PHYSICAL REVIEW B, VOLUME 64, 125123

Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity
of one-dimensional quarter-filled spin-density-wave conductors
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We study spin fluctuations in quarter-filled one-dimensional spin-density-wave systems in presence of short-
range Coulomb interactions. By applying a path integral method, the spin-wave velocity is calculated as a
function of on-site U), nearestV) and next-nearesi,) neighbor-site interactions. With increasiNgr V,,
the pure spin-density-wave state evolves into a state with coexisting spin- and charge-density waves. The
spin-wave velocity is reduced when several density waves coexist in the ground state, and may even vanish at
large V. The effect of dimerization along the chain is also considered.
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[. INTRODUCTION coupling. Our analysis is based on a functional integral
formulatiorf>~?® that allows a simple treatment of the spin-
Organic conductors of the tetramethyltetraselena fulwave modes even in the presence of these interactions. The

valene(TMTSF) and tetramethyltetrathiafulvaled@@MTTF)  €lectron-electron interaction is treated witlihiartree-Fock
salts family often exhibit density-wavéDW) instability at ~ mean-field theory, while the SP) spin rotation symmetry is
low temperaturé-® Recent experiments have shown that amaintained by introducing a fluctuating spin-quantization
2k¢ spin-density wavéSDW) may coexist with a &= and/or ~ @xis in the functional integral. Transverse spin-wave modes
a 2k charge-density wavéCDW).45 (The quantityke de- then correspond to fluctuations of the spin-quantization axis
notes the one-dimensional Fermi wave vector akgig the ~ around its mean-field value.

nesing wave vectr for the SDWFurthermore, these (1 SeC% 1 and Il we extend te dertion of Rer 29
CDW'’s seem to be of pure electronic origin without any :

(significan) contribution from the lattice ous mean-field resuftsare recovered within a saddle point
gl_h. I d stat b .d tood on the b approximation. Then we derive the effective action of the
IS unusual ground state can be understood on the basly;, \\ave modes and obtain the spin-wave velocity. In Sec.

of a me_an-field theory for a quarte_r-filled one-dimeqsionallv’ the spin-wave velocity is calculated as a function\bf
system in the presence of several kinds of Coulomb mterac\—/Z’ and the dimerization along the chain. Section V is de-
tion. Within an extended Hubbard model with on-sitd)  \qted to discussion.

and nearest-neighb@Y) interactions, it has been shown that
a 4kr CDW may coexist with the B- SDW whenV is strong
enough® When the next-nearest-neighbor interactidh)(is Il. PATH INTEGRAL FORMULATION
also taken into account, three different ground states can be
stabilized’™® (i) a pure Xz SDW at smallV and V,, (i)
coexisting X SDW and &z CDW at largeV, and (iii) co-
existing Xg SDW, 2k CDW, and &g SDW at largeV.,.
Although the SDW instability is driven by the on-site repul-
sive interactiorlJ, the nearest- and next-nearest-neighbor in- H=Hq+H,, (2.0
teractions play a crucial role for the appearance of CDW's.

Following the standard analysi&;’ fluctuations around
the mean-field ground state have been studied. For a quarter- +
filled system, commensurability effects with the underlying Ho=— 2/ tn Unotnr o (2.2
crystal lattice pin the DW'’s and produce a gap in the sliding o
modest® Surprisingly, this gap vanishes at the boundary be-
tween the pure - SDW and the coexistingk® SDW and
4k. CDW2® The spin-wave modes have been studied only Hi=UX nyna +VX (40 (W) 1 ns1)
within the Hubbard model\(=V,=0) 2° The spin-wave ve- " A
locity decreases monotonically with increasidgin qualita-
tive agreement with the exact solution of the one- +Vo 20 (Yhia) (Wh s 2 2)
dimensional Hubbard modét. "

We consider a one-dimensional electron system at
quarter-filling with dimerization along the chain. Within the
extended Hubbard model, the Hamiltonian is given by

In this paper, we study the spin-wave modes in presence u : 5 . N
of the nearest- and next-nearest-neighbor interactions :—ZZ (ho )2+ 2 (Whiba) Vo (05, ),
(V,V,#0). We consider a one-dimensional system, assum- " nn’
ing that long-range order is stabilized Ioweak interchain (2.3
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where l//n: (l,bm !wnl)tr Nne= lrlflrrwmr! and lpzzr is the cre- +
ation operator of an electron with spir(=1,|) at the lattice = f dr ; én(d-— 1—Aon) hn
site n. The transfer integral in the kinetic terhh, is defined
by + o (n
— E ¢ntnn/ex _|j dIAX| ¢n/
t—(—=1)"ty for n"=n+1 n,n’ n
t =3 t+(—1)"y for n'=n-1 (2.9 u
" . - Z E P§n+2 PenVan'Pen ¢ (2.1
0 otherwise n nn’

where a finitety is due to the dimerization. The interaction where the S(2) gauge fieldsA, andA, are defined by
Hamiltonian is expressed in terms of the Hubbard interaction ;

U and the density-density interactiaf,,, defined by Aon=—Rd.Rn, (2.123
u/4 for n'=n,
V/2 for n"=n*x1,
V,/2 for n'=n=*2,
0 otherwise,

n+é
exp(—if dIAX,>ERan+5 (6==*1).
(2.9 (2.12b

The lattice spacing is taken as unity. Using the Stratonovich-
Hubbard identity?® the interaction part of the action is re-
where V (V,) is the coupling constant for neare@text-  written as(note thatU,V,V,>0)
nearest neighbor-site interactionU,V,V,=0).

In order to derive the effective action for the spin-wave exn — E f d7per Vo Pen
modes, we write the partition functiahas a path integral: - enmnniEen

Vnn/:

Z:J waTwa e—SW,V’], (2.6 =f DACGXF( - E f dTAchr:nl,Acnr
n,n’

S:J'dT

where the actiorf is a function of the Grassmann variable U
Y. 7 is a Matsubara time-varying between 0 and.1Fol- exp{— 2 f d7p§n>
lowing Refs. 23 and 25, we now introduce the new fiéld 4 “n

defined by

; ',Uﬁ(ﬁf—ﬂ)#’/anH[llfT,l/f]}' (2.7 + 2i; deAcnpcn)v (2.13

_ f msex;{_%; f draZe+ > f drAsnpsn),
(2.19

whereA ., andAg, are(real) auxiliary fields. By using Egs.
whereR, is an SU2)/U(1) unitary matrix andn,, is a unit  (2.13 and(2.14), the final form of the partition function is
vector that gives the direction of the spin-quantization axis agiven by
site n and timer for the field ¢. Substituting Eq(2.8) into
Eq. (2.7), the action is rewritten a§= S+ S, , where

Un=Rndn,

R,o,RI=0-n,, (2.9

z=f DACDASf an D¢'Dp e (SotS) (215

Sozf dT’E é1(9,— n+RIIR,) b
" SO:f dT[; ¢a(a7_M_A0n)¢n
_2 ¢Ethnn’Rn’¢n’]r (2-9) n’
n.n’ - E d’ltnn'eXP( _lf dIAxl) ¢n'} ' (216)
U 5 |
SIIJ dr _ZE Psn+2 PenVan Penr - (2.10 1 2 )
. n.n’ SI:de 2 UAsn_Asnpsn_2|Acnpcn

Pen= ¢>E¢n, and pg,= ¢;§Uz¢n are the charge- and spin-

density operators. The quantities o, and o, are Pauli -1

. o . ’ . + AV SAch b, 2.1
matrices. Note tha8, is invariant under the transformation E enTnnrEen (.17
— ¢, since the interaction is invariant with respect to spin
rotations. It is convenient to rewrite the action as wherevr:nl,=vr:,ln.
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Ill. EFFECTIVE ACTION FOR THE SPIN-WAVE MODE

In this section, we derive the action corresponding to the
spin-wave modes at quarter-filling. First, we reproduce the
mean-field result of Ref. 8 within a saddle-point approxima-
tion. Then we consider transverse spin fluctuations arising
from the dynamics of the spin-quantization axis.

A. Mean-field solution

PHYSICAL REVIEW B 64 125123

(Dl_ S]_O'Z) - 2V2D1> ¢k7QO+ C.C.

u
2 ¢E(§<Dz—szaz>—ZVDz

+2V2D2_2itd Sink) (i)kZQo}, (36)

The standard mean-field solution is recovered from ayhereq, = (1/\/N)=,e "¢, andN is the number of lattice
saddle-point approximation with=z at each lattice site. sites. The action(3.6) agrees with the mean-field Hamil-

One then haRk,=1 andA,=A,=0.
By minimizing the free energy with respect to,, and
A.,, we obtain the self-consistent mean-field equations

tonian obtained previously by the conventional metfiod.

U
Asn:§<Psn>MFu

Acp=i 2 Vnn’<Pcn’> MF -
n/

B. Fluctuations

In the long-wavelength limit, collective modes can be

(3.1) separated into slidingcharge modes and spin-wave modes.
In this paper, we consider only transver@eousti¢ spin-
wave modegi.e., magnons These modes show up in the

(3.2 fluctuations of the unit vector field. They do not couple to

charge modes and gapped spin-wave modes. We shall make

The averagg )yr is to be calculated with the mean-field the following two approximationsti) We neglect the cou-

action

1 _
SMlegzn: UAgn"' ,32 AchnnlfAcn’
n,n’

+f dT[; ¢$(‘97_M_2iAcn_Asn0'z)¢n

- E/ d)ltnn'd’n’} .

At quarter-filling, the mean field&s,)me and{pcn)mr are
periodic with a periodicity of four lattice spacings. They can

be written as

3
<Psn>MF: mz:() SmeimQOnr

3
<Pcn>MF: mE:O Dmeionni

where Qo= 2kg=m/2. Since{pcn)mr and {psn)me
quantities, one findsD,=D§,D,=Dj% ,D,=D3}

=5,5.=55,5,=S5 . In Egs.(3.4) and(3.5), Sy=0 due to
the absence of ferromagnetism abg=1/2 for a quarter-
filled band. From Eqs(3.1)—(3.5), the final form of the

mean-field action is obtained as

u Uu U
SMF=ﬁN[— 16~ 3 (D1~ 181"~ 7 (D5-S))

1 1
—V(Z—D§> —VZ(Z—2|D1|2+ D%”

; U
+ [ drl > ol 0, —put 2 +V+ Va2t cosk | ¢
k

pling to long-wavelength spin fluctuationé ¢(q) with |q|
<Qq]. In the Hubbard model\(=V,=0), this coupling is
known to renormalize the spin-wave velocity by the factor
[1—UN(0)]*2 in the weak-coupling limft’ [N(0) is the
density of states at the Fermi leyii) We also neglect any
possible coupling to spin fluctuations at wave vect@),2
+0 [A4(2Qo+q) with [g|<Qg].*®

When two SDW's coexist in the ground state, our formal-
ism can only yield the “in-phase” modes where the two
spin-density waves oscillate in phase. It misses the modes
where the oscillations are out-of-ph&SeThese modes are
gapped and do not couple to the “in-phase” modes consid-
ered in this paper.

Before proceeding with the spin-wave mode analysis, let
us discuss the limit of validity of our approach. The spin-
wave modes will be obtained by expanding about the

(3.3

(3.4 (Hartree-Fock mean-field state. Such an approach should
hold (at least qualitatively as long as the interaction is
smaller than the bandwidth, i.&J,V,V,=<4t. Nevertheless,
it does not necessary break down in the strong-coupling

(3.9 limit. In the context of the two-dimensional Hubbard model,
Schriefferet al. have shown that a random-phase approxima-

are real tion (RPA) analysis of the fluctuations about the mean-field
and S, state in the limitU>t agrees with the conclusions obtained

from the Heisenberg model with exchange constant
=4t2/y *°

Another limitation of our approach comes from the analy-
sis of the fluctuations of the unit vector As will become
clear below, the main assumption is thmis a slowly vary-
ing field, thus allowing a gradient expansion. Whereas this
assumption is perfectly valid in the weak-coupling limit
(U,V,V,=4t), it breaks down in the strong-coupling limit.
In the latter, one should write=n®°"+ cosqm/2)L, where
ns°®" is a slowly varying field and., a small perpendicular
component - n¥*=0 and|L|<|n%Y=1)31%The effec-
tive action of the spin-wave modeS,4{ n*°"], is then ob-
tained by integrating out both the fermions and temall)
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transverse componeit, . ForV=V,=0, this allows to in-

terpolate smoothly between the weak-coupling regime, and

PHYSICAL REVIEW B64 125123

Sl A= (58— 3 [ ari el
2

the strong-coupling regime which is well described by the

Heisenberg modéf

Long-wavelength transverse spin fluctuations correspond

to fluctuations of the S(2) gauge fieldsA, and A, [Egs.
(2.129 and(2.12b], which are rewritten as

Aon= > Abo,, 3.7
v=X,Y,Z
A= > AlLo,. (3.8

v=X,Y,Z

From Egs.(2.11), (3.6), (3.7), and(3.8), we write the action
of the spin degrees of freedom as

5=Sur=3 [ drgiAansy

tnn,exp( —if” dIAX,> —tnn,}(bn,.
n

(3.9

-3 [ ara!

To orderO(A2) we obtain

S=SMF—§ f d7 ¢t Aondn— 2 f d7ty
n,n’

i 1
=5 (N=n) (Aot Acy) - gAin) b
J dr j

wherej?., j4., andS%@ are given by

+
X ¢y

14
un

:SMF_Z 2 2

n w=0X v=Xx)y,z

dia
At Sy,

(3.10

. i
Jxn= — 2 6;1 5[tn,n+ 5¢g‘7v¢n+ 5+tn75,n¢;2750'v¢n]1

(3.1
jgn:(ﬁgavd’nv (3.12
1 !
Sglazz 2, E, tnn’j dT d)?‘lo-vo-v’d)n’A;nA;n'
nn’ vv
(3.13

The second term of Eq3.10 denotes the coupling of the
gauge fieldA,, to the spin currentj(,) and spin density
(jg.). The last term of Eq(3.10, S92, is the diamagnetic
contribution?®

The effective action of the gauge field is obtained by in-
tegrating out the fermions in the partition function. By sub-
stituting Eq.(3.10 into Eg.(2.15), one obtains the effective

action up toO(A?) as

1
=S

nn' v

f drd T'A;’m( T)

(3.19

!
XHJ'VJ-V/’(n,T,n,,T,)A;/n/(T,),
I
where

M (0,70 7) =i (D (7w, (319

E tany d7'<¢;r1¢n’>MF(A>]</n)2-

nn’,v

. 1
<3>C<"a>MF:§
(3.19
The quantityIT;»;»" denotes the current-current correlation
mop'

function in the mean-field state. We note thgf,)ve=0 in
the long-wavelength limif and thatA’ is of the order
O(V). To orderO(V?)), we obtain

1
=
293

Seft= — [('QMFW;” |AL(@)|?

+ X 2 ANQAL-T) H,—»,—v;@],
wop' (=0x) v,v' Ko
(3.17
1 T
(Kwe={ —5 2 twdidn ) . (318
nn MF

where(K)yr is the mean value of the kinetic energy per site
in the mean-field statg=(q, iQ) andQ is a bosonic Mat-
subara frequency. The quantitﬂjvj»v”(a) is the Fourier

u

transform of Eq(3.15 with respect tay and 7. In Eq.(3.17),

it can be evaluated afj=0 since A,xO(V). Note that
the continuum limitn— & (with ¢ a real continuous variable
and writing A} ,=A,(§,7), the effective action3.17) is re-

written as

1 3 -
Set=— 5 2 (K)mel Au(@) 2+ > AL
2 q r=XY.z M g
1
==3 dédr (<K>MF+HJ§1§)
X AZ(€,) + g > Agz(fﬁ)]
Y=Xy v=Xy

1 ~ ~
=5 2 AWK e+ Tz |AL(@) 2+ Tz A ()1},
q

(3.19
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where I1j»;»=I1;»;»(q=0) and [Ijx;x=II;y;y. Here we
u ® u u m 1oy

note the identities K)ye+ 11z zz=0 and I 22=0, which

can be deduced from the gauge mvarlance of(EcB) (Ap-

pendix A). We have verified numerically the validity of these
identities. Finally, noting that

1
> ARED =700, (3.20

v=X,y

1
2 AZ(En==7(0n)?

v=X,y

(3.21

we obtain the following final expression for the effective
action of the spin-wave modes! (Appendix A:

1
Seti=> f dédr{x(a,n)?*+p(d:0)%,  (3.22

wherey andp are the uniform transverse spin susceptibility

and the spin stiffness, respectively:

x=(S,S >q 0—41'[ viv  (P=X,Y), (3.23

1
p=—7(Kue+Ijyy)  (v=xy). (324

From Eq.(3.22 we deduce the spin-wave velocity

(3.29

In the incommensurate cadd,;; VHO in the weak-coupling

limit so thatp= — (K)ye/4 25As shown in the following sec-
tion, H v

U is of the order of the bandwidth. In Eq&.23 and(3.24),

j,, andK can be expressed @& = (¢ ,¢ki)t, rv=X,Y]
L~ 1
i8@=0=7% 2 $eovbi, (3.26
i#(@=0)= < 2. (2tsinkdlo, o
—2ity COSk¢lUV¢k+2QO)’
(3.27

1 L
— ZK (—2t coskqslgbk—2|tdsmk¢ﬁ¢k+2QO).

Y
(3.28

IV. SPIN-WAVE VELOCITY

g|ves rise to a contribution of the same order as
(K)me |n the quarter-filled case when the on-site interaction

The inset shows th&) dependence ofK)ye andIl;

PHYSICAL REVIEW B 64 125123

1II

FIG. 1. Phase diagram in thé-V, plane forU=4 andt;=0
(Ref. 8. The three different regions correspond (¢ pure g
SDW, (1) coexisting X SDW and &g CDW, (Ill) coexisting Xg
SDW, g CDW, and & SDW. The dash-dotted curves denote the
corresponding boundaries foy=0.1.

The phase dlagram of the present model as a functm\h of
andV, is shown in Fig. 1 fold=4 andt,=0 (solid curve.?
For smallV andV,, there is a pure - SDW stateregion |).
A large V induces a phase with both &2 SDW and &g
CDW (region Il), while in the presence of a largé, there is
coexistence between akg SDW, a Xk CDW and a &g
SDW (region Ill). The dashed curve denotes the boundary at
which a first-order transition occurs between regions Il and
lll. The dash-dotted curve shows the phase diagramt for
=0.1. The sliding modes are gapped in all three regions.
However, the charge fluctuations become gapless at the tran-
sition between | and Il. We discuss below the spin-wave
velocity [Eg. (3.29] as a function ofV andV, for both ty
=0 andty#0.

A. U dependence(V=V,=0 and ty=0)

The spin stiffnesg and the susceptibility are shown in
Fig. 2(a) as a function ofJ for V=V,=0 andty=0. Bothp
andX are almost constant for small and decrease mono-
tonically for largeU. The inset shows the correspondibg
dependence fofK)y- and HJ§1§ which determinep [Eq.

(3.24]. A behavior similar to the incommensurate case is

O-A T T T T T T T 1 T T T T T T T
0.4,
L (a) . N v .
N
0.3 el 1.2 N 1
\O
L p i L \\ i
02 o] o4 N ° |
L 1 o2
AN
0.F 1 o4 N 1
X .
- 1 N
0 1 1 1 1 1 1 1 O 1 1 1 1 1 I\ 1
0 2 4 6 g8 0 > 4 3 8
U U

FIG. 2. (a) U dependence g6 and y for V=V,=0 andty=0.
X% (b) U de-

In this section, we evaluate the spin-wave velocity at zergyendence ob (solid curve andv[1—2yU]*2 (dashed curve The
temperature T=0). We taket=1 and calculate the velocity open circles denote the exact result for the one-dimensional Hub-

normalized to its value &=V,=0 andty;=0

bard model(Ref. 21).

125123-5



Y. TOMIO, N. DUPUIS, AND Y. SUZUMURA

FIG. 3. V dependence of the spin-wave velocity veloaitysus-
ceptibility y, and spin stiffnesp for U=4, t,=0, andV,=0.
v? (=1.286),x° (=0.103), andp® (=0.171) are the values for
V=V,=0. There is a small jump at the critical valig,=0.34,
which is shown by the arrow. The inset shows Yhdependence of
the order parametelS; (2kg SDW) andD, (4kg CDW).

seen forU=<2: HJ§1§ is vanishingly small, andy, p, and

(K)ume are almost constant with respect tb The limiting
values for smallU are given by y=1/(2y27)=0.113,
(K)wr=—22/7=-0.90, andv=2. The variation of
these quantities fdd =2 comes from the effect of commen-
surability at quarter-filling.

In Fig. 2(b) (solid curve, we show the spin-wave velocity
v [Eg. (38.29], which is almost independent &f although
slightly suppressed at largd. Here we note that we have

PHYSICAL REVIEW B64 125123

. /
0.5+ [ ?(:.).C..____:
.D1, _\\
S
0g 17 D ——
/ Sy p/po
(.J 2| ‘I./2.4. 1 P L
00 1 2 3 4
Va

FIG. 4.V, dependence aof, y, andp for U=4, t4=0, andV
=0. There is a cusp at the critical valMg.= 1.32 corresponding to
the transition from state | to state Ill. The inset shows thede-
pendence of the order paramet&s D, (2kg CDW), andS, (4kg
SDW).

spin-wave velocity vanish. It seems that the decreaseiof
region Il mainly comes from the reduction of kinetic energy
due to the formation of theld CDW. Note that the spin-
wave velocity is discontinuous at the critical valMe=V..
The small jump at/. originates in the discontinuity 0%,
andD, (see inset of Fig. 3 which is found only fort;=0.°

C. V, dependence(ty=0)

In this section, we analyze thé, dependence of the spin-
wave velocity forU=4, t4=0 and different values o¥.

neglected the coupling to long-wavelength spin fluctuationsgigure 4 shows/v°, x/x°, andp/p® in the case/=0 (the

In the Hubbard model\(=V,=0), the spin-wave velocity
v=(plx)"? becomes §/x)¥11—2xU]¥? when this cou-
pling is taken into account within the RPA.One obtains 1
—2xU=1-UN(0) in the weak-coupling limit where
N(0)=1/\27 at quarter-filling. In Fig. 2b), we showv and
v[1—2xU]*2 (dashed curve The open circles denote the
exact result for the one-dimensional Hubbard mdddtor

inset showsS;, D4, andS, as a function oV,). There is a
transition between regions | and Il at the critical vaMg. .
v/v°, x/x° andp/p° are constant foW,<V,. and decrease
for Vo>V, (note thatv actually slightly increases at large
V,). However, all these quantities remain finite in the limit
of large V,. This is to be contrasted to the largelimit
(region Il) where the spin-wave velocity vanishésig. 3).

U=2, the RPA result turns out to be a good approximationSuch a behavior can be understood as follows. \Ege %

while the difference becomes noticeable at largeNever-
theless we use =(p/x)*? as a first step to examine the
spin-wave velocity as the function & andV,. The present
calculation is performed by choosing=4, which leads to
v=1.29 forV=V,=0 andty=0.

B. V dependence(V,=0 and ty=0)

Now we consider th&/ dependence of the spin-wave ve-
locity for V,=0, t4=0, andU/t=4. Contrary to the weak-

coupling limit that can be studied analytically as the incom-

(region ll), the spin- and charge-density waves in the ground
state are of the type((],0,0) and(1,1,0,0, respectively.
Our numerical calculation shows that this behavior already
shows up forV,/t=4. In this limit (V,/t=4), the one-
dimensional chain divides into independent two-site clusters.
For this problem, one can find the exact expression of the
spin-wave velocity(Appendix B:

[P 112 . .
viv = ; v = (t—ty)/v".

4.9

mensurate cas@,this intermediate-coupling regime requires ForU=4, v°=1.286, so thab/v°=0.777. FoV,/t=4 and

numerical calculation. Figure 3 shows thledependence of

13, the numerical calculation givedv°=0.763 and 0.776,

v, x, andp (all quantities are normalized to their value at respectively, in excellent agreement with the analytical result

V=V,=0 andty=0). The arrow indicates the critical value
V.=0.34 separating regions §(+0) and Il (S;,D,#0). In
region Il (V>V,), bothp and y decrease for decreasing

of the two-site problem.
Now we consider th&/, dependence of/x°, p/p° and
v/v® for V=0, 1, 2, and 3. FoW=1, there is first a transi-

The stronger decrease pfresults in a decrease of the spin- tion from region Il to region |, and then a transition from | to

wave velocity. For largeV, both the spin stiffness and the

Ill. For V=2 or 3, there is a single transition occuring be-
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spin-wave velocity. We note that the reductionSfandD,,
in region Il by the dimerization has little effect an since
the dependence @&; andD, on dimerization is very small
for V=4.

Figure &b) shows theV, dependence aof for U=4, V
=0, andty=0 (solid curve, 0.1 (dotted curvg 0.3 (dashed
curve, and 0.5(dash-dotted curye The effect of dimeriza-
tion is noticeable in both regions | and Ill. The limiting be-
havior for largeV, is given by Eq.(4.2). In that limit, the
SDW exists forU>2(t—ty) and the spin-wave velocity
depends only o andty.

FIG. 5. (a) V, dependence of for V=0 (Fig. 4), 1, 2, and 3.
There is a jump due to the first-order transition between Il and Ill
indicated by the dashed curve in Fig. 1. The inset showsvthe V. CONCLUSION

dependence op. (b) V, dependence of for V=0 (Fig. 4), 1, 2, . . .
and 3. Forv=1, there is a small jump af,—0.66, which corre- In conclusion, the nearest- and next-nearest-neighbor in-

sponds to the transition between Il and I. This discontinuity can a|séeraC“°”_5 strongly affect_s the spin-wave velocity in the
be seen in Fig. 3. mtermedl_ate—couplmg regimd ~ 4t. Ogr main resul_ts are as
follows. (i) In the pure SDW statéregion |), the spin-wave
velocity v is independent of the neargst) and next-nearest
(V,) interaction(Fig. 3. (ii) For coexisting X SDW and
4ke CDW (region l), v decreasesgincreasesas a function

of V (V,) [Figs. 3 and ®)]. It is slightly discontinuous at
the transition between | and Il and vanishes well as the

tween Il and llI. The ratiogy/x° and p/p° (insed exhibit a

similar behavior[Fig. 5a)]. They are constant in region I,
and increasédecreasgin Il (lll) whenV, increases. Figure
5(b) shows the spin-wave velocity/v°, which turns out to

. . O . .
be mainly determined by/p”. Except in region | and for spin stiffness at largeV (Fig. 3. (iii) For coexisting X

large values ol,, v varies strongly as a function &f,. SDW, 2k, CDW, and 4g SDW (region Ill), v is suppressed

Here we comment on the fact tharemains finite at large . :
V,. Within the mean-field treatment, which is expected to beby V2. Ittends to a finite value at largé, [Figs. 4 and )],

valid for a moderate coupling between chains, bptand p g&gﬁ%%gﬁ“zaﬂon decreases the spin-wave velqeigs.
remain finite at Iarge_Vz_. On the other han_d, for one- As discussed in Sec. Il B, our approach is limited to the
dimensional systems it is known from bosonization hat o5 g intermediate-coupling regime and should hold
vanishes at larg&/, due to the formation of a spin gab. \pen v v,=4t. In the half-filed Hubbard model, a
Thus, we expect our mean-field analysis in region Il of Fig - |

. X . "strong-coupling is known to reduce the spin-wave velocity
flicti(éntilriiltnc;(l)lwn when the interchain coupling becomes suf?rom v=0(1) to v =0(J) (with J=4t/U<t). We also ex-

pect a decrease of the spin-wave velocity in the more general
case we have studied whénhV,V, become larger thant4
D. Effect of dimerization Therefore, our main conclusida reduction of the spin-wave
velocity by the interactiond/,V,) is likely to be strength-
ened bzz strong coupling effects. The Stoner factor (1
forU=4, V,=0 andty=0 (solid curve, 0.1 (dotted curveg Wj\f(eLlJe)n ih Wh'.Ch f arltse? from the (t>0Up|ln% tod Ipng-
0.3 (dashed curveand 0.5(dash-dotted curyeThe effect of -ngth spin- fluctuations, was not considered in our
analysis. It leads to a decreasewfvhen the on-site inter-

dmgnzaupn is large in region I, but ra}th'er small in region ”3 actionU increases. Whether the Stoner factor depends on the
Afinite t4 increases the band gap. This induces a suppressian

; , InteractionsV andV, remains an open question.
of HJ§I§ and p, and leads ultimately to a reduction of the In the compounds that have been studied

experimentally*® the Bechgaard salts (TMTSfBF; and
(TMTSF),AsFs and the Fabre salt (TMTTEBr, the
electron-electron interaction is expected to be in the interme-
diate coupling regime Y ~4t). Furthermore, estimates by
Mila®® and quantum-chemistry calculatidhave revealed
the finite-range part of the Coulomb potential, the first-
neighbor interactiorV being equal or even larger thaw2.

We therefore think that our conclusions are relevant to the
Bechgaard-Fabre salts studied in Refs. 4 and 5.

Finally, we consider the effect of dimerization on the
spin-wave velocityv. Figure &a) shows theV dependence
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WhenV,—x, the mean-field solution in region Il corre-
%ponds to that of a half-filled two-site system given by

APPENDIX A: DERIVATION OF EQ. (3.22) H=—(t—tg>, (CI C,,+H.c)
We rewrite Eq.(3.19 as 7

1 1 + U(annll+n2Tn2l)+V2 NioNer,  (B1)

2 2 )
Ser=75 | dEdr{x(d,m>+p(9m} = 5 2 {(K)we
q

whereny, (n,)=C],Ci, (C},Cs,) andCi, (C},) de-
note the creation operators of an electron at sitg) with
spin o. The mean-field equations are given by

+ ILjz2) |AY(@) [+ Tz AG (@)%}, (A1)

wherep and y are given by

1 1 T — T -
p:_Z(<K>MF+HJ'§J'§):_Z(<K>MF+H1¥1¥), (A2) 203 <C10C10>—§0: (C5,Cop)=1, (B2)
and
1 2 (Cl,Cip)sgrio) =A, (B3)
X:<SVSV>MF:ZHij61 v=X,)Yy. (A3)
To show that the second term of Ed\1) vanishes, we use > (Ch.Cp)sgro)=—A, (B4)
the invariance of the action under the gauge transformation T

AZ(E7)—AL(E7) +3d,A(€7)(w=& or 7). This trans- . _ _
formation corresponds to a rotation ofe=2 around thez ~ Where the averagg) is performed with the mean-field

axis and does not change the state of the system. The invafft@miltonian
ance of the action in this gauge transformation implies

1 1 B ~ Hye=—(t—tg >, (CI C,,+H.c)
- 5% {(<K>MF+H,-§J-;){ZqilAm)lz—iAi(q)qu v

+§[

u U,
5 +V_Sgr(0-) §A Clo'Clo'

~ 1 ~ o~ ~
(—a) +H,—3j4zﬂzlA<q>|2+|A6<q>QA<—q>“=o.
u U +
(A4) + §+V+ sgr(a)EA C5,Cof
Since Eq.(A4) should be valid for an arbitrary functiofi, U U
we deduce _ Z A2
5 V+ 2A . (B5)
From Egs.(B2), (B3), (B4), and (B5), the self-consistency
Hjéjz=0, (A6) equation forA is expressed as
which lead to the vanishing of the second line of E41). u/2
Equations(A5) and (A6) can also be obtained from the = 5 > (B6)
U(1) electromagnetic field gauge invariance. Noting that VI(UI2) AT+ (t—tg)
ITjz;z=1I;0;0, Egs.(A5) and (A6) can be rewritten as . ) )
W W whereu=U/2+V at half-filling. The solution of Eq(B6) is
<K>MF+HJSJSZO’ (A7) obtained as
_ 2(t—tg)\?
Mjgg=0. (A8) A==+ 1—( ( 5 d)) , (B7)

We recognize here the components of the polarization tensor

for the usual Y1) electromagnetic gauge field. Equationsfor U/(t—ty)>2. By using Eq.(B7), we compute the uni-
(A7) and (A8) follow from (electromagnetic gauge form transverse spin susceptibility () and the spin stiffness
invariance® (p'):
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1 1o i, 1 2(t—ty)?
X =§n’n,§;l’2[z<lo(n)10(n Nlia=o ZE—T,
(B8)
R 2(t—tg)?
p'=—7((KH+I jiji):(t—td)z ——T)
(B9)

where the kinetic energy per sité{’)) and the spin current-

current correlation functionHj'xjx) are given by
XX

1 2(t—tg)?
(K")= §< _(t_td)g (Cl,Copt H.c.)> =-—7
(B10)
8(t—ty4
J:li_% E )Jli(n’»‘m,:o: U3d (B11)

PHYSICAL REVIEW B 64 125123

with

j§(n)= E ch (B12)

I"I—(T’

i(t—t
"

2 (CI,UCZ,fo'_C;,O'Clﬁa')-
(B13)
By noting thaty=yx'/2 and p=p'/2, we obtain the spin-

wave velocity of the one-dimensional syst¢Eg. (2.1)] in
the limit V,—o as

1/2
v=(3) —t—ty. (B14)

X
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