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Effective action and collective modes in quasi-one-dimensional spin-density-wave systems
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We derive the effective action describing the long-wavelength low-energy collective modes of quasi-one-
dimensional spin-density-wavéSDW) systems, starting from the Hubbard model within a weak coupling
approximation. The effective action for the spin-wave mode corresponds to an anisotropic nanlinedel
together with a Berry phase term. We compute the spin stiffness and the spin-wave velocity. We also obtain the
effective action for the sliding modg@hason taking into account the density fluctuations from the outset and
in the presence of a weak external electromagnetic field. This leads to coupled equations for the phase of the
SDW condensate and the charge-density fluctuations. We also calculate the conductivity and the density-
density correlation function.

[. INTRODUCTION corresponds to a sliding of the CDW and would lead to an
infinite conductivity in a clean systefne., with no impurity
Materials with highly anisotropic crystal structure often as first proposed by Fhtich.2 Fukuyama then proposed an
exhibit density-wavéDW) instabilities at low temperature. effective phase Lagrangiafi(4) determining the dynamics
While inorganic linear chain compounds usually develop aof the phasofi,where the condensate phaseetermines the
charge-density-wav€éCDW) instability, several groups of position of the DW with respect to the underlying crystal
organic conductors present a spin-density-wa\&DW) lattice. The first attempt to derivg(6) rigorously is due to
ground state. Well known examples include transition-metaBrazovskii and Dzyaloshinskfi.The phase Lagrangian was
bronzes such asJsMoO; for CDW systems, and the Bech- later used to study the interaction of the CDW with impuri-
gaard salts (TMTSEX (X=CIO,,PFK;) for SDW systems. ties and the mechanism of pinning/depinning which is at the
In quasi-one-dimensiondfuasi-1D systems, DW insta- origin of the nonlinear dc conductivity observed in transport
bilities result from nesting properties of the Fermi surface.experiment$:®
Indeed, in this case the particle-hole response function ex- To a large extent, the analysis of collective modes in
hibits a logarithmic singularity~In(E,/T), whereE, is an  CDW systems can be transposed to SDW systeim¥;*
ultraviolet cutoff of the order of the bandwidth. In the pres- The amplitude mode has a gapgand is therefore strongly
ence of repulsive electron-electron or electron-phonon interdamped due to the coupling with quasiparticle excitations
actions, this leads to an instability of the metallic phase agbove the mean-field gdfi As in CDW systems, the phason
low temperature. CDW ground states resulting fromcorresponds to a sliding of the DW and leads to an infinite
electron-phonon interaction were first discussed byhkeb?>  Frohlich conductivity in the absence of impurities. However,
and Peierls,while the possibility of a SDW ground state due since the SDW instability is driven by electron-electron in-
to repulsive electron-electron interaction was first postulatederactions, the coupling to the lattice plays no role and its
by Overhauset. mass is not renormalized by phonons. The pinning by impu-
In the SDW ground state, quasiparticle excitations exhibitities is also weaker, since the SDW couples to charge inho-
agap 2y, whereA, is the SDW order parameter. The low- mogeneities only to second order. The spin-wave mode,
energy behavior of the system is then dominated by lowwhich is specific to SDW systems, is also obtained from the
lying collective modes. In the presence of an incommensupoles of the Green functiort§-°
rate SDW, two continuous symmetries are spontaneously The functional integral formalism has also proven useful
broken: the translational symmetry and the rotational symto study collective modes in DW systerh5.~>* The main
metry in spin space. This leads to the existence of two gapadvantage of this formalism is that it allows us to derive the
less Goldstone modes: a sliding mogdhason and a spin-  effective Lagrangian of the Goldstone modes from first prin-
wave mode (magnon. Contrary to the case of ciples. Both the phase Lagrangia@(d) and the effective
superconductors, collective modes in DW systems directljf-agrangian for the spin-wave mode can be obtained within
couple to external fields, so that they can easily be observetthis formalism.
in various experiments. For instance, the nonlinear dc con- In this paper we derive the effective action describing the
ductivity is a manifestation of the existence of a phasorlow-energy collective modes of quasi-1D SDW systems,
mode which is pinned by impurities in real systems. starting from the Hubbard model with weak on-site interac-
In CDW systems, collective modes were first studied bytion. This effective action describes the behavior of the sys-
Lee, Rice, and AndersohFrom the computation of the tem at energies much smaller than the mean-fieldyapr,
Green functions, they deduced the existence of a gapped araguivalently, at length scales much larger than the mean-field
plitude mode and a gapless phase m@ueason. The latter coherence lengthsg /Ay andv, /Ay (vg andv, are the
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velocities along and across the conducting chaifike im-  mode sampled by optical spectroscopy.

provement with respect to previous works is twofold. First, We consider only the zero-temperature limit, and téke
we show that the effective action for the spin-wave mode is=kg=1 throughout the paper.

given by an anisotropic nonlinear sigma model (@) to-

gether with a Berry phase term. Such a result is known for Il. EFEECTIVE ACTION

the isotropic 2D Hubbard mod&t,but has not been derived

for weakly coupled chain systems. Instead, it is generally In the vicinity of the Fermi level, the electron dispersion
assumed that the spin dynamics can be deduced from df well approximated as

effective Heisenberg HamiltonidrSecond, we introduce the

long-wavelength charge-density field from the outset. We e(ky ky) =ve(|ky| —kg) — 2ty cogkyb), (2.3
thus obtain an effective Lagrangial{ ¢,p) which is a func-

tional of two independent field®), which is the phase of the wherek, andk, are the electron momenta along and across
SDW condensate, and the charge-density fiel@his yields  the conducting chaing,, is the transfer integral in the trans-
coupled equations of motion fof and p. The interaction verse direction, andb the interchain distance. In E@2.1),
between these two quantities leads to a renormalization dhe longitudinal dispersion is linearized around the 1D Fermi
the longitudinal phason velocity. points =kg and vg=2at,sin(k:a) is the corresponding

The first step in the functional integral formalism is to Fermi velocity, witht,>t, being the transfer integral arad
introduce auxiliary fields describing spin and charge fluctuathe lattice spacing along the chains. The linearized dispersion
tions. The main technical difficulty is then to recover the(2.1) satisfies the propertg(k)=—e(k+Q), which corre-
mean-field(or Hartree-Fock solution in a saddle-point ap- sponds to a perfect nesting of the Fermi surface at wave
proximation, while maintaining rotational invariance in spin vectorQ= (2kg,/b). Actually this property is an artifact of
space which is a necessary condition for obtaining the spinthe linearization and does not hold for the original tight-
wave mode. To overcome this difficulty, we introduce abinding dispersion unless the system is half-fillekg (
space and time fluctuating spin-quantization axis, following= 7r/2a). Deviations from perfect nesting can be taken into
a method introduced by Schéfzand Wenget al? for the  account by adding higher harmonics to the transverse disper-
isotropic 2D Hubbard model. Note that in quasi-1D systemssion — 2t,, cosk,b). For simplicity, we shall not consider
the distinction between right- and left-moving electrons al-such terms and restrict ourselves to the perfect nesting case.
lows one to write the Hamiltonian in a rotationally invariant We also assume that the SDW is incommensurate with the
form which is well suited for the calculation of the spin- crystal lattice, so that there is no pinning by the lattice.
wave mode if one focuses only on thég particle-hole Following the standard procedure, we introduce right and
(Peierl3 channeP® However, the concomitant consideration left Fermionic fieldsy, , and¢_, (o is the spin index In
of the Landau channe(long-wavelength charge fluctua- terms of the quartet of Fermion fields ¢'
tions), which is at the heart of our approach, does require the- (¢!, ', 4% 4" ), one can write the Hamiltonian of
introduction of a fluctuating spin-quantization axis. the system asi=H,+H,, where

The organization of the paper is as follows. The effective
action of the system is derived in Sec. Il. We first introduce
bosonic fields describing charge and spin fluctuations, and HO=E f dx
the fluctuating spin-quantization axis. We take special care to n
introduce the physical charge-density figld The standard
mean-field theory is recovered in Sec. Il A, while fluctua- —tp 2 zpﬁ(x)%w(x)
tions are studied in Sec. Il B. The latter are most conve- o==1
niently computed by performing a chiral rotation of the Fer-
mion fields. The corresponding Jacobidme so-called chiral N T
anomaly is calculated in Sec. Il B 2. H|=U§n: f X P () b (X) ¢ (X) g (%),

The effective action governing the dynamics of the spin-
wave mode is shown to be a MM together with a topo-
logical Berry phase term in Sec. lll. We explicitly calculate
the spin stiffness, the spin-wave velocity, and the couplin
constant of the NizM.

The sliding mode is studied in Sec. IV. We obtain coupled
equations of motion for the phageof the SDW condensate
and the charge fluctuatiops By integrating out one of these
fields, we obtain the effective action as a functional of eithe
0 or p. We also calculate the conductivity and the density-
density correlation function from the effective action.

P VE(— 10, 75—Ke) Phn(X)

: 2.2

U is the on-site Coulomb interaction strength amithe chain
index. Here and in the followingr, (©=1,2,3) ando,
Qv=x,y,z) are 2x2 Pauli matrices acting on left/right and
spin indices of the Fermionic fields, respectively. The prod-
uct 7,0, is to be understood as a direct product of the ma-
trices7, ando,, and any single matrix,, or o, as a direct
roduct of that matrix with the unit matrix.
Introducing the charge- and spin-density fields

— .t — ot

We do not consider long-range Coulomb interaction, p=Y Y, ps=yiozh,
which would require taking into account normal electrons 2.3
that are thermally excited above the gap. The latter are in- per =0T th,  ps=y T 0,0,

deed expected to play a crucial role in the screening of the
interaction?® Note, however, that the Coulomb interaction where 7. = (7,*i7,)/2, we rewrite the interaction Hamil-
affects neither the spin-wave mode nor the transverse phasdanian as
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The fieldsC,, are SU2) gauge fields and the (l) gauge
freedom here corresponds to an arbitrary rotation about the
axis, which does not change the state of the system. The
partition function now contains an additional integral over all
C, or equivalentlyn field configurations. Th€ , fields thus
contain information about the spin excitations of the system.
In writing Egs. (2.6) and (2.7), we have considered only
long-wavelength fluctuations of the spin-quantization axis,
so that the matribR acts like the unit matrix with respect to
the left/right indices of the Fermionic fields.

The Xk charge fluctuations play no role in the SDW
phase, so that we ignore the term}, ,pc. in the interac-
tion HamiltonianH, . We thus write the interaction term in
the action as

U
Hi=g S [ axllpen(ro0) P~ [pan( 700 T

+ Z[p:+n(7-!x)pc+n( T,X) _p:+n( T’X)ps+n( T!X)]}'
(2.9

In the Matsubara formalism, the partition function of the
system can be written as a functional integral over anticom

muting Grassmann variableg= [D ¢'Dge~ "4 with

the action
s fﬁdr D fdxwxmx)wn(r,xwH[ww] ,
0 n
(2.9

where8=1/T is the inverse temperature. The linfit-0 is U B 2 *
to be taken at the end of the calculations. S=7 ; fo A7 dXiLpenl 7 X) 7= 205 (T X)ps: (7. X))

At this point, it is customary to introduce auxiliary fields (2.9
for the spin and charge fluctuations via a Hubbard- .
Stratonovitch (HS) transformation. However, as noted Note that we have kept explicitly the long-wavelength
earlie?®?7in the context of systems described by the isotro-charge fluctuations since they couple to the phason rhae. _
pic 2D Hubbard model, such a procedure immediately leadgrinciple, one should also retain the long-wavelength spin
to loss of spin-rotational invariance. The reason for this isfluctuations which couple to the spin-wave mode. This cou-
that in writing down the Hamiltonian, we have made a par-Pling renormalizes the spin-wave velocity by the usual

ticular choice g) for the spin-quantization axis of the elec-
trons. Other decompositions &f, in terms of charge and

spin fluctuations are possible. They are all equivalent as fa
as the partition function is calculated exactly. The reason fo

choosing the decompositiai2.4) is that it allows us to re-

cover the Hartree-Fock solution at the saddle-point leve

within the functional integral formalisnisee Sec. Il A
In order to maintain spin-rotational invariance, one shoul
consider the spin-quantization axis to hepriori arbitrary

and integrate over all possible directions in the partition

function. This is done in practice by introducing a new field
én(7,X) which is related to the old Fermionic fielg,( r,x)
through a unitary S(2)/U(1) rotation matrixR,(7,x), i.e.,
y=R¢. The rotation matrixR satisfiesRo,R"=o-n, where

n is a unit vector field which gives the direction of spin-
guantization axis at pointx(n) and timer. The new field¢
has its spin-quantization axis along the locavector. The
interaction term in the actior§, [Egs. (2.4 and (2.9)], is

Stoner factor. In practice, it seems difficult within our for-
malism to treat the long-wavelength spin fluctuations in a
yay that preserves spin-rotation invariance. For this reason,
e shall ignore them in the following.

We introduce two HS field;" (rea) andA (compley,
Forresponding to charge- and spin-density fluctuations, re-
spectively. The action of the system can then be written as

05:50+ S, whereS, is given by Eq.(2.6), andS, by

5=3 foﬁdrdx(—ipcnmx)pﬁ%x)
—[A:(T,X)ps+n(T,X)+C.C.]
Sl P 2Aarl | 29

Note that the HS fiel¢"S introduced here is not the physical
charge-density field, but its conjugate. This can be easily

invariant under this transformation while the unperturbedchecked by varying the actid®with respect tg"S. Follow-

part, S,, becomes
S=3 fﬁdrdx[ #1709, Cq
n 0
+UvE(—i1dxm3—Kg) —vET3Cx] dn(T,X)

t . (n+d)b
_tbszl ¢n(T,X)e Wb Cydy¢n+5(7ax) .

(2.6
We have introduced the fieldS, given by
Co=—-R"9.R,
C,=iR"4,R, (2.7
e i TCIY=RIR ;.

ing Paloet al.>® we now introduce the physical charge-
density fieldp by decoupling the quadratic term ju}>(7,x)
by means of a HS transformation. This leads to the action

3

B
drdx
n

~ipen(7X)ph(7,X)

—[A} (7, X)psin(T,X)+C.C]+ %[pn(r,x)]2

2 24 HS
+ Gl T 0pa(r ) | (210
It can be seen, by varying the action with respect to the HS
field p™S, thatp is indeed the physical charge-density field.
Finally, we introduce a weak external electromagnetic
field A, in the action in a gauge-invariant manner. This does

o
not changes, while S, becomes
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ing wave vector and=(x,nb). We takeA to be real, with-
out any loss of generality. Varying the action with respect to
the auxiliary fieldsp, p'S, andA, we obtain the mean-field
equations

B
So=2, f dex( (7. x){a,—eAy—Cq

0

+ve[(—id—eA—CyT3— kF]}¢n( 7,X)

. (n+d)b
—ty BH(r,x)e” b
o==*1

o7 | po=— G PR (X)X

(2.1 (2.12

Note that, as an artifact of the linearization of the dispersion
relation along the chairg, does not contain the diamagnetic
term ocAi. However, as we shall see, this term is important ) o
for recovering a gauge-invariant effective action. We shalllt iS clear from the above equations that the mean figlds
recover this term starting from the original tight-binding the density of particles in the system and has the same value

u
A= U a(7.X) T_02bn(7.X) e

Hamiltonian in Sec. Il B.

A. Mean-field theory

in both the metallic and the SDW ground state. As a result,
—ipg> can be absorbed as a trivial shift in the chemical
potential of the systerfsee Eq(2.10]. The equation fon\

is the usual mean-field equation for the SDW order param-

The standard mean-field theory is recovered from &ster,

saddle-point approximation witm=2, C,=A,=0, p

=po, p7=plS, andA=A,exp(Q-r), whereQ is the nest-

1
Sur= =5 2 2 (@l (ionk+Q) ¢l (iw, ,k>>901(

where we have dropped additive contributions to the free

energy due to the mean fielgg, p'°, andA,. HereG,tis
the inverse propagator given by

oy~ €. (k+Q)
sgn(a)Ag

where sgn¢)=+(—) for o=1(]) and e.(k)=vg(xk,

sgn(a)Ag

-1__
9o = iw,—e_(k))’

(2.14

—kg) —2t, coskb) is the dispersion relation for the right

and left Fermions.
The mean-field propagator is obtained by invert{hgl.

It is given by
G, (lwy,k+Q) F, (iw,,k+Q)

9=l B ionk)  Gyliwnk) |0 21

where

Guylion k)=—(d (iwg,K)dL (iwg,K))
iwy+ €. (K)

Wit +A

2.16
Fta’(iwn yk): —<(;/>t(,(iwn ’k)¢TI(r(iwn ,ki Q)>

~sgno)4g
w2t el +AL

and we have used the relatien (k+Q)=—e€e_(k) in ob-
taining the above result.

The mean-field propagator can now be obtained from the
mean-field Fermionic action

¢+ olion,k+Q)

b_olionk) |’ 213

B. Fluctuations

We do not consider amplitude fluctuations, since they are
gapped and decouple from the sliding and spin-wave modes
in the long-wavelength limit. We therefore write the auxil-
iary fields as

pHS=pHS4 5pHS,

p=pot dp, (217
A:Aoei(Q-r+ 0),

where 8p, 5p"'S, and ¢ represent small fluctuations of the
fields about their mean-field values. The action can then be
written asS=S|+ S/, with

B
S=> f deX(¢E(7‘,X){<9T—EAO—CO—i6pHS
n 0
toel(—id—eA—Cms—ke]
—Ag(e7'Q 07 _g,+c.c)}hn(T,X)
PO (r0)

(2.18
S => J:drdx(%[apn(r,x)]%ri5p,'js(r,x)

n

“to 2 ¢n(rxe!

X[po+ 5Pn(7'1x)])-
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The next step to obtain the effective action of the auxil-

iary fields 8p, 8p™S, and ¢ is to integrate out the Fermion
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Using the fact thaf\* is a slowly varying weak field, we
expand the factor exp(i [ 7°Ady) — 1 in S} in powers of

fields. This is most Conveniently done by first intrOdUCing aAtOt_ The terms in the expansion are written in a Symmetric

new field ¢’ related to the fieldp through a unitary chiral
transformation:

d=Uchirad’ = e 736/29{7, . (2.19

This transformation leaves the interaction part of the action

S| invariant whileS] is given by

=2 f:dex[M(r,x)[aT—Ag’t

+op(—idyrs—ke—AY)

—Ao(e T r_g,+c.c)] ) (7,X)

+ _; f(n+ &)bytot
_tb(szl o' (1,x)e b y dy(ﬁr’H(;(T,X) ,

(2.20
where the gauge field" is given by
AL e A — 2F g 6+i5p"5+C
0 2 X p 0
i
A%=|eA——0,0+C,|rs, (2.21)
ZUF

1
tot__
Ayo —eA),_ §0yt97'3+ Cy.

The chiral transformation therefore eliminates the phasé
the order parametek. The actionS] [Eq. (2.20] therefore

way with respect ton andn+ 8. Here, we retain terms up to
the quadratic order im“ft. The corresponding contribution
to the action reads, = S,"**+ S{, where

ityb
2

>

n,o==*

+ A S(T.X)]8¢), 5(T.X),

B
fo d7dx ¢, (7 X)[ AN 7,X)

Sl)ilnear:

. (2.23
b7 J *drdx o (T X[ AN(T,X)
0

8

p)

n,o==*

+AL S(TX)Phh H(TX).

The linear tern’S'S',near corresponds to the coupling 191;‘“ to

the paramagnetic current in the transverse direction, while
0", which is quadratic irA", is the diamagnetic contribu-

tion. If we had started with the original tight-binding Hamil-

tonian in thex direction, we would have come up, apart from

the linear paramagnetic term, with a similar diamagnetic

term in thex direction given by

Seia:

t,a’
2

J“.B dk,dpy
T

o (2m)?

X |eA§<n(anT)+an(px-7')|2

X{COS{ kea)+cog (ky— px)a]}qbr;(kx 7,

(2.24

where t, is the hopping parameter along the chas]?,

>

n

S d &5 (ky,7)

acquires a simple form. The tradeoff, however, is that thavhich is not obtained if one uses a linear dispersion law from

Fermions are now subjected to an effective poten@iﬁf
which contains the derivatives of the phase fiéldNotice
that in contrast to the superconducting case, the gradients
the phase couple to the external electromagnetic field in

different manner. This is a consequence of the different bro-
ken symmetries in the two cases. Since we assume that the

fluctuations of the order paramet@re have takerf,,==0)
are small, the gradients & must be small. As a result, one
can carry out a perturbative expansion of the actio#,jé or
equivalently inA’>'. The chiral transformation also produces
a nontrivial Jacobiad, which yields the additional contribu-
tion S;=—InJ to the action. We shall come back to the
origin of this nontrivial Jacobian and the method of its cal-
culation in more detail in Sec. 1l B 2.

We are now in a position to write the action in terms of
the mean-field actioSyr [Eg. (2.13] and the part involving
fluctuations. The action then rea8s-S;+ S/ +S;, where

Sé=SMF—§ foﬁdfdx[ W XO[AG H v e A ) (7,%)

_ . r(n+S)b,tot
—ty 2 dn'(rx)(e e TA=1) g (700 1

(2.22

the very beginning, has to be included in the action in order
to maintain gauge invariance.

g lt is convenient to introduce the charge and spin currents
gor the Fermions:

js=¢"To"¢’,

jx=¢"Tvers0"¢’,

(2.295
Itbb ! ’ ! !
- 2 5;1 6(¢n1b‘o’a¢n+¢nT0a¢n+5)v

Iy
itbb I I ! !
- 2 52 5(¢n1573¢n+¢n-r73¢n+5)1

==*1

g:

where the indexx runs over %,y,z, ¢ is the unit matrix,

jfL is the uth component of the charge current, ajjdfor

a# 0 give different components of the spin current. The cur-

rentg is almost the same as the charge current in the trans-

verse direction, except that it is chiral, i.e., it has opposite

sign for the left- and right-moving Fermions. This current is

introduced for notational convenience, as we shall see later.
Furthermore, since the , fields are SW2) gauge fields, it

is possible to write them in terms of thematrices, namely,



13498 K. SENGUPTA AND N. DUPUIS PRB 61

C,.=A,o,, where the index runs over 0x,y and the in- The evaluation of S") e is trivial. Only the term involv-
dex v overx y,Z. As aresult, the field8>' can be expressed ing j§ contributes. We thus obtain
as

tot_ A0 v B 1%
Ao =AgtAga,, <S">MF=_pOJO deZr(iapHSJrer— %axa . (230

tot__ 0 v
A= (At Axo) 73, (2.26 Here, we have taken the continuum limit at the end of the

calculation and replaced the sum over the chains by an inte-

1 gral in they direction. It can be easily seen from E¢2.18
AY'=A)+Alo,— 5 dy0 i i
y ~ Ay T Ay0yT 50y0Ts, and (2.30 that the first term in{S")yr cancels the term

) o which is linear in8p™ in the expression o . Thus, we
where the expressions fok, can be deduced from EGs. fina|ly obtain

(2.21) and(2.26) to be

B UVE
v U _ 2 _
AgzeAO_ ?Faxe_'_ingS' <S >MF_ pofo drd r(eAO _2 &X¢9> (231)

and

[
Al=eA — Eafe, (2.27)

U :
Z(5p)2+l5pH55p .

B
s,’=f drd?r (2.32
0_ 0
Ay—eA,.

The action[Eq. (2.22] can be conveniently expressed in |t may seem unphysical at first sight that the scalar poten-

terms of the charge and spin currentsSesSye+S'+S"  tial in the effective action couples to the constant mean-field
+S/+S;, where density po and not to the full densityp=p,+ Jp, as one

would intuitively expect. However, one should bear in mind
0Xy, 0Xy,z that one still has to integrate ovép"S. As shown by Palo

2 f drdx( 2 Z Anin— gaye), et al®® in the context of superconducting systems, by rede-
fining the field 5p"S— 6p"S—[e Ag— (v/2)9,0], we imme-

(2.28 diately get the coefficient of the scalar potential to be the full

and S%= g S‘jia is given by Egs(2.23 and(2.24. densityp and notp,. _ _ _
|ntegrat|ng out the Fermions, we obtain to quadratic order In the next three subsections, we evaluate the diamagnetic
in the f|eldsAft the effective action term (S, the contributionS; arising from the chiral

anomaly, and S"?) e

72
Se=S/ + S+ < S+ sdia 7> , (2.29 1. Diamagnetic contribution
MF In this section, we calculate the contribution of the dia-

where(- - - )yr Mmeans that the average is taken with respectnagnetic term to the effective action. From Ef.23), one
to the mean-field actioSy. can easily obtain in Fourier space

(e|A(|p p>|2+X§|A<|p )2+ y|¢9<uo p)|?| x x> > fdzk {cogk,b)
e nP " B a=Ft.0, J (21)2 Y

=y 53 [ £

(2m)

+ 60§ (ky~ Py)b]} Gy i wp k), (233

where we use\* (ipn,p)=Ay(—ip,,—p) ... forrealfields and. , is the mean-field propagator given by ER.16. In the
limit t,> A, we can ignore the effect of the gap and replé&ce, by its value in the metallic phase. To first orderp|§1 we
then have

1 d%k _
E iz wp, f(277)2{C03kyb)+cos{(ky_py)b]}Gaa(lwnuk)

21,2
pyb dk
1 —cos{k b) de@[—e+2tbcos(kyb)]=

2N(0)v? ( p2b2>

=4N(0)| 1—
( )( t,b? 4

(2.39
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where v, = \/2t2b? is the velocity of the Fermions in the 2. Chiral anomaly
transverse directiorN(0)=1/mveb is the density of states  |n this subsection, we calculate the actiBpdue to the

per spin, and is the step function. Note that only the states jacobian of the chiral transformatid®.19. The latter pro-
near the Fermi level| €|<2ty) contribute to the diamagnetic gyces not only a change of the gauge fiﬂ(é% [Egs.(2.26)
term (S{"®) e, SO that the use of a linearized dispersion lawand (2.27], but also changes the ground state of the system.
is justified. Substituting Eq2.34) in Eq. (2.33, we finally  This nonperturbative effect shows up in the Jacobian of the
get chiral transformation. Chiral anomalies have been known for
a long time in the context of DW systertfs:2%%324Qur
‘ 1 d?p p§b2 method of calculation is similar to that of Ref. 24.
(S;"a)MfN(o)vi_ 2 f—2<1— 2 ) The chiral transformation changes the local density of
B J (2m) particle in the ground stafghe total particle number remain-
XY,z ing unchanged Since the particle density couples to the
eZIAy(ipn P2+ 2 |A§(ipn p)|? gauge _fieIdAO, this yields an additional contributioig;, to
v the action®?
02 Let us first calculate the density change( 7,r) due to an
4 Zy| a(ip,, ,p)IZ). (2.35 infinitesimal chiral transformation,

X

Uchiral 00(7,1)]= e(i/2)r360(r,r), (2.39
The calculation of the diamagnetic term in thelirection )
should be done using the original tight-binding dispersionhich changes the phase of the order parameter #6rr)
law, since it involves electronic states deep in the Fermi sef 6(7.r)—o0(7,r):
which forbids the use of a linearized dispersion law. From

Eq. (2.24), we deduce Sp(mr)=lim ($'(r+ 57+ (Ulyp
or,6t1—0
. t,a’ 1 d? X[86(7+ 87,r + 6r) U ciral 50(7,1)]— 1
(=L f p2<eZ|AX(ipn,p)|2 [56( Uchial 86(7.1)]=1) ¢
B ) @2n) X (7,1)), (2.40
+X'Ey'z AX(i )2 where we use the point spitting regularization scheme. A
i PP regularization is necessary to properly calculate the particle

density?* To lowest order ind¢, we obtain

1 d?k
5 3 [ fooskar+cof (k—poal) i
o,0p (27T) 5p(7',|’)=—§ lim [50(T+5T,r+5r)_50(7,r)]
X G, (iwg k), (2.36 oo

L, ) X (P (T+ 87,1+ 8r) T3 (7,1))
whereG, “(i w, ,k) =iw,+ 2t, coska) +2t, coskb) +u (u

being the Fermi level Again, we neglect the effect of the == lim [86(r+8rr+8r)— 86(r)]

gapAg. Neglecting corrections of ordeg/t,, we have 25 500
1 d’k Sy -
=) {cosk,a) +co§ (K, p,)al}Gyliwn K) X2, @Carl =0, 00) 24
B o, ) (27)? ’
2 rma dk where G, is the mean-field propagator defined in Sec.
= bf Z—Xcog{kxa)[Ztacos(kxa)JrM]:vEN(o), Il A.3* Introducing the Fourier transformé&é(ip,,p) and
T J —mlacT G, .(iwy,K), dp is rewritten as
(2.37
[
hich yiel Sp(r,r)=———
which yields p(7.1) 25
_ 1 d?p d?p d?k o
dia _ 2 2 i 2 ; r—
=N(O)vE—= f (e A (ip,.p) X ——66(ip,,,p)e'P "~ 'Pn7
<S( >MF FB pEn (277)2 | X pn p | p%@n (277_)2 (277)2 ( pn p)
X,Y,Z
+ > |A;(ipn,p)|2). (2.39 X2 [ Gy(iwgTipn.k+p)—G,y(iwy k)],

. I . (2.42
We do not consider the term of ordgf, which is consistent
with the linearized dispersion law used in the rest of theafter a trivial shift of integration variables, and in the limit
calculation. o7=6r=0. Performing the sum oves,,, we obtain
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d2p d?k

o)== 3 o2

——— 86(ip, ,p)e'P P
B2 (ipn,P)

xg aln (k+p)—n,(k)], (2.43

where n,(k) = O[kg— ak,+ (2t,/vg)coskb)] is the par-
ticle occupation numberNote thatn,(k) has the same
value in the metallic and SDW phasesTat 0.] Using

2t,
No(K+p)—na(k)=— ( apyt —py sm(kyb)>
F

X 8

2ty
Ke — aky + cos{k b))
(2.44

we finally obtain, to lowest order ip,

i f d?p 56 JeipT—ip
E ip,,p)e n7
7B & (Zw)sz Pn.P

op(7,r)=

1
—,60(T,r).

= (2.45
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0Xx,y,z Ox,y

2 #2 A%(ipy.p)

<9’2>MF

(277)
xﬂjzjg(ipn,p)Ay(—ipn,—p)
0x,y,z OX,y

+ 2 2 A%(ipy,p)

2
X O(—ipy,— p)+_|6(|pn7p)|2Hgg(|pn7p)

(2.48
wherell; a,e(|pn,p) I g(|pn, p), andlly4(ip,,p) are the
current- current correlators defined by

1; g(lpn’p)lpy

Mjei8(ipn,p) = (i (iPn RIS (= 1Pn .~ P))wie,

H,gg(ipn,p)=<j,‘i(ipn,p)g(—ipn,—p)>Mp, (2.49

Hgg(ipn,P)=(9(ipn.P)I(—iPn,—P))wmF:

and the currentgﬂ(lpn,p) and g(lpn,p) are the Fourier
transforms of the charge, spin, and chiral currents defined in
Eqg. (2.25.

In the long-wavelength limit, we need to compute the
effective action to second order in a gradient expansion. For

By integrating out the Fermions, we have shown that thesymmetry reasons, the correlatdfls,xyjt); I1; %Yg szjy,,

ground-state density of Fermions couples to the gauge f'elgndl'[

AO [Eq. (2.30]. Since an infinitesimal chiral transformation
changes the density bfp, it also produces the contribution
to the effective actiotf

A 2 0
5SJ=—f drdr dpAy
0

__ 1 dzrdra 56| eAg+isprS— L a.0].
b P 2

(2.49

Taking a variational integral of Eq2.46, we obtain the
chiral anomaly contribution to the effective action

B
S)= —UFN(O)f d’rdr
0

dx0(ePg+idph) — Z—F(ﬁxﬁ)z},
(2.47)

where we have used #b=vN(0).
In deriving the actiors;, we have implicitly assumed that

M "
zg vanish, andI;xx =H We also f|nd that none

D, i J
of the spln currents) ¥ z couple to the charge currer;t% or

g, which simply states that the sliding and spin-wave modes
decouple in the long-wavelength limit. Since the (8J
gauge fields are first order in gradiemt {x3,n"), we need
IT;»;»" to zeroth order. This also holds for the correlator

144, since it couples toaye)z. Based on similar reasoning,
we must obtainllgo to first order andlljo;o to second
“ .

wou
order. As shown in the Appendix, we thus obtain
vEPHUTPy

2

. Pn
IT00(ip,,p)=2N(0)v2| 1— — |,
]X]X( Pn,P) ( )UF( 6Aé>
21,2 2

the chiral transformation only produces a change in the den-
sity of the ground state. Following analogous steps leading to
Eq. (2.49, it can be shown that the chiral transformation
does not change the spin density and the spin or charge cur-
rents, so that the change in the density is the only nonpertur-
bative effect of the chiral transformation.

3.4S" e

In this subsection, we calculatéS"?)ye.
(2.28, we deduce

Using Eq.

pyb= p
. _ 2 Yy n
ngjg(lpn,p)—ZN(O)vt(l— 4 eaZ)’
ipap
O(|pnap) N(O) 2 n2)(’
A0
(2.50
. 21PnPy
Hig5(ipn-PY =NV 5
Ijxx(ipn,p)=Ijy(ipn,p) =2N(0),

Ijz(ipn.p)=2N(0)uE,

Mjzje(ipn p)=2N(0)v? .
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Separating charge and spin contributions, we hay&'2)y,:/2= EfsfpinJr $ghason where

1 d%p . . . .
p—— ~NO) 5 pE f (ZT)Z[lA&upn,ml%lA%(lpn D)2+ 0E|AL(ipn P2+ v2 |AX(ipa.P)I?],

(2.5

1 d?p vip2+uv?p? p2

ff ; i o HS/; 2 X “1Fy 2 ; 2.2 n

phason__N(o)EpEn f(zw)2{|eAO(|pn1p)+|5P ('pnup)| ( GAS +e |Ax(|pnup)| UF 1_BTA(2)
22 2

. pyb p 1 . .
AP PIP0E| 1= =7 = 5| = Z16(Pa P)I?PT— 6(iPn PIevPoA ~iPn, —P)

0

ipn . - i
4 %[e%(lpn P)+i8p"(ip,,p) I[vEpce Al —ip, ,—p)+vipyeAy("pn"p)]J :
0

This completes our derivation of the effective action. In ot N0 (B, , . ,
the next sections, we shall use this effective action to obtain Sspm=TJ drd (d,n) +ve(dn)“+vi(ayn)].
the spin-wave and the phason modes. 0 33

I1l. SPIN-WAVE MODE . ) .
The effective action for the spins therefore turns out to be

A.NLoM an anisotropic NirM, as expected. Sincgg, has been ob-
action comes from the terms involving the gauge fields Pnl:UlP«l.v.[Py|<Aq, the NLoM describes the behavior

AYYZ From Eqs.(2.35, (2.38, and(2.51), we find of the model only in the low-energy Iong-wa_velength limit.
" Thus, EQ.(3.3 should be supplemented with cutoffs,

~Aq in energy space and,~Aq/vg and Ay~Aq/v, in

<1 d’p . momentum space.
ff v 2
Sgpin_ - N(O)EV ,E ;ﬂ f (27.,)2[|A0('p” )| The action(3.3) can be expressed in a more conventional
form® as
—o[A(ipn. PP vl AP, PIZ. (3D
The contribution from the diamagnetic termiggs. (2.35 it _}J’B 2 2 2 2
and (2.38] cancels the terms proportional #? in Eg. Szpi”_z 0 dr d 7 x(9:0)"+ psx( )"+ psy(9yN)7],
(2.57), so that we are finally left with an effective action (3.9
which depends only oA} andAY, . This cancellation is ex-

pected since our effective action has to be gauge invarian
As mentioned earlier, for the Sp) fieldsC, a gauge trans- _ N(0)v2/2, andps,~ N(0)u2/2. Note that these values are

formation corresponds to an arbitrary rotation about zhe onlv approximate. In order to obtain the correct low-ener
axis, and does not change the state of the system. Such,a y-app : 9y

. . . long-wavelength behavior, it would be necessary to integrate
z z 1

rotauoag ChangeA“—>AM+:!./2<9M_A, whereA is Fhe r°t'?‘“°” out all high-energy short-wavelength fluctuations. The latter

angle? Thus to be gauge invariant, the effective action can

‘are expected to renormalize the bare valueg 0ps,, and
not depend on thé\’, field. The diamagnetic terms in the P S0Psx

) . . . .~ _psy quoted above.
effective action are absolutely crucial for this cancellation To see the physical interpretation of the paramgtewe

%nedgggf:vs;\c/); ont:(t)a:jiging a gauge-invariant effective action fof, ;o that)(=Hjsj6(ipn=0,p=0)/4 (v=x,y). The correlators
Using the identitié%? Hjéj(x) and HJ%J% can be linked to the transverse spin suscep-

tibilities in  the mean-field state, i.e.,l'[jé(y)jém

(FxyyM? =4(Sy)Sxy))mr. Where S,=¢'a,p/2. We see thaty
4 =(S:S)mr=(S,S,)mr and hence corresponds to the trans-
3.2 verse §tatic uniform spin susceptibility of the system in the
(9.0)2 mear:l-ﬂelq grq?rnd State. o . A A
2y _ 2 (pAX\2 yy2_ _ 91 The spin stiffness coefficieniss, and ps,, on the other
tr(Co) ~tr(o2Co)™=(Ag) "+ (Ag) 4 hand, come from the diamagnetic terlﬁﬁyqs. (2.35 and
(2.38)], which are themselves related to the average kinetic
we express the effective actipgq. (3.1)] in terms of gradi- energy. To see this point more clearly, let us consider the
ents of then field: diamagnetic term in thg direction. We have

luhere we have introduced the parametgresN(0)/2, psy

tr(C(Zx,y)) —tr( Uzc(x,y))zz (Az(x,y))z"_ (A%/x,y))zz
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Xy q d%p (3.9 equals Ag/(psxpsy)¥% It is proportional to Ay
N(0)v2> = > f S|AY(ipn.p)|? «e~ 2N and hence approaches zero in the weak-coupling
w B ) (2m) limit (U—0)37
tpb? & 1 d? 1
:bT m Epzn f(zwp)2|A§7(ipn'p)|ZE B. Berry phase term
In general, in addition to the usual dynamical terms, the
d?k ) action describing antiferromagnetic spin systems in one or
iwzaU )22 cogkyb)G (i wn k) two dimensions is expected to have a topological Berry
e . phase term® Such a term was derived for antiferromagnetic
b2 XY q d?p systems described by the 2D isotropic Hubbard model by
= K> = > j S| AL (ipn.p)I?, Wen et al?® We now derive this term for our action.
2 © B ) (2m) The Berry phase term comes from the term proportional

(35 to Aj in (S")ue. However, to get a nonzero result, it is not
sufficient to retain only the long-wavelength part of tRe
where(K,)yr is the average kinetic energy in tig@irection  matrix, since the Berry phase term precisely results from the
per unit area in the mean-field state. But we can also writ@k, oscillating part. Instead of considering the more general

the diamagnetic term as structure of theR matrix, we go back to the original tight-
binding dispersion law, which is a more direct way for ob-
X,y 5 o . :
1 dop taining the Berry phase term. The term proportionahfoin
2 = oy 2 ,
N(O)ng 5 ; J (Zw)zlAy(lpn,p)l (S")yr then reads
_ Psy Bd g2 an\? 2 2/ .t
=7, 47Tl - (3.6) Spery=— | drd7AK ¢ o,h)ve, (3.10

Comparing Egs(3.5) and(3.6), we immediately see that the where(¢'o,¢)yr is the spin density in the mean-field state.
spin-stiffness parametey, is related to the average kinetic Noting that<¢TUz¢>MF becomes G (ro+ 7.+ 7)o, e
energy in thQ/ direction. A similar result can be obtained for in the continuous formu|ation' we obtain, using the mean-

psx, and we finally get field equation§Eq. (2.12],
_ a* (K mr
Psx= 4 ’ SBerry: - f d’rd 7A6< ¢T(7'0+ T+t T—)Uz¢>MF
, (3.7 A
bo(K 0
psy:_w_ :_Tf d’rdrAjcodQ-r). (3.11
The velocities of the spin-wave mode,=(ps,/x)*2 and  In general, it is not possible to express the fiaklin terms
vy=(psy/)()1’2, are then given by of the n vector, because the former is a gauge-dependent
quantity. Nevertheless, it is still possible to express the varia-
—a*(Ky e | M tion of the Aj field in terms ofn as”®
UX: 4— = E
X
(3.9 A= —i12[5dnn(n)-[3,n(n)xd,n(n)]

1/2

1

_ _b2<Ky>MF
RO

where 7 is an external parameter varying continuously from
We find that the longitudinal velocity equals the FermiO to 1,n(1) is the physicah field, andn(0)=0. The action
velocity, because we have neglected the coupling of the spiréan then be written as
wave mode with the long-wavelength fluctuations. Taking
into account the latter would lead to the renormalized spin- 2A,
wave velocityv,=vg[1—UN(0)]¥2! Sgerry=1 TJ d’rdrcogQ-r)
Finally, we note that we can carry out an appropriate re-

scaling of lengths to obtain an isotropic MM. Rescaling 1
the lengths ag’ =x/v,, y'=y/v,, and7' =7, we obtain X fo dnn(y)-[a,n(m)Xn(n)]. (.12
o _ VPsxPsy 4 d ,T %’y 5 Another equivalent way of writing the Berry term in the
spin— 9 A roar m A (3.9 effective action is to express the gauge figlglin terms of

the polar and azimuthal angles and ¢ of the n vector.
The cutoff A’ ~Ay (in reciprocal spadeis now isotropic. ~ Using A§= —i/2[1—col«(,r))]d,4(7,r), the Berry term
The dimensionless coupling constant of the isotropiasNL  in the action then assumes the more familiar f&rm
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24, dynamics of the spin-wave mode is therefore determined by
SBerryzlvf d?rdrcogQ-r) the NLoM [Eq. (3.4)] derived in the preceding section.
X[1—coga(7,r)]d,p(T,r). (3.13 IV. PHASON MODE

The contribution to the phason effective action comes
from the diamagnetic ternj&qgs.(2.35 and(2.38], the chi-
For 2D and 3D antiferromagnets, it is generally believedral termS; [Eq. (2.47)], the interaction terng, [Eq. (2.32],
that the presence of the Berry phase term plays no’falee  and S;phasonl ED- (2.5D)]:

I fdz—p 0'ﬁyl{[eA (1P D)+ 89"(1Pn 1) 3,61P (iPm DAL~ 1P, — D)
Sghason B - (277)2 ~ 2 w(1Pn P P Pn:P)0L0olF . (1PR,P Pn,—P

+i5pHS(_ipn1_p)5V0]}
oxy 1
+ 2 {[eA.(iPn.P)+18p" [Py P) 8,0]F (iPn.P) B(— 1Py, = P)} + 5| 6Py .P)*D(ipn.P)
y
Do : u .
+i8p(ipn.p) p™(=ipn, —p)+ 7 [3p(ipn.P)I?|, 4.

where the polarization tensét,, and the coupling coefficients,, andD are given by

NO) ,, 5, NOwE N(0)v?
- 3n2 (VERKtVIPY _TAglpnpx —TASIPnPy
N(0)vE . N(O)uE
P (ip,.p)= ———iPnPx — Ps 0
priin e 3A5 3A5 :
N(0)v? 0 N(O?
— i
3A2 PPy 3a2 "
F.(ipn,p)=(N(0)vepyx, —N(0)vepy,0), (4.2
. N(0)
D(ipn.p) = —5— (Pt vEps+o?p)).
|
The contribution from the diamagnetic terms in E¢&35 0xy

and (2.38 exactly cancels the gauge-noninvariant terms in D(ipy,p)6(ip,,p)+ 2 F.(ipn.p)[eA.(ip,.p)
Syphason 1N fact, it can be explicitly checked that the polar- #

ization tensoiP ,, is transverse. Also, we note that the phase +i8p"S(ip,,,p) 8,0]1=0, 4.3
field 6 couples to the(gauge-invariant electric field E, a

=—PhAcTip,xAg. This, together with the transverse polar- 0x,y

ization tensoP ,,, ensures that if we integrate out the fields —in. — i i i

Sp, 8p™S. andd to obtain an effective actio8® A, ], it will Fol =P, =P)0(IPn.P)+ 3p(iPn.P)* 2;:’ Pou(1Pn.P)
be gauge invariant. Since the coupling term betwéeand

i i 5, HSi —
A, comes frontS;, it turns out that the contribution from the X[eA,(ipn.p)+i6p™(ipn.p)8,0]=0, (4.9
Jacobian of the chiral anomaly is crucial for obtaining a
gauge-invariant effective action. B&p(ip D) +i8p"(ip,, .p)=0 45
2 n» ns . .
A. Bquations of motion Using Eq.(4.5), we can eliminate the HS fieldp™S. This

We consider the electromagnetic field as being the extergives two coupled equations for the physical fiefigsand 6.
nal field, i.e., we neglect the phason-polariton m&itiéary-  Substituting the expressions fér, P..,, andF, from Eq.
ing the effective action with respect to the fieldsp, and  (4.2), and retaining terms up to second order in frequency
p'S, we obtain the three coupled equations and momenta, we get
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(Pa+vEpZ+vipd)(ip,.p) S 5p,A,, 0]
—ivepUdp(ipy,p)+2eveEy(ip,,p)=0, (4.6) 1 d%p 0xy 4 - .
S o 53 | ol 2 sleAdinnpPLip,p
veN(0)p,0(ipn,p)+idp(ipy,p)=0. XeA,(—ipy,—p)]
0,y
Thus, we obtain the well-known relation between charge and + 2}; [eAﬂ(ipn ,p)FM(ipn P)O(—ipn,—p)]

phase fluctuations:
1 e U . )
+516ipn.p)[*D(ipn.p)+ £ [dp(ipn,p)|* |-
1
Op(7,r)=veN(0)d, 0(7,r)=—=0d,0(7,r). (4.7 (4.10

b
Integrating outdp, one then gets the effective action

From Eq.(4.6), we finally obtain the(decoupled equations 1 d%p oxy 4
of motion S e,A,]1=— f—( =[eA,(ipn,
[0.A)=5 2 o 2, 5leA(ipn.p)
><P i 1 A]} _- !_
(=B —0? ) 0(tr) = — 2e0eEy(Lr), (1P PIEALZ P, )]
(4.9 +eN(O)veEx(ipn,p)O(—ipn,—P)
1
2e S Y
(af_vghﬂi_viag)ép(t,r):_ ,n.lt;F ﬁxEx(t,r), + 2|0(|pn ,p)| D ('pn,p)), (411)

whereD’ (ip,,p) =N(0)(p;+v5,pi+v? p7)/2 is the effec-
tive inverse phason propagator. This clearly demonstrates the
modification of the phason velocity due to the interaction
between the phase fieltland the density fluctuatiofip. It is

asy to check, by varying Eg4.11) with respect tod, that

is effective action reproduces the same equation of motion
for 6 as Eq.(4.6) derived in the earlier section.

where we have Wick-rotated back to real tirheand vy,
=ve[1+UN(0)]¥? is the renormalized phason velocity.
This renormalization of the longitudinal phason velocity has
been obtained previously from a more conventional approac
based on Green-function calculations.

B. Effective action S[6,A ] C. Effective action S[op,A,]

In this subsection, we derive the effective actionﬂ To obtain the effective aCt]EOS[5p,}¢M] f?fr the density
S 9. A 1 for the phase mode. uctuations Sp, we start from the effective action
LOA,] P Sl dp,0,A,] [EQ. (4.10], and integrate out the phase field

If i he HS fiel SphSi ; . .
we try to integrate out the HS field§p and dp™* in 6. One then obtains the effective action

Sirasoh 90, 8p™S,6,A,,1, we immediately face the problem of

inverting the coefficienP, of the quadratic term isp"S, s [OXY

. 21 B 1 d°p 1 )
since Py, is singular atp,,p=0. Nevertheless, we note S p,A,l== > —= > ~[eA,(ip,.p)
from the results of the preceding section that this term does B o (2m)2| v 2

not contribute to the equations of motion up to quadratic

X i —ipn,—
order in external momenta and frequency. We can therefore Pus(iPn:PIEAL=1Pn, —P)]

ignore this term while integrating out the fielih"'S. As we i Pn )
shall see, the effective action so obtained, although not exact, —e| Ao(ipn.p)— EAX(I Pn ,p))
reproduces the correct equations of motion for the phase
field 6. ) 1 . S
Integration of thesp'™ fields within the above-stated ap- X 3p(—ipn,—P)+ 5[3p(iPn,P) X, |
proximation then gives a factor dﬁpn,pé(ép—ipxalwb)
and we are left with the partition function (4.12
where we have introduced the density-density correlation
i function
Z=| D&pDODA, S Sp— —- ~s[opA, 0]
f pRODA, ( P wbpx'g)e ’ Xpp(iPn.P)=(3p(ipn,P)3p(—ipn.—P))
4.9 -
— 2N(0) —— P 4.13

. . 2 2 ;2 2.2
with the action Pt UphPx T ULPy
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It is easy to see from the expression of the density-density V. CONCLUSION
correlation function that the phason does not induce any
transverse density fluctuations.

The currents in the longitudinal and transverse direction
are given by

We have derived the effective action for the low-energy
§ollective modes of quasi-1D SDW systems. The introduc-
tion of a fluctuating spin-quantization axis in the functional

integral allows us to consider the phason mode, the spin-

o 55 ep, wave mod'e, and the long-wavelength charge fluctuations on
lx('pn,P)z—m =~ 15, op(ipn.p), equal footing.
{7 1Pn. 7P A,=0 Px We find that the spin-wave mode is governed by an iso-
(4.14  tropic NLoM together with a topological Berry phase term.
(i )= — oS -0 By a suitable length rescaling, one can obtain an isotropic
Jy{IPn.P SA(=ipn, =P, -, NLoM with an effective dimensionless coupling constant
“w

Ao/ (psxpsy) M2, wherepg, and pg, are the spin-stifiness co-
These expressions agree with theal-time continuity equa-  efficients. The coupling constant, proportional to the mean-
tion d,p+V-j=0. Also, we see that there is no current duefield gapAyxe” YN is small in the weak-coupling limit
to the phason mode in thedirection. The contribution to the UN(0)<1.
current across the chain comes entirely from the quasiparticle The sliding mode is governed by an effective Lagrangian
excitations®® From Eqs.(4.7) and (4.14), we obtain(in real  £(0,p) which is a function of two independent fields: the
time) phased of the SDW condensate and the charge-density field
e p. From the coupled equations satisfied by these two vari-
Jx(t,r)=——-0,0(t,r). (4.15 ables, we obtain the phason dynamics and its contribution to
b . . . .
the current-current and density-density correlation functions.

Note that the expressions of the currents as a function of the
phasef [Egs.(4.7) and(4.15] have been obtained to lowest
order in a gradient expansion. They have been recently gen- ACKNOWLEDGMENTS

eralized to higher order in Ref. 40. One of the authoréK.S.) would like to thank Victor Ya-

The current-current correlators can also be obtained fmnﬂovenko for helpful discussions and for support during this
the effective action. Using Eq$4.13 and (4.14), we find ! . . . . .
v I ing Eqed.13 (4.19, we fi work. Laboratoire de Physique des Solides is assacie

that the current-current correlatqrjﬂjf(jﬁj ,) can be ex-
pressed in terms of the density-density correlation function

as
e’p? APPENDIX
Xii, (IPn+P)= = =5 X,(iPn.P)
S ps ~" " In this section, we sketch the calculation of the current-
vip? current correlators. These correlators are given by
=-2N(0)e* 5—— . (4.16
pn+vphpx+vj_py

Hj"j'},,(ipn!p)znjj’(ipn ,p)
o

=(j(ipn.P)j" (—=ipn,—P))mr- (AL)

Xi,i,(iPnsP) =X} (iPn,P) = 0.

From the expression of the current-current correlator, we
then obtain the ac conductivity,,(w) as
The currents, (or j in the simplified notationcan be de-

1 . )
Oy @)= — _ijjx(ipnvpzo) fined using Eq(2.25 as
Pn ip,=w+i0*
1
—2N(0)e22|iP| = |+ 78(w)|, (4.1 B 1 dk o4 _
T e J(Ipn,p)=TE2 f—E > bl (i k)

(2m)? @ Lo
whereP denotes the principal part. The real part of the con- _ _
ductivity therefore satisfies thesum rule, XU oo (Ky Kyt Py) doo(iwn+ipy k+p),

- w2 (A2)
f wRe[axx<w>]dw=f, (4.18

where we have set the area of the system to unity. The func-
wherew,=(8€?v¢/b)*? is the plasma frequency. The pha- tions v, (ky,k,+py) are the current operators which can
son mode completely exhausts the spectral weight and wee easily read off from the definition of the currents in Eq.
obtain the well-known resuithat there is no contribution to  (2.25. For example, for the charge current in thdirection
the longitudinal conductivity from the quasiparticle excita-jg, U aoor (Ky Ky py) =vead,, . From Eq.(A2), we then
tions in a clean SDW system. deduce
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d2k += 11
H“r(lpn,p) _,E; J(ZW)Z Ea: 2 [Uao-a (k pyy ) ao’! 0—( yaky_py)Gao"(iwnvk)Gaa(iwn_ipnik_p)

+0ager (Ky =Py K)o (Ky+ 7/b, Ky = Py + /D) (T K F op(iwn—ipn k—p—aQ)], (A3)

wherea= 7 for =+ andG. , andF. , are the mean-field dk
propagators. We evaluate the frequency sum andckghia- ﬂ < J Fao (ion K)Feo(ion=ipy, k—p—aQ)
tegral usinge ,(k— Q) = — €,(k) and expanding the energy
dispersione,, in powers of external momenta: _ sgr(o)sgr(o”) N(O) (E_ patef
2 |2 12
€a(K) —€,(k—p)=ext ey, (A5)
1 dky ) ] )
€,= 2tpbpy sin(kyb) —tyb?pZ cogkyb) +O(p3), (A4) E% fEGwr(lwn,k)Gw(lwn—lpn,k—p)
_ N(O) (1 Ppi—er ipner
G avEPe T2 |2 1A ' 6AZ

Using these relations and E¢(R.16), one can evaluate the
frequency sum and thle, integral up to second order i, Substituting Eq(A5) in the expression for the correlatdzq.
and er= e, + €,(O(P3, €5, pner)) to Obtain (A3)], we get

_ N(0) X 1 p2—€ ipne
;. (ipy,p) = J VEE{UW —py k) X0l (kg Ky py)x( L

oo 1203 6A}
, 1 piter
TV a0or (Ky= Py Ky, (Ky+7/b,ky—py+ m/b)sgnio)sgr(a’) —§+ oz | (AB)
0
|
The dependence ok, comes frome, andv,,, . The illustrative example we sketch the calculatlonfbfo o Slnce

latter is eitherk, independent or depends dq through  the current operator in this case is given byw (ky,
the function  f=sin((k,— py)b)+sm(kyb) 2 sinfb) —py) =tpb 8, f(ky,py), We obtain
—pybcoskyb) p2b25|n(kyb)/2+ O(p ). To evaluate thek,

integral in Eq.(A6), we therefore need only a limited set of _ |\|(o)t§b2
integrals, which, up to ordes?, are given by HijS(lpn’p): —
+= 7] 2
(D= (e, =(Teh = (e =0, «SS 5 12l 1o Py PneT
i 6AF 647 /[,
p2b2
(FPh=2-—=0—, (e =vip], (A7) 2p2  p2
y 2 vyl ELEy =2N(0)v? 1——|Oy4 —GZ”Z , (A8)
0

(fey),=2tpbpy, <f265>ky:3vfp§, _
where we have used E(A7) to evaluate the, integrals to
obtain the last line and retained only terms up to second
where we have used the short-hand notat(on-)ky for  order in external frequency and momenta.
Jdk,/(2m)-- . The other correlators can be obtained following an exactly
From Egs.(A6) and (A7), it is then a matter of straight- similar procedure and in this way we finally obtain Egs.
forward algebra to obtain the different correlators. As an(2.50 for the charge and spin current-current correlators.




PRB 61

1For reviews on DW systems, see G. Geu, Density Waves in
Solids(Addison-Wesley, New York, 1994Rev. Mod. Phys60,
1129(1988; 66, 1 (1994.

2H. Fronlich, Proc. R. Soc. London, Ser. 223 296 (1954.

3R. E. Peierls,Quantum Theory of Solid¢Oxford University
Press, New York, 1955

4A. W. Overhauser, Phys. Re¥28 1437(1962.

5P. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Commun.
14, 703(1974.

8H. Fukuyama, J. Phys. Soc. JpH, 513(1976.

7S, Brazovski and . Dzyaloshinskii, ZhkBp. Teor. Fiz71, 2338
(1976 [Sov. Phys. JETR4, 1233(1976]. Note that these au-
thors perform a chiral transformation without computing the
Jacobian(chiral anomaly so that some parameters in their La-
grangian have incorrect valueisThe chiral anomaly(i.e., the
existence of a nontrivial Jacobian of the chiral transformation
was not known at that time.

8H. Fukuyama and P. A. Lee, Phys. Rev1B 535(1978.

9P. A. Lee and T. M. Rice, Phys. Rev. B, 3970(1979.

19G. C. Psaltakis, Solid State Commui, 535 (1984).

11K, Maki and A. Virosztek, Phys. Rev. B1, 557 (1990.

12K Maki and A. Virosztek, Phys. Rev. B2, 655(1990.

135, Brazovskii, J. Phys. 3, 2417(1993.

1D. Poilblanc and P. Lederer, Phys. Rev3B 9650(1987; 37,
9672(1987).

15A. Bjelis and D. Zanchi, Phys. Rev. 89, 5968(1994.

16K, Maki and A. Virosztek, Phys. Rev. B6, 511(1987.

7K. Takano, Prog. Theor. Phy&8, 1 (1982.

18| V. Krive and A. S. Rozhavsky, Phys. Lett. AL3 313(1985.

197, su and B. Sakita, Phys. Rev. Lef6, 780(1986; Phys. Rev.
B 38, 7421(1988; B. Sakita and Z. Su, Prog. Theor. Phg§,
238(1986.

20M. Ishikawa and H. Takayama, Prog. Theor. Phy$, 359
(1988.

2ly. Suzumura, J. Phys. Soc. J&9, 1711(1990.

22M. Girard (unpublishedl

2N. Nagaosa and M. Oshikawa, J. Phys. Soc. 86n2241(1996);
A. Tanaka and M. Machidabid. 67, 748 (1998.

24/. M. Yakovenko and H. S. Goan, Phys. Rev.58, 10 648
(1998.

253. Wen and A. Zee, Phys. Rev. Leftl, 1025(1988.

26H. J. Schulz, Phys. Rev. Lets5, 2462 (1990; in The Hubbard

EFFECTIVE ACTION AND COLLECTIVE MODES IN . ..

13 507

Model edited by D. Baeriswyét al. (Plenum Press, New York,
1995.

277. Y. Weng, C. S. Ting, and T. K. Lee, Phys. Rev.4B, 3790
(1991).

28To be more specific, the interacting part of the Hamiltonian can
be written in the g-ology formulation &H,=352,/dx[ (29,
=02)O}(X)0n(X) = 9204(X)On(x)], where O=2,4! 4.,
and O:Ea,gwigoa,a/z//w, are the charge and spin densities,
respectively(we use the notations introduced in Seo. i,
=g,=U in the Hubbard model. This form of the Hamiltonian
obviously preserves spin rotation invariance, and also allows us
to recover the correct mean-field solution from a saddle point
approximation within a functional integral formalisth.How-
ever, it does not take into account the long-wavelength charge or
spin fluctuations.

2|t has been argued that in a SDW system the thermally excited
electrons do not screen the Coulomb interaction. As a result, the
longitudinal phason is completely absorbed by the plasmon due
to the Anderson-Higgs mechanism: A. Virosztek and K. Maki,
Phys. Rev. B49, 6074(1994.

303, De Palo, C. Castellani, C. Di Castro, and B. K. Chakraverty,
Phys. Rev. B60, 564 (1999.

3INote that this limit is required for the behavior of the system to be
truly 2D. The conditionAg=t, would imply a 1D behavior
(with a weak Josephson-like interchain coupling regime
where the mean-field approach used in this paper breaks down.

32K, Fujikawa, Phys. Rev. Letd2, 1195(1979.

33Note that by using the mean-field propagators, we assumehat
depends only o6 (and not ond).

34We could also expect a contribution f5d?r d 7 p SAS, wherep
=09,0 [see Eq(2.45]. According to Ref. 24, this term does not
contribute to the chiral anomaly.

35A. M. J. Schakel, e-print cond-mat/9805152, May (1998.

36A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer-Verlag, New York, 1994

37This point has also been noted by Schulz in the context of the
isotropic 2D Hubbard modéf

38p_B. Littlewood, Phys. Rev. B6, 3108(1987; S. N. Artemenko
and W. Wonneberger, J. Phys6,2079(1996.

39A Virosztek, B. Dora, and K. Maki, Europhys. Lett7, 358
(1999.

40A. S. Rozhavsky, Y. V. Pershin, and I. A. Romanovsky, Euro-
phys. Lett.46, 50 (1999.



