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Mott-insulator—to—superfluid transition in the Bose-Hubbard model: A strong-coupling approach
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We present a strong-coupling expansion of the Bose-Hubbard model which describes both the superfluid and
the Mott phases of ultracold bosonic atoms in an optical lattice. By performing two successive Hubbard-
Stratonovich transformations of the intersite hopping term, we derive an effective action which provides a
suitable starting point to study the strong-coupling limit of the Bose-Hubbard model. This action can be
analyzed by taking into account Gaussian fluctuations about the mean-field approximation as in the Bogoliubov
theory of the weakly interacting Bose gas. In the Mott phase, we reproduce results of previous mean-field
theories and also calculate the momentum distribution function. In the superfluid phase, we find a gapless
spectrum and compare our results with the Bogoliubov theory.
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I. INTRODUCTION sions introduced for théfermionic Hubbard mode([9,10].
Recent experiments on ultracold trapped atomic gase Sec. Il, we derive an effective action for the Bose-

have opened a new window onto the phases of quanturffubbard model in the strong-coupling limit by performing
matter[1,2]. A gas of bosonic atoms in an optical or mag- tWo successive Hubbard-Stratonovich transformations of the
netic trap has been reversibly tuned between superfgfigi  intersite hopping term. This effective action involves the ex-
and insulating ground states by varying the strength of #@ct one- and two-particle Green’s functions in the local limit
periodic potential produced by standing optical waves. Thidi.€., in the absence of intersite hoppingVve then use the
transition has been explained on the basis of the Bosestandard Bogoliubov approximation: we perform a saddle-
Hubbard model with on-site repulsive interactions and hopoint (or mean-fielgl approximation and expand the action to
ping between nearest-neighboring sites of the laftfeAs ~ quadratic order in the fluctuatioiSec. Ill). In the Ml phase,
long as the atom-atom interactions are small compared to th&e recover the previous mean-field resi#t6]: We find a
hopping amplitude, the ground state remains superfluid. Igapped excitation spectrum which becomes gapless at the
the opposite limit of a strong lattice potential, the interactionMI-SF transition. We also calculate the momentum distribu-
energy dominates and the ground state is a Mott insulatdion function and study the critical behavior at the transition.
(Ml) when the density is commensurate, with an integedn the SF phase, we obtain a gapless spectinragreement
number of atoms localized at each lattice site. with the Goldstone theoreimand compute the Bogoliubov
The Gross-Pitaevskii equation or the Bogoliubov theorysound mode velocity. We compare our results with the Bo-
[4] assume quantum fluctuations to be small and are unab@oliubov theory.
to describe the SF-MI transition and the MI phase. The
SF-Ml transition is usually studied within a strong-coupling
perturbation theory which assumes the kinetic energy to be Il. EFFECTIVE ACTION IN THE STRONG-COUPLING
small and treats exactly the on-site repulsion. In the simplest LIMIT
version, the kinetic energy term is considered within mean-
field theory[3,5-7]. The mean-field approximation is well
known to give a reasonable estimate of the critical on-site nan o U« . .
repulsion at which the MI-SF transition occurs. Fluctuation ~H==t 2 (¢ +H.c) - u2 i + 52 n, (M - 1),
corrections to the mean-field approach have also been con- (rr’) ' r
sidered within a systematic strong-coupling expangi®h (1)
All these approaches have given a reasonable description of A A
the MI phase and in particular of the excitation spectrumwhere ¢, ¢ are bosonic operators arg=4 ;. The dis-
However, they have not provided a description of the SFcrete variable labels the different site§.e., minima of the
phase. optical lattice.t is the hopping amplitude between nearest
In this work, we develop a strong-coupling expansion ofsites(r,r’) andU the on-site repulsion. The optical lattice is
the Bose-Hubbard model which allows us to extend the treatassumed to be bipartite with coordination numizerThe
ment of Refs.[3,5-7 and describe both the MI and SF density, i.e., the average numbreof bosons per site, is fixed
phases. Our approach is similar to strong-coupling expanby the chemical potentigk.

The Bose-Hubbard model is defined by the Hamiltonian
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We write the partition functiorZ as a functional integral 25
over a complex field ¢ with the action J¢', ] 20
= [Bd7{S, ¢ 0,4 +HLW ¢} (7 is an imaginary time ang
=1/T the inverse temperaturelntroducing an auxialiary
field ¢ to decouple the intersite hopping term by means of a pf (2t) 10

15

Hubbard-Stratonovich transformati¢®,10], we obtain 5
0
Z=fD[lﬂ*,lﬂ, ¢*,¢]e—(¢\t'l¢)+[(¢\¢)+c.c.]—80[¢f,1//] _5
0 5 10 15 20
* _ -1
=7, f DI, ple o g dlmrecy U/(zt)
FIG. 1. Phase diagram of the Bose-Hubbard model showing the
=7,| Do ¢]e—(¢\t‘l¢)+vv[¢*,¢] 2) superfluid phaséSH and the Mott insulatingMl) phases at com-
0 ' ’ mensurate fillingh. The dashed lines correspond to a fixed density

* n=0.2,n=1, andn=2. For a commensurate density the MI-SF
where we use the shorthand notatidipp|)=Z,b.a  transition occurs forU/(zt)=2n+1+2n2+n)2 [for n=1, this
:fngaE,acb*(ra)z/;(ra). t~* denotes the inverse of the intersite yieldsU/(zt) ~5.83, i.e.,U/t=23.31 for a two-dimensional atomic
hopping matrix defined by, =t if r,r’ are nearest neigh- gas in a square optical lattite
bors andt,, =0 otherwise S, andZ, are the action and par-
tition function in the local limit(t=0). (:--)o means that the momentum distribution in the SF phase are therefore out of
average is taken witBy[ ¢/ , ¢/]. In the last line of Eq(2), we  reach within this approach.

have introduced the generating functiom¢", ] These difficulties can be circumvented if one performs a
=In(expS,( ¢ +C.C))o of connected local Green's func- second Hubbard-Stratonovich decoupling of the hopping
tions[11], term,

Glvby = (= DXy iy )

Z=12, J DIy, b, &, pleWt-lvidrccwie’ el - (g)

— 1)Rs2R) *
DWW 6] o

Opa, " 0ha0Png "0, | 4ol yg In Appendix A, we show that the auxiliary field of this trans-
formation has the same correlation functions as the original
where{a;, bi}={a; - -ar, by - -bg}. Inverting Eq.(3), we obtain  poson field(hence the same notation for both fieldEhe
o R effective actiong ¢, ¢ is obtained by integrating out thg
W', ¢] = s -9 S GRe ¢* "'4’* by field in Eq. (6). This procedure was carried out in detail in
TS (R, {aubi} 8y PagThe - Ty Ref. [10] in the context of the fermionic Hubbard model.

-
P Similarly, we obtain[12]
(4)
whereX’ means that all the fields share the same value of the Sy =2 (Gat + tap)
site index. If we truncatd\M[ ¢, ¢] to quartic order in the ab
fields, we obtain the action 1 | L.
S:¢*'¢] — (¢|t_1¢) —\M¢*,¢] + Zalyaglybz Falazvblvbzwall//azl/,bzlpbl! (7)
=2 daltas+ Gan by whereI"(y, 7; 73, 74) is the (exac) two-particle vertex in
ab

the local limit. In Eq.(7), we have neglecteR-particle ver-

1 e . tices(R= 3) whose amplitudes are given by ttexac} local
2 > Gl b, baBa,th,d, (5 Reparticle verticed™® [10]. T" is local in space but has a

21:82b1,0, complicated time dependen¢see Appendix B In the fol-
whereG=G'. Equation(5) was used as a starting point by lowing, we approximatd™ by its static valugobtained by
van Oostenet al. to study the instability of the MI with Passing to frequency space and putting all Matsubara fre-
respect to superfluidity6]. Their results are summarized in duencies to zepoThis approximation is justified for energies
Appendix C and lead to the usual mean-field phase diagrarffituch below where the frequency dependence of the local
shown in F|g 1. 1ltis temp“ng to go beyond the mean_fie|dtW0'par-ti(-:|e vertex is weak. At hlgher energies, its VaIIdIty is
approximation by considering Gaussian fluctuations ofghe more difficult to assess. Introducing
field about its mean-field value. The Green’s function ob-
tained in this way is, however, not physical since it leads in g= }F“ (8)
the SF phase to a spectral function which is not normalized '
to unity [13]. Physical quantities like the excitation spec-
trum, the velocity of the Bogoliubov sound mode, or thewe finally obtain

2 static
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B ~ ~
S= —J drdr' >, ¢ (D[GXr, 71, 7) S= %E [lp*(k,iw),w(— k,—iw)]
0 rr’ ko
o gff . -~ GX(iw) + &+ 2995 gw%)
+tr,r’5(7_7)]wr’(7)+§fo dT; ‘%‘/’r‘h‘%- (9) X(g;ﬂg —G‘l(—iw)+e_k+29¢§
WK, iw)
The action(9) is the starting point of our analysis. It is analo- x 7/1*(— K,—i) ' (12

gous to the original actiof 5d~{=, ¢, a4, +H[¢", ]} with _ ~
two noteworthy differences: the “free” propagator involveswherey(k ,iw) is the Fourier transformed field af,(7) and

the exact local propagat@, and the amplitude of the boson- , a bosonic Matsubara frequeney, the Fourier transform
boson interaction is given by the exact local two-particlepf -t, .+, is the boson dispersion in the absence of the one-
vertex (approximated here by its static limifThe action(9) site repulsion.

yields the exact partition functioh=Z,/ D[, ¢s]e”S and the
exact Green function (wr(r)zp:,(r’)) both in the local(t
=0) and noninteractingU=0) limits [9,10]. By means of , _
two successive Hubbard-Stratonovich transformations of the In_ the Mott phas*e, v_vhera/;O:O, th.e Green's function
intersite hopping term, we have thus performed a partial re-g(k"“’)z_g'f(k'_'“’)'/’ (l_(l’ '_“’)> can be_ directly read off from
summation of interaction processes and obtained an effectiVed: (12): (K, iw)=G (iw) - &. Using Eq.(B2), one ob-
action which provides a suitable starting point in the strongtains
coupling limit.

A. Mott phase and the MI-SF transition

1 —_
Glk,iw) = —— 2 4 B
1Il. MEAN-FIELD AND GAUSSIAN APPROXIMATIONS The two excitation energid’i and the spectral Weiglz]; are

defined by
In order to study the Mott and superfluid phases from the

strong-coupling effective actiof®), we use the standard Bo- +_ &, 1 2712
goliubov approximation: we first perform a saddle-pdioit Be=-outy* 2[6E +HaaUx+U ] '
mean-field approximation and then expand the acti@hto
quadratic order in the fluctuations. The saddle-point action is
given by

(13

s -
N—ﬂ:—(e-l+D)¢%+§w8, (10 B o

whereaz(iw:O), D=zt, andN is the total number of lattice ~20
sites. The saddle-point valug (assumed here, with no loss :
of generality, to be redlis obtained fromgS/ du,=0, r M X r

G'+D ifGl+D>0
B=1 g ' (1D)

0 otherwise.

The MI-SF therefore occurs whe®'+D=0, in agreement -4
with the results of Appendix C, which leads to the phase -6l : : :
diagram shoyvn in Fig. 1. Using (i) r M X r
= 8InZ(J",J3)/ 83, |y =3-0, Wherez[J",J] is given by Eq(AL)

of Appendix A, we obtaing,=D,, Where ¢, is the mean FIG. 2. Top: Excitation energies,, (solid line) andE, (dashed
value of the auxiliary field. Near the MI-SF transition, where ine) in the Mi n=1 for U=3Q. Bottom: Spectral weight (solid

- . 1 Sle line) and 1-z, (dashed ling The dotted lines show the result ob-
100~ 2 1 Iic
G+D~0, we then findgy=2(D"+G)/G™ in agreement tained from the Bogoliubov theorfwhich predicts the phase to be

with the result of Appendix C. ~ superfluid. [T'=(0,0), M=(, ), and X=(,0).] Results shown in
To quadratic order in the fluctuation =, — s, we ob-  Figs. 2-5 are obtained for a two-dimensional atomic gas in a square
tain the action optical lattice.
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FIG. 3. Same as Fig. 2, but faf=25t.

_ Eg+ou+Ux

14
E-E (19

wherex=ny+1/2 anddu=u—-U(Ng=1/2). ng=ny(w) is the
(integed) number of bosons in the local limit for a chemical
potential u (see Appendix B

The excitation energie€,,E,, and the corresponding
spectral weightz, and 1-z, are shown in Figs. 2 and 3 in
the MI n=1 of a two-dimensional atomic gas in a square
optical lattice. The spectrum exhibits a gd&f_y—Ey-o
=(D?-4DUx+U?2 which decreases dd decreases. The
MI becomes unstable against superfluidity wtgh,=0 or
E,-o=0, which agrees with Eq(C3) of Appendix C and
leads to the phase diagram shown in Fig. 1. The Bag
~Er-o=(D?-4DUx+U?2 closes at the transition if both
Ex-o andE,_, vanish, which occurs at the tip of the Mott lob.
The MI-SF transition then takes place at fixed density,

is the situation of physical interest. Figures 2 and 3 are ob

tained with a chemical potentiafu=-D/2, which ensures
that the MI-SF transition takes place at fixed densityl

(see Appendix € The decreasing of the Mott gap is accom-

panied by an increase of spectral weighkatO, which di-

WhIChwhich differs from the energy calculation of R€i8] by

terms of orderO(t?/U). This discrepancy results from the
neglect of the one-loop correction dueld in the calcula-
tion of the Green’s functiofEq. (13)], which also gives a

contribution of orderO(t?/U). However, even without this
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FIG. 4. Momentum distributiomk=<¢;¢k) in the Ml n=1 for

U=30 (top) andU=25 (bottom.

2

D
M—U(no—l)—Dno—U(n(2)+ Ny =0, (15

grm the phase diagram looks qualitatively similar to the Fre-

verges at the transition. Figures 2 and 3 also show the resul . .
ericks and Monien phase diagram.

of the Bogoliubov theoryas applied to the original Hamil-
tonian (1)]. The Bogoliubov theory always predicts the
ground state to be superflJifl]. Away fromk =0, it provides
a good approximation of the negative energy braBghbut
gives a poor description d;.

If we expand the equatioB,_,=0 to orderO(t?/U), we

obtain

D2
,u—Uno+D(nO+1)+U(n§+n0):0,

From the Green’s functiofl3), we can also obtain the
momentum distributiom, =(¢ ) =—/°. dwA(k,w)=1-7,.
ny measures the spectral weight of the negative engfgyf
the spectrum. Deep in the Mott phase, the momentum distri-
bution is roughly flat. Closer to the MI-SF transition, a peak
develops around=0. This peak diverges at the transition
(Fig. 4.

The critical theory of the SF-MI transition can be ob-
tained from the actio9) by expanding the inverse propaga-
tor GYiw) - ¢, to quadratic order irk and w. Noting that
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IG Y iw)/ diw)|;yo=0G Hdu (and similarly for the
second-order derivatiyewe obtain

S= f: dq-f dr{rOWﬂ

* u
+ Kyt .0 + Kol a4 |2+ Kal V g |2+ Elwrl“ , (16)

where

rooca_l"' D,

g

Kjoc—.
1%

(17)

At all points on the MI-SF transition line except at the Mott
lob tip, ry vanishes buK; remains finite. The critical theory
has then a dynamical exponent2. At the tip of the Mott
lob where bothry andK; vanish, the dynamical exponent
=1. A similar analysis, based on the effective action
S ¢, ¢], can be found in Ref.7].

r M X r

FIG. 5. Excitation energiesE;f and spectral weight in the SF
phasen=1 andU=20.

B. Superfluid phase
(Ex + o+ UX)(E} — ) (Ex - Z)

In the SF phaséiyy,+ 0), the Green’s function of th&x s

field is obtained by inverting the22 matrix propagator in

Ak, w) =

ow - E;)

Eq. ('12);* Fo.r the diaqonal componentG(k,iw)= . (Ex — o — UX)(Ex + Z)(Ef + Z) S+ ED)
—(yk,iw)y (k,iw)), we obtain ZEE(EEZ— EEZ) o+ By
i+ ou+Ux)(io-2)(iw-7 (Ei + o+ UX)(E - Z)(E - Z) .
G(kiw) = lo* on +)2( - Zk)fzw Zk): (18) B — (2 _ 2 Sw=-Ey)
(02 + E ) (0?+EZ2) 2B (B E)
E, — du— UX)(E, + z)(E, + 7,
where _ B - )Ezk f';)( %) dw+Ey).
E?=— 2 u JB2-ac)™?, (20
2 2 The Green’s functior(18) has the desired physical proper-
ties. The spectral function is normalizeff, dwA(k,w)=1,
A1 ~ and has the correct sign: $dttk ,w)]=sgn(w) [13]. There
zt ==X+ Z(A2- 4By, are four excitation branchesEf, two of which (xE,) are
2 2 gapless fok — 0 (Fig. 5. However, for a given value &,
only two branches carry a significant spectral weight. Away
=~ _ - from k=0, the spectral weight is almost completely ex-
_ 1 _
Ac=20p- 2G4+ D)~ &, hausted byE; and -E.. In the vicinity of k=0, the two
gapless branchesEf exhaust the spectral weight. By ex-
~ — 5 U? pandingE, in the vicinity ofk — 0, we find a linear spectrum
B, =-(2G "+ 2D + ) (Su + Ux) + Su e
E,=clk]|, (21)
-~ ~ — where
B, = 2B, - A2+ (G 1+D)? _ o
oo [ 2t(G™ 1+ D) }
~ — 2 o1 '
C=B2— (G +D)2(8u + Ux)2. (19) a”+2y(G+D)
From Eq.(18), we deduce the spectral functiok(k,w)= o= Spu® + 25uUx + U4
—-(1/7) Im G(k, w+i0"), (6 + Ux)? ’
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2 gap edges. At the critical valud/t=23.31, the gap closes
and p(w) diverges atw=0. This divergence persists in the

superfluid phase.

IV. CONCLUSION

By performing two successive Hubbard-Stratonovich
transformations of the intersite hopping term, we have shown
how to derive an effective action which provides a suitable
starting point to study the strong-coupling limit of the Bose-
Hubbard model. This action can then be analyzed by taking
_ , . _ into account Gaussian fluctuations about the mean-field ap-

-1.0 -0.5 0.0 05 1.0 proximation as in the Bogoliubov theory of the weakly inter-
/U acting Bose gas. The main improvement over previous re-
. _ lated approachd®—8] is the possibility to describe both the

FIG. 6. Integrated spectral functigriw) = [[d?k/ (27)2] A(K, ®) ;
in the MI n:1g(,u:U/§—D/2): U/t?go (dashed ling 40 (thin ~ Mott and SF phases. Both in the Mott and SF phases, we
solid ling), and 23.33(thick solid line. The transition to the SF COMPUte the excitation spectrum and the momentum distri-
phase occurs fod/t=23.31. bution. Our approach clearly shows how the excitation spec-

trum, which is gapped in the Ml phase, becomes gapless at
the MI-SF transition.
U2(x* - 1/4) The strong-coupling expansion presented in this paper
y= - (22) strong-coupling exp P : IS pap
(S + Ux) should in principle also apply to more complicated situations
where, for instance, several atom species are present in the
Our strong-coupling approach therefore reproduces the Beptical lattice.
goliubov (Goldston¢ mode of the SF phase. Note added Recently, we became aware of two related

As discussed in Sec. lll A, our strong-coupling theory isworks. Konabeet al. [14] have studied the single-particle
not an expansion order by ordertifJ. For this reason, the excitation spectrum in the Mott phase and obtained results
computation of the chemical potential from the single-similar to ours. The method used by these authors bears
particle Green’s function, i.en=Tr(G), is not reliable. We some similarities with the strong-coupling expansion dis-
have therefore used the chemical potential obtained withigussed in the present paper. Within a slave-boson represen-
the mean-field approximation discussed in Appendix C.  tation of the Bose-Hubbard model, Dickerscheidal. [15]

Figure 5 also shows the results of the Bogoliubov theoryhave discussed both the Mott and SF phases. Their results
[as applied to the Hamiltoniafl)] for the samechemical agree with ourg§whenever the comparision is possible
potentialu. The Bogoliubov theory provides a good approxi-
mation to E, and therefore to the low-energy part of the
excitation spectrum. This implies that the velocity of the gap- APPENDIX A: HUBBARD-STRATONOVICH
less mod€Eq. (22)] can be approximated by the Bogoliubov TRANSFORMATIONS
resultc=[2t(u+D)]"2. Away fromk =0, the Bogoliubov ap-
proach gives a rather poor description&f

The Green's functiorfj(k ,iw) yields the momentum dis-
tribution

The Green’s functions of the boson field can be ob-
tained from the generating functigfl]

o Z[J,J]= f DLy, yleito-Slv wilClsee] (A1)
N = (Ut = Ny 0= f dwA(k, ). (23)

where J;, J, are external sources. After the Hubbard-
Stratonovich decoupling of the intersite hopping tefreee
Eqg. (2)] and the shiftp" — ¢"—J", ¢— ¢—J of the auxiliary
field, we obtain

Apart from the condensate contributibwg&k,o, the momen-
tum distribution function is directly given by the spectral
weight of the negatives energieg€-and £, (Fig. 5).

Figure 6 shows the integrated spectral functipfw)
= [[d?k/(2m)?]A(k,w) for a commensurate densitg=1. AR f DL i ¢]e—(¢—J|t'1(¢—J))+[(¢|¢,)+c.c.]—so[¢*,¢]
Deep in the Mott phasey(w) is essentially given by the ' AR
noninteraction density of states of free bosons on the square X
lattice centered aroundu-andU -« and with relative spec- =7 f D¢, ¢]e-(¢—J|t_l(¢—J))+VV[¢ @l (A2)
tral weigths g andng+1. The two peaks neab=-u and
w=U-pu are due to the Van Hove singularities in the density
of states of free bosons. When decreasing the valug/tf A second Hubbard-Stratonovich decoupling of the hopping
the Mott gap decreases apdw) strongly increases at the term (with an auxiliary fieldy’) leads to
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there aren, bosons per site, wheng, is obtained fromenO
=min,e,. The latter condition leads top—1<u/U<ny if
pn=-U, andny=0 if u<-U. Note thatn, is integer(except
when u/U=p is integer; the statefp) and|p+1) are then
degenerate even when the boson densityis not.

The  single-particle  Green’s  function G(7)=

—<TTJ,7/(T) J:ZIT(O» is easily calculated using the closure relation

From Eq.(A3) we deduce thaZ[J",J] is also the generating 2:;:0|p><p|=1. For 7>0, one finds
function of the Green’s functions of thg’ field. ¢/ can

Z[3,J1=2, J DYy, P, ¢]e(w’\t¢/)—[(w’\¢—J)+c.c.]+V\/[</>*,¢]

= ZOJ D[l//’*l/il,d)*,(,b]

x W It -L( [$)+e.c (W [)+e.c+ WMo 6] (A3)

therefore be identified with the original boson field G(r)=- ii (p+ 1)e e repun, (B1)
APPENDIX B: CALCULATION OF THE LOCAL GREEN'’S op=0
FUNCTIONS G and G" and, in frequency space,
In the absence of intersite hoppirig=0), the stategp) . -ny No+ 1
=(pH)"Y2(y")P|0)y (p=0 intege} are eigenstates with eigen- Gliw) = 0+ €1~ €, ot €y~ Engr’ (B2)

values e,=—-up+(U/2)p(p—-1). (We consider a single site

and therefore drop the site indg}0) is the vacuum of par- wherew is a bosonic Matsubara frequency.

ticles. This yields the partition functiofy==__,e #%. In the The two-particle Green’s function can be calculated in the
ground state, for a given value of the chemical potential same way. One finds

©

N N N N 1
G (71, 7; 73,74 = 0) = (T 1) Yl ) 4 (004 (7)) = Z_E e Po{(p+ 1)(p + 2)en(p o) 2l eprpr2l*Talepraept)
0p=0

X 0(7 = 1) 07y = 73) + (D + 1)(p + 2) €7 D1~ P2 25 pr)* g2 pr1) 7, — 71) 671~ 75)

+(p+ )2l Pt A e D1 D] 07y — 75) 073~ 7) + B(7p — T9) 073~ 71)]

+p(p + 1)e7 17 72l pr ) * (-1 (73 — 1) O( 7y — 7,)

+p(p + L)€t e+ 21" TG -1 g 73 — 1) (7, — 1)} (B3)

After a somewhat tedious calculation, we obtain for the Fourier transform of the connected part in the static limit

_ B
Gle= J drydr,d7sG (71, 75;75,0) = 28[Gliw = 0)]?
0

_ 4(np+1)(Ng +2) _ 4ng(ng - 1) . 4ng(no + 1)
[2u = (2ng+ DUI(Uny = w)?  [w=U(ng=DIAU2ng=3) = 2u] (w=Ung)[- +U(ny— 1)
Ana(ng + 1 anZ 4(ny + 1)?
. (e + 1 . 6, Anor -
(u=Ung)T-pu+Ung-1] [-p+Ug-DJF (n-Uny)
[
The static limit of the two-particle verteX" is equal to S — 1—
—_— = = -1 2 _ —rlic 44
—G”C/G4. NB - (D + G)d’o 4G d’Oa (Cl)
where D=zt G and G'® are the single-particle and two-
APPENDIX C: AUXILIARY-FIELD MEAN-FIELD particle local Green’s functions in the static linifgee Ap-
APPROACH pendix B. The ground-state energy per sit&=

=li »(L/INB)In Z is th i Eq.(2
In this appendix, we review the mean-field results ob- mj-.(1/NB)In Z is then given bysee £q(2)]

tained fro'm the ac.tionS'{qb*,qﬁ] [Eq. (5).] [6} Within a E = ag+ ayds + aydby, (C2)
saddle-point approximation, where the field is taken real _ ) )
and assumed to be time- and space-independent, the actiereag=-lims_..(1/NB)In Z, is the ground-state energy in

becomes the local limit,a,=D™1+G, anda4:—(1/4)5'°. The mean-
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field value ¢, is obtained by minimizings. ¢, vanishes in
the Mott phasga,>0) and takes a finite value in the SF
phase(a, <0). The MI-SF transition is then given g,=0,
which leads to

D 1
Suy=——* §[D2 +U2-4DUx]*?, (C3)

2

whereng is the integer number of bosons in the local limit
for a chemical potentialt (see Appendix B x and su are
defined in Sec. lll. For each value of, Eq. (C3) defines a
Mott lob in theU-u phase diagrantFig. 1), whose tip cor-
responds 1o Su,=du_=-zt/2 and U/(zt)=2ny+1+2n3
+no) 2. At the lob tip, da,/ du=0.

PHYSICAL REVIEW A71, 033629(2005

In the SF phase, the order parameggris given by ¢(2)
-a,/(2a,), and the ground-state energy takes the value

2

a
E=ay- . C4
N 2, (C4
From Eq.(C4), we deduce the mean boson density
JE 19 (a5 a, da
n:——:no+——<—2)znO 2= (CH
p 4op\ay 234 dp

where the last equality holds near the MI-SF transitiap
~0). We have usedhy=-day/du. We conclude that, at the
MI-SF transition, the boson density remains pinned at the
integer valuen, if da,/du=0, which corresponds to the tip
of the Mott lob in theu-U phase diagraniFig. 1).
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