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We study an atomic Bose-Fermi mixture with unpolarized fermions in an optical lattice. We obtain the Mott
ground states of such a system in the limit of the deep optical lattice and discuss the effect of quantum
fluctuations on these states. We also study the superfluid-insulator transitions of bosons and metal-insulator
transition of fermions in such a mixture within a slave-rotor mean-field approximation, and obtain the corre-
sponding phase diagram. We discuss experimental implications of our results.
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I. INTRODUCTION

Recent experiments on ultracold trapped atomic gases
have opened a new window into the phases of quantum mat-
ter �1�. A gas of bosonic atoms in an optical or magnetic trap
has been reversibly tuned between superfluid �SF� and insu-
lating ground states by varying the strength of a periodic
potential produced by standing optical waves �1,2�. This
transition has been explained on the basis of the Bose-
Hubbard model with on-site repulsive interactions and hop-
ping between nearest neighboring sites of the lattice �3–7�.
Further, theoretical studies of bosonic atoms with spin and/or
pseudospin have also been undertaken �8–11�. These studies
have revealed a variety of interesting Mott phases and
superfluid-insulating transitions in these systems. On the fer-
mionic side, the experimental studies have mainly concen-
trated on the observation of paired superfluid states �12� and
the BCS-BEC crossover in such systems near a Feshbach
resonance �13�.

More recently, it has been possible to generate mixtures of
fermionic and bosonic atoms in a trap �14,15�. Initially, the
main focus of such experimental studies was to generate
quantum degenerate Fermi gases, through sympathetic cool-
ing with bosons. However, a host of theoretical studies fol-
lowed soon, which established such Bose-Fermi mixtures to
be interesting physical systems in their own right �16–20�,
exhibiting exciting Mott phases in the presence of an optical
lattice. In all of these works, the spin of the fermions in the
mixture is taken to be frozen out due to the presence of the
magnetic trap. However, more recent works reported in Refs.
�21,22� considered a Bose-Fermi mixture in an optical trap,
where the spins of the fermions can be dynamical degrees of
freedom �23�. It has been shown in Ref. �21� that the inter-
action between the bosons and the fermions in such a mix-
ture can enhance the s-wave pairing instability of the fermi-
ons.

In this work, we consider a Bose-Fermi mixture in an
optical trap and in the presence of an optical lattice and study
the Mott phases and the metal–superfluid-insulator transition

for the fermions and bosons of such a mixture using a slave-
rotor mean-field theory �24�. The motivation for such a study
is twofold. First, it has been shown in Ref. �18� that the Mott
phases of Bose-Fermi mixtures in a magnetic trap are inter-
esting in their own right. In the present study, we chart out
the Mott phases of the Bose-Fermi mixture in an optical trap,
where the fermion spins are dynamical degrees of freedom,
in the deep lattice limit for a wide range of parameters. As
expected, we find that the corresponding Mott phases ob-
tained are much richer than their counterparts studied in Ref.
�18�. Second, the metal–superfluid-insulator transition of the
fermions and bosons in such an interacting Bose-Fermi mix-
ture has not been studied before. Here we develop a self-
consistent slave-rotor mean-field theory to study such a tran-
sition for the Mott phases which do not have density-wave
order with broken translational symmetry and use it to obtain
at least a qualitative understanding of the effect of interaction
between the fermions and the bosons on the metal–
superfluid-insulator transition.

In what follows, we shall assume that the atoms are con-
fined using an optical trap so that fermion spins are not fro-
zen out. We shall, however, ignore the effect of the harmonic
trap potential which is a standard approximation used exten-
sively in the literature �25�. The starting point of our study is
the Bose-Fermi Hubbard Hamiltonian that has been devel-
oped earlier, with similar approximation regarding the trap
potential, from underlying microscopic dynamics of the at-
oms in the presence of an optical lattice �17�

H = HF + HB + HFB, �1�

HF = − tF �
�ij��

�ci�
† cj� + H.c.� − �F�

i�

ni�
F + UFF�

i

ni↑
F ni↓

F ,

�2�

HB = − tB �
�ij��

�bi
†bj + H.c.� − �B�

i

ni
B +

UBB

2 �
i

ni
B�ni

B − 1� ,

�3�
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HFB = UFB�
i�

ni�
F ni

B. �4�

Here ci� is the fermionic destruction operator with spin �
= ↑ ,↓ at site i, bi represents the bosonic destruction operator
at site i, nF�B� denotes fermion �boson� number operators,
tF�B� and �F�B� are nearest neighbor hopping matrix elements
and chemical potentials for the fermions �bosons�, UBB and
UFF are the on-site Hubbard repulsion for bosons and fermi-
ons, respectively, and UFB denotes the relative interaction
strength between the bosons and the fermions. In what fol-
lows, we shall take the bosons and the fermions to have fixed
chemical potentials �B�F� and same on-site repulsion UBB

=UFF=U and consider �=UFB /U and �= tF / tB as parameters
which can be freely varied. The justification of this choice is
briefly outlined in Sec. II. Further, we shall only deal with
the case of a square bipartite lattice in this work since this is
simplest to realize experimentally.

The organization of the rest of the paper is as follows. In
the next section, we identify the Mott phases of Eq. �1�.
Next, in Sec. III, we introduce the slave-rotor formalism and
use it within a mean-field approximation to study the metal–
superfluid-insulator transition of the Bose-Fermi Hubbard
model �Eq. �1��. This is followed by a discussion of possible
experiments in Sec. IV. A comparison of the Mott-Hubbard
phase diagram obtained using the projection operator tech-
nique with those obtained from mean-field theories �3,5,6�
and standard strong coupling expansions �26� is given in the
Appendix.

II. MOTT PHASES

In this section, we chart out the Mott phases of the Bose-
Fermi system. To do this, we first obtain the phases of the
system in the Mott limit �tB= tF=0� and then obtain fluctua-
tion corrections over these states to O�tB�F�

2 /U2�.
Before obtaining the Mott phases for the Bose-Fermi mix-

ture, let us look briefly into the parameters of the Hubbard
model �Eq. �1��. These can be determined from the micro-
scopic quantities such as the potential depths VF�B� due to the
laser seen by the atoms and their recoil energies EF�B�

R

=�2kL
2 /2mF�B�, where kL is the wave vector of the laser and

mF�B� are the masses of the fermions �bosons�. The potential
depth seen by the atoms depend on the detuning of the laser
from their natural wavelengths �F�B� of the fermions
�bosons�. In fact, it can be shown that the ratio of the lattice
potentials seen by the fermions and bosons are �21�

VF

VB
=

�F
4�F��B

�B
4�B��F

, �5�

where ��F�B�=�L−�F�B� denote the detunings for the fermi-
ons �bosons� and �F�B� are the corresponding natural line-
widths. Since the ratio of the natural linewidths is generally
close to unity �14,21�, we see that one can tune the ratio of
the lattice depths seen by bosons and fermions by varying
the detunings.

In terms of these quantities, we have �17�

tB�F� = �2/�	��EB�F�
R VB�F�

3 �1/4e−2�VB�F�/EB�F�
R

,

UBB�FF� = �8/	�EB�F�
R VB�F�

3 �1/4kLaBB�FF�,

UFB =
�EF

RVB
3VF

3�1/4�1 + mF/mB�kLaBF

�	/16��VB + �VFEB/EF�3/2
, �6�

where aFF, aBB, and aFB are the s-wave scattering lengths for
interaction between two fermions, two bosons, and a fermion
and a boson, respectively. These scattering lengths also can
be varied either by choosing different species of fermions or
bosons or by tuning them using Feshbach resonance. Further,
as we have discussed before, by choosing the laser detuning
we can also make the fermions and bosons see either similar
or very different lattice potentials. Therefore, instead of cal-
culating these parameters from the microscopics, we shall
aim to portray a general picture of the Mott phase diagram.
Since the experimental possibilities are limitless, for the sake
of brevity, we choose UBB=UFF=U and vary the ratios �
=UBF /U and �= tF / tB. It is clear from the above discussions
that such a situation can be always achieved in experiments.
We shall consider some such specific examples in Sec. IV.

Next, we consider the Bose-Fermi Hubbard Hamiltonian
in the Mott limit. In this limit, the on-site states can be rep-
resented as 	n0

B ,n0
F� and the energy is given by

E�n0
B,n0

F� = EF�n0
F� + EB�n0

B� + EFB�n0
B,n0

F� ,

EF�n0
F� = − 
�F� −

1

2
�n0

F +
1

2
�n0

F − 1�2,

EB�n0
B� = − �B�n0

B +
1

2
n0

B�n0
B − 1� ,

EFB�n0
B,n0

F� = �n0
Fn0

B, �7�

where we have scaled all energies by U and �F�B��

=�F�B� /U. It can be seen from Eqs. �7� that two states
	n0

B ,n0
F−1� and 	n0

B−1,n0
F� are degenerate when

�� − 1��n0
F − n0

B� = �F − �B, �8�

whereas three states 	n0
B ,n0

F�, 	n0
B ,n0

F−1�, and 	n0
B−1,n0

F� are
degenerate when

�F� = �n0
F + n0

B� − 1� ,

�B� = �n0
F� + n0

B − 1� . �9�

The conditions of these degeneracies, of course, depend on
our choice of parameters of the model. It is also to be noted
that in Eqs. �8� and �9�, n0

F and n0
B in the ground state are

themselves functions of �F� , �B� , and �, and have to be deter-
mined by minimizing Eq. �7� subject to the constraint of n0

F

and n0
B being integers.

The ground state phase in the Mott limit �tb= tF=0� dia-
gram can be obtained by numerically minimizing the ground
state energy �Eq. �7�� for integers 0
n0

F
2 and n0
B. For the

sake of brevity, we carry out the numerical computation for
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�B� =�F� =� and present the phase diagram as a function of �
and �. The phase diagram for ��0 is shown in Fig. 1. We
find, as expected from the results of Ref. �21�, for ��1, the
fermions and the bosons repel each other out from a given
site so that a site is occupied by either a boson or a fermion,
but not both. Such states were dubbed as “composite” states
of bosons and fermions with a correlation hole of fermions
and bosons in Ref. �21�. However, in the present scenario,
the spins of the fermions are dynamical degrees of freedom
which lead to richer variety of possible phases, as we discuss
below.

As expected from discussions leading to Eq. �8�, a large
portion of the phase diagram has degenerate ground states
corresponding to 	n0

B=0,n0
F=1� and 	n0

B=1,n0
F=0�. Note that

in terms of the original fermions, the degeneracy is actually
threefold corresponding to states 	0,↑�, 	0,↓�, and 	1,0�. This
degeneracy is lifted by quantum fluctuations due to the pres-
ence of small but finite tF and tB. This can lead to three
different ground states as sketched in Fig. 2: �A� an antifer-
romagnetic state of fermions with no bosons, �B� a state of
one boson per site and no fermions, and �C� a state with
fermions and bosons being the nearest neighbors with an
antiferromagnetic order for the fermions. The energies of
these states can be estimated using a straightforward
O�tB�F�

2 /U2� perturbation theory and are given by

EA = −
NztF

2

U
= −

NztB
2

U
�2,

EB = −
2NztB

2

U
,

EC = −
NztB

2

2�U
�1 + �2� , �10�

where N is the total number of sites in the system and z is the
coordination number of each site. Comparing the energies of
the states from Eq. �10�, we find that state A is favored over
B and C when �2�2 and �� �1+�−2� /2. Similarly the state
B is favored for �2�2 and �� �1+�2� /4 and state C for
small � when �1+�2� / �2���max�2,�2�. The corresponding
phase diagram is shown in Fig. 2.

With only a nearest-hopping term in the Hamiltonian, the
antiferromagnetic ordering in the ground state C is in fact
frustrated. Indeed, fourth-order �in t� virtual hopping leads to
an antiferromagnetic coupling both between next-nearest-
neighbor sites and next-next-nearest sites �Fig. 3�. In prac-
tice, however, this frustration is suppressed by O�t�2 /U� cor-

FIG. 1. �Color online� Ground state phase diagram in the atomic
limit for �=�B� =�F� and ��0. The phases are marked by values of
�n0

B ,n0
F� in the ground state. For large �, the system tries to avoid

putting bosons and fermions at the same site. The threefold degen-
eracy between �1,0� and �0,1� as well as �2,1� and �1,2� occur for a
large portion of the phase diagram. In addition, there are doubly
degenerate regions such as �2,0� and �0,2�. These degeneracies are
lifted by the virtual hopping process for small but finite tB and tF.

FIG. 2. �Color online� Possible ground states A, B, and C that
result from lifting the classical degeneracy of the ground states
�n0

B ,n0
F�= �1,0� and �0,1� due to quantum fluctuations. Notice that

the antiferromagnetic ordering of state C is different from state A
and is a consequence of very weak next-nearest-neighbor hopping.
Similar states will result when the degeneracy of the states �2,1� and
�1,2� is lifted.

FIG. 3. Virtual hopping �dashed lines� leading to frustration of
the antiferromagnetic ground state C. This frustration is lifted and
an antiferromagnetic ground state stabilized by virtual hopping gen-
erated by the kinetic coupling t� between next-nearest-neighbor
sites �located at opposite corners of the square lattice unit cell�.
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rections that arise from the next-nearest-neighbor hopping
t� �not included in the Hamiltonian �2��, leading to an anti-
ferromagnetic order at wave vector �	 /a ,0� �or
�	 /�2a ,	 /�2a� in a reference frame tilted by 45°�, in two
dimensions as shown in Fig. 2. This should be contrasted
with the usual �	 /a ,	 /a� ordering realized either for state A
or for the �1,1� state shown in Fig. 1. Additional hopping
amplitudes �e.g., the next-next-nearest-neighbor hopping t��
are expected to be smaller and will not affect the antiferro-
magnetic ordering of the ground state C. A similar consider-
ation applies for the degenerate states �2,1� and �1,2� where
quantum fluctuations will similarly lift the degeneracies. No-
tice that the possibilities of having a ferromagnetic state of
fermions where all sites are uniformly occupied by ↑ or ↓
fermions never occur since such a state necessarily sup-
presses fermion hopping due to the Pauli principle and is
thus higher in energy compared to the state A.

Finally, we point out that lifting of degeneracy by quan-
tum fluctuations also occurs for the twofold degenerate states
labeled as �2,0� or �0,2�. Note that the state �2,0� correspond-
ing to two fermions per site requires that all second order
virtual hopping processes are suppressed, unless higher
bands are involved. Hence such a state is energetically unfa-
vorable and is never realized. The two other states are �D� a
homogeneous state with two bosons per site and �E� a state
with alternate arrangements of two bosons and two fermions
per site. The energies of these states are given by ED=
−6NztB

2 /U and EE=−NztB
2�1+�2� / �2�−1�U. The latter state

E is thus favored over state D for �2�6�2�−1�−1.
In contrast for ��0 �i.e., UBF�0�, there are no degen-

eracies. The �1,1� state persists at small negative �. For 	�	
�1, the system always has two fermions per site with n0
bosons, where n0 is the integer which minimizes E�n0�=
−�n0+n0�n0−1� /2−2	�	n0. The phase diagram is shown in
Fig. 4 as a function of � and �. The phase diagram corre-
sponds to the Mott phase of bosons coupled with nondy-
namical fixed number of fermions. Note that analogous com-

posite states with n0 bosons and one fermion were found and
dubbed as “composite fermion” states in Ref. �21�. Here we
have almost identical states at large negative � with the dif-
ference that there are two fermions per site �instead of one
per site as in Ref. �21�� owing to the fact that fermion spins
are not frozen in the present study.

III. SLAVE-ROTOR MEAN-FIELD THEORY

In this section, we construct a slave-rotor mean-field
theory for the coupled Bose-Fermi problem and use it to
study the metal–superfluid-insulator transition in this system.
We develop the formalism for the mean-field theory in Sec.
III A, and discuss the results obtained in Sec. III B.

A. Formalism

We begin by implementing the slave-rotor formalism �24�
in the present context. This key observation behind this for-
malism is that the fermionic Hubbard Hamiltonian �Eq. �2��
can be mapped onto a Hamiltonian of free auxiliary fermions
coupled self-consistently to a quantum rotor. The chief ad-
vantage of this representation is that the quartic interaction
term of the original fermionic Hubbard model can now be
represented by a quadratic term in the rotor variables and can
thus be treated exactly in the Mott limit. This feature makes
this technique suitable for studying Hubbard models in the
strong-coupling regime. Further, as shown in Ref. �24�, the
metal-insulator transition of the original fermions can be
looked upon as the order-disorder transition of the rotors
which facilitates the study of metal-insulator transition.

To begin with, we note the identity

1

2��
�

ni�

F −
1

2
�
2

= ni↑
F ni↓

F −
1

2�
�

ni�
F +

1

2
�11�

so that, up to a constant term, one can write Eq. �2� as

HF = − tF �
�ij��

�ci�
† cj� + H.c.� − 
�F −

U

2
��

i�

ni�
F

+
U

2 �
i
��

�

ni�

F −
1

2
�
2

. �12�

Next, following Ref. �24�, we introduce the slave-rotor rep-
resentation for the fermions. The key observation here is that
the spectrum of HF in the Mott limit depends only on the
total fermion number ��ni� which can be represented by
eigenvalues of angular momenta of an O�2� rotor. Thus we
write the physical fermion annihilation operator as

ci� = f i� exp�− i
i� , �13�

where f i� denotes the annihilation operator for the pseudo-
fermion and 
i denotes the rotor variable at site i. The cor-
responding angular momentum of the rotor is denoted by
Li=−i�
i

. In this representation, a physical fermion state can
be written as a product of the pseudofermion state and a rotor
state as

FIG. 4. �Color online� Ground state phase diagram in the Mott
limit for ��0. The number of fermions per site is n0

F=2 while the
number of bosons per site is shown in each phase for large negative
�.
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	c1,c2, . . . ,cQ�i = 	f1, f2, . . . , fQ�i	l = Q − 1�
i
. �14�

Here l denotes the eigenvalues of the rotor angular momen-
tum L and 	c1 ,c2 , . . . ,cQ� is the antisymmetric combination
of fermionic states for Q= l+1 fermions at site i. Note that
whereas for ordinary rotors l can take all possible integer
values, here it is constrained to range between −1 and 1 by
the operator identity

Li = �
�

 f i�

† f i� −
1

2
� . �15�

With the following constraint, one can write Eqs. �12� and
�4� in terms of the rotor variables as

HF = − tF �
�ij��

�f i�
† f j� exp�i�
i − 
 j�� + H.c.�

− 
�F −
U

2
��

i�

f i�
† f i� +

U

2 �
i

Li
2, �16�

HFB = �U�
i�

f i�
† f i�ni

B. �17�

with Li related to ��f i�
† f i� by Eq. �15�. In the Mott limit

�tF= tB=0�, we can implement the constraint �Eq. �15�� ex-
actly and this procedure leads to Eq. �7� with n0

F=Q= l+1 in
a straightforward manner. Note also that the quartic interac-
tion term U�ini↑ni↓ in Eq. �2� has now been replaced by a
quadratic term U�iLi

2 /2 in Eq. �16�. This has been done at
the expense of generating a nonlinear coupling between the
auxiliary fermions and the rotors, as is evident from the first
term of Eq. �16�.

When tF , tB�0, the abovementioned constraint condition
cannot be implemented exactly and we need to resort to
mean-field approximation. The slave-rotor mean-field theory
for the present system can be developed by a straightforward
generalization of the formalism developed in Ref. �24�. To
begin with, we write the system Hamiltonian H as

H = Hr + Hf + Hb, �18�

Hr = − �
�ij�

�ij
eff cos�
i − 
 j� + �

i

U

2
Li

2 + hLi, �19�

Hf = − �
�ij�,�

�tij
efff i�

† f j� + H.c.�

+ �
i�

�− �F + U/2 + h + �Un̄B�f i�
† f i�, �20�

Hb = − tb�
�ij�

�bi
†bj + H.c.�

+
U

2 �
i

ni
B�ni

B − 1� − ��b − �Un̄F��
i

ni
B, �21�

where we have implemented the constraint �15� using an
auxiliary field hi which has been replaced by its saddle point
value h at the mean-field level. Here we also treat the cou-
pling between the bosons and the fermions within mean-field

approximation by replacing the fermion and boson density
operators ni

B/F by their averages n̄B/F. This amounts to replac-
ing the term �i�Uni

Fni
B by �i�Uni

Fn̄B in Eq. �20�, and by
�i�Uni

Bn̄F in Eq. �21�. Within this mean-field approximation,
the coupling term acts as a density-dependent shift in the
chemical potentials for the bosons and the fermions. The
effective hopping matrix elements tij

eff and �ij
eff in Eqs. �19�

and �20� are given by

tij
eff = tij�cos�
i − 
 j��Hr

,

�ij
eff = tij��

�

f i�
† f j��

Hf

, �22�

with the assumption that averages such as �exp�
i−
 j�� and
���f i�

† f j�� are real on each bond �24�.
The next step is to approximate the rotor model by an

effective single site model

Hr� = �
i

K cos�
i� +

U

2
Li

2 + hLi� , �23�

K = − 2�
j

�ij
eff�cos�
 j��Hr

. �24�

Note that this approximation makes sense only when the
Mott ground state does not have density wave order of any
kind either for bosons or fermions. Using the fact that under
this approximation the Hr� becomes a single site Hamiltonian,
we define

Z = �cos�
��Hr

2 �25�

and use Hf to compute all averages involving the fermionic
fields. This yields

K = 4�cos�
��Hr� d� �nF�Z� − �F + h + �Un̄B�

= 4�cos�
��Hr
�̄ , �26�

�L� = 2�� d�D���
�Z� − �F + U/2 + h + �Un̄B�
 − 1

= 2n̄F − 1, �27�

where the density of states D��� is defined as D���
=�d3k���−�k� / �2	�3, and �k=−2t�i=x,y,z cos�ki� is the ki-
netic energy of the fermions �all momenta are measured in
units of lattice spacing�, and �̄ and n̄F are the average fermi-
onic kinetic energy and density, respectively. Comparing the
expression of n̄F with that for the free fermions n̄F
=��

�0D���d�, where �0 is the chemical potential for the free
fermions at T=0, one has the relation

Z�0 = �F − U/2 − h − �Un̄B, �28�

�L� = 2n̄F − 1. �29�

Notice that since Z vanishes at the transition at �F=�F
c , one

gets �F
c −U /2=h+�Un̄B. Thus Z acts as the order parameter
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for the metal-insulator transition of the fermions.
Equations �25�–�29� have to be self-consistently solved to

obtain the ground state of the system. However, to do this,
one needs to obtain the ground state of the bosonic Hamil-
tonian �Eq. �21�� and compute the average value of the boson
density n̄B. Since at the mean-field level, the average fermi-
onic density n̄F enters the boson Hamiltonian as a shift in the
chemical potential, one can use the projection operator tech-
nique developed in Ref. �11� for obtaining n̄B. It was shown
in the context of two-species bosons that the projection op-
erator method compares well with quantum Monte Carlo re-
sults �11�.

The projection operators for the boson Hamiltonian �Eq.
�21�� can be constructed following the procedure of Ref.
�11�. It is given by

Pl = �	n0
B�i�n0

B	i� � �	n0
B� j�n0

B	 j� , �30�

where n0
B is the boson occupation per site for the Mott

ground state and l denotes the link connecting two neighbor-
ing sites i and j.

The hopping term for the bosons can be rewritten in terms
of the sum over links as

T = �
l

Tl = − tb�
l

�bi
†bj + H.c.� , �31�

where i and j are near neighbor sites connecting the link l. In
this notation, one can now divide the hopping terms into two
parts

Tl = Tl
1 + Tl

0 = �PlTl + TlPl� + Pl
�TlPl

�, �32�

where Pl
�=1− Pl. It is then easy to see that the term T1

=�lTl
1 acting on the ground state takes one out of the ground

state manifold. The idea is therefore to seek a canonical
transformation operator S which eliminates T1 to O�tB /U�
from the low-energy effective Hamiltonian �iS ,H0�=−T1,
where H0 denotes all the on-site terms in Eq. �4�. The effec-
tive low-energy Hamiltonian can be obtained by the usual
Schrieffer-Wolff transformation method

H* = exp�iS�H exp�− iS� �33�

=H0 + T0 + �iS,T� +
1

2
†iS,�iS,H0�‡ + ¯ . �34�

Note that this is equivalent to a systematic tB /U expansion
and all the omitted terms denoted by ellipsis are at least
O�tB

3 /U3�.
The next task is to find out the canonical transformation

operator S in terms of the projection operators Pl. Following
Ref. �11�, we guess the form of the S to be

S = i��
l

�Pl,Tl� , �35�

where the coefficient � is to be determined by the condition
�iS ,H0�=−T1. To do this we use the operator identities

�PlTl,H0� = UPlTl, �TlPl,H0� = − UTlPl �36�

and evaluate �iS ,H0� to be

�iS,H0� = −
�

U
�

l

�PlTl + TlPl� = − T1 �

U
. �37�

Thus we find that setting �=U we obtain the expression for
S= i�l�Pl ,Tl� /U, which eliminates T1 to O�tB /U� from the
low-energy effective Hamiltonian.

The effective Hamiltonian can be now rewritten by sub-
stituting the condition �iS ,H0�=−T1 in the last term of Eq.
�34� as

H* = H0 + T0 − �
l,l�

��Pl,Tl�,Tl�
0 + Tl�

1 /2� . �38�

With some algebra we now reach the final form of the low
energy effective boson Hamiltonian which takes into account
all tB

2 /U2 fluctuations

H* = H0 + T0 −
1

U��
l

�PlTl
2Pl − TlPlTl�

+ �
l,l�
�PlTlTl� − TlPlTl� −

1

2
�PlTlTl�Pl� − TlPlPl�Tl���
 ,

�39�

where l and l� are nearest neighbor links. One can now use
an on-site variational wave function in the same way as in
Ref. �11�

�v = �
i

�a	n0
B�i + b	n0

B + 1�i + c	n0
B − 1�i� �40�

to minimize the ground-state energy EG= ��v	H*	�v� and
obtain the corresponding boson density n̄B and superfluid
order parameter �

n̄B = 	aG	2n0
B + 	bG	2�n0

B + 1� + 	cG	2�n0
B − 1� , �41�

� = �n0
B + 1aG

* bG + �n0
BcG

* aG, �42�

where aG, bG, and cG are values of the coefficients a, b, and
c in the variational ground state. A comparison of the phase
diagram obtained by minimizing Ev= ��v	H*	�v� for �=0
with analogous phase diagrams obtained from mean-field
theory �3,5,6� and defect phase calculations to O�tB

2 /U2� �26�
is presented in the Appendix.

Equations �41� and �42� combined with Eqs. �25�–�29�
can now be solved self-consistently to obtain a mean-field
description of the coupled Fermi-Bose system near the
metal–superfluid-insulator transition points which are sig-
naled by the onset of a nonzero Z or �. This method, there-
fore, allows for a self-consistent treatment for the coupled
Bose-Fermi problem near the metal–superfluid-insulator
transition point, provided that the insulating ground state pre-
serves translational symmetry.
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B. Results

In this section, we discuss the results of application of the
formalism developed in the last section to the problem at
hand. Here we shall concentrate on the �1,1� Mott state for
the following reasons. First, since we would be interested in
studying metal-insulator transitions for fermions together
with the superfluid-insulator transition of bosons, we would
like to concentrate on Mott states which have one fermion
per site. Second, in the formalism developed in Sec. III A,
we treat the Bose-Fermi interaction term within mean-field
approximation, we would like to restrict ourselves to the pa-
rameter regime 	�	= 	UFB /U	�1, where the mean-field re-
sults are expected to be more accurate.

To demonstrate the effect of interspecies interaction, we
first concentrate on a fixed value of �F=�B=0.7U and �
= tF / tB=5, and study the onset of metal–superfluid-insulator
transition as a function of tF /U for a few representative val-
ues of �. A plot of Z and � for this case is shown in Fig. 5
while the fermionic and bosonic densities are plotted in Fig.
6. The results of these plots can be understood as following.
Consider fixing � and gradually increasing tF so that the
fermions and bosons move towards a metal–superfluid-
insulator transition point. As long as the bosons and fermions
are in the Mott state, their densities are pinned to n0

B=1 or
n0

F=1, and hence the fermions and bosons see a fixed chemi-
cal potential �F�B�

eff =�−�Un0
B�n0

F�. For our chosen value of �,
the metal-insulator transition occurs before the superfluid-
insulator transition of the bosons at tF

c ���= tF
c ��F

eff�. Notice
that tF

c ��� is a nonmonotonic function of � for a given � and
�. Hence the metal-insulator transition for the fermions can
either be enhanced ��=0.5� or hindered ��=0.1� due to the
Bose-Fermi interaction. Once the fermions have delocalized,
the density of fermions changes with tF for a fixed chemical
potential � as seen in Fig. 6. Hence the effective chemical

potential seen by the bosons now becomes a function of both
tB= tF /� and �. Thus by increasing tB, we actually traverse a
curve with a finite slope in the � - tB plane in contrast to the
noninteracting ��=0� case. Consequently, the superfluid-
insulator transition of the bosons occurs at tB

c ��� which can
be quite different from tB

c ��=0�. We note this effect may lead
to both enhancement �tB

c ���� tB
c ��=0�� or hindrance �tB

c ���
� tB

c ��=0�� of the superfluid-insulator transition of the
bosons depending on the chosen values of � and �, as can be
seen by comparing Figs. 5 and 7. For the choice of � /U
=0.7 and �=5, we find that tB

c ���� tB
c ��=0�, whereas the

reverse case is realized for � /U=0.4 and �=4. In the latter

FIG. 5. �Color online� Plot of the order parameter � and Z for
� /U=0.7 and �=5. Nonzero values of � /Z signals superfluid–
metal-insulator transition for the bosons and fermions. The symbols
are as follows: black squares and green solid line �� and Z, respec-
tively, for �=0�, red circles and cyan dotted line �� and Z, respec-
tively, for �=0.3�, and blue triangles and magenta dashed line ��
and Z, respectively, for �=0.5�.

FIG. 6. �Color online� Plot of the average densities n̄B and n̄F for
the bosons and fermions for � /U=0.7 and �=5. The deviation of
the densities from their quantized values in the Mott state signals
the onset of metal-insulator transition for fermions and superfluid-
insulator transition for the bosons. The symbols are as follows:
black squares and red circles �n̄B and n̄F, respectively, for �=0�,
green up triangles and blue down triangles �n̄B and n̄F, respectively,
for �=0.3�, magenta dotted line and cyan solid line �n̄B and n̄F,
respectively, for �=0.5�.

FIG. 7. �Color online� Plot of � and Z for � /U=0.4, �=4 and
�=0 and �=0.3. All symbols have the same meaning as Fig. 5. The
plot serves as an illustration that repulsive interaction between
bosons and fermions can enhance metal-superfluid transitions.
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case, both the metal-insulator transition for the fermions and
the superfluid-insulator transition for the bosons are en-
hanced for ��0. Hence we conclude that a repulsive Bose-
Fermi interaction can either enhance or hinder the onset of
metal–superfluid-insulator transition of a coupled Bose-
Fermi mixture held at a fixed chemical potential. Notice that
this effect is absent if the boson and the fermion densities are
held constant individually, since in that case, there is no in-
fluence of the fermionic metal-insulator transition on the
bosonic superfluid-insulator transition within the mean-field
theory. This is of course an artifact of the present mean-field
approximation. Clearly, the dynamics of the fermions and
bosons should play an important role in the transition. For
example, near the metal insulator of the fermions, there will
be density fluctuations which give the bosons a chance to
hop to a neighboring site even if they would remain localized
in the absence of such fluctuations. A treatment of this effect
requires analysis of the slave-rotor model beyond the present
mean-field approximation and is outside the scope of the
present study.

Finally, we present a plot of the critical hopping strength
tB
c in Fig. 8 as a function of � and � for a fixed representative

� /U=0.7. We note that at small �, the superfluid-insulator
transition takes place when the fermions are still in the Mott
state with their density pinned at nF

0 =1. Consequently, the
transition for the boson, within the simple mean-field theory,
is the same as that occurring for �eff=�−�U; tB

c becomes
maximum when �eff /U�0.4 or ��0.3. However, when � is
large, the fermions have already undergone the metal-
insulator transition when the bosons are at their transition
point and hence have �nF��1. Consequently the bosons see
a different �eff=�−�U�nF� and hence the value of tB

c

changes. This is reflected in bending of the phase boundary
in the right half of Fig. 8. Analogous plots for tF

c will have
qualitatively same features.

Before closing this section we would like to make a few
qualitative comments. First, the analysis of the phase dia-
gram for negative � with 	�	
1 can be carried out in a
similar manner and one obtains qualitatively similar results
in this case. Second, at large and negative �, the Mott states

correspond to two fermions and n0��� bosons localized per
site. In this case, with decreasing lattice potential, the bosons
would undergo a superfluid-insulator transition with the fer-
mions still in the Mott phase. Therefore the superfluid-
insulator transition of the bosons can be described, within
mean-field theory, by a Hubbard model of bosons with effec-
tive chemical potential �eff=�−2�U. As we decrease the
lattice depth, the fermions would eventually delocalize when
the hopping coefficient tF becomes comparable to the energy
gap between the single particle levels �En�5ER� in the po-
tential wells. However, this is a large energy scale �En

�U ,�U� for deep lattices and so for any reasonable value of
�, one expects the superfluid-insulator transition of bosons to
occur while the fermions are still in the Mott state. Third, we
would like to note that the slave-rotor mean-field theory
worked out here cannot be applied for states with broken
translational symmetries in terms of boson and fermion num-
bers �such as the state C shown in Fig. 2� since we have used
a single-site approximation for the slave-rotor mean-field
theory. Also the present slave-rotor treatment is expected to
be more inaccurate for states with ��1 since the fermion-
boson interaction is treated at a mean-field level within our
scheme. Nevertheless we note that qualitatively we would
expect a Mott-superfluid–metal transition from these phases
as � is reduced keeping the density of bosons and fermions
constant. Finally, the present theory cannot address the ques-
tion of possible superconducting instability of the fermions
in the metallic state. This issue is discussed in Ref. �21�. A
generalization of our mean-field description of the
superfluid–metal-insulator transitions to address such issues
and inclusion of the effect of quantum fluctuations beyond
the mean-field treatment used here remain open problems to
be addressed in future work.

IV. EXPERIMENTS

A large part of the Mott phases and the superfluid-
insulator transition of the Bose-Fermi mixtures discussed
here can be experimentally accessed using standard experi-
ments on specific Bose-Fermi mixtures. Before going into
details of specific systems, let us first outline some typical
experiments that can be performed on these systems. One
such experiment that is routinely carried out in atomic sys-
tems is measurement of momentum distribution of atoms in
the trap �1�. This is typically done in a time of flight mea-
surement by letting the atoms fly out by dropping both the
lattice and the trap and then measuring the position distribu-
tion of the expanding atom cloud. Such a position distribu-
tion measurement yields information about momentum dis-
tribution of the atoms within the trap. These experiments
obtain qualitatively different signatures for atoms in the Mott
and the superfluid states for bosons �1,2�, but cannot distin-
guish between the Bose and the Fermi atoms. To achieve this
distinction, one needs to pass the expanding atom cloud
through a Stern-Gerlach apparatus. Since the fermions and
the bosons have different spins �or total angular momenta�,
they will get separated during this process and can thus be
distinguished. Such Stern-Gerlach experiments have been
carried out with bosonic atoms in Refs. �27,28� and their

FIG. 8. �Color online� Plot of tB
c /U as a function of � and � for

� /U=0.7. For small �, the fermions remain in the Mott state when
the superfluid-insulator transition of the bosons takes place whereas
for large � they have already undergone a metal-insulator transition.
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generalization to present systems should be straightforward.
Finally, the antiferromagnetic order of fermions in the Mott
phases �either the �1,1� phase in Fig. 1 or the phases A and C
shown in Fig. 2� can be determined by measuring spatial
noise correlations of the expanding cloud in a time of flight
measurement �29,30�.

Let us now consider some specific Bose-Fermi mixtures
that have been realized experimentally. One such system is
6Li and 7Li mixtures with aFF=aBB=5a0 and aBF�0 �31,32�,
where a0 is the Bohr radius. The value of aBF has not been
unambiguously measured in this system, but is expected to
be positive indicating a repulsive interaction �31�. For this
mixture, mF�mB and depending on the value of aBF and by
varying the frequencies of the laser providing the optical
lattice �as discussed in Sec. II�, we may realize different
points on the phase diagram shown in Fig. 1. Of particular
interest is the case where aBF�aFF �21�. In this case, for one
atom per site, we expect to obtain one of the Mott phases A,
B, or C shown in Fig. 2 depending on the specific value of
��aBF /aFF and �= tB / tF which can be varied by slightly
changing the ratio VF /VB �Eq. �6�� �33�. In this case, one can
scan a large part of the phase diagram shown in Fig. 2. The
possible antiferromagnetic orders of fermions in phase A or
C �Fig. 2� can be determined by measuring the spatial noise
correlation measurements �29�. The states B and C can also
be distinguished by passing the expanding clouds through a
Stern-Gerlach apparatus �27,28�. Other possible Mott phases,
as shown in Fig. 1, are also possible if there is more than one
atom per site. These phases can be detected analogously.

On the other hand, if aBF�aFF, one may access the �1,1�
phase �Fig. 1� with one fermion and one boson per site. Here
in the Mott state, we would find two separate clouds for
bosons and fermions in the Stern-Gerlach measurement with
an antiferromagnetic state for the fermions which can be de-
duced in the spatial noise correlation measurement. Further,
one can now access the superfluid–metal-insulator transition
in this system by reducing the depth of the laser producing
the optical lattice. The superfluid-insulator transition can be
directly accessed by measuring the measurement momentum
distribution of the bosons. This provides us a direct measure-
ment of tB

c . One can now also change � as discussed in the
last paragraph and access tB

c ��� for a given �. This would
provide access to a line of constant � in the phase diagram of
Fig. 8.

Another Fermi-Bose mixture which has been realized so
far 40K-87Rb mixture �34�. Here one expects aFF�aBB �21�
and negative aFB indicating an attractive interaction between
bosons and fermions. The magnitude of aFB is also measured
in Ref. �34� and is found to be around 3.6aFF, although with
a large �about 40%� uncertainty. In this system, we expect to
find Mott phases where two fermionic atoms sit on the same
site with n0��� bosonic atoms. Such states can also be de-
tected in experiments by passing the expanding clouds
through a Stern-Gerlach apparatus as discussed earlier. The
superfluid-insulator transition of the bosons can also be ac-
cessed by lowering the lattice depth.

In conclusion, we have studied a Bose-Fermi mixture in
an optical lattice trapped by an optical trap. We have
sketched a generic phase diagram for the possible Mott states
of these systems and also studied the superfluid–metal-

insulator transition using a slave-rotor mean-field theory. We
have also discussed definite experiments that can be per-
formed on specific experimentally realized systems that can
probe at least part of the abovementioned phase diagrams.
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APPENDIX: COMPARISON OF PHASE DIAGRAMS

In this section, we compare the phase diagram for a single
species Mott-Hubbard system obtained using the projection
operator with those obtained using mean-field theories
�3,5,6� and strong-coupling expansions �26�. To do this, we
consider the case of zero coupling between the bosons and
fermions ��=0�. Our starting point is the Bose-Hubbard
Hamiltonian of Eq. �21� with �=0. By tracing the same set
of steps, as in Sec. III A, we then obtain the effective Hamil-
tonian H* �Eq. �38��. The next step is to obtain the varia-
tional energy using the wave function �v �Eq. �40��. For the
purpose of variational energy computations, it is sufficient to
consider �v with real coefficients a, b, and c �Eq. �40��. This
amounts to setting the phase of the superfluid order param-
eter � �Eq. �42�� to zero and does not affect the variational
energy. A straightforward calculation then yields

Ev = ��v	H*	�v� = E0 + E1 + E2, �A1�

E0 = �Epb2 + �Ehc2, �A2�

E1 = − ztBa2��n0 + 1�b2 + n0c2� , �A3�

E2 = −
ztB

2n0�n0 + 1�
U

�a4 − 2b2c2�

−
z�z − 1�tB

2n0�n0 + 1�
U

�a4�b2 + c2� − 4a2b2c2�

+
2z�z − 1�tB

2�n0 + 1

U
�2bc�b2�n0 + 1� + c2n0�

− �2n0 + 1�b2c2�a2, �A4�

where �Ep= �−�+Un0� and �Eh= ��−U�n0−1�� are the on-
site energy costs of adding a particle and a hole, respectively,
to the Mott phase, and z=2d denotes the coordination num-
ber for a d-dimensional hypercubic lattice. The phase dia-
gram can now be obtained by minimizing the variational
energy Ev for given �tB /U ,� /U�. The Mott-superfluid phase
boundary then corresponds to the minimum value of tc���
for which the superfluid order parameter � �Eq. �42�� is non-
zero. Notice that ignoring the O�tB

2 /U2� terms amounts to
setting E2=0. Our numerical results in this section, however,
retain all terms in E2.

Next, we obtain the expression of tc
MF using mean-field

theory. This can be done in a standard manner as shown in
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Refs. �3,5,6,37� and the mean-field critical hopping strength
in d dimensions can be obtained �37�

tc
MF = 
 n0 + 1

Un0 − �
+

n0

� − U�n0 − 1��
−1

, �A5�

where n0 denotes the boson occupation number of the Mott
phase from which the phase boundary is approached.

Finally, we compare the phase diagram obtained from
minimizing the variational energy Ev with the strong-
coupling expansion developed in Ref. �26�. The main idea
behind the strong-coupling expansion is that at the phase
transition point, for a given � /U, the defect state, which
corresponds to an additional particle or hole added to the
Mott state, becomes energetically more favorable. Thus, the
energy difference of the particle or hole defect states with the
Mott state given to O�tB

2 /U2� by �35�

�p = �Ep − ztB�n0 + 1� +
ztB

2

2U
�5n0 + 4�n0 −

z2tB
2

U
n0�n0 + 1� ,

�A6�

�h = �Eh − ztBn0 +
ztB

2

2U
�5n0 + 1��n0 + 1� −

z2tB
2

U
n0�n0 + 1�

�A7�

vanishes at tB= tc
p or tc

h. The phase boundary is obtained by
finding the critical hopping tc=min�tc

p , tc
h�.

Before resorting to numerical evaluation of the phase dia-
gram from all different techniques, we would like to clarify
the following points. First, although both the defect state
calculations of Ref. �26� and the projection operator tech-
nique outlined here capture some contributions of tB

2 /U2 fluc-
tuations, they are not identical to each other. To see this, we
consider a second order virtual process for a defect state with
one additional particle �hole� 	n0+ �−�1�i	n0� j

→ 	n+ �−�2�i	n− �+�1� j→ 	n+ �−�2�i	n� j, where i and j are
nearest-neighbor sites on the square lattice. This process,
which after summing over all sites, gives O�tB

2 /U2� energy
contributions Ep=−z2tB

2n0�n0+2� /2U for particles and Eh=
−z2tB

2�n0
2−1� /2U for holes. Note that all the states involved

in such a process lie outside the low energy manifold and
hence are not captured within the projection operator tech-
nique even if states with 	n0±2� are incorporated in the varia-
tional wave function �Eq. �40��. On the other hand, the pro-
jection operator technique together with the variational wave
functions leads to terms in E2 �Eq. �A4�� which involves
product of states with one additional particle and hole �terms
which involve product of the coefficients b and c�. These
terms, which becomes important mostly near the tip of the
Mott lobe, are necessarily absent in defect state calculations
in Ref. �26� which considers energy lowering due to a single
particle or hole added over the Mott state. Thus we find that
the best way to compare different approaches is to compare
the phase diagrams obtained using them.

Second, if we neglect the O�tB
2 /U2� terms, the saddle

point equations for b and c can be easily obtained by mini-
mizing the variational energy in Eqs. �A2� and �A3�:

��n0 + 1� −
�Ep

ztB

b = 2�n0 + 1�b3 + n0c2b ,

�n0 −
Eh

ztB

c = n0c3 + �n0 + 1�b2c , �A8�

where we have used the constraint a2+b2+c2=1. For the
Mott phase, the solution to Eq. �A8� is b=0=c and a=1.
Note that this ensures that the density in the Mott state is
pinned to �n�=n0. Solutions with nonzero b and c occur
when in the SF phase for which tB� tc. We find that in the
superfluid phase near the Mott transition line, Eq. �A8� ad-
mits the following solutions. For � /U
n0 / �2n0+1� one gets
tc= tc

h=�Eh /zn0 and

c =
1
�2


1 −
tc
h

tB
�1/2

, b = 0, �A9�

whereas for � /U�n0 / �2n0+1� one has tc= tc
p=�Ep /z�n0

+1� and

b =
1
�2


1 −
tc
p

tB
�1/2

, c = 0. �A10�

Equations �A9� and �A10� show that near the phase transition
b ,c�a, which is crucial to our analysis. Further, as normally
expected in a second order quantum phase transition, the
coefficients b and c are continuous across the transition.
Next, we discuss inclusion of O�tB

2 /U2� terms. If these terms
�Eq. �A4�� are included, obtaining analytical solutions for b
and c becomes difficult as it amounts to solving two coupled
cubic equations. However, we have checked during numeri-
cal evaluation of the phase diagram minimizing Eq. �A1�
�which retains second order terms in Eq. �A4�� that b and c
are always small compared to a near the phase transition and
that near the ends of the Mott lobe their numerical values are
well reproduced by Eqs. �A9� and �A10�.

Finally, we comment about our choice of variational wave
function in which we have only retained states with one ad-
ditional particle and hole per site over the parent Mott state.
In principle, one can retain states with two or more particles
per site which leads to a more complicated trial wave func-
tion. For example, one can retain the states 	n0±2� so that the
variational wave functions become

	��� = �
i

	���i,

	���i = a	n0� + b	n0 + 1� + c	n0 − 1� + d	n0 + 2� + e	n0 − 2� ,

�A11�

which leads to a variational energy to O�tB /U� �Eq. �39��
Ev�= ���	H0��=0�+T0	���=E0v� +E1v� , where

E0v� = �Epb2 + �Ehc2 + �E2pd2 + �E2he2,

�E2p = − 2� + U�2n0 + 1� , �E2h = 2� − 3U�n0 − 1� ,
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E1v� = − ztb��n0 + 1�a2b2 + n0a2c2 + �n0 − 1�c2e2

+ �n0�n0 − 1�c2ae + ��n0 + 2��n0 + 1�b2ad

+ 2��n0 − 1��n0 + 2�bcde

+ �n0 + 2�d2b2 + abc�d�n0�n0 + 2� + e�n0
2 − 1�� .

�A12�

To analyze the phase diagram obtained from Eqs. �A11� and
�A12�, we first note that in the Mott phase a=1 and b=c
=d=e=0, as discussed before. Next let us discuss the mini-
mization of Ev� near the Mott-SF transition line. When d=e
=0, the MI-SF transition occurs at ztc=min�tc

p , tc
h�, with b ,c

�1 and a�1. So to find out whether nonzero d and/or e is
favorable for energy minimization, we need to find the effect
of turning on a nonzero d and/or e near this transition point
and check whether it leads to lowering of the variational
energy. We find that turning on a nonzero d and/or e near this
point, as can be seen from the expression of E1v� �Eq. �A12��,
leads to energy gain �ztc �since in the expression of E1v� , d
and e always appear as a product with b and c which are
small�, whereas the energy cost �Eq. �A11�� is O��E2p�
and/or O��E2h�. It turns out that the latter is always greater
than the former which leads to a net nonzero energy cost. As
a specific example to demonstrate this point, let us consider
��U so that for tB� tc= tc

p, b�0 and c=0 �Eq. �A10��. Then
turning on a nonzero d results in an energy change �E
=d��E2pd−ztc��n0+2�b2d+��n0+2��n0+1�b2a���0 since
b ,d�1 and �E2h−ztc�U�n0+1�−��0. Thus near tB= tc,
the energy cost from E0v� clearly outweighs energy gain from
E1v� �since ztc /U�1 for all parameter regimes and b ,c ,d ,e
�1 near tB= tc� and hence the coefficients d and e remain
vanishingly small at the phase transition. As we move inside
the superfluid phase and tB becomes large compared to tc,
these coefficients becomes significant. In the present work,
we have always restricted ourselves to regions sufficiently
near the transition line where the coefficients d and e are
small. We note that we have explicitly checked numerically
from the full variational energy �including O�tB

2 /U2� terms
which we have not written down explicitly here to avoid
clutter�, that the abovementioned qualitative argument al-
ways holds for all the regimes studied in the present work.
We shall therefore neglect these terms in the rest of this
section.

To compare the results from different approaches, we now
plot the phase diagrams for n0=1 obtained by minimizing the
full variational energy Ev to O�tB

2 /U2� �Eq. �A1�� from the
mean-field equation �Eq. �A5��, and by computing the energy
of the defect states to O�tB

2 /U2� �26�. These plots are shown
in Fig. 9 for d=2 and in Fig. 10 for d=3. We find that in
spite of the dissimilarity of the two approaches discussed
above, the numerical phase boundary obtained by minimiz-
ing Ev matches that obtained from the O�tB

2 /U2� defect state
calculation of Ref. �26� quite well in both cases, but differs
substantially from the phase boundary obtained using the
mean-field theory. Further, for d=2, quantum Monte Carlo
data, available for the critical hopping at the tip of the Mott
lobe �26,36�, predicts �tc /U�MC=0.061±0.006. The corre-

sponding values obtained from the minimization of Ev and
O�tB

2 /U2� defect state energy calculation of Ref. �26� are
�tc /U�var=0.0755 and �tc /U�defect=0.0735, respectively. The
mean-field theory predicts a value �tc /U�MF=0.041 while an
O�tB

3 /U3� calculation of defect state energies �26� gives
�tc /U�defect=0.068. Thus we conclude that the phase bound-
ary obtained from our variational energy calculation scheme
compares well with the defect state energy calculation to
O�tB

2 /U2�.
In d=3, we can compare our results in Fig. 10 to Figs.

5–7 for �=0 and �=0.7 and �=0.4, respectively. We find
that the phase diagram obtained using the projection operator
techniques predicts tc /U=0.0232 for � /U=0.7 and �=5
�Fig. 5� and predicts tc /U=0.0431 for � /U=0.4 and �=4
�Fig. 7�. As seen from Fig. 10, these values compare well to

µ

FIG. 9. �Color online� Phase diagram for d=2 and n0=1 calcu-
lated by minimizing variational energy Ev �black dots�, mean-field
theory �red solid line�, and defect energy calculation to O�tB

2 /U2�
�blue solid line�. The phase boundaries computed by minimizing Ev
and by defect energy calculations compare well to each other but
differ from the mean-field theory near the tip of the Mott lobe.

µ

FIG. 10. �Color online� Phase diagram for d=3 and n0=1. All
notations are same in Fig. 9. As in 2D, the phase boundaries com-
puted by minimizing Ev and by defect energy calculations compare
well to each other but differ from the mean-field theory near the tip
of the Mott lobe.
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those obtained from defect state calculations to O�tB
2 /U2�.

However, they do not compare favorably with tc
MF which

predicts tc
MF/U=0.0208 for � /U=0.7 and tc

MF/U=0.0266 for
� /U=0.4. Further, the corresponding values of tc /U from
the third order defect state calculation are 0.0225 for � /U
=0.7 and 0.0405 for � /U=0.4 which compare quite favor-
ably to the projection operator method, but not to the mean-

field theory. At the tip of the Mott lobe �� /U�0.37�, where
the difference between results obtained from different meth-
ods become most apparent, the values of tc /U obtained from
different methods are 0.0419 �third order defect state�,
0.0459 �second order defect state�, 0.0451 �projection opera-
tor technique�, 0.0276 �mean field�, and 0.03480�2� �very
recently available quantum Monte Carlo results �38��.
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