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We present a strong-coupling expansion of the Bose-Hubbard model which describes both the superfluid and
the Mott phases of ultracold bosonic atoms in an optical lattice. By performing two successive Hubbard-
Stratonovich transformations of the intersite hopping term, we derive an effective action which provides a
suitable starting point to study the strong-coupling limit of the Bose-Hubbard model. This action can be
analyzed by taking into account Gaussian fluctuations about the mean-field approximation as in the Bogoliubov
theory of the weakly interacting Bose gas. In the Mott phase, we reproduce results of previous mean-field
theories and also calculate the momentum distribution function. In the superfluid phase, we find a gapless
spectrum and compare our results with the Bogoliubov theory.
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I. INTRODUCTION

Recent experiments on ultracold trapped atomic gases
have opened a new window onto the phases of quantum
matter f1,2g. A gas of bosonic atoms in an optical or mag-
netic trap has been reversibly tuned between superfluidsSFd
and insulating ground states by varying the strength of a
periodic potential produced by standing optical waves. This
transition has been explained on the basis of the Bose-
Hubbard model with on-site repulsive interactions and hop-
ping between nearest-neighboring sites of the latticef3g. As
long as the atom-atom interactions are small compared to the
hopping amplitude, the ground state remains superfluid. In
the opposite limit of a strong lattice potential, the interaction
energy dominates and the ground state is a Mott insulator
sMI d when the density is commensurate, with an integer
number of atoms localized at each lattice site.

The Gross-Pitaevskii equation or the Bogoliubov theory
f4g assume quantum fluctuations to be small and are unable
to describe the SF-MI transition and the MI phase. The
SF-MI transition is usually studied within a strong-coupling
perturbation theory which assumes the kinetic energy to be
small and treats exactly the on-site repulsion. In the simplest
version, the kinetic energy term is considered within mean-
field theory f3,5–7g. The mean-field approximation is well
known to give a reasonable estimate of the critical on-site
repulsion at which the MI-SF transition occurs. Fluctuation
corrections to the mean-field approach have also been con-
sidered within a systematic strong-coupling expansionf8g.
All these approaches have given a reasonable description of
the MI phase and in particular of the excitation spectrum.
However, they have not provided a description of the SF
phase.

In this work, we develop a strong-coupling expansion of
the Bose-Hubbard model which allows us to extend the treat-
ment of Refs.f3,5–7g and describe both the MI and SF
phases. Our approach is similar to strong-coupling expan-

sions introduced for thesfermionicd Hubbard modelf9,10g.
In Sec. II, we derive an effective action for the Bose-
Hubbard model in the strong-coupling limit by performing
two successive Hubbard-Stratonovich transformations of the
intersite hopping term. This effective action involves the ex-
act one- and two-particle Green’s functions in the local limit
si.e., in the absence of intersite hoppingd. We then use the
standard Bogoliubov approximation: we perform a saddle-
point sor mean-fieldd approximation and expand the action to
quadratic order in the fluctuationssSec. IIId. In the MI phase,
we recover the previous mean-field resultf5,6g: We find a
gapped excitation spectrum which becomes gapless at the
MI-SF transition. We also calculate the momentum distribu-
tion function and study the critical behavior at the transition.
In the SF phase, we obtain a gapless spectrumsin agreement
with the Goldstone theoremd and compute the Bogoliubov
sound mode velocity. We compare our results with the Bo-
goliubov theory.

II. EFFECTIVE ACTION IN THE STRONG-COUPLING
LIMIT

The Bose-Hubbard model is defined by the Hamiltonian

H = − t o
kr ,r8l

sĉr
†ĉr8 + H.c.d − mo

r
n̂r +

U

2 o
r

n̂rsn̂r − 1d,

s1d

where ĉr , ĉr
† are bosonic operators andn̂r =ĉr

†ĉr . The dis-
crete variabler labels the different sitessi.e., minimad of the
optical lattice.t is the hopping amplitude between nearest
siteskr ,r 8l andU the on-site repulsion. The optical lattice is
assumed to be bipartite with coordination numberz. The
density, i.e., the average numbern of bosons per site, is fixed
by the chemical potentialm.
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We write the partition functionZ as a functional integral
over a complex field c with the action Sfc* ,cg
=e0

bdthorcr
*]tcr +Hfc* ,cgj st is an imaginary time andb

=1/T the inverse temperatured. Introducing an auxialiary
field f to decouple the intersite hopping term by means of a
Hubbard-Stratonovich transformationf9,10g, we obtain

Z =E Dfc* ,c,f* ,fge−sfut−1fd+fsfucd+c.c.g−S0fc* ,cg

= Z0E Dff* ,fge−sfut−1fdkesfucd+c.c.l0

= Z0E Dff* ,fge−sfut−1fd+Wff* ,fg, s2d

where we use the shorthand notationsf ucd=oafa
*ca

=e0
bdtaor a

f*sr adcsr ad. t−1 denotes the inverse of the intersite
hopping matrix defined bytrr 8= t if r ,r 8 are nearest neigh-
bors andtrr 8=0 otherwise.S0 andZ0 are the action and par-
tition function in the local limitst=0d. k¯l0 means that the
average is taken withS0fc* ,cg. In the last line of Eq.s2d, we
have introduced the generating functionWff* ,fg
=lnkexpoasfa

*ca+c.c.dl0 of connected local Green’s func-
tions f11g,

Ghai,bij
Rc = s− 1dRkca1

¯caR
cbR

*
¯cb1

* l

= U s− 1dRds2RdWff* ,fg
dfa1

*
¯dfaR

* dfbR
¯dfb1

U
f*=f=0

, s3d

wherehai ,bij=ha1¯aR,b1¯bRj. Inverting Eq.s3d, we obtain

Wff* ,fg = o
R=1

`
s− 1dR

sR!d2 o
a1¯bR

8
Ghai,bij

Rc fa1

*
¯faR

* fbR
¯fb1

,

s4d

whereo8 means that all the fields share the same value of the
site index. If we truncateWff* ,fg to quartic order in the
fields, we obtain the action

Sff* ,fg = sfut−1fd − Wff* ,fg

= o
a,b

fa
*stab

−1 + Gabdfb

−
1

4 o
a1,a2,b1,b2

Ga1a2,b1b2

IIc fa1

* fa2

* fb2
fb1

, s5d

whereG;GI. Equations5d was used as a starting point by
van Oostenet al. to study the instability of the MI with
respect to superfluidityf6g. Their results are summarized in
Appendix C and lead to the usual mean-field phase diagram
shown in Fig. 1. It is tempting to go beyond the mean-field
approximation by considering Gaussian fluctuations of thef
field about its mean-field value. The Green’s function ob-
tained in this way is, however, not physical since it leads in
the SF phase to a spectral function which is not normalized
to unity f13g. Physical quantities like the excitation spec-
trum, the velocity of the Bogoliubov sound mode, or the

momentum distribution in the SF phase are therefore out of
reach within this approach.

These difficulties can be circumvented if one performs a
second Hubbard-Stratonovich decoupling of the hopping
term,

Z = Z0E Dfc* ,c,f* ,fgescutcd−fscufd+c.c.g+Wff* ,fg. s6d

In Appendix A, we show that the auxiliary field of this trans-
formation has the same correlation functions as the original
boson fieldshence the same notation for both fieldsd. The
effective actionSfc* ,cg is obtained by integrating out thef
field in Eq. s6d. This procedure was carried out in detail in
Ref. f10g in the context of the fermionic Hubbard model.
Similarly, we obtainf12g

Sfc* ,cg = − o
a,b

ca
*sGab

−1 + tabdcb

+
1

4 o
a1,a2,b1,b2

Ga1a2,b1,b2

II ca1

* ca2

* cb2
cb1

, s7d

where GIIst1,t2;t3,t4d is the sexactd two-particle vertex in
the local limit. In Eq.s7d, we have neglectedR-particle ver-
ticessRù3d whose amplitudes are given by thesexactd local
R-particle verticesGR f10g. GII is local in space but has a
complicated time dependencessee Appendix Bd. In the fol-
lowing, we approximateGII by its static valuesobtained by
passing to frequency space and putting all Matsubara fre-
quencies to zerod. This approximation is justified for energies
much belowU where the frequency dependence of the local
two-particle vertex is weak. At higher energies, its validity is
more difficult to assess. Introducing

g = U1

2
GIIU

static
, s8d

we finally obtain

FIG. 1. Phase diagram of the Bose-Hubbard model showing the
superfluid phasesSFd and the Mott insulatingsMI d phases at com-
mensurate fillingn. The dashed lines correspond to a fixed density
n=0.2, n=1, andn=2. For a commensurate densityn, the MI-SF
transition occurs forU / sztd=2n+1+2sn2+nd1/2 ffor n=1, this
yieldsU / sztd.5.83, i.e.,U / t.23.31 for a two-dimensional atomic
gas in a square optical latticeg.
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S= −E
0

b

dtdt8o
r ,r8

cr
*stdfG−1sr ,t;r 8,t8d

+ tr ,r8dst − t8dgcr8st8d +
g

2
E

0

b

dto
r

cr
*cr

*crcr . s9d

The actions9d is the starting point of our analysis. It is analo-
gous to the original actione0

bdthorcr
*]tcr +Hfc* ,cgj with

two noteworthy differences: the “free” propagator involves
the exact local propagatorG, and the amplitude of the boson-
boson interaction is given by the exact local two-particle
vertexsapproximated here by its static limitd. The actions9d
yields the exact partition functionZ=Z0eDfc* ,cge−S and the
exact Green function −kcrstdcr8

* st8dl both in the localst
=0d and noninteractingsU=0d limits f9,10g. By means of
two successive Hubbard-Stratonovich transformations of the
intersite hopping term, we have thus performed a partial re-
summation of interaction processes and obtained an effective
action which provides a suitable starting point in the strong-
coupling limit.

III. MEAN-FIELD AND GAUSSIAN APPROXIMATIONS

In order to study the Mott and superfluid phases from the
strong-coupling effective actions9d, we use the standard Bo-
goliubov approximation: we first perform a saddle-pointsor
mean-fieldd approximation and then expand the actions9d to
quadratic order in the fluctuations. The saddle-point action is
given by

S

Nb
= − sḠ−1 + Ddc0

2 +
g

2
c0

4, s10d

whereḠ=siv=0d, D=zt, andN is the total number of lattice
sites. The saddle-point valuec0 sassumed here, with no loss
of generality, to be reald is obtained from]S/]c0=0,

c0
2 = 5 Ḡ−1 + D

g
if Ḡ−1 + D . 0,

0 otherwise.

s11d

The MI-SF therefore occurs whenḠ−1+D=0, in agreement
with the results of Appendix C, which leads to the phase
diagram shown in Fig. 1. Using kcrl
= ud ln ZsJ* ,Jd /dJr

* uJ*=J=0, whereZfJ* ,Jg is given by Eq.sA1d
of Appendix A, we obtainf0=Dc0, wheref0 is the mean
value of the auxiliary field. Near the MI-SF transition, where

Ḡ−1+D<0, we then findf0
2.2sD−1+Ḡd /ḠIIc in agreement

with the result of Appendix C.

To quadratic order in the fluctuationsc̃r =cr −c0, we ob-
tain the action

S=
1

2o
k,v

fc̃*sk,ivd,c̃s− k,− ivdg

3S− G−1sivd + ek + 2gc0
2 gc0

2

gc0
2 − G−1s− ivd + e−k + 2gc0

2D
3Sc̃sk,ivd

c̃*s− k,− ivd
D , s12d

wherec̃sk , ivd is the Fourier transformed field ofc̃rstd and
v a bosonic Matsubara frequency.ek, the Fourier transform
of −tr ,r8, is the boson dispersion in the absence of the one-
site repulsion.

A. Mott phase and the MI-SF transition

In the Mott phase, wherec0=0, the Green’s function
Gsk , ivd=−kcsk , ivdc*sk , ivdl can be directly read off from
Eq. s12d: G−1sk , ivd=G−1sivd−ek. Using Eq.sB2d, one ob-
tains

Gsk,ivd =
1 − zk

iv − Ek
− +

zk

iv − Ek
+ . s13d

The two excitation energiesEk
± and the spectral weightzk are

defined by

Ek
± = − dm +

ek

2
±

1

2
fek

2 + 4ekUx + U2g1/2,

FIG. 2. Top: Excitation energiesEk
+ ssolid lined andEk

− sdashed
lined in the MI n=1 for U=30t. Bottom: Spectral weightzk ssolid
lined and 1−zk sdashed lined. The dotted lines show the result ob-
tained from the Bogoliubov theoryswhich predicts the phase to be
superfluidd. fG=s0,0d, M =sp ,pd, and X=sp ,0d.g Results shown in
Figs. 2–5 are obtained for a two-dimensional atomic gas in a square
optical lattice.
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zk =
Ek

+ + dm + Ux

Ek
+ − Ek

− , s14d

wherex=n0+1/2 anddm=m−Usn0−1/2d. n0;n0smd is the
sintegerd number of bosons in the local limit for a chemical
potentialm ssee Appendix Bd.

The excitation energiesEk
+,Ek

−, and the corresponding
spectral weightzk and 1−zk, are shown in Figs. 2 and 3 in
the MI n=1 of a two-dimensional atomic gas in a square
optical lattice. The spectrum exhibits a gapEk=0

+ −Ek=0
−

=sD2−4DUx+U2d1/2 which decreases asU decreases. The
MI becomes unstable against superfluidity whenEk=0

+ =0 or
Ek=0

− =0, which agrees with Eq.sC3d of Appendix C and
leads to the phase diagram shown in Fig. 1. The gapEk=0

+

−Ek=0
− =sD2−4DUx+U2d1/2 closes at the transition if both

Ek=0
+ andEk=0

− vanish, which occurs at the tip of the Mott lob.
The MI-SF transition then takes place at fixed density, which
is the situation of physical interest. Figures 2 and 3 are ob-
tained with a chemical potentialdm=−D /2, which ensures
that the MI-SF transition takes place at fixed densityn=1
ssee Appendix Cd. The decreasing of the Mott gap is accom-
panied by an increase of spectral weight atk =0, which di-
verges at the transition. Figures 2 and 3 also show the results
of the Bogoliubov theoryfas applied to the original Hamil-
tonian s1dg. The Bogoliubov theory always predicts the
ground state to be superfluidf6g. Away fromk =0, it provides
a good approximation of the negative energy branchEk

− but
gives a poor description ofEk

+.
If we expand the equationEk=0

± =0 to orderOst2/Ud, we
obtain

m − Un0 + Dsn0 + 1d +
D2

U
sn0

2 + n0d = 0,

m − Usn0 − 1d − Dn0 −
D2

U
sn0

2 + n0d = 0, s15d

which differs from the energy calculation of Ref.f8g by
terms of orderOst2/Ud. This discrepancy results from the
neglect of the one-loop correction due toGII in the calcula-
tion of the Green’s functionfEq. s13dg, which also gives a
contribution of orderOst2/Ud. However, even without this
term the phase diagram looks qualitatively similar to the Fre-
ericks and Monien phase diagram.

From the Green’s functions13d, we can also obtain the
momentum distributionnk =kck

* ckl=−e−`
0 dvAsk ,vd=1−zk.

nk measures the spectral weight of the negative energyEk
− of

the spectrum. Deep in the Mott phase, the momentum distri-
bution is roughly flat. Closer to the MI-SF transition, a peak
develops aroundk =0. This peak diverges at the transition
sFig. 4d.

The critical theory of the SF-MI transition can be ob-
tained from the actions9d by expanding the inverse propaga-
tor G−1sivd−ek to quadratic order ink and v. Noting that

FIG. 3. Same as Fig. 2, but forU=25t.

FIG. 4. Momentum distributionnk=kck
* ckl in the MI n=1 for

U=30t stopd andU=25 sbottomd.
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u]G−1sivd /]sivduiv=0=]Ḡ−1/]m sand similarly for the
second-order derivatived, we obtain

S=E
0

b

dtE drFr0ucr
2u

+ K1cr
*]tcr + K2u]tcr u2 + K3u ¹ cr u2 +

u

2
ucr u4G , s16d

where

r0 ~ Ḡ−1 + D,

K1 ~
]r0

]m
. s17d

At all points on the MI-SF transition line except at the Mott
lob tip, r0 vanishes butK1 remains finite. The critical theory
has then a dynamical exponentz=2. At the tip of the Mott
lob where bothr0 andK1 vanish, the dynamical exponentz
=1. A similar analysis, based on the effective action
Sff* ,fg, can be found in Ref.f7g.

B. Superfluid phase

In the SF phasesc0Þ0d, the Green’s function of thec̃
field is obtained by inverting the 232 matrix propagator in
Eq. s12d. For the diagonal componentGsk , ivd=

−kc̃sk , ivdc̃*sk , ivdl, we obtain

Gsk,ivd =
siv + dm + Uxdsiv − zk

+dsiv − zk
−d

sv2 + Ek
+2dsv2 + Ek

−2d
, s18d

where

Ek
±2 = −

Bk

2
±

1

2
sBk

2 − 4Ckd1/2,

zk
± =

Ãk

2
±

1

2
sÃk

2 − 4B̃kd1/2,

Ãk = 2dm − 2sḠ−1 + Dd − ek ,

B̃k = − s2Ḡ−1 + 2D + ekdsdm + Uxd + dm2 −
U2

4
,

Bk = 2B̃k − Ãk
2 + sḠ−1 + Dd2,

Ck = B̃k
2 − sḠ−1 + Dd2sdm + Uxd2. s19d

From Eq. s18d, we deduce the spectral functionAsk ,vd=
−s1/pd Im Gsk ,v+ i0+d,

Ask,vd =
sEk

+ + dm + UxdsEk
+ − zk

+dsEk
+ − zk

−d
2Ek

+sEk
+2 − Ek

−2d
dsv − Ek

+d

+
sEk

+ − dm − UxdsEk
+ + zk

+dsEk
+ + zk

−d
2Ek

+sEk
+2 − Ek

−2d
dsv + Ek

+d

−
sEk

− + dm + UxdsEk
− − zk

+dsEk
− − zk

−d
2Ek

−sEk
+2 − Ek

−2d
dsv − Ek

−d

−
sEk

− − dm − UxdsEk
− + zk

+dsEk
− + zk

−d
2Ek

−sEk
+2 − Ek

−2d
dsv + Ek

−d.

s20d

The Green’s functions18d has the desired physical proper-
ties. The spectral function is normalized,e−`

` dvAsk ,vd=1,
and has the correct sign: sgnfAsk ,vdg=sgnsvd f13g. There
are four excitation branches ±Ek

±, two of which s±Ek
−d are

gapless fork →0 sFig. 5d. However, for a given value ofk,
only two branches carry a significant spectral weight. Away
from k =0, the spectral weight is almost completely ex-
hausted byEk

+ and −Ek
−. In the vicinity of k =0, the two

gapless branches ±Ek
− exhaust the spectral weight. By ex-

pandingEk
− in the vicinity of k →0, we find a linear spectrum

Ek
− = cuk u, s21d

where

c =F 2tsḠ−1 + Dd

a2 + 2gsḠ−1 + Dd
G1/2

,

a =
dm2 + 2dmUx + U2/4

sdm + Uxd2 ,

FIG. 5. Excitation energies ±Ek
± and spectral weight in the SF

phasen=1 andU=20.
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g =
U2sx2 − 1/4d
sdm + Uxd3 . s22d

Our strong-coupling approach therefore reproduces the Bo-
goliubov sGoldstoned mode of the SF phase.

As discussed in Sec. III A, our strong-coupling theory is
not an expansion order by order int /U. For this reason, the
computation of the chemical potential from the single-
particle Green’s function, i.e.,n=TrsGd, is not reliable. We
have therefore used the chemical potential obtained within
the mean-field approximation discussed in Appendix C.

Figure 5 also shows the results of the Bogoliubov theory
fas applied to the Hamiltonians1dg for the samechemical
potentialm. The Bogoliubov theory provides a good approxi-
mation to Ek

− and therefore to the low-energy part of the
excitation spectrum. This implies that the velocity of the gap-
less modefEq. s22dg can be approximated by the Bogoliubov
resultc=f2tsm+Ddg1/2. Away from k =0, the Bogoliubov ap-
proach gives a rather poor description ofEk

+.
The Green’s functionGsk , ivd yields the momentum dis-

tribution

nk = kck
* ckl = Nc0

2dk,0 −E
−`

0

dvAsk,vd. s23d

Apart from the condensate contributionNc0
2dk,0, the momen-

tum distribution function is directly given by the spectral
weight of the negatives energies −Ek

+ and −Ek
− sFig. 5d.

Figure 6 shows the integrated spectral functionrsvd
=efd2k/ s2pd2gAsk ,vd for a commensurate densityn=1.
Deep in the Mott phase,rsvd is essentially given by the
noninteraction density of states of free bosons on the square
lattice centered around −m andU−m and with relative spec-
tral weigths −n0 andn0+1. The two peaks nearv=−m and
v=U−m are due to the Van Hove singularities in the density
of states of free bosons. When decreasing the value ofU / t,
the Mott gap decreases andrsvd strongly increases at the

gap edges. At the critical valueU / t.23.31, the gap closes
and rsvd diverges atv=0. This divergence persists in the
superfluid phase.

IV. CONCLUSION

By performing two successive Hubbard-Stratonovich
transformations of the intersite hopping term, we have shown
how to derive an effective action which provides a suitable
starting point to study the strong-coupling limit of the Bose-
Hubbard model. This action can then be analyzed by taking
into account Gaussian fluctuations about the mean-field ap-
proximation as in the Bogoliubov theory of the weakly inter-
acting Bose gas. The main improvement over previous re-
lated approachesf5–8g is the possibility to describe both the
Mott and SF phases. Both in the Mott and SF phases, we
compute the excitation spectrum and the momentum distri-
bution. Our approach clearly shows how the excitation spec-
trum, which is gapped in the MI phase, becomes gapless at
the MI-SF transition.

The strong-coupling expansion presented in this paper
should in principle also apply to more complicated situations
where, for instance, several atom species are present in the
optical lattice.

Note added. Recently, we became aware of two related
works. Konabeet al. f14g have studied the single-particle
excitation spectrum in the Mott phase and obtained results
similar to ours. The method used by these authors bears
some similarities with the strong-coupling expansion dis-
cussed in the present paper. Within a slave-boson represen-
tation of the Bose-Hubbard model, Dickerscheidet al. f15g
have discussed both the Mott and SF phases. Their results
agree with oursswhenever the comparision is possibled.

APPENDIX A: HUBBARD-STRATONOVICH
TRANSFORMATIONS

The Green’s functions of the boson fieldc can be ob-
tained from the generating functionf11g

ZfJ* ,Jg =E Dfc* ,cgescutcd−S0fc* ,cg+fsJucd+c.c.g, sA1d

where Jr
* , Jr are external sources. After the Hubbard-

Stratonovich decoupling of the intersite hopping termfsee
Eq. s2dg and the shiftf* →f* −J* , f→f−J of the auxiliary
field, we obtain

ZfJ* ,Jg =E Dfc* ,c,f* ,fge−sf−Jut−1sf−Jdd+fsfucd+c.c.g−S0fc* ,cg

= Z0E Dff* ,fge−sf−Jut−1sf−Jdd+Wff* ,fg. sA2d

A second Hubbard-Stratonovich decoupling of the hopping
term swith an auxiliary fieldc8d leads to

FIG. 6. Integrated spectral functionrsvd=efd2k/ s2pd2g Ask ,vd
in the MI n=1 sm=U /2−D /2d: U / t=80 sdashed lined, 40 sthin
solid lined, and 23.33sthick solid lined. The transition to the SF
phase occurs forU / t.23.31.
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ZfJ* ,Jg = Z0E Dfc8*c8,f* ,fgesc8utc8d−fsc8uf−Jd+c.c.g+Wff* ,fg

= Z0E Dfc8*c8,f* ,fg

3esc8utc8d−fsc8ufd+c.c.g+fsc8uJd+c.c.g+Wff* ,fg. sA3d

From Eq.sA3d we deduce thatZfJ* ,Jg is also the generating
function of the Green’s functions of thec8 field. c8 can
therefore be identified with the original boson fieldc.

APPENDIX B: CALCULATION OF THE LOCAL GREEN’S
FUNCTIONS G and GII

In the absence of intersite hoppingst=0d, the statesupl
=sp!d−1/2sĉ†dpu0l spù0 integerd are eigenstates with eigen-
values ep=−mp+sU /2dpsp−1d. sWe consider a single site
and therefore drop the site index.d u0l is the vacuum of par-
ticles. This yields the partition functionZ0=op=0

` e−bep. In the
ground state, for a given value of the chemical potentialm,

there aren0 bosons per site, wheren0 is obtained fromen0
=minpep. The latter condition leads ton0−1øm /Uøn0 if
mù−U, andn0=0 if mø−U. Note thatn0 is integersexcept
when m /U=p is integer; the statesupl and up+1l are then
degenerated, even when the boson densityn is not.

The single-particle Green’s function Gstd=

−kTtĉstdĉ†s0dl is easily calculated using the closure relation
op=0

` uplkpu=1. Fort.0, one finds

Gstd = −
1

Z0
o
p=0

`

sp + 1de−sb−tdep−tep+1, sB1d

and, in frequency space,

Gsivd =
− n0

iv + en0−1 − en0

+
n0 + 1

iv + en0
− en0+1

, sB2d

wherev is a bosonic Matsubara frequency.
The two-particle Green’s function can be calculated in the

same way. One finds

GIIst1,t2;t3,t4 = 0d = kTtĉst1dĉst2dĉ†s0dĉ†st3dl =
1

Z0
o
p=0

`

e−bephsp + 1dsp + 2det1sep−ep+1d+t2sep+1−ep+2d+t3sep+2−ep+1d

3ust1 − t2dust2 − t3d + sp + 1dsp + 2det1sep+1−ep+2d+t2sep−ep+1d+t3sep+2−ep+1dust2 − t1dust1 − t3d

+ sp + 1d2et1sep−ep+1d+t2sep−ep+1d+t3sep+1−epdfust1 − t3dust3 − t2d + ust2 − t3dust3 − t1dg

+ psp + 1det1sep−1−epd+t2sep−ep+1d+t3sep−ep−1dust3 − t1dust1 − t2d

+ psp + 1det1sep−ep+1d+t2sep−1−epd+t3sep−ep−1dust3 − t2dust2 − t1dj . sB3d

After a somewhat tedious calculation, we obtain for the Fourier transform of the connected part in the static limit

ḠIIc =E
0

b

dt1dt2dt3G
IIst1,t2;t3,0d − 2bfGsiv = 0dg2

= −
4sn0 + 1dsn0 + 2d

f2m − s2n0 + 1dUgsUn0 − md2 −
4n0sn0 − 1d

fm − Usn0 − 1dg2fUs2n0 − 3d − 2mg
+

4n0sn0 + 1d
sm − Un0df− m + Usn0 − 1dg2

+
4n0sn0 + 1d

sm − Un0d2f− m + Usn0 − 1dg
+

4n0
2

f− m + Usn0 − 1dg3 +
4sn0 + 1d2

sm − Un0d3 . sB4d

The static limit of the two-particle vertexGII is equal to

−ḠIIc /Ḡ4.

APPENDIX C: AUXILIARY-FIELD MEAN-FIELD
APPROACH

In this appendix, we review the mean-field results ob-
tained from the actionSff* ,fg fEq. s5dg f6g. Within a
saddle-point approximation, where the fieldf0 is taken real
and assumed to be time- and space-independent, the action
becomes

S

Nb
= sD−1 + Ḡdf0

2 −
1

4
ḠIIcf0

4, sC1d

where D=zt. Ḡ and ḠIIc are the single-particle and two-
particle local Green’s functions in the static limitssee Ap-
pendix Bd. The ground-state energy per siteE=
−limb→`s1/Nbdln Z is then given byfsee Eq.s2dg

E = a0 + a2f0
2 + a4f0

4, sC2d

wherea0=−limb→`s1/Nbdln Z0 is the ground-state energy in

the local limit,a2=D−1+Ḡ, anda4=−s1/4dḠIIc. The mean-
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field valuef0 is obtained by minimizingE. f0 vanishes in
the Mott phasesa2.0d and takes a finite value in the SF
phasesa2,0d. The MI-SF transition is then given bya2=0,
which leads to

dm± = −
D

2
±

1

2
fD2 + U2 − 4DUxg1/2, sC3d

wheren0 is the integer number of bosons in the local limit
for a chemical potentialm ssee Appendix Bd. x and dm are
defined in Sec. III. For each value ofn0, Eq. sC3d defines a
Mott lob in theU-m phase diagramsFig. 1d, whose tip cor-
responds to dm+=dm−=−zt/2 and U / sztd=2n0+1+2sn0

2

+n0d1/2. At the lob tip,]a2/]m=0.

In the SF phase, the order parameterf0 is given byf0
2

=−a2/ s2a4d, and the ground-state energy takes the value

E = a0 −
a2

2

4a4
. sC4d

From Eq.sC4d, we deduce the mean boson density

n = −
]E

]m
= n0 +

1

4

]

]m
Sa2

2

a4
D . n0 +

a2

2a4

]a2

]m
, sC5d

where the last equality holds near the MI-SF transitionsa2
<0d. We have usedn0=−]a0/]m. We conclude that, at the
MI-SF transition, the boson density remains pinned at the
integer valuen0 if ]a2/]m=0, which corresponds to the tip
of the Mott lob in them-U phase diagramsFig. 1d.
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