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The Bose-Hubbard model and the

superfluid–Mott-insulator transition
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In this chapter we study the superfluid–Mott-insulator transition in boson systems in
the framework of the Bose-Hubbard model. The latter is defined by the Hamiltonian

Ĥ = −t
∑

〈r,r′〉

(

ψ̂†
r
ψ̂r′ + h.c.

)

− µ
∑

r

ψ̂†
r
ψ̂r +

U

2

∑

r

ψ̂†
r
ψ̂†
r
ψ̂rψ̂r, (14.1)

where the ψ̂
(†)
r ’s are boson operators, {r} denotes the N sites of a lattice and 〈r, r′〉 nearest-

neighbor sites. t is the hopping amplitude, U the on-site interaction and µ the chemical
potential. We consider a d-dimensional hypercubic lattice with d ≥ 2 and take the lattice
spacing as the unit length.

The existence of a (zero-temperature) quantum phase transition in the Bose-Hubbard
model can be understood from simple arguments. Let us first assume that there is one
boson per site on average (n̄ = 1). In the limit t/U → 0, in the ground state there must
be one boson localized at each lattice site. Moving a particle would create an empty and
a doubly-occupied site, which requires a very large energy (U) wrt the gain in kinetic
energy (t). In the opposite limit U/t → 0, bosons can move in the lattice and form a
Bose-Einstein condensate. Thus, as the ratio t/U increases, we expect a quantum phase
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898 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

transition between an insulating ground state (known as a Mott insulator) and a superfluid
ground state. Suppose now that we add a few particles to the system so that the density
(i.e. the average number of bosons per site) n̄ becomes slightly larger than unity. The
bosons can then move without changing the number of singly- and doubly-occupied sites, so
that we expect the system to be superfluid even in the limit t/U → 0. More generally, we
expect a Mott-insulator–superfluid transition for commensurate densities and a superfluid
ground state for any incommensurate density (provided t > 0). For an incommensurate
density n̄ = n̄c + δn̄, we can view the excess density of particles (or holes if δn̄ < 0) wrt
the commensurate density n̄c as a dilute gas of delocalized particles responsible for the
superfluidity of the system. We shall see that this simple picture can actually be justified
and made quantitative by renormalization-group arguments.

Since the Bogoliubov theory assumes small fluctuations of the boson operator ψ̂r about
its mean value (Sec. 7.4), it does not apply to the Mott transition or the strongly correlated
superfluid phase where the condensate density n0 is much smaller than the density n̄.1,2 In
section 14.1, we discuss a mean-field theory (and its extension, the strong-coupling random-
phase approximation) which yields a qualitative description of the Mott transition. A
general discussion of the critical behavior at the Mott-insulator–superfluid transition is given
in section 14.2. Finally, in section 14.3 we show that the nonperturbative renormalization
group (NPRG) gives both a qualitative and quantitative description of the transition as well
as the Mott and superfluid phases.

14.1 Strong-coupling random-phase approximation

The strong-coupling random-phase approximation (RPA) is essentially an expansion about
the local limit (t = 0), where the hopping term is treated in a mean-field approximation.
We consider only the zero-temperature limit in this section.

14.1.0.1 The local limit

Let us first consider the local (t = 0) limit and restrict ourselves to a single site. The
Hamiltonian

Ĥloc = −µn̂+
U

2
n̂(n̂− 1) (14.2)

is diagonal in the basis {|n〉} of the eigenstates of the particle number operator n̂ = ψ̂†ψ̂:
n̂|n〉 = n|n〉 and Ĥloc|n〉 = ǫn|n〉 (n integer), where

ǫn = −µn+
U

2
n(n− 1). (14.3)

The ground state |nloc〉 is then defined by ǫnloc
= minnǫn, i.e.

{

nloc = 0 if µ ≤ 0,

nloc − 1 ≤ µ

U
≤ nloc if µ ≥ 0

(14.4)

(see Fig. 14.1).

1|〈ψ̂r〉|2 = n0 ≪ 〈ψ̂∗
r
ψ̂r〉 = n̄ implies large fluctuations of the operator ψ̂r.

2The Bogoliubov theory predicts a superfluid ground state for any nonzero value of the hopping amplitude
t.
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Figure 14.1: nloc and ǫnloc
vs µ/U .

The local propagator Gloc is defined by3

Gloc(τ) = −〈Tτ ψ̂(τ)ψ̂†(0)〉

= − 1

Zloc
Tr

[

e−(β−τ)Ĥloc ψ̂e−τĤloc ψ̂†
]

for τ > 0, (14.5)

where Zloc = Tr e−βĤloc . Using the basis of states {|n〉} and the corresponding closure
relation, we obtain

Gloc(τ) = − 1

Zloc

∞
∑

n,m=0

e−(β−τ)ǫn〈n|ψ̂|m〉e−τǫm〈m|ψ̂†|n〉

= − 1

Zloc

∞
∑

n=0

(n+ 1)e−(β−τ)ǫn−τǫn+1 (14.6)

for τ > 0. The Fourier transform is given by

Gloc(iω) =

ˆ β

0

dτ eiωτGloc(τ)

= − 1

Zloc

∞
∑

n=0

(n+ 1)
e−βǫn+1 − e−βǫn

iω + ǫn − ǫn+1
. (14.7)

For T = 0, we finally obtain

Gloc(iω) =
nloc + 1

iω + ǫnloc
− ǫnloc+1

− nloc
iω + ǫnloc−1 − ǫnloc

=
nloc + 1

iω + µ− Unloc
− nloc
iω + µ− U(nloc − 1)

(14.8)

using Zloc → e−βǫnloc for T → 0.

3Gloc is used in Sec. 14.1.2.
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900 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

14.1.1 Mean-field theory

To solve the Bose-Hubbard model, we consider the following decoupling4

ψ̂†
r
ψ̂r′ → ψ̂†

r
〈ψ̂r′〉+ 〈ψ̂†

r
〉ψ̂r′ − 〈ψ̂†

r
〉〈ψ̂r′〉 (14.9)

of the hopping term of the Hamiltonian but treat the (quartic) local part exactly.5 For a

uniform order parameter 〈ψ̂r〉 = ψ, this leads to the mean-field Hamiltonian

ĤMF =
∑

r

Ĥloc,r − t
∑

〈r,r′〉

(

ψ̂†
r
ψ + ψ∗ψ̂r′ − |ψ|2 + h.c.

)

,

=
∑

r

Ĥloc,r − 2dt
∑

r

(

ψψ̂†
r
+ ψ∗ψ̂r − |ψ|2

)

, (14.10)

where Ĥloc,r denotes the Hamiltonian of the site r in the local limit t = 0 [Eq. (14.2)].

The mean-field Hamiltonian therefore reduces to a sum of single-site Hamiltonians, ĤMF =
∑

r
Ĥeff(ψ̂

†
r
, ψ̂r), with

Ĥeff = Ĥloc − 2dt
(

ψψ̂† + ψ∗ψ̂ − |ψ|2
)

. (14.11)

To obtain the zero-temperature phase diagram it is sufficient to compute the ground-
state energy (per site)

E0 = a0 + a2|ψ|2 + a4|ψ|4 +O(|ψ|6) (14.12)

in powers of the order parameter as in the Landau theory of phase transition (Sec. 10.2).
The U(1) symmetry of the Hamiltonian6 ensures that E0 is a function of |ψ|2.

For ψ = 0, we recover the local limit with a0 = ǫnloc
[Eqs. (14.3,14.4)]. When ψ is

nonzero, we use second-order perturbation theory to obtain E(2) = a2|ψ|2,

E(2) = D|ψ|2 +
∑

n 6=nloc

|〈nloc|V̂ |n〉|2
ǫnloc

− ǫn
, (14.13)

where
V̂ = −D

(

ψψ̂† + ψ∗ψ̂
)

(14.14)

and D = 2dt. Using

〈nloc|V̂ |nloc + 1〉 = −Dψ∗
√
nloc + 1,

〈nloc − 1|V̂ |nloc〉 = −Dψ√nloc,
(14.15)

we obtain

E(2) = D|ψ|2 +D2|ψ|2
(

nloc + 1

µ− Unloc
− nloc

µ− U(nloc − 1)

)

. (14.16)

The Mott insulator (ψ = 0) is stable as long as a2 ≥ 0. For a2 < 0, ψ takes a nonzero value
and one must include the O(|ψ|4) term in the expansion of the ground-state energy.

4Eq. (14.9) is obtained by linearizing ψ̂†
rψ̂r′ in the fluctuation field δψ̂r = ψ̂r − 〈ψ̂r〉.

5This makes the present mean-field analysis markedly different from the one used in Sec. 7.4 (Bogoliubov
theory), where the quartic term was also treated at the mean-field level (or within a Gaussian approxima-
tion).

6i.e. the invariance in the transformation ψ̂r → eiαψ̂r and ψ̂†
r → e−iαψ̂†

r .

© N. Dupuis, 2022



14.1 Strong-coupling random-phase approximation 901

0 0.1 0.2 0.3

0

1

2

3

D/U

µ/U

nloc = 3

nloc = 2

nloc = 1

vacuum

superfluid phase

Figure 14.2: Mean-field phase diagram of the Bose-Hubbard model showing the first three
Mott lobes, the vacuum (nloc = 0) and the superfluid phase. For a given Mott lobe (with
nloc bosons per site), the transition line µ ≡ µ(D) is given by (14.18).

The transition line in the plane (D/U, µ/U) is thus defined by the condition a2 = 0,

1

D
= − nloc + 1

µ− Unloc
+

nloc
µ− U(nloc − 1)

. (14.17)

This equation admits two solutions

δµ± ≡ µ± − U

(

nloc −
1

2

)

= −D
2

± 1

2

(

D2 − 4Dx+ U2
)1/2

(14.18)

(x = nloc+1/2) for given values of nloc and D, provided that D2− 4Dx+U2 > 0. The two
solutions merge when D2 − 4Dx+ U2 vanishes, which corresponds to

Dc

U
= 2nloc + 1− 2

√

n2loc + nloc, δµc = −D
2
. (14.19)

We thus obtain a series of Mott lobes labeled by the integer nloc whose tips are defined
by (14.19). For large D/U , the ground state is always superfluid as expected (Fig. 14.2).

In the Mott insulator, ψ = 0 and E0 = a0 = ǫnloc
. The boson density is

n̄ = −∂E0

∂µ
= −∂ǫnloc

∂µ
= nloc (14.20)

so that the compressibility vanishes,

κ = n̄−2 ∂n̄

∂µ
= 0. (14.21)

The Mott insulator is incompressible.
To describe the superfluid phase (a2 < 0), we must include the O(|ψ|4) term in the

expansion of the ground-state energy. The coefficient a4 can be obtained from perturbation
theory, but the calculation is somewhat tedious [6]. Its knowledge is however not neces-
sary to obtain an important result about the nature of the phase transition. For a2 < 0,
minimization of the free energy gives

|ψ|2 = − a2
2a4

and E0 = a0 −
a22
4a4

. (14.22)
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902 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

The density of particles n̄ = −∂E0/∂µ then reads

n̄ = nloc +
a2
2a4

∂a2
∂µ

− a22
4a24

∂a4
∂µ

(14.23)

so that the superfluid phase has a density n̄ = nloc if

∂a2
∂µ

− a2
2a4

∂a4
∂µ

= 0. (14.24)

This equation is satisfied in the immediate vicinity of the transition (a2 → 0−) if ∂a2/∂µ = 0.
We deduce that the tip of the Mott lobe, where both a2 and ∂a2/∂µ vanish, corresponds to
a transition at constant density.7 Such a transition is driven by a change in the interaction
strength D/U . The corresponding quantum critical point is a multicritical point as two
parameters (t and µ) have to be fine tuned. Anywhere else on the transition line, the
transition is accompanied by a density change; this (generic) transition can occur at fixed
D/U by varying the chemical potential.

14.1.2 Strong-coupling RPA in the Mott phase

The strong-coupling RPA allows us to go beyond the mean-field theory discussed in the
previous section and obtain the dynamics of the bosons. We start from the action of the
Bose-Hubbard model,

S[ψ∗, ψ] =

ˆ β

0

dτ

{

∑

r

ψ∗
r
∂τψr +H[ψ∗, ψ]

}

= Sloc[ψ
∗, ψ] +

ˆ β

0

dτ
∑

r,r′

ψ∗
r
tr,r′ψr′ , (14.25)

and decouple the intersite hopping term by means of a Hubbard-Stratonovich transforma-
tion.8 This leads to the partition function9

Z =

ˆ

D[ψ∗, ψ, ϕ∗, ϕ] e−S[ψ
∗,ψ,ϕ∗,ϕ] (14.26)

with the action

S[ψ∗, ψ, ϕ∗, ϕ] = Sloc[ψ
∗, ψ]−

ˆ β

0

dτ

{

∑

r,r′

ϕ∗
r
t−1
r,r′ϕr′ +

∑

r

(ϕ∗
r
ψr + c.c.)

}

, (14.27)

where ϕ is a complex (bosonic) auxiliary field and

Sloc[ψ
∗, ψ] =

ˆ β

0

dτ
∑

r

{

ψ∗
r
(∂τ − µ)ψr +

U

2
ψ∗
r
ψ∗
r
ψrψr

}

(14.28)

7The fact that the transition at the Mott-lobe tip occurs at fixed density can also be understood from
the following argument. If the equal-density line n̄ = nloc in the superfluid phase joined the corresponding
Mott lobe at a point other than its tip, then the compressibility would necessary be negative in the vicinity
of the tip, which is physically not possible.

8For a discussion of the Hubbard-Stratonovich transformation see, for instance, Secs. 5.2.3 and 6.3.3.
9One easily verifies that the Gaussian integral over the auxiliary field ϕ yields the initial action (14.25).
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14.1 Strong-coupling random-phase approximation 903

the local part of the action. tr,r′ equals −t is r and r′ are nearest neighbors and vanishes
otherwise.

We can now integrate out the ψ field to obtain an effective action for the ϕ field,

e−S[ϕ
∗,ϕ] =

ˆ

D[ψ∗, ψ] e−S[ψ
∗,ψ,ϕ∗,ϕ]

= Zloc e
´

β

0
dτ

∑
r,r′ ϕ

∗

r
t−1

r,r′
ϕ

r
′
〈

e
´

β

0
dτ

∑
r
(ϕ∗

r
ψr+c.c.)

〉

loc
, (14.29)

where

〈· · ·〉loc =
1

Zloc

ˆ

D[ψ∗, ψ] · · · e−Sloc[ψ
∗,ψ]. (14.30)

Retaining only the second-order cumulant (the first-order one vanishes since 〈ψr〉loc = 0),10

we obtain
〈

e
´

β

0
dτ

∑
r
(ϕ∗

r
ψr+c.c.)

〉

loc
= e−

´

β

0
dτ dτ ′

∑
r
ϕ∗

r
(τ)Gloc(τ−τ

′)ϕr(τ
′), (14.31)

and therefore the effective action

S[ϕ∗, ϕ] = −
ˆ β

0

dτ
∑

r,r′

ϕ∗
r
t−1
r,r′ϕr′ +

ˆ β

0

dτ dτ ′
∑

r

ϕ∗
r
(τ)Gloc(τ − τ ′)ϕr(τ

′), (14.32)

where

Gloc(τ − τ ′) = −〈ψr(τ)ψ
∗
r
(τ ′)〉loc (14.33)

is the local Green function (14.5). In Fourier space, the action is diagonal,

S[ϕ∗, ϕ] =
∑

q

ϕ∗(q)[−t−1
q

+Gloc(iω)]ϕ(q), (14.34)

where tq = −2t
∑d
i=1 cos(qi) is the Fourier transform of tr,r′ . We deduce the propagator of

the auxiliary field,

G(q) = −〈ϕ(q)ϕ∗(q)〉 = 1

t−1
q −Gloc(iω)

, (14.35)

which in turn implies11

G(q) = −〈ψ(q)ψ∗(q)〉 = Gloc(iω)

1− tqGloc(iω)
. (14.36)

Equation (14.36) is typical of an RPA.12

The stability of the Mott insulator requires G(q = 0) ≥ 0, so that the transition line is
obtained from the criterion

t−1
q=0 −Gloc(iω = 0) = 0, (14.37)

10See Sec. 1.6.1 for a discussion of the cumulant expansion.
11To derive Eq. (14.36), we consider the partition function Z[J∗, J ] =
´

D[ψ∗, ψ] e−S[ψ
∗,ψ]+

´β
0
dτ

∑
r
(J∗

r
ψr+c.c.) in the presence of complex external sources. We perform the

Hubbard-Stratonovich transformation and obtain the one-particle propagator G(q) from the second-order
functional derivative of lnZ[J∗, J ].

12Compare, for instance, Eq. (14.36) with the RPA expression (5.11) of the density-density response
function in the electron gas.
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904 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

where Gloc(iω) is given by (14.8). We thus recover the mean-field result (14.17). In the
Mott insulator, the excitation spectrum is obtained from the poles of the retarded propagator
G(q, ω + i0+),

0 = t−1
q

−Gloc(ω + i0+)

= t−1
q

− nloc + 1

ω + i0+ + δµ− U/2
+

nloc
ω + i0+ + δµ+ U/2

. (14.38)

We therefore find two excitation branches,

E±
q

= −δµ+
tq
2

± 1

2

(

t2
q
+ 4xUtq + U2

)1/2
. (14.39)

For tq = 0, we recover the poles of the local propagator, E+
q

= −µ + Unloc > 0 and
E−

q
= −µ + U(nloc − 1) < 0, corresponding to particle and hole excitations on an isolated

site. Moreover, since E±
q=0 = −δµ + δµ±, the transition to the superfluid phase occurs

whenever one of the two excitation modes becomes soft. At the tip of the Mott lobe,
where the transition takes place at constant density, the two excitation modes become soft
simultaneously: E+

q=0 = E−
q=0 = 0 for δµ = δµ+ = δµ−.

To study in more detail the excitation spectrum in the long-wavelength limit, we intro-
duce the shifted lattice boson dispersion ǫq = tq +D such that ǫq ≃ tq2 for |q| ≪ 1. We
then have

E±
q

= −δµ− D

2
+
ǫq
2

± 1

2

[

ǫ2
q
+ ǫq(4xU − 2D) +D2 − 4xUD + U2

]1/2
. (14.40)

14.1.2.1 Generic transition

Let us first discuss the spectrum at the Mott-insulator–superfluid transition away from the
tip of the Mott lobe (generic transition). The coefficient A2 = D2 − 4xUD + U2 in (14.40)
is then nonzero. In the long-wavelength limit, the spectrum takes the form

Eα
q
= α∆α + α

q2

2m∗
α

, (14.41)

where

∆α = −α(δµ− δµα) and
m

m∗
α

=
1

2

(

2xU −D

A
+ α

)

. (14.42)

α = + (−) corresponds to the upper (lower) branch of the Mott lobe (see Fig. 14.2). At the
quantum critical point, δµ = δµα so that ∆α vanishes and the critical mode has a quadratic
dispersion law,

Eα
q
= α

q2

2m∗
α

(δµ = δµα), (14.43)

with an effective mass m∗
α. m = 1/2t is the effective mass of the free bosons moving in

the lattice (ǫq ≃ q2/2m for |q| ≪ 1). The sign α = ± in (14.41) and (14.43) agrees with
the fact the excitations are particle-like if α = + and hole-like if α = −. We conclude that
the dynamical critical exponent z = 2 at the generic transition. Furthermore, since the gap
∆α vanishes linearly with −δµ+ δµα, the correlation-length exponent ν satisfies zν = 1,13

13Recall that at a (continuous) quantum phase transition, the characteristic time scale (the inverse of the
gap ∆α here) diverges with the exponent zν (Sec. 12.1).
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14.1 Strong-coupling random-phase approximation 905

which implies ν = 1/2. We shall argue below that the values z = 2 and ν = 1/2, obtained
here from the strong-coupling RPA, are exact at the generic transition.

To obtain the quasi-particle weight associated with the critical quasi-particle excitations,
we expand the propagator (14.36) for small |ω| and q2,

G(q) ≃ Gloc(0)

1 +DGloc(0)− ǫqGloc(0) + iωDG′
loc(0)]

= α
Zαqp

iω − α q2

2m∗

α
− α∆α

, (14.44)

where

Zαqp =
m

m∗
α

= α
Gloc(0)

DG′
loc(0)

, ∆α = −α1 +DGloc(0)

DG′
loc(0)

, (14.45)

with G′
loc(iω) = ∂iωGloc(iω). Here we use the fact that G′

loc(0) 6= 0 for δµ 6= δµc. The
effective mass m∗

α and the quasi-particle weight Zαqp are shown in figure 14.10 page 929.

One can easily verify that the expressions (14.45) for the gap ∆α and the effective mass
m∗
α coincide with our previous results sufficiently close to the transition line. Noting

that ∂µGloc(iω) = ∂iωGloc(iω) while 1 +DGloc(0)|µα = 0, we obtain

1 +DGloc(0) ≃ (δµ− δµα)DG′
loc(0) (14.46)

and therefore ∆α ≃ −α(δµ − δµα) as in equation (14.42). As for the effective mass,
from (14.45) we deduce

m

m∗
α

≃ −α
Gloc(0)

2

G′
loc(0)

= α
(δµα + Ux)2

δµ2
α + 2xUδµα + U2/4

. (14.47)

With the notations A = (D2 − 4xUD + U2)1/2 and B = 2xU −D, we find

(δµα + Ux)2 =
1

4
(A+ αB)2,

δµ2
α + 2xUδµα +

U2

4
=

1

2
A(A+ αB),

(14.48)

which leads to (14.42).

For t/U → 0, one finds

lim
t/U→0

Zαqp = lim
t/U→0

m

m∗
α

=

{

nloc if α = − (lower branch),
nloc + 1 if α = + (upper branch).

(14.49)

This result can be understood as follows. Let us add a particle at site r in a Mott insulator
with nloc particles per site. In the limit t/U → 0, the only possible dynamics is due to the
motion of one of the nloc + 1 particles at site r to a neighboring site r′. This involves the
matrix element

(

〈nloc; r| ⊗ 〈nloc + 1; r′|
)

tψ̂†
r′
ψ̂r

(

|nloc + 1; r〉 ⊗ |nloc; r′〉
)

= t(nloc + 1) (14.50)

if we denote by ⊗ri
|ni; ri〉 the state with ni particles at site ri. The “particle” eigenstates

are therefore plane wave states,

|q〉 = 1√
N

∑

r

eiq·r|nloc + 1; r〉 ⊗r′ 6=r |nloc; r′〉, (14.51)

© N. Dupuis, 2022



906 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

with the dispersion law λq = λ0 − 2t(nloc + 1)
∑d
i=1 cos qi (λ0 is a constant which takes

the value 2dt(nloc + 1) at the quantum critical point), which leads to an effective mass
m∗

+/m = 1/(nloc + 1). The single-particle propagator reads

G(q, iω) =
|〈q|ψ̂†(q)|0〉|2
iω − λq

, (14.52)

where |0〉 = ⊗r|nloc; r〉 denotes the ground state of the Mott insulator without the additional
particle (in the limit t→ 0). We deduce the quasi-particle weight

Z+
qp = |〈q|ψ̂†(q)|0〉|2 = nloc + 1. (14.53)

A similar reasoning for the motion of a hole leads to Z−
qp = m/m∗

− = nloc.

14.1.2.2 Quantum multicritical point

Let us now consider the vicinity of a quantum multicritical point (tc, µc) defined by (14.19).
We take t as the control parameter of the quantum phase transition and assume that the
quantum critical point is approached with δµ = −D/2 fixed.14 The spectrum then exhibits
particle-hole symmetry in the long-wavelength limit,

E±
q

= ±1

2
[ǫq(4xU − 2D) +A2]1/2 +O(q2)

≡ ±(c2q2 +∆2)1/2 +O(q2), (14.54)

where

c =

[

tc
2
(2xU −Dc)

]1/2

=
√

tcU(n2loc + nloc)
1/4,

∆ = (D2 − 4xUD + U2)1/2 ≃ c

(

2d
tc − t

tc

)1/2

.

(14.55)

The gap ∆ vanishes when t = tc and the spectrum E±
q

= ±c|q| has a linear dispersion,

which implies z = 1. Furthermore, since ∆ ∼ (t− tc)
1/2 when the transition is approaches

by varying the ratio t/U , we deduce zν = 1/2 and ν = 1/2.
We can obtain the propagator by expanding wrt q and ω. For µ = µc, G

′
loc(0) = 0,15

and we find

G(q, iω) ≃ Gloc(0)

1 +DGloc(0)−Gloc(0)ǫq − D
2 G

′′
loc(0)ω

2
= − c2/t

ω2 + c2q2 +∆2
(14.56)

where

c =
√
2tc

(

Gloc(0)

DG′′
loc(0)

)1/2

, ∆ = − 2

Dc

1 +DGloc(0)

G′′
loc(0)

. (14.57)

One can easily verify that equations (14.57) agree with our previous results. Using Gloc(0) =
−1/Dc and G′

loc(0) = 0 for µ = µc (with µ − Unloc < 0 and µ − U(nloc − 1) > 0), one
obtains

G′′
loc(0) = − 2

D2
cU

1
√

n2
loc + nloc

, (14.58)

14We shall see in Sec. 14.2.3 that the critical behavior near the quantum multicritical point does not
depend on the path followed (except for the vertical path in the plane (D/U/µ/U)).

15Within the small-ω expansion of Gloc(iω), we find that particle-hole symmetry holds for δµ = δµc =
−Dc/2 rather than δµ = −D/2.
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14.1 Strong-coupling random-phase approximation 907

which in turn leads to (14.55).

14.1.2.3 Critical behavior in the strong-coupling RPA

The strong-coupling RPA predicts the existence of two universality classes. This result can
be inferred more directly from the effective action (14.34) of the auxiliary field ϕ. Expanding
t−1
q

and Gloc(iω) wrt q
2 and ω, we obtain

S[ϕ∗, ϕ] ≃
∑

q

ϕ∗(q)
[

δ +
q2

4d2t
+ iωG′

loc(0)−
ω2

2
G′′

loc(0) + · · ·
]

ϕ(q)

=
∑

q

ϕ∗(q)
[

δ +
q2

4d2t
+ iω

∂δ

∂µ
− ω2

2

∂2δ

∂µ2
+ · · ·

]

ϕ(q), (14.59)

where δ = −tq=0 + Gloc(iω = 0) = a2 [Eqs. (14.12) and (14.16)]. The last expression is
obtained by noting that Gloc(iω) is a function of iω + µ. More generally, the fact that the
coefficient of iω in the action (14.59) is given by ∂µδ is a consequence of the invariance of
the action in the (semilocal) gauge transformation16,17

ϕr → ϕre
iθ(τ), ϕ∗

r
→ ϕ∗

r
e−iθ(τ), µ→ µ+ i∂τθ(τ), (14.60)

where θ(τ) is an arbitrary time-dependent phase (See Sec. 14.2.1 for a more detailed dis-
cussion). Away from the tip of the Mott lobe, ∂µδ 6= 0, we can neglect the quadratic
frequency term in the action wrt the linear one. Apart from finite renormalizations, the
action is then similar to that of a dilute Bose gas. We thus expect the generic transition to
be in the universality class of the vacuum-superfluid transition in a dilute Bose gas (with
dynamical critical exponent z = 2). The upper critical dimension is d+c = 2, so that above
two dimensions the critical behavior is mean-field-like (with logarithmic corrections in two
dimensions) (Sec. 7.4.4).

At the quantum multicritical point, ∂µδ = 0, and the leading frequency term in the
action (14.59) is the quadratic one. The action then exhibits a relativistic (or particle-hole)
symmetry and we expect the quantum phase transition to be in the universality class of the
XY (or O(2)) model in dimensions d+1 with a dynamical critical exponent z = 1. The lower
and upper critical dimensions are d−c = 1 and d+c = 3, respectively. The strong-coupling
RPA, which is based on a Gaussian fluctuation approximation for the auxiliary field ϕ,
gives a mean-field-like description of the critical behavior (hence the mean-field exponent
ν = 1/2). In section 14.2.3 we will see that the quantum multicritical point looks like an
ordinary (d+1)-dimensional critical point as it is approached on a typical path (i.e. a path
which is not vertical) in the (t/U, µ/U) plane.

14.1.3 Strong-coupling RPA in the superfluid phase

In this section, we show how we can extend the strong-coupling RPA to the superfluid phase.
We start from the partition function

Z[J∗, J ] =

ˆ

D[ψ∗, ψ] e−S[ψ
∗,ψ]+

´

β

0
dτ

∑
r
(J∗

r
ψr+c.c.) (14.61)

16This invariance is inherited from the invariance of the action of the Bose-Hubbard model.
17In real time, the chemical potential shift in (14.60) is real: µ→ µ+ ∂tθ(t).
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908 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

in the presence of a complex external source. In the strong-coupling RPA, the hopping term
is decoupled in a mean-field manner,

ψ∗
r
tr,r′ψr′ → ψ∗

r
tr,r′φr′ + φ∗

r
tr,r′ψr′ − φ∗

r
tr,r′φr′ , (14.62)

where φr(τ) = 〈ψr(τ)〉 is the (source-dependent) superfluid order parameter. This gives

ZRPA[J
∗, J ] =

ˆ

D[ψ∗, ψ] exp
{

−SRPA[ψ
∗, ψ; J∗, J ]

}

= Zloc[J̃
∗, J̃ ] exp

{
ˆ β

0

dτ
∑

r,r′

φ∗
r
tr,r′φr′

}

, (14.63)

where

SRPA[ψ
∗, ψ; J∗, J ] = −

ˆ β

0

dτ
∑

r,r′

φ∗
r
tr,r′φr′ + Sloc[ψ

∗, ψ]−
ˆ β

0

dτ
∑

r

(J̃∗
r
ψr + c.c.) (14.64)

is the action in the RPA. We have introduced the partition function Zloc obtained from the
local part Sloc of the action (t = 0) and

J̃r(τ) = Jr(τ)−
∑

r′

tr,r′φr′(τ),

J̃∗
r
(τ) = J∗

r
(τ)−

∑

r′

tr,r′φ
∗
r′
(τ).

(14.65)

The self-consistency equation for the order parameter φr(τ) = 〈ψr(τ)〉 now reads

φr(τ) =
1

ZRPA[J∗, J ]

ˆ

D[ψ∗, ψ]ψr(τ) e
−SRPA[ψ∗,ψ;J∗,J]

=
δ

δJ̃∗
r
(τ)

lnZloc[J̃
∗, J̃ ]. (14.66)

For a vanishing external source J∗ = J = 0 and a uniform and time-independent order
parameter, this equation reproduces the mean-field theory of section 14.1.1.

The effective action is defined as the Legendre transform of − lnZ[J∗, J ] (Sec. 1.6.2),

ΓRPA[φ
∗, φ] = − lnZRPA[J

∗, J ] +

ˆ β

0

dτ
∑

r

(J∗
r
φr + c.c.)

=

ˆ β

0

dτ
∑

r,r′

φ∗
r
tr,r′φr′ − lnZloc[J̃

∗, J̃ ] +

ˆ β

0

dτ
∑

r

(J̃∗
r
φr + c.c.). (14.67)

Using (14.66), we can rewrite this equation as

ΓRPA[φ
∗, φ] = Γloc[φ

∗, φ] +

ˆ β

0

dτ
∑

r,r′

φ∗
r
tr,r′φr′ , (14.68)

where Γloc[φ
∗, φ] is the local effective action. It is clear that the strong-coupling RPA treats

exactly the local part of the effective action but relies on a mean-field treatment of the
intersite hopping term.
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14.2 Critical behavior at the Mott transition 909

From equation (14.68), we can easily reproduce the results of section 14.1.2. In the Mott
insulator, the superfluid order parameter vanishes and the two-point vertex is given by

Γ
(2)
RPA(r, τ ; r

′, τ ′) =
δ(2)ΓRPA[φ

∗, φ]

δφ∗
r
(τ)δφr′(τ ′)

∣

∣

∣

∣

φ∗=φ=0

= δ(τ − τ ′)tr,r′ + δr,r′Γ
(2)
loc(τ − τ ′;φ∗ = φ = 0). (14.69)

Using Γ(2) = −G−1 (Sec. 1.6.2), we deduce

G(q) = −tq +Gloc(iω)
−1, (14.70)

in agreement with (14.36).
The advantage of the effective action formalism is that it allows us to study the superfluid

phase where φ 6= 0. The local propagator should then be computed at nonzero external
source J̃ . Both Gloc(iω) and G(q) become 2 × 2 matrices with normal and anomalous
components. The effective action is the key quantity in the NPRG approach and is further
discussed in section 14.3.

14.2 Critical behavior at the Mott transition

In section 14.1.2 we have seen that the strong-coupling RPA allows us to identify two
universality classes for the Mott transition. In this section we reconsider this issue from a
slightly more general point of view and discuss the equation of state in the vicinity of the
superfluid–Mott-insulator transition.

14.2.1 Effective action and universality classes

Let us try to understand the critical behavior at the Mott transition from the effective
action

Γ[φ∗, φ] = − lnZ[J∗, J ] +

ˆ β

0

dτ
∑

r

(J∗
r
φ∗
r
+ c.c.), (14.71)

where φr(τ) = δ lnZ[J∗, J ]/δJ∗
r
(τ) = 〈ψr(τ)〉 is the superfluid order parameter and Jr a

complex external source which couples linearly to the ψ field. The critical behavior can be
obtained from the low-energy expansion

Γ[φ∗, φ] =

ˆ β

0

dτ

ˆ

ddr
{

φ∗(ZC∂τ − VA∂
2
τ − ZAt∇

2 + · · · )φ

+ V (n0) + δ(n− n0) +
λ

2
(n− n0)

2 + · · ·
}

, (14.72)

where n = |φ|2 and the ellipses stand for higher-order (in derivative or field) terms. We
have taken the continuum limit where r becomes a continuous variable. Equation (14.72)
is obtained by expanding the effective potential about the position n0 of its minimum and
retaining only the lowest-order derivative terms.18

18Recall that the effective potential is defined by V (n) = 1
βV

Γ[φ∗, φ] with φ a uniform time-independent

field. Its minimum determines the condensate density n0 and the pressure P (µ, T ) = −V (n0) in the
equilibrium state (see Sec. 13.3).
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910 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

At zero temperature, δ is nonzero in the Mott insulator (where n0 = 0) and vanishes in
the superfluid phase so that the transition line is given by δ ≡ δ(t, U, µ) = 0+. δ and ZC
are not independent but related by the Ward identity (Eqs. (13.94); see also Eq. (14.127)
below)

ZC = − ∂2V

∂µ∂n

∣

∣

∣

∣

n=0

= − ∂δ

∂µ

∣

∣

∣

∣

t,U

, (14.73)

which is a consequence of the invariance of the microscopic action (14.25) in the (semilocal)
gauge transformation (14.60). At the tip of the Mott lobe, where ∂µδ = 0, ZC vanishes. As
already discussed at the end of section 14.1.2, this observation implies the existence of two
universality classes that we now discuss in more detail.

14.2.2 The generic transition

First we discuss the generic Mott transition and focus on the three-dimensional case (see
however footnote 21 page 911). From the effective action (14.72), we can identify the
elementary excitations at the quantum critical point δ = T = 0. On the lower part of the
transition line (for a given Mott lobe), ZC is negative and it is convenient to perform a
particle-hole transformation φ↔ φ∗ (which changes the sign of the ∂τ term in (14.72)). We
can then define a quasi-particle field

φ̄(r, τ) =
√

|ZC |φ(r, τ) (14.74)

and rewrite the effective action as

Γ[φ̄∗, φ̄] =

ˆ β

0

dτ

ˆ

d3r

{

φ̄∗
(

∂τ −
∇

2

2m∗

)

φ̄+
1

2

4πa∗

m∗
|φ̄|4 + V (0)

}

, (14.75)

where

m∗ =
|ZC |
2tZA

= m
|ZC |
ZA

, a∗ =
m∗λ

4πZ2
C

. (14.76)

We deduce from (14.74) and (14.75) that the elementary excitations at the quantum critical
point are quasi-particles with mass m∗ and spectral weight

Zqp = |ZC |−1. (14.77)

They are particle-like if ZC > 0 and hole-like if ZC < 0. The effective interaction between
two quasi-particles is determined by the “scattering length” a∗.

The quantum phase transition at µ = −6t between the superfluid phase and the vacuum
(which can be seen as a Mott insulator with vanishing density) differs from the superfluid-
vacuum transition in a continuum model only by the presence of the lattice. One then
has ZA = ZC = 1 (the one-particle propagator is not renormalized), so that Zqp = 1 and
m∗ = m = 1/2t. Furthermore, the interaction constant can be calculated analytically (by
solving the two-body problem) and is related to the scattering length a of the bosons moving
in the lattice. In three dimensions, λ = 4πa/m = 8πat, which gives a∗ = a with

a =
1

8π(t/U +A)
, A ≃ 0.1264 (14.78)

(see Ref. [24]).
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14.2 Critical behavior at the Mott transition 911

For a generic quantum critical point between the superfluid phase and a Mott insulating
phase with nonzero density (n̄ = 1, 2, · · · ), it is nontrivial to compute Zqp, m

∗ and a∗. In
section 14.3, we shall see how this can be done with the NPRG. The strong-coupling RPA
predictions for Zqp and m∗ vs t/tc turn out to be rather accurate although tc (the value of
t at the tip of the Mott lobe) is poorly determined (see Fig. 14.10 in Sec. 14.3.3).

Assuming that the values of the nonuniversal parameters Zqp, m
∗ and a∗ are known,

we now discuss the thermodynamics of the gas near the Mott transition. Since the generic
superfluid–Mott-insulator transition belongs to the dilute Bose gas universality class, its
equation of state can be expressed in terms of the universal scaling functions FDBG and
GDBG introduced in section 7.4, as well as the nonuniversal parameters m∗ and a∗. To
ensure that there is no other nonuniversal parameter, we must verify that the chemical
potential (or, more precisely, δµ = µ− µc, denoting by µc the value of µ at the transition)
couples to the elementary excitations with no additional renormalization. Slightly away
from the quantum critical point, the shift δµ in chemical potential implies a change

δS[ψ∗, ψ] = −δµ
ˆ β

0

dτ
∑

r

ψ∗
r
ψr (14.79)

in the microscopic action. To lowest order in δµ, this induces a correction

δΓ[φ∗, φ] = −Zµδµ
ˆ β

0

dτ

ˆ

d3r φ∗φ

= −Zµ|ZC |−1δµ

ˆ β

0

dτ

ˆ

d3r φ̄∗φ̄ (14.80)

to the effective action at the quantum critical point [Eq. (14.75)], where Zµ is a renormaliza-
tion factor. Using the Ward identify Zµ = ZC , which is a consequence of the invariance of
the microscopic action (14.25) in the (semilocal) gauge transformation (14.60),19 we obtain

δΓ[φ̄∗, φ̄] = −δµ sgn(ZC)
ˆ β

0

dτ

ˆ

d3r φ̄∗φ̄. (14.81)

We conclude that sgn(ZC)δµ acts as a chemical potential for the elementary excitations at
the quantum critical point. This implies that ±δµ/T will enter the equation of state with
no additional scale factor.20

We can now borrow the known results for the dilute Bose gas to write the pressure as21

P (µ, T ) = Preg(µ, T ) +

(

m∗

2π

)3/2

T 5/2FDBG

(

±δµ
T
, g̃(T )

)

= Preg(µ, T ) +

(

m∗

2π

)3/2

|δµ|5/2GDBG

(

± T

δµ
, g̃(δµ)

)

, (14.82)

19Eq. (14.80) implies that the effective potential is given by V (µ, n) = V (µc, n)− Zµnδµ to lowest order
in δµ. The Ward identity ZC = −∂2V/∂µ∂n|n=0 [Eq. (14.127)] then gives ZC = Zµ.

20This result agrees with general considerations on the scaling of conserved densities near a continuous
quantum phase transition [26].

21Similar expressions can be obtained for the two-dimensional generic transition, e.g. P = Preg +
m∗

2π
T 2FDBG

(

± δµ
T
, g̃(T )

)

with g̃(ǫ) = −4π/(ln 1
2

√

2m∗a∗2|ǫ| + C) and C the Euler constant (here the

scaling functions FDBG and GDBG refer to the two-dimensional dilute Bose gas universality class).
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912 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

where FDBG and GDBG are the scaling functions introduced in section 7.4 and

g̃(ǫ) = 8π
√

2m∗a∗2|ǫ|. (14.83)

The + (−) sign in equation (14.82) corresponds to particle (hole) doping of the Mott insu-
lator (i.e the upper (lower) part of the transition line for a given Mott lobe).

Universality implies that the singular part of the pressure can be expressed in terms
of the scaling function FDBG (or GDBG) but does not allow one to determine the regular
part. To obtain the latter, we note that the compressibility κ = n̄−2∂2P/∂µ2 vanishes in
the T = 0 Mott insulator and has therefore no regular part, so that22

n̄2κ(µ, T ) =

(

m∗

2π

)3/2

T 1/2F (2,0)

(

±δµ
T
, g̃(T )

)

. (14.84)

Integrating this equation wrt µ, we obtain

n̄ = n̄c ±
(

m∗

2π

)3/2

T 3/2F (1,0)
DBG

(

±δµ
T
, g̃(T )

)

(14.85)

where n̄c is the density at the quantum critical point.23 An additional integration gives
equation (14.82) with

Preg(µ, T ) = Pc + n̄cδµ, (14.86)

where Pc is the pressure at the quantum critical point.24

Since the scaling functions FDBG and GDBG are known (Secs. 7.4 and 7.4.4), we can
deduce the equation of state in various limits. When sgn(ZC)δµ < 0 and |δµ| ≫ T , the
pressure is given by

P (µ, T ) = Pc + n̄cδµ+

(

m∗

2π

)3/2

T 5/2e−|δµ|/T (14.87)

and corresponds to a dilute classical gas. For δµ = 0 (quantum critical regime),

P (µc, T ) = Pc + ζ(5/2)

(

m∗

2π

)3/2

T 5/2, (14.88)

while in the zero-temperature superfluid phase,

n̄(µ, 0) = n̄c +
m∗δµ

4πa∗

(

1− 16

3π

√

m∗a∗2|δµ|
)

(14.89)

and

P (µ, 0) = Pc + n̄cδµ+
m∗δµ2

8πa∗

(

1− 64

15π

√

m∗a∗2|δµ|
)

. (14.90)

The last two terms in (14.89) and (14.90) correspond to the “mean-field” result and the Lee-
Huang-Yang correction. Equations (14.87-14.90) are correct only if the scaling form (14.82)

22We use the notation F(i,j)(x, y) = ∂ix∂
j
yF(x, y).

23Since the Mott insulator is incompressible, ∂n̄/∂µ = 0, n̄c is the density in the Mott insulator.
24To obtain (14.85) and (14.86), we assume that the regular part of the pressure, as for the dilute Bose

gas, is temperature independent. This is confirmed by the NPRG results (Sec. 14.3).
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14.2 Critical behavior at the Mott transition 913

holds, i.e. sufficiently close to the quantum critical point δµ = T = 0. In section 14.3, we
will show that this requires

√

m∗a∗2|δµ| ≪ 1 and
√
m∗a∗2T ≪ 1 (or

√

|n̄− n̄c|a∗3 ≪ 1 at
zero temperature). When these conditions are satisfied, the excess density of particles (or
holes) wrt the commensurate density of the Mott insulator behaves as a dilute Bose gas.

The condensate density n0(µ, T ) in the superfluid phase can be expressed in terms of a
scaling function I(T/|δµ|, g̃(δµ)). However, since only the coherent part of the excitations
condenses, the scaling form must be used for the condensate density |φ̄|2 = |φ|2/Zqp of the
quasi-particles, which leads to

n0(µ, T ) = Zqp

(

m∗|δµ|
2π

)3/2

I
(

T

|δµ| , g̃(δµ)
)

(14.91)

near the superfluid–Mott-insulator transition. The fact that n0(µ, T ), contrary to other
thermodynamic quantities, depends on the quasi-particle weight can be understood by not-
ing that it is not invariant in the (semilocal) gauge transformation (14.60) and therefore not
“protected” by the Ward identity Zµ = ZC . At zero temperature, using (7.175) one obtains

n0(µ, 0) = Zqp
m∗|δµ|
4πa∗

(

1− 20

3π

√

m∗a∗2|δµ|
)

, (14.92)

where m∗|δµ|/4πa∗ ≃ |n̄− n̄c| is the density of excess particles (or holes) wrt the commen-
surate density n̄c of the Mott insulator.

Finally, using again our knowledge of the dilute Bose gas, we obtain the superfluid
transition temperature

Tc =
2π

m∗

(

m∗|δµ|
8πζ(3/2)a∗

)2/3

(14.93)

near the quantum critical point.

14.2.3 Quantum multicritical point

We now discuss the transition in the vicinity of the tip of a Mott lobe. Exactly at the
tip, ZC vanishes and the dynamical critical exponent takes the value z = 1. The quantum
multicritical point is then similar to the critical point of the (d+1)-dimensional XY model.
The critical behavior as we move away from the multicritical point can be understood from
the singular part of the effective potential. When ZC vanishes, the zero-temperature phase
transition is controlled by the fixed point of the (d+1)-dimensional XY model. There is one
relevant variable (that we denote by r) with scaling dimension 1/ν given by the correlation-

length exponent ν ≡ ν
(d+1)
XY of the (d + 1)-dimensional XY model. If we move away from

the Mott lobe tip in an arbitrary direction, ZC will in general not vanish. Denoting by y
its scaling dimension, the singular part of the effective potential satisfies, when d < d+c = 3,
the hyperscaling relation

Vsing(r, ZC) = s−d−zVs(s
1/νr, syZC) ∼ |r|ν(d+z)Ṽsing

(

ZC
|r|yν

)

, (14.94)

where the last result in (14.94) is obtained with s ∼ |r|−ν .
Equation (14.94) implies

∂2Vsing
∂Z2

C

∣

∣

∣

∣

ZC=0

∼ |r|(d+z−2y)ν . (14.95)
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914 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

On the other hand, a nonzero ZC can be induced by a shift δµ of the chemical potential.
But such a shift is equivalent to a (uniform) time-dependent twist θ(τ) = −iδµτ of the
bosonic field: ψr(τ) → ψr(τ)e

iθ(τ) [Eq. (14.60)].25 The latter gives rise to a change

∆E =
1

2
ρτsβ

−1

ˆ β

0

dτ

ˆ

ddr(∂τθ)
2 (14.96)

in the energy of the system, where ρτs can be seen as a temporal superfluid stiffness.26 Using
[∆E] = z, we deduce that [ρτs ] = d− z and ρτs ∼ |r|(d−z)ν . Since

∂2Vsing
∂Z2

C

∣

∣

∣

∣

ZC=0

∼ ∂2Vsing
∂(δµ)2

∣

∣

∣

∣

δµ=0

∼ ρτs ∼ |r|(d−z)ν , (14.97)

we conclude that y = z = 1 by comparing (14.95) and (14.97).
Let us now go back to the scaling relation (14.94) with y = 1. Vsing being finite in the

limit ZC → 0, Ṽsing(x) must behave as a constant in the limit x → 0. Moreover r and ZC
are presumably analytic functions of t− tc and µ− µc, and must vanish linearly with t− tc
as we approach a quantum multicritical point (tc, µc) on a typical path (i.e. a path which

is not vertical in the (t/U, µ/U) plane27). Since y = 1 and 1− ν
(d+1)
XY > 0 for all dimensions

d+ 1 ≥ 3, the argument of Ṽsing in Eq. (14.94) vanishes as t− tc → 0 for d ≥ 2. Given that

Ṽsing(x) → const as x → 0, we conclude that ZC drops out of the scaling relation (14.94)
and the quantum multicritical point looks like an ordinary (d+ 1)-dimensional XY critical
point. At finite temperature, the singular part of the effective potential satisfies

Vsing(r, T ) ∼ |r|ν(d+z)W̃sing

(

T

|r|zν
)

, (14.98)

using the fact that the scaling dimension of the temperature is given by the dynamical
critical exponent z.

These observations imply that the universal (critical) behavior in the vicinity of a quan-
tum multicritical point can be obtained from the quantum O(2) model

S[ϕ] =

ˆ β

0

dτ

ˆ

ddr

{

1

2
(∇ϕ)2 +

1

2c20
(∂τϕ)

2 +
r0
2
ϕ

2 +
u0
4!

(ϕ2)
2
}

, (14.99)

where ϕ is a 2-component real field satisfying periodic boundary conditions ϕ(r, τ + β) =
ϕ(r, τ). Note that this model has no first-order time derivative and exhibits Lorentz in-
variance at zero temperature. There is a quantum critical point for a critical value r0c of
r0 (considering u0 fixed) separating a disordered phase (r0 > rc0) from an ordered phase
(r0 < r0c) where the O(2) symmetry is spontaneously broken. In two and three dimensions,
there is a finite-temperature phase transition for r < r0c (the transition is of Berezinskii-
Kosterlitz-Thouless type in two dimensions). The phase diagram is shown in the right panel
of figure 12.2 for d = 3.Figure avec dia-

gramme de phases? In the universal regime near the quantum critical point the pressure reads

P (T ) = P (0) + 2
T d+1

cd
F (d)

Qu−XY

(

∆

T

)

(14.100)

25Note that in real time θ(t) = δµt is real.
26Compare Eq. (14.96) with the definition of the superfluid stiffness ρs (footnote 46 page 632).
27For a vertical path (t = tc), r does not change sign and must therefore vanish as (µ− µc)2.
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14.3 Nonperturbative RG approach 915

for d < d+c , where c is the velocity of the critical fluctuations at the quantum critical point
and |∆| a characteristic zero-temperature energy scale. In the disordered phase (r0 > r0c),
∆ is equal to the excitation gap of the ϕ field. When r0 < r0c, it is convenient to take
∆ negative such that |∆| = −∆ is the excitation gap in the disordered phase at the point
located symmetrically with respect to the quantum critical point. The pressure in the
Bose-Hubbard model, in the vicinity of a quantum multicritical point, is given by (14.100)
if we identify ∆ with the one-particle excitation gap in the Mott phase and c with the
velocity of the critical fluctuations at the superfluid–Mott-insulator transition. The universal

scaling function F (2)
Qu−XY is discussed in section 12.4. The size of the critical regime where

equation (14.100) holds will be determined in section 14.3.3.

14.3 Nonperturbative RG approach

In this section, we discuss a NPRG approach to the Bose-Hubbard model, which is a gen-
eralization of the lattice NPRG discussed in the context of classical field theories and spin
systems (Sec. 11.8). The lattice NPRG assumes as initial condition the local limit of de-
coupled sites and the corresponding scale-dependent effective action ΓΛ is given by the
strong-coupling RPA (Sec. 14.1.3);28 it therefore provides us with a systematic method to
go beyond the results of section 14.1 and obtain a more accurate determination of the phase
diagram and the critical behavior at the Mott transition. It also enables us to compute the
nonuniversal parameters (such as the massm∗ and the “scattering length” a∗ for the generic
transition) entering the universal equation of state near the Mott transition (Sec. 14.2). As
in the preceding sections, we consider the zero-temperature limit for the most part (the
generalization to the finite-temperature case being in general straightforward).

14.3.1 Lattice NPRG

Following the general strategy of the NPRG (chapter 11), we add to the action a “regulator”
term

∆Sk =

ˆ β

0

dτ
∑

q

ψ∗
q
Rk(q)ψq. (14.101)

The cutoff function Rk(q) modifies the bare dispersion tq of the bosons. In the lattice
NPRG, it is chosen such that RΛ(q) + tq vanishes (the microscopic momentum scale Λ is
defined below). The action S +∆SΛ then corresponds to the local limit of decoupled sites
(vanishing hopping amplitude).29

In practice, we choose the cutoff function

Rk(q) = −ZA,kǫksgn(tq)(1− yq)Θ(1− yq), (14.102)

with Λ =
√
2d, ǫk = tk2, yq = (2dt − |tq|)/tk2 and Θ(x) the step function (see Fig. 14.3).

The k-dependent constant ZA,k is defined below (ZA,Λ = 1). Since Rk=0(q) = 0, the action
Sk=0 coincides with the action (14.25) of the original model. For small k, the function Rk(q)
gives a mass ∼ k2 to the low-energy modes |q| . k and acts as an infrared regulator as in
the standard NPRG scheme (chapter 11).

28The standard NPRG approach (chapter 11) would start from the mean-field (Bogoliubov) theory, which
is not a good starting point to describe the Mott transition (see footnote 2 page 898).

29By choosing RΛ(q) + tq = 0 rather than RΛ(q) + tq = 2dt as in Sec. 11.8, we ensure that RΛ(q) does
not modify the chemical potential but only the kinetic energy.
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Figure 14.3: Effective (bare) dispersion tq +Rk(q) for k = Λ, 0 < k < Λ and k = 0 with the
cutoff function (14.102). The (green) dashed line shows the bare dispersion tq = −2t cos q
(d = 1 and t is taken as the energy unit).

Apart from the choice of the cutoff function, the lattice NPRG approach is similar to the
one used to study interacting bosons in the continuum (chapter 13). The scale-dependent
effective action

Γk[φ
∗, φ] = − lnZk[J

∗, J ] +

ˆ β

0

dτ
∑

r

(J∗
r
φr + c.c.)−∆Sk[φ

∗, φ] (14.103)

is defined as a (slightly modified) Legendre transform of the grand potential − lnZk[J
∗, J ]

obtained from the action S+∆Sk. φr(τ) denotes the superfluid order parameter. Γk satisfies
the exact flow equation (13.74).

14.3.1.1 Effective potential and two-point vertex

We are primarily interested in two quantities. The first one is the effective potential defined
by

Vk(n) =
1

βN
Γk[φ

∗, φ]

∣

∣

∣

∣

φ const

(14.104)

where φ is a constant (uniform and time-independent) field. The U(1) symmetry of the
action implies that Vk(n) is a function of n = |φ|2. Its minimum determines the condensate
density n0,k and the thermodynamic potential (per site) V0,k = Vk(n0,k) in the equilibrium
state.

The second quantity of interest is the two-point vertex

Γ
(2)
k,ij(r− r′, τ − τ ′;φ) =

δ(2)Γ[φ]

δφir(τ)δφjr′(τ ′)

∣

∣

∣

∣

φ const

(14.105)

which determines the one-particle propagator Gk = −Γ
(2)−1
k . Here the indices i, j refer to

the real and imaginary parts of φ,

φr =
1√
2
(φ1r + iφ2r) . (14.106)

Because of the U(1) symmetry of the action (14.25), the two-point vertex in a constant field
takes the form

Γ
(2)
k,ij(q;φ) = δijΓA,k(q;n) + φiφjΓB,k(q;n) + ǫijΓC,k(q;n) (14.107)
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(see Eq. (13.83)), where ΓA,k, ΓB,k, and ΓC,k satisfy equations (13.84) due to parity and

time-reversal invariance. For q = 0, we can relate Γ
(2)
k to the derivative of the effective

potential,

Γ
(2)
k,ij(q = 0;φ) =

∂2Vk(n)

∂φi∂φj
= δi,jV

′
k(n) + φiφjV

′′
k (n), (14.108)

so that

ΓA,k(q = 0;n) = V ′
k(n), ΓB,k(q = 0;n) = V ′′

k (n), ΓC,k(q = 0;n) = 0. (14.109)

The one-particle propagator Gk = −Γ
(2)−1
k can be written in a form analogous to (14.107)

or in terms of its longitudinal and transverse components,

Gk,ij(q;φ) =
φiφj
2n

Gk,ll(q;n) +

(

δij −
φiφj
2n

)

Gk,tt(q;n) + ǫijGk,lt(q;n), (14.110)

where Gk,ll, Gk,tt and Gk,lt are given by equations (13.104). Note that the propagator

entering the flow equation is defined by −(Γ
(2)
k +Rk)

−1, which is the propagator associated
with the true Legendre transform.30

14.3.1.2 Initial conditions

Since the action S + ∆SΛ ≡ Sloc corresponds to the local limit, the initial value of the
effective action reads

ΓΛ[φ
∗, φ] = Γloc[φ

∗, φ] +

ˆ β

0

dτ
∑

q

φ∗(q)tqφ(q), (14.111)

where

Γloc[φ
∗, φ] = − lnZloc[J

∗, J ] +

ˆ β

0

dτ
∑

r

(J∗
r
φr + c.c.) (14.112)

is the Legendre transform of the free energy − lnZloc[J
∗, J ] in the local limit. In equa-

tion (14.112), J is related to φ by the relation φr(τ) = δ lnZloc[J
∗, J ]/δJ∗

r
(τ) and Zloc is

the partition function obtained from Sloc. ΓΛ is nothing but the RPA effective action intro-
duced in section 14.1.3. It is not possible to compute the functional Γloc[φ

∗, φ] for arbitrary
time-dependent fields. One can however easily obtain the effective potential Vloc(n) and the

two-point vertex Γ
(2)
loc in a time-independent field. These quantities are sufficient to specify

the initial conditions of the flow within the approximations that we consider below.

To obtain Vloc and Γ
(2)
loc in a time-independent field, it is sufficient to consider a single

site with a time-independent complex source J . The corresponding Hamiltonian reads

Ĥloc = −µn̂+
U

2
n̂(n̂− 1)− J∗ψ̂ − Jψ̂† (14.113)

and is a generalization of equation (14.2) to a nonzero external source.31 In the basis {|m〉}
(n̂|m〉 = m|m〉 with m integer), the Hamiltonian is represented by a tridiagonal matrix,

〈m|Ĥ|m′〉 = δm,m′

[

−µm+
U

2
m(m− 1)

]

− δm+1,m′J∗
√
m+ 1− δm−1,m′J

√
m, (14.114)

30As previously noted, the “physical” propagator at scale k is defined as −Γ
(2)−1
k rather than −(Γ

(2)
k +

Rk)
−1 (see footnote 29 page 749).

31The Hamiltonian (14.113) was considered in Sec. 14.1.1 for a particular value of J and J∗ [Eq. (14.11)].
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918 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

Figure 14.4: (Left) Superfluid order parameter φ vs external source J (assumed here real)
in the local limit for various values of the chemical potential µ. (Right) Effective potential
Vloc(n) for various values of the chemical potential µ.

which can be numerically diagonalized in the truncated Hilbert space m ≤ mmax. The
low-energy eigenstates are independent of mmax if the latter is large enough. If we denote
by {|α〉, Eα} the source-dependent eigenstates and eigenvalues – with {|0〉, E0} the ground
state – we obtain the superfluid order parameter

φ = −∂E0

∂J∗
, φ∗ = −∂E0

∂J
, (14.115)

and the effective potential

Vloc(n) = E0 + J∗φ+ Jφ∗ (14.116)

in the zero-temperature limit β → ∞. Figure 14.4 shows the superfluid order parameter φ
as a function of the external source J , and the local effective potential Vloc(n) obtained by
numerically inverting (14.115).

To determine the two-point vertex Γ
(2)
loc, we start from the (source-dependent) normal

and anomalous local Green functions

Gn(τ) = −〈Tτ ψ̂(τ)ψ̂†(0)〉+ |〈ψ̂〉|2,
Gan(τ) = −〈Tτ ψ̂(τ)ψ̂(0)〉+ 〈ψ̂〉2,

(14.117)

where ψ̂(†)(τ) = eτĤ ψ̂(†)e−τĤ and Tτ is a time-ordering operator. The Fourier transforms
Gn(iω) and Gan(iω) are easily expressed in terms of the eigenstates |α〉 of the Hamiltonian,

Gn(iω) = −
∑

α 6=0

[

|〈α|ψ̂|0〉|2
iω + Eα − E0

− |〈0|ψ̂|α〉|2
iω + E0 − Eα

]

,

Gan(iω) = −
∑

α 6=0

〈α|ψ̂|0〉〈0|ψ̂|α〉 2(Eα − E0)

ω2 + (Eα − E0)2
.

(14.118)
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From the relation Γ(2) = −G−1, we finally obtain

Γloc,A(iω;n) = − 1

2D(iω)
[Gn(iω) +Gn(−iω) + 2Gan(iω)],

Γloc,B(iω;n) =
Gan(iω)

nD(iω)
,

Γloc,C(iω;n) =
i

2D(iω)
[Gn(iω)−Gn(−iω)],

(14.119)

where D(iω) = Gn(iω)Gn(−iω) − Gan(iω)
2. Γ(2) is expressed in terms of the condensate

density n (rather than the external source J) by inverting (14.115).

14.3.1.3 Derivative expansion and infrared behavior

Since the cutoff function acts as an infrared regulator, Γ
(2)
k (q;n) is a regular function of q

for q → 0. In the infrared limit, we can therefore use the derivative expansion

ΓA,k(q;n) = ZA,k(n)tq
2 + VA,k(n)ω

2 + V ′
k(n),

ΓB,k(q;n) = V ′′
k (n),

ΓC,k(q;n) = ZC,k(n)ω,

(14.120)

in agreement with the symmetry properties (13.84). For the following discussion, it is
convenient to introduce

δk = V ′
k(n0,k), λk = V ′′

k (n0,k), (14.121)

with δk vanishing in the superfluid phase. If the spectrum is gapped, equations (14.120) are
always valid in the low-energy limit. Otherwise, their validity requires |q| . k and |ω| . ω−

k

where ω−
k is the lowest excitation energy for |q| ∼ k (see below).

As in the continuum, gauge invariance implies the Ward identities

∂

∂ω
ΓC,k(q;n0,k)

∣

∣

∣

q=0
= − ∂2Vk

∂µ∂n

∣

∣

∣

∣

n0,k

,

∂

∂ω2
ΓA,k(q;n0,k)

∣

∣

∣

q=0
= − 1

2n0,k

∂2Vk
∂µ2

∣

∣

∣

∣

n0,k

(14.122)

in the superfluid phase (Sec. 13.A.2). Vk(µ, n) is considered as a function of both µ and n,
and the density n0,k ≡ n0,k(µ) is defined by

∂Vk(µ, n)

∂n

∣

∣

∣

∣

n0,k

= 0. (14.123)

This equation being valid for any µ, we deduce

0 =
d

dµ

∂Vk(µ, n)

∂n

∣

∣

∣

∣

n0,k

=
∂2Vk
∂µ∂n

∣

∣

∣

∣

n0,k

+
∂2Vk
∂n2

∣

∣

∣

∣

n0,k

dn0,k
dµ

. (14.124)
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In the Mott insulator (n0,k = 0), the Ward identities (14.122) become32

∂

∂ω
ΓC,k(q;n = 0)

∣

∣

∣

q=0
= − ∂2Vk

∂µ∂n

∣

∣

∣

∣

n=0

,

∂2V0,k
∂µ2

=
d2V0,k
dµ2

= 0,

(14.125)

which implies that the compressibility

κk = n̄−2
k

dn̄k
dµ

= −n̄−2
k

d2V0,k
dµ2

(14.126)

vanishes. n̄k = −dV0,k/dµ denotes the boson density and V0,k = Vk(n = 0).
Let us first discuss the Mott insulator (n0,k = 0), the Ward identities (14.125) imply

ZC,k(n = 0) = −∂δk
∂µ

∣

∣

∣

∣

t,U

. (14.127)

Since the transition line is determined by δk=0 ≡ δk=0(t, U, µ) = 0+, ZC,k=0(0) vanishes at
the tip of the Mott lobes as discussed in section 14.2.1.

The excitation spectrum is given by the zeros of the determinant of the 2 × 2 matrix

Γ
(2)
k (q;n0,k) (after analytical continuation iω → ω + i0+), Since Gan,k(q;n = 0) = 0 in the

Mott insulator, the excitation spectrum is more simply obtained from G−1
n,k(q;n = 0) =

−ΓA,k(q;n = 0) + iΓC,k(q;n = 0) = 0. This gives two gapped modes,

ω±(q) = − ZC,k
2VA,k

± 1

2VA,k

[

Z2
C,k + 4VA,k(ZA,ktq

2 + δk)
]1/2

. (14.128)

When ZC,k 6= 0, both modes have a quadratic dispersion for small q,

ω±(q) = ±∆± ± q2

2m∗
±

, (14.129)

where

∆k± = ∓ ZC,k
2VA,k

+
1

2VA,k

(

Z2
C,k + 4VA,kδk

)1/2
,

m

m∗
±

=
ZA,k

(Z2
C,k + 4VA,kδk)1/2

(14.130)

(with m = 1/2t). At the transition to the superfluid phase (δk → 0), ∆k=0,+ (∆k=0,−)
vanishes if ZC,k > 0 (ZC,k < 0) but the particle-hole excitation gap ∆k=0 = ∆k=0,++∆k=0,−

remains finite. The critical mode dispersion being quadratic, the dynamical critical exponent
z = 2.33

32Eqs. (14.125) follow from (13.A.12a-13.A.12c) with n0 = 0.
33Here we use the fact that ZA,k=0 is finite at the transition (as shown by the numerical solution of the

NPRG equations). A divergence of ZA,k for k → 0 would imply a nonzero anomalous dimension ηA,k and
a dynamical critical exponent z = 2 − ηA,k + ηC,k = 2 − ηA,k 6= 2, in contradiction with the fact that the
transition belongs to the dilute Bose gas universality class when ZC,k 6= 0 (Sec. 7.4.4).
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When ZC,k = 0, the excitation spectrum takes the particle-hole symmetric form

ω±(q) = ±
(

ZA,ktq
2 + δk

VA,k

)1/2

= ±
(

c2kq
2 +∆2

k

)1/2
, (14.131)

where

∆k =

(

δk
VA,k

)1/2

, ck =

(

ZA,kt

VA,k

)1/2

. (14.132)

At the transition (δk=0 = 0), the particle-hole excitation gap 2∆k=0 vanishes and the
dispersion ω±(q) = ±ck=0|q| becomes linear, which implies that the critical dynamical
exponent takes the value z = 1.

Let us now turn to the superfluid phase. TheWard identities (14.122) (together with (14.124))
imply

ZC,k(n) = λk
dn0,k
dµ

, VA,k = − 1

2n0,k

∂2Vk
∂µ2

∣

∣

∣

∣

n0,k

, (14.133)

while the compressibility is expressed as

n̄2
kκk = 2n0,kVA,k(n0,k) +

ZC,k(n0,k)
2

λk
(14.134)

(see Eq. (13.99)). The superfluid stiffness ρs,k, defined as the rigidity wrt a twist of the
phase of the order parameter,34 can be obtained from the transverse part of the two-point
vertex,

ΓA,k(q, iω = 0;n0,k) =
ρs,k
2n0,k

q2 (q → 0), (14.135)

which leads to

ρs,k = 2tZA,k(n0,k)n0,k. (14.136)

The excitation spectrum is obtained using

det Γ
(2)
k (q) = ΓA,k(q) [ΓA,k(q) + 2n0,kΓB,k(q)] + ΓC,k(q)

2

≃ 2λkn0,k(ZA,ktq
2 + VA,kω

2) + (ZC,kω)
2 (14.137)

(all quantities are evaluated for n = n0,k) for q, ω → 0. This equation yields a gapless
(Goldstone) mode ω = ck|q| with a velocity

ck =

(

ZA,k(n0,k)t

VA,k(n0,k) + ZC,k(n0,k)2/(2λkn0,k)

)1/2

=

(

ρs,k
n̄2
kκk

)1/2

(14.138)

which can be expressed in terms of the compressibility and the superfluid stiffness. The
existence of a gapless mode is a consequence of the Hugenholtz-Pines theorem ΓA,k(q =
0;n0,k) = V ′

k(n0,k) = 0 (Sec. 13.3.1).35

34A static twist of the phase of the order parameter implies a change ∆Γ = β ρs
2

´

ddr(∇θ)2 of the effective
action (written here in the continuum limit), which leads to (14.135) (see Eq. (7.41) with ρs = ns/m for
bosons in the continuum).

35From det Γ
(2)
k (q;n0,k) = 0, we also obtain a gapped mode, which is however outside the domain of

validity of the derivative expansion (see Sec. 13.3.1).
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14.3.1.4 Flow equations

In the lattice NPRG, the local physics is taken into account by the initial condition at
scale k = Λ. To simplify the flow equations, we use a derivative expansion as in (14.120).
However, since it is crucial to retain the full lattice dispersion at the beginning of the flow
(when k ≃ Λ), we take

ΓA,k(q;n) = ZA,k(n)ǫq + VA,k(n)ω
2 + V ′

k(n), (14.139)

which coincides with (14.120) for |q| ≪ Λ (ǫq = tq + 2dt ≃ tq2 for |q| ≪ Λ). Following
section 11.8, we define ZA,k(n) as

ZA,k(n) =
1

t
lim
q→0

∂

∂q2
ΓA,k(q;n), (14.140)

so that ZA,k(n0,k) has the meaning of a field renormalization factor (and should not be
confused with a renormalization of the hopping amplitude between nearest-neighbor sites).
For k ≪ Λ, equations (14.139) and (14.140) are equivalent to the LPA’ approximation
(Sec. 11.3). For k ≃ Λ, these equations can be justified by noting that in this limit ZA,k(n) ≃
ZA,Λ(n) = 1 so that approximating the renormalized dispersion by ZA,k(n)ǫq, which is valid
for small q when ZA,k is defined by (14.140), is expected to remain approximately valid in
the whole Brillouin zone (Sec. 11.8).

Although we rely on a derivative expansion of the vertices to solve the flow equations, the
latter cannot be derived directly from a simple ansatz of the effective action Γk. The reason
is that it is difficult to propose an approximation of the initial effective action ΓΛ based
on a derivative expansion since we do not know its expression for arbitrary time-dependent
fields. To circumvent this difficulty, we start from the BMW approximation where we deal
only with quantities computed for a constant field which, for k = Λ, can be computed from
the local Hamiltonian (14.113).

The exact flow equation (13.74) leads to

∂lVk(n) = −1

2

ˆ

q

∂lRk(q)[Gk,ll(q;n) +Gk,tt(q;n)] (14.141)

and

∂lΓ
(2)
k,ij(p;φ) = − 1

2

∑

q,i1,i2

∂̃lGk,i1i2(q;φ)Γ
(4)
k,iji2i1

(p,−p, q,−q;φ)

− 1

2

∑

q,i1···i4

{

Γ
(3)
k,ii2i3

(p, q,−p− q;φ)Γ
(3)
k,ji4i1

(−p, p+ q,−q;φ)

× [∂̃lGk,i1i2(q;φ)]Gk,i3i4(p+ q;φ) + (p↔ −p, i↔ j)
}

(14.142)

(l = ln(k/Λ)) for the effective potential and the two-point vertex in a constant field φ.

Gk = −(Γ
(2)
k + Rk)

−1 is the one-particle propagator. The operator ∂̃l = (∂lRk)∂Rk
acts

only on the k dependence of the cutoff function Rk. The BMW approximation was discussed
in section 11.7.2. For interacting bosons, it is based on the following two observations: i) for
a given momentum q, the frequency integral in (14.142) is dominated by the region |ω| .
ω−
k (q) where ω

−
k (q) is the lowest excitation energy defined by the propagator Gk. Since the

function ∂̃lGij(q;φ) is proportional to ∂lRk(q), the integral over the loop momentum q in
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(14.142) is dominated by values of |q| of the order or smaller than k. It follows that the
important frequency range for the loop integral is |ω| . ω−

k where ω−
k is the typical value

of ω−
k (q) for |q| ∼ k. In the superfluid phase ω−

k ∼ ckk (ck is the velocity of the Goldstone
mode), while in the Mott insulating phase ω−

k can be deduced from (14.128); ii) because

of the cutoff function Rk(q), the vertices Γ
(n)
k (q1 · · · qn) are smooth functions of momenta

and frequencies in the range |qi|/k, |ωi|/ω−
k ≪ 1. These two properties allow us to expand

the vertices in the rhs of (14.142) in powers of q2/k2 and ω2/(ω−
k )

2. To leading order, one
simply sets q = 0 in the three- and four-point vertices in equation (14.142). We can then

obtain a closed equation for Γ
(2)
k by noting that

Γ
(3)
k,ijl(p,−p, 0;φ) =

1√
βN

∂

∂φl
Γ
(2)
k,ij(p;φ),

Γ
(4)
k,ijlm(p,−p, 0, 0;φ) = 1

βN

∂2

∂φl∂φm
Γ
(2)
k,ij(p;φ)

(14.143)

(see Sec. 11.7.2). Furthermore, properties (i) and (ii) allow us to use the derivative expansion

of the two-point vertex Γ
(2)
k [Eqs. (14.120) and (14.139)] to obtain the propagator Gk to be

used in the RG equations (14.141) and (14.142).
The numerical solution of the flow equations can be further simplified by approximating

VA,k(n) and ZA,k(n) by VA,k ≡ VA,k(n0,k) and ZA,k ≡ ZA,k(n0,k). To determine accurately
the phase diagram, it is nevertheless necessary to keep the full n-dependence of ZC,k(n) and
Vk(n). When accuracy is not the primary goal, it is possible to approximate ZC,k(n) by
ZC,k(n0,k), and expand the effective potential to quadratic order about its minimum,

Vk(n) =

{

V0,k +
λk

2 (n− n0,k)
2 if n0,k > 0,

V0,k + δkn+ λk

2 n
2 if n0,k = 0,

(14.144)

where δk and λk are defined in (14.121). With these approximations, the RG equations
become similar to those of the continuum model [Eqs. (13.109) and (13.110)], the only
difference coming from the choice of the cutoff function Rk and the use of the full lattice
dispersion ǫq in (14.139).36

14.3.2 Zero-temperature phase diagram and critical behavior

For given values of t, U and µ, the ground state can be deduced from the values of the con-
densate density n0 (n0 > 0 in the superfluid phase).37 To obtain thermodynamic quantities,
it is sufficient to integrate the RG flow down to k ∼ 10−5. The most accurate results, ob-
tained by keeping the full n dependence of Vk(n) and ZC,k(n) are shown in figure 14.5. Both
in three and two dimensions, the transition line between the superfluid phase and the Mott
insulator is very close to the quantum Monte Carlo (QMC) result [20,21]: the tip of the Mott
lobe (t/U = 0.0339, µ/U = 0.3992) differs from the QMC data only by (0.001%, 3%) in
three dimensions, while in two dimensions the tip is located at (t/U = 0.060, µ/U = 0.387),
which corresponds to a relative error of order (1.5%, 4%). For comparison, in figure 14.5
we also show the mean-field (or strong-coupling RPA) phase diagram as well as the one
obtained from Dynamical Mean-Field Theory (DMFT) [18,19].

36We refer to Appendix D of Ref. [23] for a discussion of the RG equations with the full n dependence of
ZC,k(n) and VA,k(n).

37To alleviate the notations, we drop the subscript k whenever we refer to a k = 0 quantity (e.g. n0 ≡
n0,k=0).
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924 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

Figure 14.5: (Left) Phase diagram of the three-dimensional Bose-Hubbard model. Only the
first Mott lobe (n̄ = 1) is shown. The (green) dashed line shows the mean-field (or strong-
coupling RPA) phase diagram (Sec. 14.1). The QMC data are obtained from Ref. [20]
and the DMFT data from Ref. [19]. (Right) Phase diagram of the two-dimensional Bose-
Hubbard model. The QMC data are obtained from Ref. [21].

Figure 14.6: Density n̄ ≡ n̄k=0 vs µ/U for various values of t/U and d = 2.
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quantum multicritical point generic transition

q̃ q/k q/k

ω̃
(

VA,k

ZA,kǫk

)1/2

ω
(

ZC,k

ZA,kǫk

)

ω

ñ k−d(VA,kZA,kǫk)
1/2n k−dZC,kn

Ṽk(ñ) k−d
(

VA,k

ZA,kǫk

)1/2

Vk(n) k−d
(

ZC,k

ZA,kǫk

)

Vk(n)

δ̃k (ZA,kǫk)
−1δk (ZA,kǫk)

−1δk

λ̃k kdV
−1/2
A,k (ZA,kǫk)

−3/2λk kd(ZC,kZA,kǫk)
−1λk

Z̃C,k(ñ) (VA,kZA,kǫk)
−1/2ZC,k(n)

ṼA,k ZA,kǫkZ
−2
C,kVA,k

Table 14.1: Dimensionless variables (ZC,k ≡ ZC,k(n0,k)).

An important characteristic of the Mott insulating phases is the vanishing compressibility
κ = n̄−2dn̄/dµ = 0. The expression (14.134) enables us to determine the boson density n̄k
directly from n0,k, VA,k, ZC,k and λk by integrating dn̄k/dµ. The unknown integration
constant is easily fixed since we know that the density vanishes for µ = −2dt. Alternatively,
one can use the fact that the density is integer in the Mott insulator. This method not only
avoids to compute dV0,k/dµ (which requires to solve the RG equations for nearby values of
µ) but also turns out to be numerically more precise. Figure 14.6 shows the density n̄ as
a function of the chemical potential µ for various values of t/U and d = 2. The vanishing
compressibility κ = 0 in the Mott insulating phase n̄ = 1 is clearly visible. In the figure,
the density is obtained from κ and the condition n̄ = 1 in the Mott phase. If we use the
condition n̄(µ = −2dt) = 0, we obtain n̄ = 1±0.03 (n̄ = 1±0.045) in the three-dimensional
(two-dimensional) Mott phase n̄ = 1. The error is more pronounced near the tip of the
Mott lobe.

14.3.2.1 Quantum multicritical point

The critical behavior at the tip of the Mott lobe, where ZC,k=0(n = 0) = 0, can be un-
derstood from the linearized flow equations. If we set ZC,k(n) = 0, we recover the flow
equations of the (d + 1)-dimensional XY (or O(2)) model. The upper critical dimension
is d+c = 3 and the dynamical critical exponent z = 1. There is one relevant direction in
the space of parameters of the effective action. The flow of the corresponding scaling field

(which we denote by r) is determined by the exponent ν ≡ ν
(d+1)
XY . The linearized flow

equations about the multicritical point are not affected by by ZC,k(n). Thus ZC,k(n0,k)
corresponds to the second relevant direction and is orthogonal (in the parameter space of
the action) to the critical surface.

We have seen in section 14.2.3 that ZC does not appear in the scaling form of the singular
part of the free energy so that the quantum multicritical point looks like an ordinary (d+1)-
dimensional XY critical point. This property can be explicitly verified by solving the NPRG
equations.
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926 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

0 5 10
0

0.1

0.2

ln(Λ/k)

ñ0,k

λ̃k/100
Z̃C,k(ñ0,k)

Figure 14.7: (Left) Dimensionless condensate density ñ0,k, coupling constant λ̃k and

Z̃C,k(ñ0,k) vs ln(Λ/k) at the multicritical point n̄ = 1 for d = 2. (Right) Anomalous
dimensions ηA,k and ηV,k vs ln(Λ/k). The inset shows that Eq. (14.147) is satisfied when
k → 0.

To make the fixed point manifest when the system is critical, we use the dimensionless
variables defined in table 14.1. The anomalous dimensions are defined by

ηA,k = −∂l lnZA,k, ηV,k = −∂l lnVA,k. (14.145)

The dimensionless frequency ω̃ (see table 14.1) allows us to define a (running) critical
exponent zk = [ω]. With [ZA,k] = −ηA,k, [VA,k] = −ηV,k and [ω̃] = 0, we obtain

zk = 1− ηA,k − ηV,k
2

. (14.146)

At the multicritical point, we expect ηA = ηV ≡ η (for k = 0) and z = 1 (with η ≡ η
(d+1)
XY

the anomalous dimension at the (d + 1)-dimensional XY critical point). It is however
possible that the cutoff function Rk(q), which does not satisfy the Lorentz invariance at the
multicritical point, modifies the expected critical behavior. Setting ZC,k(n) = 0 in the flow
equations, we find

ηV,k = ηA,k −
η2A,k
d+ 2

. (14.147)

Given the small value of the anomalous dimension in the (d + 1)-dimensional O(2) model
(d = 2, 3), the identities ηA = ηV and z = 1 turn out to be satisfied to a very good accuracy
(see below).

Figure 14.7 shows results obtained at the two-dimensional multicritical point correspond-
ing to the superfluid–Mott-insulator transition with density n̄ = 1. The plateaus observed
for the dimensionless condensate density ñ0,k and coupling constant λ̃k, as well as for the
(running) anomalous dimensions ηA,k and ηV,k, are characteristic of critical behavior. We

clearly see the emergence of the Lorentz invariance as k decreases: Z̃C,k(ñ0,k) ∼ k is sup-
pressed while ηA,k and ηV,k become nearly equal (implying zk ≃ 1). We find the critical
exponents ν = 0.699, ηA = 0.049, ηV = ηA(1− ηA/4) = 0.049 and z = 1.000, in agreement
with the LPA’ of the three-dimensional O(2) model (to be compared with the best known
estimates ν = 0.671 and η = 0.038 for the three-dimensional XY model [27]). The exponent
ν is deduced from the runaway flow from the critical surface when the system is nearly
critical (e.g. ñ0,k − ñ∗0 ∝ e−l/ν with ñ∗0 the fixed-point value of ñ0).
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Figure 14.8: (Left) ln Z̃C,k(ñ0,k) vs ln(Λ/k) near the multicritical critical point. (Right)
Anomalous dimensions ηA,k and ηV,k.

Figure 14.8 shows |Z̃C,k(ñ0,k)| near the multicritical point. It first decreases towards zero

as the multicritical point is approached. Then |Z̃C,k(ñ0,k)| ∼ 1/k ∼ e−l increases as the flow
runs away from the critical surface, so that the critical exponent associated with the scaling
field Z̃C,k(ñ0,k) is equal to one in agreement with the conclusion of section 14.2.3.38 The
anomalous dimensions ηA,k and ηV,k show the momentum range where the flow is controlled
by the multicritical point, as indicated by the plateaus in ηA,k and ηV,k in figure 14.8. The
end of the plateau determines the correlation length ξ ∼ k−1 if the system is in the Mott
phase or the Josephson length ξJ if the system is in the superfluid phase.

The RG equations yield the critical behavior of various thermodynamic quantities. The
condensate density in the superfluid phase vanishes with the exponent 2β = ν(d+z−2+η)
as t→ t+c ,

39

n0 ∼ (t− tc)
ν(d+z−2+η), (14.148)

if the system is below the upper critical dimension d+c = 3. From the scaling dimension
[ρs] = d + z − 2 of the superfluid stiffness and the fact that the Goldstone mode velocity
c =

√

ρs/κ remains finite due to the Lorentz invariance of the effective action Γk in the
limit k → 0, we expect

ρs ∼ (t− tc)
ν(d+z−2), κ ∼ (t− tc)

ν(d+z−2) (14.149)

for d ≤ d+c . In the Mott phase, the gap must vanish as

∆ ∼ (tc − t)νz (14.150)

for t→ t−c since [∆] = z. Equations (14.148-14.150) are satisfied by the numerical solution
of the flow equations [23].

14.3.2.2 Generic transition

For all transition points away from the tip of the Mott lobe, ZC is nonzero and VAω
2 is

subleading wrt ZCω (from now on we approximate ZC(n) = ZC(n0) ≡ ZC and VA(n) =
VA(n0) ≡ VA). The dynamical critical exponent is z = 2 and the upper critical dimension

38The n-dependence of ZC,k(n) turns out to be crucial to obtain [Z̃C,k(ñ0,k)] = 1.
39For simplicity we can assume µ = µc and t→ tc, but Eqs. (14.148-14.150) are expected to hold for any

path approaching the quantum multicritical point except the vertical one (t = tc).
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928 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

d+c = 2. The transition for d ≥ 2 is governed by the Gaussian fixed point (with logarithmic
corrections for d = 2) defined by ñ∗0 = λ̃∗ = Ṽ ∗

A = 0 and ηA = ηC = 0 (ηC,k = −k∂k lnZC,k).
The dimensionless variables used to study the generic transition are given in table 14.1. The
(running) dynamical exponent zk = [ω] is given by

zk = 2− ηA,k + ηC,k (14.151)

and satisfies limk→0 zk = 2.
In three dimensions, linearization about the Gaussian fixed point gives

∂lñ0,k = −3ñ0,k +
4

3π2
ṼA,k, ∂lλ̃k = λ̃k, ∂lṼA,k = 2ṼA,k (14.152)

and ηA,k = ηC,k = 0. We deduce that λ̃k ∼ k and ṼA,k ∼ k2 at the critical point in
agreement with the numerical solution of the flow equations. When a generic transition
point (t, µc(t)) is approached from the superfluid phase on a path of constant t by varying
the chemical potential, we observe

ρs ∼ |µ− µc|, κ ∼ const (14.153)

as in a dilute Bose gas near the vacuum-superfluid transition. The compressibility remains
finite at the transition and the velocity c vanishes.

At the upper critical dimension (d = d+c = 2), the mean-field behavior is corrected by
logarithmic terms. The marginally irrelevant variable λ̃k is suppressed as | ln k|−1, while
ñ0,k vanishes as | ln k|−1 at the critical point. When approaching the critical point from the
superfluid phase,

ρs ∼ −|µ− µc| ln |µ− µc|, κ ∼ − ln |µ− µc| (14.154)

for µ→ µc.

14.3.3 Equation of state

In this section, we briefly discuss the equation of state in the universal regime, i.e. in
the vicinity of the Mott transition. In the NPRG approach, the pressure P (µ, T ) =
−Vk=0(n0,k=0) is deduced from the effective potential (Sec. 13.3.4). We can not only ver-
ify the universal scaling forms discussed in section 14.2.2 and 14.2.3 but also compute the
nonuniversal parameters that enter the equation of state and determine the limits of the
universal domain near the quantum critical point.40

14.3.3.1 Generic transition41

At the quantum critical point (δµ = µ − µc = 0), one can clearly distinguish two regimes
in the RG flow (Fig. 14.9): i) a high-energy (or short-distance) regime k & kx where lattice
effects are important and the dimensionless coupling constant

λ̃k =
k

ZC,kZA,kt
λk (14.155)

40We refer to Refs. [24, 25] for a detailed discussion of the equation of state within the NPRG approach.
In this section, we focus on the calculation of the nonuniversal parameters entering the equation of state as
well as the determination of the critical domain near the quantum critical point.

41We consider the three-dimensional case only.
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Figure 14.9: RG flows of λ̃k (λ̃Λ ≃ 37), λk and ZC,k at the quantum multicritical point
(t/U = 0.02, µc/U ≃ 0.15, T = 0) and in the nearby superfluid phase δµ/U = −10−4 (λSFk
and ZSF

C,k). λ and ZC stand for λk=0 and ZC,k=0, respectively.
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Figure 14.10: Quasi-particle weight Zqp, effective mass m∗ and scattering length a∗ vs t/tc
at the quantum multicritical point between the superfluid phase and the Mott insulator
n̄ = 1 (tc is the value of t at the tip of the Mott lobe). The QMC data are taken from
Ref. [20]. In the bottom figure, a is the scattering length of the free bosons in the lattice
[Eq. (14.78)]. The + and − signs refer to the upper and lower parts of the transition line.
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930 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

is large, ii) a weak-coupling (“Bogoliubov”) regime k ≪ kx where λ̃k ≪ 1 and the flow is
governed by the Gaussian fixed point λ̃ = 0: λk, ZC,k and ZA,k are then nearly equal to
their fixed-point values, defined by

m∗ =
|ZC,k=0|
2tZA,k=0

= m
|ZC,k=0|
ZA,k=0

, a∗ =
m∗λ

4πZ2
C,k=0

(14.156)

(see Eq. (14.76)), while λ̃k ∝ k vanishes in agreement with the scaling dimension [λk] =
4 − d − z = −1 at the Gaussian fixed point (d = 3 and z = 2). In the momentum
regime |q| ≪ kx, the quasi-particles with mass m∗ and scattering length a∗ introduced in
section 14.2.2 are well defined and the physics becomes universal. The crossover scale kx
between the two regimes is typically of the order of Λ =

√
6 (k−1

x is equal to a few lattice
spacings). Zqp, m

∗ and a∗ are shown in figure 14.10 as a function of t/tc for the transition
between the superfluid phase and the Mott insulator with density n̄ = 1.

Away from the quantum critical point, chemical potential and temperature introduce
two new momentum scales: the “healing” scale42

kh =
√

2m∗|δµ| (14.157)

and the thermal scale
kT =

√
2m∗T . (14.158)

Universality requires kh, kT ≪ kx. Since kx ∼ a∗−1 ∼ 1 (except close to the tip of the Mott
lobe) these conditions can be rewritten as

√

m∗a∗2|δµ| ≪ 1,
√
m∗a∗2T ≪ 1. (14.159)

In the low-energy limit the system behaves as a gas of weakly-interacting quasi-particles if
the dimensionless coupling constants

λ̃kh =
kh

ZC,khZA,kht
λkh ≃ 8πkha

∗,

λ̃kT =
kT

ZC,kTZA,kT t
λkT ≃ 8πkTa

∗

(14.160)

are small. The last results in (14.160) are obtained using kh, kT ≪ kx, which allows us
to approximate ZC,k, ZA,k and λk by their k = 0 values [Eqs. (14.156)]. Since kx ∼
a∗−1 ∼ 1, universality (kh, kT ≪ kx) implies weak coupling (λ̃kh , λ̃kT ≪ 1). Thus, when
conditions (14.159) are satisfied, the excess density of particles (or holes) wrt the Mott
insulator behaves as a dilute Bose gas.

In the zero-temperature superfluid phase, using equation (14.89) the weak-coupling/universality
condition kha

∗ ≪ 1 can be rewritten as
√

|n̄− n̄c|a∗3 ≪ 1. (14.161)

This is the usual condition for a boson gas to be dilute except that it involves the excess
density of particles (or holes) |n̄ − n̄c| (with respect to the commensurate density of the
Mott insulator) rather than the full density n̄ of the fluid. For k . kh, λk and ZC,k

42On the Mott insulator side sgn(ZC)δµ ≤ 0, kh corresponds to the correlation length; the RG flow
essentially stops for k smaller than kh.
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depart from their fixed-point values at δµ = 0 (Fig. 14.9) and vanish logarithmically below
a “Ginzburg” momentum scale kG which is exponentially small at weak coupling (λ̃kh ≪
1). This regime is dominated by the Goldstone (phase) mode and is characterized by
the divergence of the longitudinal propagator. We thus recover the infrared behavior in
the superfluid phase discussed in section 13.3.2. The various regimes of the RG flow are
summarized in figure 14.11.

Since m∗/m is typically of order 1 for n̄c not too large (except near the tip of the

Mott lobe), the condition kTa
∗ =

√
2m∗a∗2T ≪ 1 can be rewritten as T ≪ t. The crossover

temperature scale below which the thermodynamics becomes universal is set by the hopping
amplitude t.43

14.3.3.2 Quantum multicritical point

In the vicinity of the multicritical point, the pressure is determined by the universal scaling
function FQu−XY of the quantum XY model. The scaling form (14.100) can be explicitly
verified within the NPRG approach and the velocity c of the critical fluctuations com-
puted [25]. It is also possible to relate the gap ∆ = αU |(tc − t)/U |zν in the Mott phase to
the distance tc − t to the quantum critical point. Both c and α depend on the multicritical
point considered (Table 14.2).44

As in the case of the generic transition, we can also study the approach to universal-
ity. At the quantum multicritical point, we can distinguish two regimes: i) a (high-energy)
nonuniversal regime k & kG where lattice effects are important and the dimensionless cou-
pling constant λ̃k varies strongly with k, ii) a universal (critical) regime k ≪ kG where λ̃k
is close to its fixed-point value λ̃∗ (see Fig. 14.7). The crossover (Ginzburg) scale is of the
order of the inverse lattice spacing (the Ginzburg length k−1

G is typically equal to a few
lattice spacings).

Away from the quantum critical point, the energy scale |∆| and the temperature define
two new momentum scales,

k∆ =
|∆|
c

and kT =
T

c
, (14.162)

where c is the velocity of the critical fluctuations. k−1
∆ is the correlation length in the

zero-temperature Mott insulator and corresponds to the Josephson length in the superfluid
phase (see Sec. 14.2.3 for the definition of ∆ in the superfluid phase). Universality requires
k∆, kT ≪ kG, i.e. |∆|, T ≪ ckG. If we approximate c ≃

√
tcU(n̄2

c + n̄c)
1/4 by its value in

the strong-coupling RPA (Eq. 14.55),45 we obtain the conditions

|∆|, T ≪ kG
√

tcU(n̄2
c + n̄c)

1/4 (14.163)

for the system to be in the universal regime. This should be compared with the crossover
energy scale ∼ t which controls the universal behavior in the vicinity of a generic quantum
critical point.

As we move away from the quantum multicritical point in the superfluid phase, the
Josephson momentum scale k∆ increases and becomes of the order of kG ∼ Λ. The system

43The numerical solution of the flow equations gives a crossover temperature T ∼ 2t [24].
44α depends also on the path followed to approach the quantum multicritical point. The values reported

in table 14.2 correspond to a path of constant chemical potential µc.
45Recall that the lattice spacing is taken as the unit length.
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932 Chapter 14. The Bose-Hubbard model and the superfluid–Mott-insulator transition

Figure 14.11: Characteristic momentum scales at the generic Mott transition and in the
nearby superfluid phase.

Figure 14.12: Characteristic momentum scales at a QMCP and in the nearby superfluid
phase. (k−1

J denotes the Josephson length.)
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Mott lobe n̄c = 1 n̄c = 2 n̄c = 3

c/ltc NPRG 4.88 8.53 12.14

c/ltc QMC 4.8± 0.2

c/ltc RPA 5.74 9.85 13.89

α 2.238 3.374 4.222

Table 14.2: Velocity c and parameter α at the QMCP’s (tc, µc) corresponding to the first
three Mott lobes. The QMC data is taken from Ref. [21].

is then not in the critical regime anymore and k∆ ≡ kh should rather be interpreted as a
healing scale. Moving deeper into the superfluid phase both kG and kh decrease, and we
finally reach a weakly correlated phase, where kG ≪ kh (Sec. 13.1.2), which is similar to the
superfluid phase near a generic quantum critical point (Fig. 14.11). The various regimes of
the renormalization-group flow are summarized in figure 14.12.
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Guide to the bibliography

• The Bose-Hubbard model was first studied in Ref. [1]. Its relevance to cold atomic
gases was shown in Ref. [2].

• The mean-field theory is discussed in [1, 3].

• In addition to the strong-coupling RPA [4–8], there are various types of t/U expan-
sions [9–13].

• The Bose-Hubbard model has also been studied within the variational cluster approx-
imation (see chapter 9) [14–17].

• A dynamical mean-field theory study can be found in Refs. [18, 19].

• Quantum Monte Carlo simulations are reported in Refs. [20, 21].

• The NPRG approach to the Bose-Hubbard was developed in Refs. [22,23]; the equation
of state is discussed in Refs. [24, 25].
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