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Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity
of one-dimensional quarter-filled spin-density-wave conductors
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We study spin fluctuations in quarter-filled one-dimensional spin-density-wave systems in presence of short-
range Coulomb interactions. By applying a path integral method, the spin-wave velocity is calculated as a
function of on-site (U), nearest~V! and next-nearest (V2) neighbor-site interactions. With increasingV or V2,
the pure spin-density-wave state evolves into a state with coexisting spin- and charge-density waves. The
spin-wave velocity is reduced when several density waves coexist in the ground state, and may even vanish at
largeV. The effect of dimerization along the chain is also considered.
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I. INTRODUCTION

Organic conductors of the tetramethyltetraselena
valene~TMTSF! and tetramethyltetrathiafulvalene~TMTTF!
salts family often exhibit density-wave~DW! instability at
low temperature.1–3 Recent experiments have shown tha
2kF spin-density wave~SDW! may coexist with a 4kF and/or
a 2kF charge-density wave~CDW!.4,5 ~The quantitykF de-
notes the one-dimensional Fermi wave vector and 2kF is the
nesting wave vector for the SDW.! Furthermore, these
CDW’s seem to be of pure electronic origin without a
~significant! contribution from the lattice.

This unusual ground state can be understood on the b
of a mean-field theory for a quarter-filled one-dimensio
system in the presence of several kinds of Coulomb inte
tion. Within an extended Hubbard model with on-site~U!
and nearest-neighbor~V! interactions, it has been shown th
a 4kF CDW may coexist with the 2kF SDW whenV is strong
enough.6 When the next-nearest-neighbor interaction (V2) is
also taken into account, three different ground states ca
stabilized:7–9 ~i! a pure 2kF SDW at smallV and V2, ~ii !
coexisting 2kF SDW and 4kF CDW at largeV, and~iii ! co-
existing 2kF SDW, 2kF CDW, and 4kF SDW at largeV2.
Although the SDW instability is driven by the on-site repu
sive interactionU, the nearest- and next-nearest-neighbor
teractions play a crucial role for the appearance of CDW

Following the standard analysis,10–17 fluctuations around
the mean-field ground state have been studied. For a qua
filled system, commensurability effects with the underlyi
crystal lattice pin the DW’s and produce a gap in the slid
modes.18 Surprisingly, this gap vanishes at the boundary
tween the pure 2kF SDW and the coexisting 2kF SDW and
4kF CDW.19 The spin-wave modes have been studied o
within the Hubbard model (V5V250).20 The spin-wave ve-
locity decreases monotonically with increasingU, in qualita-
tive agreement with the exact solution of the on
dimensional Hubbard model.21

In this paper, we study the spin-wave modes in prese
of the nearest- and next-nearest-neighbor interact
(V,V2Þ0). We consider a one-dimensional system, ass
ing that long-range order is stabilized by~weak! interchain
0163-1829/2001/64~12!/125123~9!/$20.00 64 1251
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coupling. Our analysis is based on a functional integ
formulation22–25 that allows a simple treatment of the spi
wave modes even in the presence of these interactions.
electron-electron interaction is treated within~Hartree-Fock!
mean-field theory, while the SU~2! spin rotation symmetry is
maintained by introducing a fluctuating spin-quantizati
axis in the functional integral. Transverse spin-wave mo
then correspond to fluctuations of the spin-quantization a
around its mean-field value.

In Secs. II and III, we extend the derivation of Ref. 2
from the incommensurate to the commensurate case. P
ous mean-field results8 are recovered within a saddle poin
approximation. Then we derive the effective action of t
spin-wave modes and obtain the spin-wave velocity. In S
IV, the spin-wave velocity is calculated as a function ofV,
V2, and the dimerization along the chain. Section V is d
voted to discussion.

II. PATH INTEGRAL FORMULATION

We consider a one-dimensional electron system
quarter-filling with dimerization along the chain. Within th
extended Hubbard model, the Hamiltonian is given by

H5H01HI , ~2.1!

H052 (
s,n,n8

tnn8cns
† cn8s , ~2.2!

HI5U(
n

nn↑nn↓1V(
n

~cn
†cn!~cn11

† cn11!

1V2(
n

~cn
†cn!~cn12

† cn12!

52
U

4 (
n

~cn
†szcn!21 (

n,n8
~cn

†cn!Vnn8~cn8
† cn8!,

~2.3!
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wherecn5(cn↑ ,cn↓) t, nns5cns
† cns , and cns

† is the cre-
ation operator of an electron with spins(5↑,↓) at the lattice
site n. The transfer integral in the kinetic termH0 is defined
by

tnn85H t2~21!ntd for n85n11

t1~21!ntd for n85n21

0 otherwise

~2.4!

where a finitetd is due to the dimerization. The interactio
Hamiltonian is expressed in terms of the Hubbard interac
U and the density-density interactionVnn8 defined by

Vnn855
U/4 for n85n,

V/2 for n85n61,

V2/2 for n85n62,

0 otherwise,

~2.5!

where V (V2) is the coupling constant for nearest~next-
nearest! neighbor-site interaction (U,V,V2>0).

In order to derive the effective action for the spin-wa
modes, we write the partition functionZ as a path integral:

Z5E Dc†Dc e2S[c†,c] , ~2.6!

S5E dtF(
n

cn
†~]t2m!cn1H@c†,c#G , ~2.7!

where the actionS is a function of the Grassmann variab
c. t is a Matsubara time-varying between 0 and 1/T. Fol-
lowing Refs. 23 and 25, we now introduce the new fieldf
defined by

cn5Rnfn ,

RnszRn
†5s•nn , ~2.8!

whereRn is an SU~2!/U~1! unitary matrix andnn is a unit
vector that gives the direction of the spin-quantization axis
site n and timet for the fieldf. Substituting Eq.~2.8! into
Eq. ~2.7!, the action is rewritten asS5S01SI , where

S05E dtH(n
fn

†~]t2m1Rn
†]tRn!fn

2 (
n,n8

fn
†Rn

†tnn8Rn8fn8J , ~2.9!

SI5E dtH 2
U

4 (
n

rsn
2 1 (

n,n8
rcnVnn8rcn8J . ~2.10!

rcn5fn
†fn , and rsn5fn

†szfn are the charge- and spin
density operators. The quantitiessx ,sy and sz are Pauli
matrices. Note thatSI is invariant under the transformatio
c→f, since the interaction is invariant with respect to sp
rotations. It is convenient to rewrite the action as
12512
n

t

S5E dtH (n
fn

†~]t2m2A0n!fn

2 (
n,n8

fn
†tnn8expS 2 i E

n

n8
dlAxlDfn8

2
U

4 (
n

rsn
2 1 (

n,n8
rcnVnn8rcn8J , ~2.11!

where the SU~2! gauge fieldsA0 andAx are defined by

A0n[2Rn
†]tRn , ~2.12a!

expS 2 i E
n

n1d
dlAxlD[Rn

†Rn1d ~d561!.

~2.12b!

The lattice spacing is taken as unity. Using the Stratonovi
Hubbard identity,26 the interaction part of the action is re
written as~note thatU,V,V2.0)

expS 2 (
n,n8

E dtrcnVnn8rcn8D
5E DDc expS 2 (

n,n8
E dt DcnVnn8

21 Dcn8

1 2i(
n
E dtDcnrcnD , ~2.13!

expS U

4 (
n
E dtrsn

2 D
5E DDs expS 2

1

U (
n
E dtDsn

2 1(
n
E dtDsnrsnD ,

~2.14!

whereDcn andDsn are ~real! auxiliary fields. By using Eqs.
~2.13! and ~2.14!, the final form of the partition function is
given by

Z5E DDcDDsE DnE Df†Df e2(S01SI ), ~2.15!

S05E dtH(n
fn

†~]t2m2A0n!fn

2 (
n,n8

fn
†tnn8expS 2 i E

n

n8
dlAxlDfn8J , ~2.16!

SI5E dtH (n
F 1

U
Dsn

2 2Dsnrsn22iDcnrcnG
1 (

n,n8
DcnVnn8

21 Dcn8J , ~2.17!

whereVnn8
21

5Vn8n
21 .
3-2
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III. EFFECTIVE ACTION FOR THE SPIN-WAVE MODE

In this section, we derive the action corresponding to
spin-wave modes at quarter-filling. First, we reproduce
mean-field result of Ref. 8 within a saddle-point approxim
tion. Then we consider transverse spin fluctuations aris
from the dynamics of the spin-quantization axis.

A. Mean-field solution

The standard mean-field solution is recovered from
saddle-point approximation withn5 ẑ at each lattice site
One then hasRn51 andA05Ax50.

By minimizing the free energy with respect toDsn and
Dcn , we obtain the self-consistent mean-field equations

Dsn5
U

2
^rsn&MF , ~3.1!

Dcn5 i(
n8

Vnn8^rcn8& MF . ~3.2!

The averagê &MF is to be calculated with the mean-fie
action

SMF5b(
n

1

U
Dsn

2 1b(
n,n8

DcnVnn8
21 Dcn8

1E dtH(n
fn

†~]t2m22iDcn2Dsnsz!fn

2 (
n,n8

fn
†tnn8fn8J . ~3.3!

At quarter-filling, the mean fieldŝrsn&MF and^rcn&MF are
periodic with a periodicity of four lattice spacings. They c
be written as

^rsn&MF5 (
m50

3

SmeimQ0n, ~3.4!

^rcn&MF5 (
m50

3

DmeimQ0n, ~3.5!

where Q052kF5p/2. Since^rcn&MF and ^rsn&MF are real
quantities, one findsD05D0* ,D15D3* ,D25D2* and S0

5S0* ,S15S3* ,S25S2* . In Eqs.~3.4! and~3.5!, S050 due to
the absence of ferromagnetism andD051/2 for a quarter-
filled band. From Eqs.~3.1!–~3.5!, the final form of the
mean-field action is obtained as

SMF5bNF2
U

16
2

U

2
~ uD1u22uS1u2!2

U

4
~D2

22S2
2!

2VS 1

4
2D2

2D2V2S 1

4
22uD1u21D2

2D G
1E dtH(

k
fk

†S ]t2m1
U

4
1V1V222t coskDfk
12512
e
e
-
g

a

1F(
k

fk
†S U

2
~D12S1sz!22V2D1Dfk2Q0

1c.c.G
1(

k
fk

†S U

2
~D22S2sz!22VD2

12V2D222i t d sinkDfk22Q0J , ~3.6!

wherefk5(1/AN)(ne2 iknfn andN is the number of lattice
sites. The action~3.6! agrees with the mean-field Hami
tonian obtained previously by the conventional method.8

B. Fluctuations

In the long-wavelength limit, collective modes can b
separated into sliding~charge! modes and spin-wave mode
In this paper, we consider only transverse~acoustic! spin-
wave modes~i.e., magnons!. These modes show up in th
fluctuations of the unit vector fieldn. They do not couple to
charge modes and gapped spin-wave modes. We shall m
the following two approximations:~i! We neglect the cou-
pling to long-wavelength spin fluctuations@Ds(q) with uqu
!Q0]. In the Hubbard model (V5V250), this coupling is
known to renormalize the spin-wave velocity by the fac
@12UN(0)#1/2 in the weak-coupling limit27 @N(0) is the
density of states at the Fermi level#. ~ii ! We also neglect any
possible coupling to spin fluctuations at wave vector 2Q0
1q @Ds(2Q01q) with uqu!Q0].28

When two SDW’s coexist in the ground state, our form
ism can only yield the ‘‘in-phase’’ modes where the tw
spin-density waves oscillate in phase. It misses the mo
where the oscillations are out-of-phase.29 These modes are
gapped and do not couple to the ‘‘in-phase’’ modes cons
ered in this paper.

Before proceeding with the spin-wave mode analysis,
us discuss the limit of validity of our approach. The spi
wave modes will be obtained by expanding about
~Hartree-Fock! mean-field state. Such an approach sho
hold ~at least qualitatively! as long as the interaction i
smaller than the bandwidth, i.e.,U,V,V2&4t. Nevertheless,
it does not necessary break down in the strong-coup
limit. In the context of the two-dimensional Hubbard mod
Schriefferet al.have shown that a random-phase approxim
tion ~RPA! analysis of the fluctuations about the mean-fie
state in the limitU@t agrees with the conclusions obtaine
from the Heisenberg model with exchange constantJ
54t2/U.30

Another limitation of our approach comes from the ana
sis of the fluctuations of the unit vectorn. As will become
clear below, the main assumption is thatn is a slowly vary-
ing field, thus allowing a gradient expansion. Whereas t
assumption is perfectly valid in the weak-coupling lim
(U,V,V2&4t), it breaks down in the strong-coupling limi
In the latter, one should writen5nslow1cos(np/2)L r where
nslow is a slowly varying field andL r a small perpendicular
component (L•nslow50 anduL u!unslowu.1).31,23The effec-
tive action of the spin-wave modes,Seff@nslow#, is then ob-
tained by integrating out both the fermions and the~small!
3-3
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transverse componentL r . For V5V250, this allows to in-
terpolate smoothly between the weak-coupling regime,
the strong-coupling regime which is well described by t
Heisenberg model.23

Long-wavelength transverse spin fluctuations corresp
to fluctuations of the SU~2! gauge fieldsA0 and Ax @Eqs.
~2.12a! and ~2.12b!#, which are rewritten as

A0n5 (
n5x,y,z

A0n
n sn , ~3.7!

Axn5 (
n5x,y,z

Axn
n sn . ~3.8!

From Eqs.~2.11!, ~3.6!, ~3.7!, and~3.8!, we write the action
of the spin degrees of freedom as

S5SMF2(
n
E dtfn

†A0nfn

2 (
n,n8

E dtfn
†F tnn8expS 2 i E

n

n8
dlAxlD 2tnn8Gfn8 .

~3.9!

To orderO(Ax
2) we obtain

S5SMF2(
n
E dt fn

†A0nfn2 (
n,n8

E dt tnn8

3fn
†S 2

i

2
~n2n8!~Axn1Axn8!2

1

2
Axn

2 Dfn8

5SMF2(
n

(
m50,x

(
n5x,y,z

E dt j mn
n Amn

n 1S x
dia,

~3.10!

where j xn
n , j 0n

n , andS x
dia are given by

j xn
n 52

i

2 (
d561

d@ tn,n1dfn
†snfn1d1tn2d,nfn2d

† snfn#,

~3.11!

j 0n
n 5fn

†snfn, ~3.12!

S x
dia5

1

2 (
n,n8

(
n,n8

tnn8E dt fn
†snsn8fn8Axn

n Axn
n8 .

~3.13!

The second term of Eq.~3.10! denotes the coupling of th
gauge fieldAmn

n to the spin current (j xn
n ) and spin density

( j 0n
n ). The last term of Eq.~3.10!, S x

dia, is the diamagnetic
contribution.25

The effective action of the gauge field is obtained by
tegrating out the fermions in the partition function. By su
stituting Eq.~3.10! into Eq. ~2.15!, one obtains the effective
action up toO(A2) as
12512
d

d

-
-

Seff@Am
n #5^S x

dia&MF2 (
n,m,n

E dt^ j mn
n &MFAmn

n

2
1

2 (
n,n8

(
m,m8,n,n8

E dtdt8Amn
n ~t!

3P j
m
n j

m8
n8 ~n,t,n8,t8!Am8n8

n8 ~t8!, ~3.14!

where

P j
m
n j

m8
n8 ~n,t,n8,t8!5^ j mn

n ~t! j m8n8
n8 ~t8!&MF , ~3.15!

^S x
dia&MF5

1

2 (
n,n8,n

tnn8E dt^fn
†fn8&MF~Axn

n !2.

~3.16!

The quantityP j
m
n j

m8
n8 denotes the current-current correlatio

function in the mean-field state. We note that^ j mn
n &MF50 in

the long-wavelength limit32 and thatAmn
n is of the order

O(¹). To orderO(¹2)), we obtain

Seff52
1

2 (
q̃

H ^K&MF (
n5x,y,z

uAx
n~ q̃!u2

1 (
m,m8(50,x)

(
n,n8

Am
n ~ q̃!Am8

n8 ~2q̃! P j
m
n j

m8
n8 ~ q̃!J ,

~3.17!

^K&MF5K 2
1

N (
n,n8

tnn8fn
†fn8L

MF

, ~3.18!

where^K&MF is the mean value of the kinetic energy per s
in the mean-field state.q̃5(q, iV) andV is a bosonic Mat-
subara frequency. The quantityP j

m
n j

m8
n8 (q̃) is the Fourier

transform of Eq.~3.15! with respect ton andt. In Eq.~3.17!,
it can be evaluated atq̃50 since Am

n }O(¹). Note that

P j
m
x j

m8
y 5P j

m
x j

m8
z 5P j

m
y j

m8
z 50 and P j

0
n j

x
n(q̃)u q̃5050. Taking

the continuum limitn→j ~with j a real continuous variable!
and writingAmn

n 5Am
n (j,t), the effective action~3.17! is re-

written as

Seff52
1

2 (
q̃

(
n5x,y,z

H ^K&MFuAx
n~ q̃!u21(

m
uAm

n ~ q̃!u2P j
m
n j

m
n J

52
1

2E dj dtH ~^K&MF1P j
x
xj

x
x!

3 (
n5x,y

Ax
n2~j,t!1P j

0
x j

0
x (
n5x,y

A0
n2~j,t!J

2
1

2 (
q̃

$~^K&MF1P j
x
zj

x
z!uAx

z~ q̃!u21P j
0
z j

0
zuA0

z~ q̃!u2%,

~3.19!
3-4
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where P j
m
n j

m
n [P j

m
n j

m
n (q̃50) and P j

m
x j

m
x 5P j

m
y j

m
y . Here we

note the identitieŝ K&MF1P j
x
zj

x
z50 and P j

0
z j

0
z50, which

can be deduced from the gauge invariance of Eq.~2.8! ~Ap-
pendix A!. We have verified numerically the validity of thes
identities. Finally, noting that33

(
n5x,y

Ax
n2~j,t!5

1

4
~]jn!2, ~3.20!

(
n5x,y

A0
n2~j,t!52

1

4
~]tn!2, ~3.21!

we obtain the following final expression for the effectiv
action of the spin-wave modes25,31 ~Appendix A!:

Seff5
1

2E djdt$x~]tn!21r~]jn!2%, ~3.22!

wherex andr are the uniform transverse spin susceptibil
and the spin stiffness, respectively:

x5^SnSn& q̃50
MF

5
1

4
P j

0
n j

0
n ~n5x,y!, ~3.23!

r52
1

4
~^K&MF1P j

x
n j

x
n! ~n5x,y!. ~3.24!

From Eq.~3.22! we deduce the spin-wave velocity

v5S r

x D 1/2

. ~3.25!

In the incommensurate case,P j
x
n j

x
n→0 in the weak-coupling

limit so thatr52^K&MF/4.25 As shown in the following sec-
tion, P j

x
n j

x
n gives rise to a contribution of the same order

^K&MF in the quarter-filled case when the on-site interact
U is of the order of the bandwidth. In Eqs.~3.23! and~3.24!,
j m
n andK can be expressed as@fk5(fk↑ ,fk↓) t, n5x,y]

j 0
n~ q̃50!5

1

AN
(

k
fk

†snfk , ~3.26!

j x
n~ q̃50!5

1

AN
(

k
~2t sinkfk

†snfk

22i t d coskfk
†snfk12Q0

),
~3.27!

K5
1

N (
k

~22t coskfk
†fk22i t d sinkfk

†fk12Q0
!.

~3.28!

IV. SPIN-WAVE VELOCITY

In this section, we evaluate the spin-wave velocity at z
temperature (T50). We taket51 and calculate the velocity
normalized to its value atV5V250 andtd50.
12512
s

n

o

The phase diagram of the present model as a functionV
andV2 is shown in Fig. 1 forU54 andtd50 ~solid curve!.8

For smallV andV2, there is a pure 2kF SDW state~region I!.
A large V induces a phase with both a 2kF SDW and 4kF
CDW ~region II!, while in the presence of a largeV2 there is
coexistence between a 2kF SDW, a 2kF CDW and a 4kF
SDW ~region III!. The dashed curve denotes the boundary
which a first-order transition occurs between regions II a
III. The dash-dotted curve shows the phase diagram fotd
50.1. The sliding modes are gapped in all three regio
However, the charge fluctuations become gapless at the
sition between I and II. We discuss below the spin-wa
velocity @Eq. ~3.25!# as a function ofV and V2 for both td
50 andtd5” 0.

A. U dependence„VÄV2Ä0 and tdÄ0…

The spin stiffnessr and the susceptibilityx are shown in
Fig. 2~a! as a function ofU for V5V250 andtd50. Bothr
and x are almost constant for smallU and decrease mono
tonically for largeU. The inset shows the correspondingU
dependence for̂K&MF and P j

x
xj

x
x which determiner @Eq.

~3.24!#. A behavior similar to the incommensurate case

FIG. 1. Phase diagram in theV-V2 plane forU54 and td50
~Ref. 8!. The three different regions correspond to~I! pure 2kF

SDW, ~II ! coexisting 2kF SDW and 4kF CDW, ~III ! coexisting 2kF

SDW, 2kF CDW, and 4kF SDW. The dash-dotted curves denote t
corresponding boundaries fortd50.1.

FIG. 2. ~a! U dependence ofr andx for V5V250 andtd50.
The inset shows theU dependence of̂K&MF and P j

x
xj

x
x. ~b! U de-

pendence ofv ~solid curve! andv@122xU#1/2 ~dashed curve!. The
open circles denote the exact result for the one-dimensional H
bard model~Ref. 21!.
3-5
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seen forU&2: P j
x
xj

x
x is vanishingly small, andx, r, and

^K&MF are almost constant with respect toU. The limiting
values for smallU are given by x51/(2A2p).0.113,
^K&MF522A2/p.20.90, and v5A2. The variation of
these quantities forU*2 comes from the effect of commen
surability at quarter-filling.

In Fig. 2~b! ~solid curve!, we show the spin-wave velocit
v @Eq. ~3.25!#, which is almost independent ofU although
slightly suppressed at largeU. Here we note that we hav
neglected the coupling to long-wavelength spin fluctuatio
In the Hubbard model (V5V250), the spin-wave velocity
v5(r/x)1/2 becomes (r/x)1/2@122xU#1/2 when this cou-
pling is taken into account within the RPA.27 One obtains 1
22xU512UN(0) in the weak-coupling limit where
N(0)51/A2p at quarter-filling. In Fig. 2~b!, we showv and
v@122xU#1/2 ~dashed curve!. The open circles denote th
exact result for the one-dimensional Hubbard model.21 For
U&2, the RPA result turns out to be a good approximati
while the difference becomes noticeable at largerU. Never-
theless we usev5(r/x)1/2 as a first step to examine th
spin-wave velocity as the function ofV andV2. The present
calculation is performed by choosingU54, which leads to
v.1.29 forV5V250 andtd50.

B. V dependence„V2Ä0 and tdÄ0…

Now we consider theV dependence of the spin-wave v
locity for V250, td50, andU/t54. Contrary to the weak-
coupling limit that can be studied analytically as the inco
mensurate case,25 this intermediate-coupling regime require
numerical calculation. Figure 3 shows theV dependence o
v, x, and r ~all quantities are normalized to their value
V5V250 andtd50). The arrow indicates the critical valu
Vc50.34 separating regions I (S15” 0) and II (S1 ,D25” 0). In
region II (V.Vc), both r andx decrease for decreasingV.
The stronger decrease ofr results in a decrease of the spi
wave velocity. For largeV, both the spin stiffness and th

FIG. 3. V dependence of the spin-wave velocity velocityv, sus-
ceptibility x, and spin stiffnessr for U54, td50, and V250.
v0 (51.286), x0 (50.103), andr0 (50.171) are the values fo
V5V250. There is a small jump at the critical valueVc50.34,
which is shown by the arrow. The inset shows theV dependence of
the order parametersS1 (2kF SDW! andD2 (4kF CDW!.
12512
s.

,
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spin-wave velocity vanish. It seems that the decrease ofv in
region II mainly comes from the reduction of kinetic ener
due to the formation of the 4kF CDW. Note that the spin-
wave velocity is discontinuous at the critical valueV5Vc .
The small jump atVc originates in the discontinuity ofS1
andD2 ~see inset of Fig. 3!, which is found only fortd50.6

C. V2 dependence„tdÄ0…

In this section, we analyze theV2 dependence of the spin
wave velocity forU54, td50 and different values ofV.
Figure 4 showsv/v0, x/x0, andr/r0 in the caseV50 ~the
inset showsS1 , D1, andS2 as a function ofV2). There is a
transition between regions I and III at the critical valueV2c .
v/v0, x/x0 andr/r0 are constant forV2,V2c and decrease
for V2.V2c ~note thatv actually slightly increases at larg
V2). However, all these quantities remain finite in the lim
of large V2. This is to be contrasted to the large-V limit
~region II! where the spin-wave velocity vanishes~Fig. 3!.
Such a behavior can be understood as follows. ForV2→`
~region III!, the spin- and charge-density waves in the grou
state are of the type (↑,↓,0,0) and~1,1,0,0!, respectively.
Our numerical calculation shows that this behavior alrea
shows up forV2 /t.4. In this limit (V2 /t*4), the one-
dimensional chain divides into independent two-site cluste
For this problem, one can find the exact expression of
spin-wave velocity~Appendix B!:

v/v05S r

x D 1/2Y v05~ t2td!/v0. ~4.1!

For U54, v051.286, so thatv/v050.777. ForV2 /t54 and
13, the numerical calculation givesv/v050.763 and 0.776,
respectively, in excellent agreement with the analytical res
of the two-site problem.

Now we consider theV2 dependence ofx/x0, r/r0 and
v/v0 for V50, 1, 2, and 3. ForV51, there is first a transi-
tion from region II to region I, and then a transition from I t
III. For V52 or 3, there is a single transition occuring b

FIG. 4. V2 dependence ofv, x, andr for U54, td50, andV
50. There is a cusp at the critical valueV2c51.32 corresponding to
the transition from state I to state III. The inset shows theV2 de-
pendence of the order parametersS1 , D1 (2kF CDW!, andS2 (4kF

SDW!.
3-6
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tween II and III. The ratiosx/x0 andr/r0 ~inset! exhibit a
similar behavior@Fig. 5~a!#. They are constant in region
and increase~decrease! in II ~III ! whenV2 increases. Figure
5~b! shows the spin-wave velocityv/v0, which turns out to
be mainly determined byr/r0. Except in region I and for
large values ofV2 , v varies strongly as a function ofV2.

Here we comment on the fact thatv remains finite at large
V2. Within the mean-field treatment, which is expected to
valid for a moderate coupling between chains, bothx andr
remain finite at largeV2. On the other hand, for one
dimensional systems it is known from bosonization thax
vanishes at largeV2 due to the formation of a spin gap.34

Thus, we expect our mean-field analysis in region III of F
1 to break down when the interchain coupling becomes
ficiently small.

D. Effect of dimerization

Finally, we consider the effect of dimerization on th
spin-wave velocityv. Figure 6~a! shows theV dependence
for U54, V250 andtd50 ~solid curve!, 0.1 ~dotted curve!,
0.3 ~dashed curve! and 0.5~dash-dotted curve!. The effect of
dimerization is large in region I, but rather small in region
A finite td increases the band gap. This induces a suppres
of P j

x
xj

x
x and r, and leads ultimately to a reduction of th

FIG. 5. ~a! V2 dependence ofx for V50 ~Fig. 4!, 1, 2, and 3.
There is a jump due to the first-order transition between II and
indicated by the dashed curve in Fig. 1. The inset shows theV2

dependence ofr. ~b! V2 dependence ofv for V50 ~Fig. 4!, 1, 2,
and 3. ForV51, there is a small jump atV250.66, which corre-
sponds to the transition between II and I. This discontinuity can a
be seen in Fig. 3.

FIG. 6. ~a! V dependence ofv for U54, V250, andtd50, 0.1,
0.3, and 0.5.~b! V2 dependence ofv for U54, V50, andtd50,
0.1, 0.3, and 0.5.
12512
e

.
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on

spin-wave velocity. We note that the reduction ofS1 andD2
in region II by the dimerization has little effect onv, since
the dependence ofS1 andD2 on dimerization is very smal
for V&4.

Figure 6~b! shows theV2 dependence ofv for U54, V
50, andtd50 ~solid curve!, 0.1 ~dotted curve!, 0.3 ~dashed
curve!, and 0.5~dash-dotted curve!. The effect of dimeriza-
tion is noticeable in both regions I and III. The limiting be
havior for largeV2 is given by Eq.~4.1!. In that limit, the
SDW exists forU.2(t2td) and the spin-wave velocityv
depends only ont and td .

V. CONCLUSION

In conclusion, the nearest- and next-nearest-neighbor
teractions strongly affects the spin-wave velocity in t
intermediate-coupling regimeU;4t. Our main results are a
follows. ~i! In the pure SDW state~region I!, the spin-wave
velocity v is independent of the nearest~V! and next-neares
(V2) interaction~Fig. 3!. ~ii ! For coexisting 2kF SDW and
4kF CDW ~region II!, v decreases~increases! as a function
of V (V2) @Figs. 3 and 5~b!#. It is slightly discontinuous at
the transition between I and II and vanishes~as well as the
spin stiffness! at largeV ~Fig. 3!. ~iii ! For coexisting 2kF
SDW, 2kF CDW, and 4kF SDW ~region III!, v is suppressed
by V2. It tends to a finite value at largeV2 @Figs. 4 and 5~b!#.
~iv! The dimerization decreases the spin-wave velocity@Figs.
6~a! and 6~b!#.

As discussed in Sec. III B, our approach is limited to t
weak- to intermediate-coupling regime and should h
when U,V,V2&4t. In the half-filled Hubbard model, a
strong-coupling is known to reduce the spin-wave veloc
from v5O(t) to v5O(J) ~with J54t2/U!t). We also ex-
pect a decrease of the spin-wave velocity in the more gen
case we have studied whenU,V,V2 become larger than 4t.
Therefore, our main conclusion~a reduction of the spin-wave
velocity by the interactionsV,V2) is likely to be strength-
ened by strong coupling effects. The Stoner factor
22xU)1/2, which arises from the coupling to long
wavelength spin fluctuations, was not considered in
analysis. It leads to a decrease ofv when the on-site inter-
actionU increases. Whether the Stoner factor depends on
interactionsV andV2 remains an open question.

In the compounds that have been studi
experimentally,4,5 the Bechgaard salts (TMTSF)2PF6 and
(TMTSF)2AsF6 and the Fabre salt (TMTTF)2Br, the
electron-electron interaction is expected to be in the interm
diate coupling regime (U;4t). Furthermore, estimates b
Mila36 and quantum-chemistry calculations37 have revealed
the finite-range part of the Coulomb potential, the fir
neighbor interactionV being equal or even larger thanU/2.
We therefore think that our conclusions are relevant to
Bechgaard-Fabre salts studied in Refs. 4 and 5.
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APPENDIX A: DERIVATION OF EQ. „3.22…

We rewrite Eq.~3.19! as

Seff5
1

2E dj dt$x~]tn!21r~]jn!2%2
1

2 (
q̃

$~^K&MF

1P j
x
zj

x
z!uAx

z~ q̃!u21P j
0
z j

0
zuA0

z~ q̃!u2%, ~A1!

wherer andx are given by

r52
1

4
~^K&MF1P j

x
xj

x
x!52

1

4
~^K&MF1P j

x
y j

x
y!, ~A2!

and

x5^SnSn&MF5
1

4
P j

0
n j

0
n, n5x,y. ~A3!

To show that the second term of Eq.~A1! vanishes, we use
the invariance of the action under the gauge transforma
Am

z (j,t)→Am
z (j,t)1 1

2 ]mL(j,t)(m5j or t).33 This trans-

formation corresponds to a rotation ofnMF5 ẑ around theẑ
axis and does not change the state of the system. The in
ance of the action in this gauge transformation implies

2
1

2 (
q̃

H~ ^K&MF1P j
x
zj

x
z! F1

4
qx

2uL~ q̃!u22 iAx
z~ q̃!qxL

~2q̃!G1P j
0
z j

0
zF1

4
V2uL~ q̃!u21 iA0

z~ q̃!VL~2q̃!G J 50.

~A4!

Since Eq.~A4! should be valid for an arbitrary functionL,
we deduce

^K&MF1P j
x
zj

x
z50, ~A5!

P j
0
z j

0
z50, ~A6!

which lead to the vanishing of the second line of Eq.~A1!.
Equations~A5! and ~A6! can also be obtained from th

U~1! electromagnetic field gauge invariance. Noting th
P j

m
z j

m
z 5P j

m
0 j

m
0 , Eqs.~A5! and ~A6! can be rewritten as

^K&MF1P j
x
0 j

x
050, ~A7!

P j
0
0 j

0
050. ~A8!

We recognize here the components of the polarization te
for the usual U~1! electromagnetic gauge field. Equatio
~A7! and ~A8! follow from ~electromagnetic! gauge
invariance.35
12512
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APPENDIX B: LIMITING CASE OF LARGE V2

WhenV2→`, the mean-field solution in region III corre
sponds to that of a half-filled two-site system given by

H52~ t2td!(
s

~C1s
† C2s1H.c.!

1U~n1↑n1↓1n2↑n2↓!1V (
s,s8

n1sn2s8 , ~B1!

wheren1s (n2s)5C1s
† C1s (C2s

† C2s) and C1s
† (C2s

† ) de-
note the creation operators of an electron at site 1~2! with
spin s. The mean-field equations are given by

(
s

^C1s
† C1s&5(

s
^C2s

† C2s&51, ~B2!

(
s

^C1s
† C1s&sgn~s!5D, ~B3!

(
s

^C2s
† C2s&sgn~s!52D, ~B4!

where the averagê & is performed with the mean-field
Hamiltonian

HMF52~ t2td!(
s

~C1s
† C2s1H.c.!

1(
s

F S U

2
1V2sgn~s!

U

2
D DC1s

† C1s

1S U

2
1V1sgn~s!

U

2
D DC2s

† C2sG
2

U

2
2V1

U

2
D2. ~B5!

From Eqs.~B2!, ~B3!, ~B4!, and ~B5!, the self-consistency
equation forD is expressed as

15
U/2

A@~U/2!D#21~ t2td!
2

, ~B6!

wherem5U/21V at half-filling. The solution of Eq.~B6! is
obtained as

D56A12S 2~ t2td!

U D 2

, ~B7!

for U/(t2td).2. By using Eq.~B7!, we compute the uni-
form transverse spin susceptibility (x8) and the spin stiffness
(r8):
3-8
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x8[
1

2 (
n,n851,2

F1

4
^ j 0

x~n! j 0
x~n8!&u iV50G5

1

2U
2

2~ t2td!
2

U3
,

~B8!

r852
1

4~ ^K8&1P8 j
x
xj

x
x!5~ t2td!

2S 1

2U
2

2~ t2td!
2

U3 D ,

~B9!

where the kinetic energy per site (^K8&) and the spin current-
current correlation function (P j

x
xj

x
x8 ) are given by

^K8&[
1

2 K 2~ t2td!(
s

~C1s
† C2s1H.c.!L 52

2~ t2td!
2

U
,

~B10!

P8 j
x
xj

x
x[

1
2 (

n,n851,2

^ j
x
x~n! j

x
x~n8!&u iV505

8~ t2td!4

U3 , ~B11!
w

n

12512
with

j 0
x~n!5(

s
Cn,s

† Cn,2s , ~B12!

j x
x~n!52

i ~ t2td!

2 (
s

~C1,s
† C2,2s2C2,s

† C1,2s!.

~B13!

By noting thatx5x8/2 and r5r8/2, we obtain the spin-
wave velocity of the one-dimensional system@Eq. ~2.1!# in
the limit V2→` as

v5S r

x D 1/2

5t2td . ~B14!
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