;n)

Dk(p)
,

Gk,tt(p;n) = −ΓA,k(p;n) + 2nΓB,k(p;n)

Dk(p)

Gk,lt(p;n) =
ΓC,k(p;n)

Dk(p)
,

(13.104)

with Dk = Γ2
A,k + 2nΓA,kΓB,k + Γ2

C,k. For a real field (φi = δi,1
√
2n), Gll, Gtt and Glt can

be identified with G11, G22 and G12, respectively. Using (13.85) and (13.98), we obtain

Gk,ll(p;n0,k) = − 1

2λkn0,k
,

Gk,tt(p;n0,k) = − 1

VA,k(ω2 + c2kp
2)

= −2mc2kn0,k
n̄k

1

ω2 + c2kp
2
,

Gk,lt(p;n0,k) =
1

2λkn0,k

ZC,kω

VA,k(ω2 + c2kp
2)

=
dn0,k

dµ

mc2k
n̄k

ω

ω2 + c2kp
2
.

(13.105)

Since thermodynamic quantities are not expected to flow in the infrared limit (see Sec. 13.3.3),
they can be approximated by their k = 0 values. As for the longitudinal propagator Gk=0,ll,
its value is obtained from the replacement λk → C(ω2 + c2p2)(3−d)/2 (with C a constant).
We finally obtain

Gn(p;n0) = −mc
2n0

n̄

1

ω2 + c2p2
− dn0

dµ

mc2

n̄

iω

ω2 + c2p2
+

1

2
Gll(p;n0),

Gan(p;n0) =
mc2n0

n̄

1

ω2 + c2p2
+

1

2
Gll(p;n0),

(13.106)

for k = 0, where

Gll(p;n0) = − 1

2n0C(ω2 + c2p2)(3−d)/2
(13.107)

23As discussed in chapter 11 (see, e.g., footnote 29 page 749), we define here the physical propagator as

−Γ
(2)−1
k rather than −(Γ

(2)
k +Rk)

−1.
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and n0 ≡ n0,k=0, c ≡ ck=0, etc. The divergence of Gll(p;n0) for p → 0 is logarithmic when
d = 3.

13.3.3 RG flows

The conclusions of the preceding section can be obtained more rigorously from the RG
equation satisfied by the effective action. To simplify the analysis, we truncate the effective
potential,

Uk(n) =











U0,k +
λk
2
(n− n0,k)

2 if n0,k > 0,

U0,k + δkn+
λk
2
n2 if n0,k = 0,

(13.108)

where δk = U ′
k(n0,k) and λk = U ′′

k (n0,k) (δk vanishes in the superfluid phase). The derivation
of the flow equations is similar to the case of the (classical) O(N) model and we only give
the final results:24

∂tn0,k =
3

2
Ik,ll +

1

2
Ik,tt if n0,k > 0,

∂tδk = − 2λkIk,ll if n0,k = 0,

∂tλk = − λ2k
[

9Jk;ll,ll(0)− 6Jk;lt,lt(0) + Jk;tt,tt(0)
]

,

(13.109)

and

∂tZA,k = − 2λ2kn0,k
∂

∂ǫp

[

Jk;ll,tt(p) + Jk;tt,ll(p) + 2Jk;lt,lt(p)
]

∣

∣

∣

p=0
,

∂tZC,k = 2λ2kn0,k
∂

∂ω

[

Jk;tt,lt(p)− Jk;lt,tt(p)− 3Jk;ll,lt(p) + 3Jk;lt,ll(p)
]

∣

∣

∣

p=0
,

∂tVA,k = − 2λ2kn0,k
∂

∂ω2

[

Jk;ll,tt(p) + Jk;tt,ll(p) + 2Jk;lt,lt(p)
]

∣

∣

∣

p=0
,

(13.110)

where

Ik,α =

ˆ

q

∂̃tGk,α(q;n0,k),

Jk,αβ(p) =

ˆ

q

[∂̃tGk,α(q;n0,k)]Gβ(p+ q;n0,k),

(13.111)

with α, β = ll, tt, lt and ∂̃t = (∂tRk)∂Rk
. It is sometimes convenient to rewrite these

equations with the dimensionless variables

ñ0,k = k−dZC,kn0,k, δ̃k = Z−1
A,kǫ

−1
k δk,

λ̃k = kdǫ−1
k Z−1

A,kZ
−1
C,kλk, ṼA,k = ǫkZA,kZ

−2
C,kVA,k.

(13.112)

We then obtain

∂tñ0,k = − (d+ ηC,k)ñ0,k +
3

2
Ĩk,ll +

1

2
Ĩk,tt if ñ0,k > 0,

∂tδ̃k = (ηA,k − 2)δ̃k − 2λ̃k Ĩk,ll if ñ0,k = 0,

∂tλ̃k = (d− 2 + ηA,k + ηC,k)λ̃k − λ̃2k
[

9J̃k;ll,ll(0)− 6J̃k;lt,lt(0) + J̃k;tt,tt(0)
]

,

(13.113)

24Ik,ll = Ik,tt when n0,k = 0.
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and

ηA,k = 2λ̃2kñ0,k
∂

∂y

[

J̃k;ll,tt(p) + J̃k;tt,ll(p) + 2J̃k;lt,lt(p)
]

∣

∣

∣

p=0
,

ηC,k = − 2λ̃2kñ0,k
∂

∂ω̃

[

J̃k;tt,lt(p)− J̃k;lt,tt(p)− 3J̃k;ll,lt(p) + 3J̃k;lt,ll(p)
]

∣

∣

∣

p=0
,

∂tṼA,k = (2− ηA,k + 2ηC,k)ṼA,k

− 2λ̃2kñ0,k
∂

∂ω̃2

[

J̃k;ll,tt(p) + J̃k;tt,ll(p) + 2J̃k;lt,lt(p)
]

∣

∣

∣

p=0
,

(13.114)

where

ηA,k = −∂t lnZA,k, ηC,k = −∂t lnZC,k, (13.115)

y = p2/k2 and ω̃ = ωZC,k/ZA,kǫk. The expression of the threshold functions Ik,α, Jk,αβ(p),

Ĩk,α and J̃k,αβ(p) can be found in Appendix 13.B.

13.3.3.1 RG equations in vacuum

The set of parameters ñ0 = δ̃ = λ̃ = 0 and ṼA = 0 corresponds to a fixed point of the flow
equations (13.113) and (13.114). We shall see that for d ≥ 2 this non-interacting (Gaussian)
fixed point is the only fixed point in vacuum where both the density and the condensate
density vanish. When n0,k = 0, ∂tZA,k = ∂tZC,k = ∂tVA,k = 0, i.e.

ZA,k = ZC,k = 1 and VA,k = 0. (13.116)

We then have ΓA,k(p) = ǫp+Rk(p), ΓB,k(p) = λk, ΓC,k(p) = ω in a vanishing field (n = 0),
and

Gk,ll(p) = Gk,tt(p) = −ǫp +Rk(p)

Dk(p)
, Gk,lt(p) =

ω

Dk(p)
, (13.117)

where Dk(p) = [ǫp +Rk(p)]
2 + ω2. From these expressions, we deduce

∂̃tGk,ll(p) = ∂̃tGk,tt(p) = −ω
2 − [ǫp +Rk(p)]

2

Dk(p)2
∂tRk(p),

∂̃tGk,lt(p) =
2ω[ǫp +Rk(p)]

Dk(p)2
∂tRk(p)

(13.118)

and

∂tλk = λ2k

ˆ

p

∂tRk(p)

Dk(p)3
{

10[ǫp +Rk(p)]
3 − 22ω2[ǫp +Rk(p)]

}

. (13.119)

With the frequency-independent cutoff function (13.75), the frequency integral can be done
analytically and we obtain

∂tλk =
λ2k
2

ˆ

p

∂tRk(p)

[ǫp +Rk(p)]2
, (13.120)

i.e.
1

λk
− 1

λΛ
=

1

2

ˆ

p

(

1

ǫp +Rk(p)
− 1

ǫp +RΛ(p)

)

, (13.121)
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where λΛ = g is the bare interaction. If we take the function r(y) = Θ(1 − y)(1 − y)/y
in (13.75), we finally obtain

1

λk
− 1

g
=

1

2

ˆ

p

(

Θ(|p| − k)

ǫp
+

Θ(k − |p|)
ǫk

− 1

ǫΛ

)

. (13.122)

In three dimensions, equation (13.122) gives

1

λk
− 1

g
=

m

2π2

(

2Λ

3
− 2k

3

)

. (13.123)

The renormalized value

λk=0 ≡ 4πa

m
(13.124)

of the interaction defines the (s-wave) scattering length

a =
m

4π

g

1 + mgΛ
3π2

. (13.125)

Thus, the interaction

λk =
4πa

m

(

1− 4

3π
ka

)−1

(13.126)

is fully determined by the boson mass and the scattering length.
In two dimensions, we obtain

1

λk
=

1

g
+
m

2π
ln

(

Λ

k

)

. (13.127)

Introducing the two-dimensional scattering length

a =
2

Λ
exp

(

− 2π

mg
− C +

1

2

)

(13.128)

(C is the Euler constant), we can rewrite (13.127) as

1

λk
= −m

2π

[

ln

(

ka

2

)

+ C − 1

2

]

. (13.129)

Both in three and two dimensions, the dimensionless interaction constant λ̃k = kdǫkλk
vanishes for k → 0. The only fixed point of the RG equations (13.113) and (13.114) in
vacuum (n0 = 0) then corresponds to λ̃ = δ̃ = 0 (the latter condition implies µ = 0). We
recover the fact that the upper critical dimension of the vacuum-superfluid transition is
d+c = 2.25 Since the one-particle propagator is not renormalized at the quantum critical
point (ZA,k = ZC,k = 1, VA,k = 0 and δk = 0) the dynamical critical exponent is z = 2. If

we linearize the T = 0 RG equations about the fixed point δ̃ = λ̃ = 0, one finds a relevant
variable (δ̃) in the vacuum phase with scaling dimension [δ̃] = 2 so that the correlation-
length exponent is ν = 1/2.

25One easily verifies that the RG equations in vacuum admit a non-trivial fixed point λ̃∗ > 0 for d < 2
(see Sec. 7.4.4).
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Scattering length in the NPRG approach. In vacuum one can compute the
renormalized interaction λk directly from the action S + ∆Sk without solving the
RG equation. Summing the ladder diagrams (the only ones that contribute to the
interaction in vacuum), one finds

1

λk
=

1

g
+

1

2

ˆ

p

1

ǫp +Rk(p)
(13.130)

with a frequency-independent cutoff, which differs from the result (13.121) obtained
by integrating the RG equation ∂kλk unless RΛ(p) = ∞. When the latter condition is
not fulfilled, the initial condition ΓΛ is not given by the microscopic action (13.1), i.e.
λΛ 6= g. As noted in chapter 11, this fact does not matter as long as we are interested
in the long-distance physics which is here entirely determined by the scattering length
a. However, one has to properly define the latter [Eqs. (13.125,13.128)] in order to
reproduce the correct expression of λk ≡ λk(a) [Eqs. (13.126,13.129)].

26

13.3.3.2 The healing momentum scale

In the dilute limit, the finite condensate density can be ignored as long as ǫk ≫ 2λkn0,k.
27

This defines the characteristic (healing) momentum scale ph,

ǫph
= λph

n0,ph
. (13.131)

The flow is governed by the Gaussian fixed point λ̃ = ñ0 = 0 for k ≫ ph, and is driven away
from that fixed point when k ≪ ph because of the finite boson density. For k ≫ ph, we
can solve the RG equations to leading order in p2h/k

2 ∼ λph
n0,ph

/ǫk. The coupling constant
λk can then be approximated by its value in vacuum. To obtain ∂tn0,k to leading order in
λkn0,k, we use

Gk,ll(p;n0,k) = −ǫp +Rk(p)

Dk(p)
+

2λkn0,k
Dk(p)2

[ǫp +Rk(p)]
2 +O(n20,k),

Gk,tt(p;n0,k) = −ǫp +Rk(p)

Dk(p)
− 2λkn0,k
Dk(p)2

ω2 +O(n20,k)

(13.132)

(Dk(p) is defined after Eq. (13.117)) and28 ZA,k = ZC,k = 1, VA,k = 0. This gives

∂tn0,k = 2

ˆ

p

∂tRk(p)

Dk(p)3
{

Dk(p)
(

[ǫp +Rk(p)]
2 − ω2

)

+ λkn0,k[ǫp +Rk(p)]
(

5ω2 − 3[ǫp +Rk(p)]
2
)}

= − λkn0,k

2

ˆ

p

∂tRk(p)

[ǫp +Rk(p)]2
, (13.133)

where the last result is obtained using the frequency-independent cutoff function (13.75).
From (13.120) and (13.133) we deduce that

∂t(λkn0,k) = 0 (13.134)

26Equation (13.129) is obtained by solving (13.130) and using the known expression a = 2
Λ
e−2π/mg−C of

the two-dimensional scattering length in a system with a ultraviolet violet momentum cutoff Λ (see Sec. 7.4).
27For k & ph and with the cutoff function Rk(p) = (ǫk−ǫp)Θ(ǫk−ǫp), n0,k enters the threshold functions

in the combination ǫk + 2λkn0,k.
28For a justification of this approximation, see Appendix E.4 in Ref. [30].
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to leading order in k2/p2h. This equation allows us to relate λph
n0,ph

to the chemical
potential,

λph
n0,ph

≃ λΛn0,Λ = µ. (13.135)

This yields
ph =

√

2mλph
n0,ph

≃
√

2mµ, (13.136)

which is the standard expression of the healing momentum.
For a three-dimensional system, since λph

≃ 4πa/m for pha≪ 1, we find

ph =
√
8πan̄, (13.137)

where we have used n0,ph
≃ n̄ in the dilute limit.29 In two dimensions, the logarithmic

vanishing of λk in vacuum plays a crucial role. From equation (13.129), we obtain34

λph
= − 2π/m

ln
(

pha
2

)

+ C − 1
2

≃ 2π/m
∣

∣

∣ln
√

ma2µ
∣

∣

∣

(13.138)

for pha =
√

2ma2µ≪ 1, and therefore

p2h = 2mλph
n0,ph

≃ 4πn̄
∣

∣

∣ln
√

ma2µ
∣

∣

∣

≃ 4πn̄

| ln
√
n̄a2|

, (13.139)

using n0,ph
≃ n̄ and n̄a2 ≪ 1.

In the weak-coupling limit λ̃Λ ≪ 1, i.e. 2mgΛ ≪ 1 (d = 3) or 2mg ≪ 1 (d = 2),30

λph
≃ g, ph ≃

√

2mgn̄, (13.140)

except, in two dimensions, when the density is exponentially small.

13.3.3.3 Numerical solution of the RG equations

In section 13.1.2 we pointed out that perturbation theory breaks down below the Ginzburg
momentum scale pG (pG ≪ ph). We therefore expect the RG flow to be non-trivial for
k ≪ ph and the Ginzburg scale pG to manifests itself as a characteristic momentum scale.

We can improve the perturbative estimate of pG given in section 13.1.2 [Eq. (13.23)]
by replacing the bare interaction constant g by λph

in order to include fluctuations at
momentum scales k & ph. This gives

pG ∼











ph exp
(

−const/
√
n̄a3
)

(d = 3),
ph

| ln
√
n̄a2|

(d = 2),
(13.141)

where ph is defined by equations (13.137) and (13.139).
The numerical solution of the flow equations is shown in figure 13.7 for a two-dimensional

system in the weak-coupling limit mg ≪ 1.31 We can clearly distinguish two regimes

29The result n0,ph ≃ n̄ is correct to leading order in the dimensionless parameter λ̃ph .
30The two-dimensional scattering length a is then exponentially small.
31For a three-dimensional system in the weak-coupling limit, the Ginzburg scale pG is exponentially small

so that deviations from Bogoliubov theory appear only at extremely small energies.
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Figure 13.7: RG flow in a two-dimensional system: (left) λk, ZC,k and VA,k vs ln(pG/k)

where pG =
√

(gm)3n̄/4π (n̄ = 0.01, 2mg = 0.1 and ln(pG/ph) ≃ −5.87). The inset shows
pG vs 2mg obtained from the criterion VA,pG

= VA,k=0/2 (the Green solid line is a fit to
pG ∼ (2mg)3/2). (right) Condensate density n0,k, superfluid density ns,k and Goldstone
mode velocity ck vs ln(pG/k).

separated by the Ginzburg momentum scale pG ∼
√

(gm)3n̄ (see the inset in the figure).
In the (perturbative) Bogoliubov regime k ≫ pG, ZA,k ≃ ZC,k ≃ 1 and VA,k ≃ 0, while
λk remains nearly equal to its initial value λΛ = g.32 In the (non-perturbative) Goldstone
regime k ≪ pG, we find that both λk and ZC,k vanish linearly with k in agreement with
the conclusion of section 13.3.2 [Eq. (13.101)], while VA,k takes a finite value. This regime
is dominated by phase fluctuations and characterized by the vanishing of the anomalous
self-energy Σk,an(p = 0) = λkn0,k ∼ k and the divergence of the longitudinal propagator
(Secs. 13.2.3 and 13.3.2).

The condensate density n0,k, the superfluid density ns,k and the Goldstone mode velocity
ck are not sensitive to the Ginzburg scale (Fig. 13.7). This result is particularly remark-
able for the velocity ck, whose expression involves the parameters λk, ZC,k and VA,k which
all strongly vary when k ∼ pG. Thus we see that the coupling between longitudinal and
transverse fluctuations does not affect thermodynamic quantities. More generally, all phys-
ical quantities related to correlation functions obtained as averages of local gauge-invariant
operators (like the density-density correlation function) are expected to be free of infrared
divergences and insensitive to the Ginzburg scale.

13.3.3.4 Analytical solution of the RG equations in the infrared limit

In the Goldstone regime it is possible to solve analytically the RG equations. When k ≪ pG,
the physics is dominated by the Goldstone (phase) mode and longitudinal fluctuations can
be ignored. If we take the cutoff function (13.76) with r(Y ) = Θ(1 − Y )(1 − Y )/Y ,33

the threshold functions Ĩk,α and J̃k,αβ(p) can be computed exactly and one obtains (see

32For the weak-coupling value 2mg = 0.1, the flow of λk for k & ph can be neglected, i.e. λph ≃ g
[Eq. (13.140)].

33In the infrared limit, it is natural to choose a cutoff function Rk(p) acting on both momenta and
frequencies and satisfying the Lorentz invariance of the effective action Γk.
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Appendix 13.B)

∂tñ0,k = −(d+ ηC,k)ñ0,k, ∂tλ̃k = (d− 2 + ηC,k)λ̃k + 8
vd+1

d+ 1

λ̃2k

Ṽ
1/2
A,k

,

ηC,k = −8
vd+1

d+ 1

λ̃k

Ṽ
1/2
A,k

, ∂tṼA,k = (2 + 2ηC,k)ṼA,k,

(13.142)

while ηA,k ≃ 0. The first and last of these equations can be rewritten as n0,k = n0,k=0 and
VA,k = VA,k=0, respectively. From (13.142), we deduce

∂tλ̃k = (1− ǫ)λ̃k, ∂tηC,k = −ǫηC,k − η2C,k, (13.143)

where ǫ = 3− d. This yields

{

ηC,k ∼ | ln k|−1, λ̃k ∼ k, ZC,k, λk ∼ | ln k|−1 if d = 3,

ηC,k → −ǫ, λ̃k ∼ k1−ǫ, ZC,k, λk ∼ kǫ if d < 3,
(13.144)

for k → 0 in agreement with conclusions of section 13.3.2 and the numerical results shown
in figure 13.7. The anisotropy between time and space in the Goldstone regime k ≪ pG
(where the action Γk takes a relativistic form) can be eliminated by an appropriate rescaling

of frequencies and fields: ω̃ → Ṽ
−1/2
A,k ω̃ and φ̃ → Ṽ

−1/4
A,k φ̃. We thus obtain an isotropic

relativistic model with dimensionless condensate density and coupling constant defined by

ñ′
0,k = Ṽ

1/2
A,k ñ0,k, λ̃′k = Ṽ

−1/2
A,k λ̃k. (13.145)

λ̃′k satisfies the RG equation

∂tλ̃
′
k = −ǫλ̃′k + 8

vd+1

d+ 1
λ̃′k

2, (13.146)

which is nothing but the RG equation of the coupling constant of the classical O(2) model in
dimensions d+1 (Eq. (11.114) with N = 2 and ld2(0, 0) = 4/d for r(y) = Θ(1− y)(1− y)/y).
The corresponding fixed-point value λ̃′k

∗ is given by (11.117). In the infrared limit, we find

λk = k−d(ZA,kǫk)
3/2V

1/2
A,k λ̃

′
k ∼ kǫλ̃′k

∗ (13.147)

if we approximate ZA,k ≃ ZA,k=0 and VA,k ≃ VA,k=0. The vanishing of λk ∼ kǫ is therefore

the consequence of the existence of a fixed point λ̃′∗ for the coupling constant of the effective
(d + 1)-dimensional O(2) model that describes the Goldstone regime k ≪ pG. (In three
dimensions, λ̃′∗ = 0 and λk vanishes logarithmically.)

13.3.4 Thermodynamics

13.3.4.1 Mean-field theory

The Ginzburg scale is crucial to understand the infrared behavior of the one-particle prop-
agator but is irrelevant for thermodynamic quantities. As a result, the leading-order results
for small ma2µ (see chapter 7) can be obtained by approximating Γk=0 by Γph

, i.e. by
ignoring any additional renormalization of the effective action as k decreases from ph to
zero. This is equivalent to mean-field theory but with the renormalized interaction constant
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λph
rather than the bare interaction constant g. We expect this approximation to be valid

for thermodynamic quantities if the dimensionless coupling constant λ̃ph
is small,

λ̃ph
≃ 2mpd−2

h λph
≪ 1, (13.148)

where we assume ZA,k ≃ 1 and ZC,k ≃ 1.
Let us first consider a three-dimensional system. From equations (13.136) and (13.137),

we deduce

µ =
4πan̄

m
, (13.149)

so that34

λ̃ph
= 8πpha ∼

√

µma2 ∼
√
n̄a3, (13.150)

where we have used n0,ph
≃ n̄ in the dilute limit (to leading order in λ̃ph

) and λph
= 4πa/m.

We thus recover the small parameter n̄a3 ∼ µma2 of the three-dimensional dilute Bose gas.
The sound mode velocity (13.91) and the superfluid density (13.93) are then given by35

c =

(

λph
n0,ph

m

)1/2

=

√
4πan̄

m
, ns = ZA,ph

n0,ph
= n̄ (13.151)

to leading order in λ̃ph
. Equations (13.149) and (13.151) are the standard results for the

thermodynamics of a Bose gas in the dilute limit to leading order in n̄a3 (Sec. 7.4).
For a two-dimensional system, one findsVerifier dernière ex-

pression

µ ≃ 2πn̄/m
∣

∣

∣ln
(

√

ma2µ
)∣

∣

∣

≃ 2πn̄/m

| ln
√
n̄a2|

. (13.152)

using n0,k ≃ n̄ and n̄a2 ≪ 1. The sound mode velocity is given by

c =

√

λph
n0,ph

m
≃ 1

m

√

2πn̄

| ln
√

ma2µ|
≃ 1

m

√

2πn̄

| ln
√
n̄a2|

. (13.153)

Again we reproduce the mean-field results obtained in section 7.4.36

13.3.4.2 Beyond mean-field theory

One can go beyond the mean-field theory by numerically solving the RG equations. All
thermodynamic quantities can be derived from the pressure P (µ, T ) = −Uk=0(n0,k=0),
which is obtained by solving the RG equation

∂tUk(n0,k) = −1

2

ˆ

p

∂tRk(p)
[

Gk,11(p;n0,k)e
iωn0

+

+ Gk,22(p;n0,k)e
−iωn0

+
]

(13.154)

34The dimensionless parameter λ̃ph can be related to the ratio γ = 2mλph n̄
1−2/d between the mean

interaction energy per particle λph n̄ and the characteristic kinetic energy n̄2/d/2m. In three dimensions

λ̃ph ∼ γ3/2, while λ̃ph ∼ γ in two dimensions.
35The result ns = n̄ is exact (to all order in λ̃ph ) due to Galilean invariance (Sec. 13.3.1).
36In the weak-coupling limit mg ≪ 1, where the scattering length (13.128) is exponentially small, µ ≃ gn̄

and c ≃
√

gn̄/m except for exponentially small values of the chemical potential or the density.
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Figure 13.8: Pressure P (µ) vs ma2µ in a three-dimensional Bose gas at zero temperature
(2m = 1 and a ≃ 0.035619). The circle show the NPRG result obtained from (13.155). The
dashed line shows the mean-field expression mµ2/8πa and the solid one the result including
the Lee-Huang-Yang correction [Eq. (7.176)].

(here we consider an arbitrary temperature), where G11(p) = −〈ψ(p)ψ∗(p)〉 and G22(p) =
−〈ψ∗(−p)ψ(−p)〉 [Eq. (13.3)]. Since G11(p) = G22(−p) ∼ 1/iωn for |ωn| → ∞, it is neces-

sary to introduce convergence factors e±iωn0
+

to make the Matsubara sums well defined.37

Equation (13.154) can be rewritten as

∂tUk(n0,k) = −1

2

ˆ

p

∂tRk(p) [Gk,ll(p;n0,k) +Gk,tt(p;n0,k)− 2iGk,lt(p;n0,k)] e
iωn0

+

.

(13.155)
The Matsubara sums for Gk,ll and Gk,tt are convergent and do not require the convergence
factor. This is not the case for Gk,lt, which decays as 1/iωn for large |ωn|. Since Gk,lt is
odd in ωn, the Matsubara sum would vanish without the convergence factor. This means
that the sum is due to large frequencies for which Gk,lt is equal to its noninteracting value,
i.e.

1

β

∑

ωn

iGk,lt(p;n0,k)e
iωn0

+

=
1

β

∑

ωn

iωn e
iωn0

+

ω2
n + (ǫp − µ)2

= −1

2
. (13.156)

Here we assume a frequency-independent cutoff function. As for the contributions of Gk,ll

and Gk,tt, they can be computed using the LPA’ approximation. At zero temperature,
the pressure can also be obtained from d2P/dµ2 = dn̄/dµ and the thermodynamic rela-
tion (13.99), without solving the flow equation ∂tUk.

Figure 13.8 shows the pressure as a function of ma2µ in a three-dimensional system
at zero temperature. In the dilute limit ma2µ ≪ 1, deviations from the mean-field result
mµ2/8πa are very well described by the Lee-Huang-Wang correction (see Sec. 7.4). More
generally, the pressure takes the form

P (µ, T ) =
(m

2π

)d/2

µd/2+1G(d)
DBG

(

T

µ
, λ̃(vac)ph

)

(13.157)

or

P (µ, T ) =
(m

2π

)d/2

T d/2+1F (d)
DBG

(µ

T
, λ̃(vac)pT

)

(13.158)

37See the discussion page 70 in chapter 1.
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(pT =
√
2mT ) in the universal regime ma2|µ|,ma2T ≪ 1 (Sec. 7.4.4). λ̃

(vac)
k is the di-

mensionless interaction in vacuum [Eqs. (13.126,13.129)]. The universal scaling functions

G(d)
DBG and F (d)

DBG, characteristic of the d-dimensional dilute-Bose-gas universality class, are
deduced from the numerical solution of the flow equations.38

13.4 Superfluid transition in a dilute Bose gas

Appendix 13.A Ward identities in a superfluid Bose gas

In this Appendix, we discuss the symmetry properties of the effective action Γk (Sec. 13.A.1).
We then derive the Ward identities that follow from the gauge invariance and the Galilean
invariance of the microscopic action (13.1) (Secs. 13.A.2.1).

13.A.1 Symmetries of the effective action Γk

The microscopic action (13.1) is invariant in the (semilocal) U(1) transformation

ψ(x) → ψ(x)eiα(τ), ψ∗(x) → ψ∗(x)e−iα(τ), µ→ µ+ i∂τα(τ), (13.A.1)

where α(τ) is an arbitrary time-dependent phase. The invariance holds because the the
combination ∂τ −µ in the action (13.1) acts as a covariant derivative. At zero temperature,
the microscopic action is also invariant in the Galilean transformation

ψ′(r′, τ ′) = e
1
2
mv2τ−imv·rψ(r, τ), ψ′∗(r′, τ ′) = e−

1
2
mv2τ+imv·rψ∗(r, τ), (13.A.2)

where r′ = r + ivτ and τ ′ = τ (Sec. 2.2.5). The invariance is ensured by the fact that the
derivative terms appear in the kinetic term in the combination ∂τ−∇

2/2m. The interaction
term is clearly Galilean invariant for a local interaction.

Since the transformations (13.A.1) and (13.A.2) act linearly on the field, they also leave
the effective action Γ[φ∗, φ] invariant (Sec. 2.3.3). For Γ to be invariant, the derivative
operators ∂τ , ∇ and the chemical potential must appear only in the combination

D± = ±∂τ − µ− ∇
2

2m
, (13.A.3)

with D+ acting on φ and D− on φ∗. Thus we can write Γ as an expansion in the operator
D±,

Γ[φ∗, φ] =

ˆ β

0

dτ

ˆ

ddr
{

U(n) +
1

2
Z1(n)(φ

∗D+φ+ φD−φ
∗)

+
1

2
Z2(n)(φ

∗D2
+φ+ φD2

−φ
∗) + · · ·

}

. (13.A.4)

The action may also contain terms of the type np(∇qn)r (p, q, r integers) since both n
and ∇n are Galilean invariant (with qr even to ensure parity invariance). Note that atVérifier avec

Floerchinger-
Wetterich

finite temperature, Galilean invariance does not hold since it is broken by the thermal

38In three dimensions, the scaling functions G(3)
DBG and F(3)

DBG can be computed from a loop expansion in
some regimes (Sec. 7.4) but not near the superfluid transition temperature (Sec. 13.4). The calculation is
much harder in two dimensions where the loop expansion breaks down in the finite-temperature superfluid
phase (the superfluid phase at T > 0 has a vanishing condensate density (n0 = 0) and algebraic order) [29].
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13.A Ward identities in a superfluid Bose gas 887

bath.39 The U(1) invariance (13.A.1) still holds but does not lead to a useful Ward identity
(Sec. 13.A.2.1).

When the regulator term ∆Sk is invariant in the transformations (13.A.1) and (13.A.2),
the scale-dependent action Γk[φ

∗, φ] is also invariant. This is not the case in the approach
discussed in section 13.3. On the one hand, the cutoff functions (13.75) and (13.76) are
not Galilean invariant (the function (13.76) also breaks the semilocal U(1) invariance). On
the other hand, the ansatz (13.77) is not of the form (13.A.4). Nevertheless, the numerical
solution of the flow equations shows that the Ward identities associated with the (semilocal)
U(1) and Galilean invariances (Sec. 13.A.2) remain very well satisfied. Vrai uniquement à

couplage faible?

13.A.2 Ward identities

13.A.2.1 Gauge invariance

Let us consider the microscopic action

S =

ˆ

dx
[

ψ∗(x)
(

∂τ − µ(x)− 1

2m
[∇− iA(x)]2

)

ψ(x) +
g

2
|ψ(x)|4

]

(13.A.5)

in the presence of external sources µ(x) and A(x) and at zero temperature (β → ∞). S is
invariant in the gauge transformation

ψ(x) → ψ(x)eiα(x), ψ∗(x) → ψ∗(x)e−iα(x),

µ(x) → µ(x) + i∂τα(x), A(x) → A(x) +∇α(x),

(13.A.6)

where α(x) is an arbitrary real function. This implies that the effective action satisfies

Γ[R(α)φ;µ+ i∂τα,Aν + ∂να] = Γ[φ;µ,Aν ], (13.A.7)

where φ = (φ1, φ2) is a two-dimensional vector and

R(α) =

(

cos(α) − sin(α)
sin(α) cos(α)

)

(13.A.8)

is a rotation matrix. Differentiating (13.A.7) with respect to α(x) and setting α(x) = 0, we
obtain

∑

i,j

δΓ

δφi(x)
ǫijφj(x) + i∂τ

δΓ

δµ(x)
+
∑

ν

∂ν
δΓ

δAν(x)
= 0. (13.A.9)

Differentiating now with respect to φl(x2) and µ(x2) and setting φ = (
√
2n0, 0), µ(x) = µ

and A(x) = 0, we deduce

−
√
2n0Γ

(2)
l2 (x2, x1;n0) + i∂τ1Γ

(2)
l;0 (x2, x1;n0) +

∑

ν1

∂ν1
Γ
(2)
l;ν1

(x2, x1;n0) = 0,

−
√
2n0Γ

(2)
2;0(x1, x2;n0) + i∂τ1Γ

(2)
;00(x1, x2;n0) +

∑

ν1

∂ν1
Γ
(2)
;ν10

(x1, x2;n0) = 0,
(13.A.10)

39At nonzero temperature (β <∞), the transformation (13.A.2) is not allowed since it does not conserve
the periodicity of the field: ψ(r, τ + β) = ψ(r, τ).
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where we have introduced

Γ
(2)
l;0 (x2, x1;n0) =

δ(2)Γ

δφl(x2)δµ(x1)

∣

∣

∣

∣

n=n0,µ(x)=µ,A=0

,

Γ
(2)
;00(x2, x1;n0) =

δ(2)Γ

δµ(x2)δµ(x1)

∣

∣

∣

∣

n=n0,µ(x)=µ,A=0

,

(13.A.11)

and similar definitions for Γ
(2)
l;ν (x2, x1;n0) and Γ

(2)
;ν0(x2, x1;n0). In Fourier space, equa-

tions (13.A.10) lead to the Ward identities
√
2n0Γ

(2)
12 (p;n0) + ωΓ

(2)
1;0(p;n0) +

∑

ν

ipνΓ
(2)
1;ν(p;n0) = 0, (13.A.12a)

√
2n0Γ

(2)
22 (p;n0) + ωΓ

(2)
2;0(p;n0) +

∑

ν

ipνΓ
(2)
2;ν(p;n0) = 0, (13.A.12b)

√
2n0Γ

(2)
2;0(p;n0)− ωΓ

(2)
;00(p;n0)−

∑

ν

ipνΓ
(2)
;ν0(p;n0) = 0. (13.A.12c)

From (13.A.12a), we deduce40

∂

∂ω
Γ
(2)
12 (p;n0)

∣

∣

∣

p=0
= − 1√

2n0
Γ
(2)
1;0(p = 0;n0)

= − 1√
2n0

∂2U

∂φ1∂µ

∣

∣

∣

∣

n0

= − ∂2U

∂n∂µ

∣

∣

∣

∣

n0

, (13.A.13)

where the effective potential U(µ, n) is considered as a function of both µ and n. From
(13.A.12b) and (13.A.12c), we obtain

∂

∂ω2
Γ
(2)
22 (p;n0)

∣

∣

∣

p=0
= − 1√

2n0

∂

∂ω
Γ
(2)
2;0(p;n0)

∣

∣

∣

p=0
,

∂

∂ω
Γ
(2)
2;0(p;n0)

∣

∣

∣

p=0
=

1√
2n0

Γ
(2)
;00(0;n0) =

1√
2n0

∂2U

∂µ2

∣

∣

∣

∣

n0

(13.A.14)

and therefore40

∂

∂ω2
Γ
(2)
22 (p;n0)

∣

∣

∣

p=0
= − 1

2n0

∂2U

∂µ2

∣

∣

∣

∣

n0

. (13.A.15)

13.A.2.2 Galilean invariance
Revoir cette section!
Cf. Nozieres ou Pis-
tolesi?

Another Ward identity can be obtained from the Galilean invariance of the microscopic
action. The latter is invariant in the transformation ψ(x) → ψ(x)eiq·r, ψ∗(x) → ψ(x)e−iq·r

if we shift the chemical potential µ by q2/2m, which implies

Γ[R(α)φ, µ+ q2/2m] = Γ[φ, µ], (13.A.16)

where α(x) = q · r and the chemical potential µ is taken uniform and time independent. To
order q2, equation (13.A.16) gives

0 =
q2

2m

∂Γ[φ̄]

∂µ
+ n0

ˆ

dxdx′Γ
(2)
22 (x− x′;n0)α(x)α(x

′)

=
q2

2m

∂Γ[φ̄]

∂µ
+ βV n0q

2 ∂

∂p2
Γ
(2)
22 (p;n0)

∣

∣

∣

p=0
,

(13.A.17)

40For φ = (
√
2n0, 0), we can identify Γ

(2)
12 to ΓC and Γ

(2)
22 to ΓA.
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where we have set φ = φ̄ ≡ (
√
2n0, 0). Since

∂Γ[φ̄]

∂µ
= βV

∂U

∂µ

∣

∣

∣

∣

n0

= −βV n̄ (13.A.18)

(see Eq. (13.96)), we finally obtain40

∂

∂p2
Γ
(2)
22 (p;n0)

∣

∣

∣

p=0
=

n̄

2mn0
, (13.A.19)

where n̄ is the mean boson density.

Appendix 13.B Threshold functions

In this section, we give explicit expressions for the threshold functions Iα and Jαβ(p) involved
in the NPRG flow equations. We assume a cutoff function Rk acting both on momenta and
frequencies [Eq. (13.76)]. Similar results can be obtained for a cutoff function acting only
on momenta.41

13.B.1 Dimensionful threshold functions

With the notations

Ak(p) = ZA,kǫp + VA,kω
2 +Rk(p), Bk(p) = Ak(p) + 2n0,kλk,

Ck(p) = ZC,kω, Dk(p) = Ck(p)
2 +Ak(p)Bk(p),

(13.B.1)

we have

Gk,ll = −Ak

Dk
, Gk,tt = −Bk

Dk
, Gk,lt =

Ck

Dk
, (13.B.2)

and

∂̃tGk,ll = −Ṙk
C2

k −A2
k

D2
k

, ∂̃tGk,tt = −Ṙk
C2

k −B2
k

D2
k

,

∂̃tGk,lt = −Ṙk
Ck(Ak +Bk)

D2
k

,

(13.B.3)

where

Ṙk = ∂tRk = −ZA,kǫkY (ηA,kr + 2Y r′), Y =
p2

k2
+

ω2

c2Λk
2
≡ y + ω̃2, (13.B.4)

with r ≡ r(Y ) and r′ = ∂r/∂Y . All propagators are evaluated in the equilibrium state
n = n0,k. Equations (13.B.2) and (13.B.3) can be used to compute Ik,α and Jk,αβ(p), as
well as ∂ωJk,αβ(p)|ω=0 and ∂ω2Jk,αβ(p)|ω=0.

Following the same lines as in the classical O(N) model (see Appendix 11.B), we find

∂

∂ǫp
Jk,αβ(p)

∣

∣

∣

p=0
= 4

vd
d
kd+2ZA,k

ˆ

ω

ˆ ∞

0

dy yd/2
{

k2Y (ηA,kr + 2Y r′)
∂

∂Rk
G′

k,α

41In this case, the expression of Rk and its derivatives should be changed: Rk(p) = ZA,kǫkyr(y),
∂tRk(p) = −ZA,kǫky[ηA,kr(y) + 2yr′(y)], etc.
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+ [ηA,kr + (ηA,k + 4)Y r′ + 2Y 2r′′]
∂

∂R′
k

G′
k,α

}

G′
k,β . (13.B.5)

The function G′
k,α(p) = ∂p2Gk,α(p) can be expressed as

G′
k,ll = − 1

D2
k

(

C2
kA

′
k −A2

kB
′
k

)

, G′
k,tt = − 1

D2
k

(

C2
kB

′
k −A′

kB
2
k

)

,

G′
k,lt = −Ck

D2
k

(A′
kBk +AkB

′
k),

(13.B.6)

where

A′
k = ∂p2Ak =

ZA,k

2m
(1 + r + Y r′), B′

k = ∂p2Bk =
ZA,k

2m
(1 + r + Y r′). (13.B.7)

We also have

∂

∂Rk
G′

k,ll =
2

D3
k

[

C2
k(AkB

′
k +A′

kBk +AkA
′
k)−A3

kB
′
k

]

,

∂

∂Rk
G′

k,tt =
2

D3
k

[

C2
k(AkB

′
k +A′

kBk +BkB
′
k)−A′

kB
3
k

]

,

∂

∂Rk
G′

k,lt = − Ck

D3
k

[

(C2 −AkBk)(A
′
k +B′

k)− 2A2
kB

′
k − 2A′

kB
2
k

]

,

(13.B.8)

and
∂

∂R′
k

G′
k,ll = − 1

D2
k

(

C2
k −A2

k

)

,
∂

∂R′
k

G′
k,tt = − 1

D2
k

(

C2
k −B2

k

)

,

∂

∂R′
k

G′
k,lt = −Ck

D2
k

(Ak +Bk).

(13.B.9)

Equations (13.B.6), (13.B.8) and (13.B.9) are used to compute ∂ǫpJαβ(p)|p=0 [Eq. (13.B.5)]
and in turn ∂tZA,k.

13.B.2 Dimensionless threshold functions

We introduce the dimensionless propagators

G̃k,ll =
Gk,ll

ZA,kǫk
= − Ãk

D̃k

, G̃k,tt =
Gk,tt

ZA,kǫk
= − B̃k

D̃k

,

G̃k,lt =
Gk,lt

ZA,kǫk
=
C̃k

D̃k

,

(13.B.10)

where

Ãk = (ZA,kǫk)
−1Ak = ṼA,kω̃

2 + y + Y r,

B̃k = (ZA,kǫk)
−1Bk = Ãk + 2λ̃kñ0,k,

C̃k = (ZA,kǫk)
−1Ck = ω̃.

(13.B.11)

The dimensionless coefficients Ĩk,α and J̃k,αβ(p) are then defined by

Ĩk,α = k−dZC,kIk,α = −2vd

ˆ

y,ω̃

yd/2−1(ηA,kr + 2Y r′)
∂G̃k,α

∂r
(13.B.12)
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and42

J̃k,αβ(p) =
ZA,kZC,kǫk

kd
Jk,αβ(p)

= − 1

8π2

ˆ (4−d)π

0

dθ sind−2 θ

ˆ

y,ω̃

yd/2−1(ηA,kr + 2Y r′)
∂G̃k,α(q)

∂r
G̃β,k(p+ q),

J̃k,αβ(0) = − 2vd

ˆ

y,ω̃

yd/2−1(ηA,kr + 2Y r′)
∂G̃k,α

∂r
G̃k,β (13.B.13)

(d = 3 or d = 2). To evaluate (13.B.13), we use

∂G̃k,ll

∂r
=

Y

D̃2
k

(Ã2
k − C̃2

k),
∂G̃k,tt

∂r
=

Y

D̃2
k

(B̃2
k − C̃2

k),

∂G̃k,lt

∂r
= −Y C̃k

D̃2
k

(Ãk + B̃k).

(13.B.14)

In dimensionless form, Eq. (13.B.5) becomes43

∂

∂y
J̃k,αβ(p)

∣

∣

∣

p=0
=
ZA,kZC,kǫ

2
k

kd
∂

∂ǫp
Jk,αβ(p)

∣

∣

∣

p=0

= 4
vd
d

ˆ

y,ω̃

yd/2
{

(ηA,kr + 2Y r′)
∂G̃′

k,α

∂r

∣

∣

∣

∣

r+Y r′

+
[

ηA,kr + (ηA,k + 4)Y r′ + 2Y 2r′′
]

Y −1
∂G̃′

k,α

∂r′

}

G̃′
k,β , (13.B.15)

where (G̃′
k,α = ∂yG̃k,α)

G̃′
k,ll = − 1

D̃2
k

(C̃2
kÃ

′
k − Ã2

kB̃
′
k), G̃′

k,tt = − 1

D̃2
k

(C̃2
kB̃

′
k − B̃2

kÃ
′
k),

G̃′
k,lt = − C̃k

D̃2
k

(Ã′
kB̃k + ÃkB̃

′
k).

(13.B.16)

We also have43

∂G̃′
k,ll

∂r

∣

∣

∣

∣

r+Y r′
=

2Y

D̃3
k

[

C̃2
k(ÃkB̃

′
k + Ã′

kB̃k + ÃkÃ
′
k)− Ã3

kB̃
′
k

]

,

∂G̃′
k,tt

∂r

∣

∣

∣

∣

r+Y r′
=

2Y

D̃3
k

[

C̃2
k(ÃkB̃

′
k + Ã′

kB̃k + B̃kB̃
′
k)− Ã′

kB̃
3
k

]

,

∂G̃′
k,lt

∂r

∣

∣

∣

∣

r+Y r′
= − Y C̃k

D̃3
k

[

(C̃2
k − ÃkB̃k)(Ã

′
k + B̃′

k)− 2Ã2
kB̃

′
k − 2Ã′

kB̃
2
k

]

,

(13.B.17)

42In Eqs. (13.B.13), y = q
2/k2 and cos θ = q · p/|q||p|.

43In equations (13.B.15) and (13.B.17), the derivative ∂/∂r is taken with r+Y r′ (i.e. R′
k = ∂

p2Rk) fixed.
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and
∂G̃′

k,ll

∂r′
= − Y

D̃2
k

(C̃2
k − Ã2

k),
∂G̃′

k,tt

∂r′
= − Y

D̃2
k

(C̃2
k − B̃2

k),

∂G̃′
k,lt

∂r′
= −Y C̃k

D̃2
k

(Ãk + B̃k).

(13.B.18)

We have introduced

Ã′
k = ∂yÃk = 1 + r + Y r′, B̃′

k = ∂yB̃k = 1 + r + Y r′. (13.B.19)

13.B.3 Threshold functions with the theta cutoff

The threshold functions can be computed exactly in the limit k ≪ pG if we take r(Y ) =
(1−Y )Θ(1−Y )/Y and ck = (ZA,k/2mVA,k)

1/2 ≃ c0 instead of cΛ (ck is nearly k independent
for k ≪ pG). For Y ≤ 1, one then has

Ãk = Y + Y r(Y ) = 1, B̃k = 1 + 2λ̃kñ0,k, D̃k = 1 + 2λ̃kñ0,k + ω̃2. (13.B.20)

We also observe that the condition Y ≤ 1 implies

|ω̃| ≤ ZC,k

ZA,kǫk
c0k ∼ k2−d. (13.B.21)

On the other hand,
λ̃kñ0,k = (ZA,kǫk)

−1λkn0,k ∼ k1−d. (13.B.22)

In equations (13.B.21) and (13.B.22) we have anticipated that ZC,k, λk ∼ k3−d for d < 3.

We can therefore neglect ω̃2 with respect to B̃k, and

D̃k ≃ B̃k ≃ 2λ̃kñ0,k (13.B.23)

becomes frequency independent. For d = 3, |ω̃| . 1/|k ln k| and λ̃kñ0,k ∼ 1/|k2 ln k|, so that
(13.B.23) holds.

We are now in a position to compute the infrared limit of the coefficients Ĩk,α and J̃k,αβ .
Since ηA,k → 0, we have

Ĩk,ll = −4vd

ˆ

y,ω̃

yd/2−1Y 2r′
Ã2

k − ω̃2

D̃2
k

,

Ĩk,tt = −4vd

ˆ

y,ω̃

yd/2−1Y 2r′
B̃2

k − ω̃2

D̃2
k

.

(13.B.24)

Since |ω̃|, Ãk ≪ B̃k, we can neglect Ĩk,ll with respect to Ĩk,tt and approximate

Ĩk,tt ≃ −4vd

ˆ

y,ω̃

yd/2−1Y 2r′
B̃2

k

D̃2
k

= 4vd

ˆ

y,ω̃

yd/2−1θ(1− Y ). (13.B.25)

For any function f(Y ),

vd

ˆ ∞

0

dy yd/2−1

ˆ ∞

−∞

dω̃

2π
f(Y ) = Ṽ

−1/2
A,k vd+1

ˆ ∞

0

dY Y (d−1)/2f(Y ), (13.B.26)
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so that we finally obtain

Ĩk,tt ≃ 8
vd+1

d+ 1
Ṽ

−1/2
A,k (13.B.27)

and

∂tñ0,k ≃ −(d+ ηC,k)ñ0,k +
1

2
Ĩk,tt

≃ −(d+ ηC,k)ñ0,k + 4
vd+1

d+ 1
Ṽ

−1/2
A,k

≃ −(d+ ηC,k)ñ0,k, (13.B.28)

where we have used the fact that the condensate density n0,k flows to a finite value when
k → 0 (so that the flow of ñ0,k is determined by the purely dimensional contribution).

With a similar reasoning, we find

∂tλ̃k ≃ (d− 2 + ηC,k)λ̃k − λ̃2kJ̃k;tt,tt(0) ≃ (d− 2 + ηC,k)λ̃k + 8
vd+1

d+ 1

λ̃2k

Ṽ
1/2
A,k

,

ηC,k ≃ −2ñ0,kλ̃
2
k

∂

∂ω̃
J̃k;tt,lt(p)

∣

∣

∣

p=0
≃ −8

vd+1

d+ 1

λ̃k

Ṽ
1/2
A,k

,

∂tṼA,k ≃ (2 + 2ηC,k)ṼA,k.

(13.B.29)

All the integrals involved in the derivation of (13.B.28,13.B.29) are d + 1-dimensional
integrals of the type (13.B.26). This is a direct manifestation of the relativistic invariance
which emerges in the low-energy limit (Sec. 13.3.2).
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Guide to the bibliography

• For references on the Bogoliubov theory, see the bibliography in chapter 7.

• Early attempts to improve the Bogoliubov theory and the occurrence of infrared di-
vergences are discussed in Refs. [1–4].

• The leading infrared behavior of the one-particle Green function [Eqs. (13.106) with-
out the Gll term] was obtained by Gavoret and Nozières [4]. The vanishing of the
anomalous self-energy Σan(p = 0) was proven by Nepomnyashchii and Nepomnyashchii
(NN) [5]. Using diagrammatic techniques, NN then showed that the spectrum remains
linear at low energy despite the vanishing of the self-energy [6]. Furthermore, they
associated the infrared divergences of the perturbation theory to divergence of the
longitudinal propagator [7].

• The necessity to develop a perturbation theory free of infrared divergences was actu-
ally realized by Popov before NN [8–10]. Popov’s hydrodynamic theory is reviewed
in [11, 12]. The infrared behavior of the one-particle propagator obtained by NN was
reproduced in Ref. [13].

• The infrared behavior of the one-particle Green function is also discussed in Refs. [14,
15].

• The (non-perturbative) RG approach to interacting boson systems is discussed in
Refs. [16–23] (zero temperature) and [24–29] (finite temperature). The spectral func-
tion of the one-particle propagator is discussed in [20–23].

• Refs. for the computation of Tc with the BMW approach.
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