
PHYSICAL REVIEW B 15 MAY 2000-IIVOLUME 61, NUMBER 20
Effective action and collective modes in quasi-one-dimensional spin-density-wave systems
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We derive the effective action describing the long-wavelength low-energy collective modes of quasi-one-
dimensional spin-density-wave~SDW! systems, starting from the Hubbard model within a weak coupling
approximation. The effective action for the spin-wave mode corresponds to an anisotropic nonlinears model
together with a Berry phase term. We compute the spin stiffness and the spin-wave velocity. We also obtain the
effective action for the sliding mode~phason! taking into account the density fluctuations from the outset and
in the presence of a weak external electromagnetic field. This leads to coupled equations for the phase of the
SDW condensate and the charge-density fluctuations. We also calculate the conductivity and the density-
density correlation function.
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I. INTRODUCTION

Materials with highly anisotropic crystal structure ofte
exhibit density-wave~DW! instabilities at low temperature.1

While inorganic linear chain compounds usually develop
charge-density-wave~CDW! instability, several groups o
organic conductors present a spin-density-wave~SDW!
ground state. Well known examples include transition-me
bronzes such as K0.3MoO3 for CDW systems, and the Bech
gaard salts (TMTSF)2X (X5ClO4,PF6) for SDW systems.

In quasi-one-dimensional~quasi-1D! systems, DW insta-
bilities result from nesting properties of the Fermi surfa
Indeed, in this case the particle-hole response function
hibits a logarithmic singularity; ln(E0 /T), whereE0 is an
ultraviolet cutoff of the order of the bandwidth. In the pre
ence of repulsive electron-electron or electron-phonon in
actions, this leads to an instability of the metallic phase
low temperature. CDW ground states resulting fro
electron-phonon interaction were first discussed by Fro¨hlich2

and Peierls,3 while the possibility of a SDW ground state du
to repulsive electron-electron interaction was first postula
by Overhauser.4

In the SDW ground state, quasiparticle excitations exh
a gap 2D0, whereD0 is the SDW order parameter. The low
energy behavior of the system is then dominated by lo
lying collective modes. In the presence of an incommen
rate SDW, two continuous symmetries are spontaneo
broken: the translational symmetry and the rotational sy
metry in spin space. This leads to the existence of two g
less Goldstone modes: a sliding mode~phason! and a spin-
wave mode ~magnon!. Contrary to the case o
superconductors, collective modes in DW systems dire
couple to external fields, so that they can easily be obse
in various experiments. For instance, the nonlinear dc c
ductivity is a manifestation of the existence of a phas
mode which is pinned by impurities in real systems.

In CDW systems, collective modes were first studied
Lee, Rice, and Anderson.5 From the computation of the
Green functions, they deduced the existence of a gapped
plitude mode and a gapless phase mode~phason!. The latter
PRB 610163-1829/2000/61~20!/13493~15!/$15.00
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corresponds to a sliding of the CDW and would lead to
infinite conductivity in a clean system~i.e., with no impurity!
as first proposed by Fro¨hlich.2 Fukuyama then proposed a
effective phase LagrangianL(u) determining the dynamics
of the phason,6 where the condensate phaseu determines the
position of the DW with respect to the underlying cryst
lattice. The first attempt to deriveL(u) rigorously is due to
Brazovskii and Dzyaloshinskii.7 The phase Lagrangian wa
later used to study the interaction of the CDW with impu
ties and the mechanism of pinning/depinning which is at
origin of the nonlinear dc conductivity observed in transp
experiments.8,9

To a large extent, the analysis of collective modes
CDW systems can be transposed to SDW systems.5,10–16

The amplitude mode has a gap 2D0 and is therefore strongly
damped due to the coupling with quasiparticle excitatio
above the mean-field gap.10 As in CDW systems, the phaso
corresponds to a sliding of the DW and leads to an infin
Fröhlich conductivity in the absence of impurities. Howeve
since the SDW instability is driven by electron-electron i
teractions, the coupling to the lattice plays no role and
mass is not renormalized by phonons. The pinning by im
rities is also weaker, since the SDW couples to charge in
mogeneities only to second order. The spin-wave mo
which is specific to SDW systems, is also obtained from
poles of the Green functions.14–16

The functional integral formalism has also proven use
to study collective modes in DW systems.7,17–24 The main
advantage of this formalism is that it allows us to derive t
effective Lagrangian of the Goldstone modes from first pr
ciples. Both the phase LagrangianL(u) and the effective
Lagrangian for the spin-wave mode can be obtained wit
this formalism.

In this paper we derive the effective action describing
low-energy collective modes of quasi-1D SDW system
starting from the Hubbard model with weak on-site intera
tion. This effective action describes the behavior of the s
tem at energies much smaller than the mean-field gapD0 or,
equivalently, at length scales much larger than the mean-fi
coherence lengthsvF /D0 and v' /D0 (vF and v' are the
13 493 ©2000 The American Physical Society
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13 494 PRB 61K. SENGUPTA AND N. DUPUIS
velocities along and across the conducting chains!. The im-
provement with respect to previous works is twofold. Fir
we show that the effective action for the spin-wave mode
given by an anisotropic nonlinear sigma model (NLsM) to-
gether with a Berry phase term. Such a result is known
the isotropic 2D Hubbard model,25 but has not been derive
for weakly coupled chain systems. Instead, it is gener
assumed that the spin dynamics can be deduced from
effective Heisenberg Hamiltonian.1 Second, we introduce th
long-wavelength charge-density field from the outset. W
thus obtain an effective LagrangianL(u,r) which is a func-
tional of two independent fields:u, which is the phase of the
SDW condensate, and the charge-density fieldr. This yields
coupled equations of motion foru and r. The interaction
between these two quantities leads to a renormalization
the longitudinal phason velocity.

The first step in the functional integral formalism is
introduce auxiliary fields describing spin and charge fluct
tions. The main technical difficulty is then to recover t
mean-field~or Hartree-Fock! solution in a saddle-point ap
proximation, while maintaining rotational invariance in sp
space which is a necessary condition for obtaining the s
wave mode. To overcome this difficulty, we introduce
space and time fluctuating spin-quantization axis, follow
a method introduced by Schulz26 and Wenget al.27 for the
isotropic 2D Hubbard model. Note that in quasi-1D system
the distinction between right- and left-moving electrons
lows one to write the Hamiltonian in a rotationally invaria
form which is well suited for the calculation of the spin
wave mode if one focuses only on the 2kF particle-hole
~Peierls! channel.28 However, the concomitant consideratio
of the Landau channel~long-wavelength charge fluctua
tions!, which is at the heart of our approach, does require
introduction of a fluctuating spin-quantization axis.

The organization of the paper is as follows. The effect
action of the system is derived in Sec. II. We first introdu
bosonic fields describing charge and spin fluctuations,
the fluctuating spin-quantization axis. We take special car
introduce the physical charge-density fieldr. The standard
mean-field theory is recovered in Sec. II A, while fluctu
tions are studied in Sec. II B. The latter are most con
niently computed by performing a chiral rotation of the Fe
mion fields. The corresponding Jacobian~the so-called chiral
anomaly! is calculated in Sec. II B 2.

The effective action governing the dynamics of the sp
wave mode is shown to be a NLsM together with a topo-
logical Berry phase term in Sec. III. We explicitly calcula
the spin stiffness, the spin-wave velocity, and the coupl
constant of the NLsM.

The sliding mode is studied in Sec. IV. We obtain coup
equations of motion for the phaseu of the SDW condensate
and the charge fluctuationsr. By integrating out one of thes
fields, we obtain the effective action as a functional of eith
u or r. We also calculate the conductivity and the densi
density correlation function from the effective action.

We do not consider long-range Coulomb interactio
which would require taking into account normal electro
that are thermally excited above the gap. The latter are
deed expected to play a crucial role in the screening of
interaction.29 Note, however, that the Coulomb interactio
affects neither the spin-wave mode nor the transverse ph
,
s

r

y
an

e

of

-

n-

g

,
-

e

e

d
to

-
-

-

g

r
-

,

n-
e

on

mode sampled by optical spectroscopy.
We consider only the zero-temperature limit, and take\

5kB51 throughout the paper.

II. EFFECTIVE ACTION

In the vicinity of the Fermi level, the electron dispersio
is well approximated as

e~kx ,ky!5vF~ ukxu2kF!22tb cos~kyb!, ~2.1!

wherekx andky are the electron momenta along and acro
the conducting chains,tb is the transfer integral in the trans
verse direction, andb the interchain distance. In Eq.~2.1!,
the longitudinal dispersion is linearized around the 1D Fe
points 6kF and vF52ata sin(kFa) is the corresponding
Fermi velocity, withta@tb being the transfer integral anda
the lattice spacing along the chains. The linearized disper
~2.1! satisfies the propertye(k)52e(k1Q), which corre-
sponds to a perfect nesting of the Fermi surface at w
vectorQ5(2kF ,p/b). Actually this property is an artifact o
the linearization and does not hold for the original tigh
binding dispersion unless the system is half-filled (kF
5p/2a). Deviations from perfect nesting can be taken in
account by adding higher harmonics to the transverse dis
sion 22tb cos(kyb). For simplicity, we shall not conside
such terms and restrict ourselves to the perfect nesting c
We also assume that the SDW is incommensurate with
crystal lattice, so that there is no pinning by the lattice.

Following the standard procedure, we introduce right a
left Fermionic fieldsc1s andc2s (s is the spin index!. In
terms of the quartet of Fermion fields c†

5(c1↑
† ,c2↑

† ,c1↓
† ,c2↓

† ), one can write the Hamiltonian o
the system asH5H01HI , where

H05(
n
E dxFcn

†~x!vF~2 i ]xt32kF!cn~x!

2tb (
d561

cn
†~x!cn1d~x!G , ~2.2!

HI5U(
n
E dx cn↑

† ~x!cn↓
† ~x!cn↓~x!cn↑~x!,

U is the on-site Coulomb interaction strength andn the chain
index. Here and in the following,tm (m51,2,3) andsn

(n5x,y,z) are 232 Pauli matrices acting on left/right an
spin indices of the Fermionic fields, respectively. The pro
uct tmsn is to be understood as a direct product of the m
tricestm andsn , and any single matrixtm or sn as a direct
product of that matrix with the unit matrix.

Introducing the charge- and spin-density fields

rc5c†c, rs5c†szc,
~2.3!

rc15c†t2c, rs15c†t2szc,

where t65(t16 i t2)/2, we rewrite the interaction Hamil
tonian as
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HI5
U

4 (
n
E dx$@rcn~t,x!#22@rsn~t,x!#2

12@rc1n* ~t,x!rc1n~t,x!2rs1n* ~t,x!rs1n~t,x!#%.

~2.4!

In the Matsubara formalism, the partition function of th
system can be written as a functional integral over antico
muting Grassmann variables,Z5*Dc†Dce2S[c†,c] , with
the action

S5E
0

b

dtF(
n
E dxcn

†~t,x!]tcn~t,x!1H@c†,c#G ,
~2.5!

whereb51/T is the inverse temperature. The limitT→0 is
to be taken at the end of the calculations.

At this point, it is customary to introduce auxiliary field
for the spin and charge fluctuations via a Hubba
Stratonovitch ~HS! transformation. However, as note
earlier26,27 in the context of systems described by the isot
pic 2D Hubbard model, such a procedure immediately le
to loss of spin-rotational invariance. The reason for this
that in writing down the Hamiltonian, we have made a p
ticular choice (ẑ) for the spin-quantization axis of the ele
trons. Other decompositions ofHI in terms of charge and
spin fluctuations are possible. They are all equivalent as
as the partition function is calculated exactly. The reason
choosing the decomposition~2.4! is that it allows us to re-
cover the Hartree-Fock solution at the saddle-point le
within the functional integral formalism~see Sec. II A!.

In order to maintain spin-rotational invariance, one sho
consider the spin-quantization axis to bea priori arbitrary
and integrate over all possible directions in the partit
function. This is done in practice by introducing a new fie
fn(t,x) which is related to the old Fermionic fieldcn(t,x)
through a unitary SU~2!/U~1! rotation matrixRn(t,x), i.e.,
c5Rf. The rotation matrixR satisfiesRszR

†5s•n, where
n is a unit vector field which gives the direction of spi
quantization axis at point (x,n) and timet. The new fieldf
has its spin-quantization axis along the localn vector. The
interaction term in the action,SI @Eqs. ~2.4! and ~2.5!#, is
invariant under this transformation while the unperturb
part,S0, becomes

S05(
n
E

0

b

dt dxH fn
†~t,x!@]t2C0

1vF~2 i ]xt32kF!2vFt3Cx#fn~t,x!

2tb (
d561

fn
†~t,x!e2 i *nb

(n1d)bCydyfn1d~t,x!J .

~2.6!

We have introduced the fieldsCm given by

C052R†]tR,

Cx5 iR†]xR, ~2.7!

e2 i *nb
(n1d)bCydy5Rn

†Rn1d .
-

-

-
s

s
-

ar
r

l

d

d

The fieldsCm are SU~2! gauge fields and the U~1! gauge
freedom here corresponds to an arbitrary rotation about tz
axis, which does not change the state of the system.
partition function now contains an additional integral over
Cm or equivalentlyn field configurations. TheCm fields thus
contain information about the spin excitations of the syste
In writing Eqs. ~2.6! and ~2.7!, we have considered only
long-wavelength fluctuations of the spin-quantization ax
so that the matrixR acts like the unit matrix with respect t
the left/right indices of the Fermionic fields.

The 2kF charge fluctuations play no role in the SDW
phase, so that we ignore the term}rc1n* rc1n in the interac-
tion HamiltonianHI . We thus write the interaction term in
the action as

SI5
U

4 (
n
E

0

b

dt dx$@rcn~t,x!#222rs1* ~t,x!rs1~t,x!%.

~2.8!

Note that we have kept explicitly the long-waveleng
charge fluctuations since they couple to the phason mode1 In
principle, one should also retain the long-wavelength s
fluctuations which couple to the spin-wave mode. This co
pling renormalizes the spin-wave velocity by the usu
Stoner factor.1 In practice, it seems difficult within our for-
malism to treat the long-wavelength spin fluctuations in
way that preserves spin-rotation invariance. For this reas
we shall ignore them in the following.

We introduce two HS fields,rHS ~real! andD ~complex!,
corresponding to charge- and spin-density fluctuations,
spectively. The action of the system can then be written
S5S01SI , whereS0 is given by Eq.~2.6!, andSI by

SI5(
n
E

0

b

dt dxS 2 ircn~t,x!rn
HS~t,x!

2@Dn* ~t,x!rs1n~t,x!1c.c.#

1
1

U
$@rn

HS~t,x!#212uDn~t,x!u2% D . ~2.9!

Note that the HS fieldrHS introduced here is not the physica
charge-density field, but its conjugate. This can be ea
checked by varying the actionSwith respect torHS. Follow-
ing Palo et al.,30 we now introduce the physical charge
density fieldr by decoupling the quadratic term inrn

HS(t,x)
by means of a HS transformation. This leads to the actio

SI5(
n
E

0

b

dt dxS 2 ircn~t,x!rn
HS~t,x!

2@Dn* ~t,x!rs1n~t,x!1c.c.#1
U

4
@rn~t,x!#2

1
2

U
uDn~t,x!u21 irn

HS~t,x!rn~t,x! D . ~2.10!

It can be seen, by varying the action with respect to the
field rHS, thatr is indeed the physical charge-density field

Finally, we introduce a weak external electromagne
field Am in the action in a gauge-invariant manner. This do
not changeSI while S0 becomes
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S05(
n
E

0

b

dt dxS fn
†~t,x!$]t2eA02C0

1vF@~2 i ]x2eAx2Cx!t32kF#%fn~t,x!

2tb (
d561

fn
†~t,x!e2 i *nb

(n1d)b(Cy1eAy)dyfn1d~t,x! D .

~2.11!

Note that, as an artifact of the linearization of the dispers
relation along the chain,S0 does not contain the diamagnet
term }Ax

2 . However, as we shall see, this term is importa
for recovering a gauge-invariant effective action. We sh
recover this term starting from the original tight-bindin
Hamiltonian in Sec. II B.

A. Mean-field theory

The standard mean-field theory is recovered from
saddle-point approximation withn5 ẑ, Cm5Am50, r
5r0 , rHS5r0

HS, andD5D0 exp(iQ•r ), whereQ is the nest-
re

t

n

t
ll

a

ing wave vector andr5(x,nb). We takeD0 to be real, with-
out any loss of generality. Varying the action with respect
the auxiliary fieldsr, rHS, andD, we obtain the mean-field
equations

r052
2i

U
r0

HS5^fn
†~t,x!fn~t,x!&MF ,

~2.12!

D05
U

2
e2 iQ•r^fn

†~t,x!t2szfn~t,x!&MF .

It is clear from the above equations that the mean fieldr0 is
the density of particles in the system and has the same v
in both the metallic and the SDW ground state. As a res
2 ir0

HS can be absorbed as a trivial shift in the chemic
potential of the system@see Eq.~2.10!#. The equation forD0
is the usual mean-field equation for the SDW order para
eter.

The mean-field propagator can now be obtained from
mean-field Fermionic action
SMF52
1

b (
vn

(
k,s

„f1s
† ~ ivn ,k1Q!,f2s

† ~ ivn ,k!…G s
21S f1s~ ivn ,k1Q!

f2s~ ivn ,k!
D , ~2.13!
are
des

e
be
where we have dropped additive contributions to the f
energy due to the mean fieldsr0 , r0

HS, andD0. HereG s
21 is

the inverse propagator given by

G s
215S ivn2e1~k1Q! sgn~s!D0

sgn~s!D0 ivn2e2~k!
D , ~2.14!

where sgn(s)51(2) for s5↑(↓) and e6(k)5vF(6kx
2kF)22tb cos(kyb) is the dispersion relation for the righ
and left Fermions.

The mean-field propagator is obtained by invertingG s
21 .

It is given by

Gs5S G1s~ ivn ,k1Q! F1s~ ivn ,k1Q!

F2s~ ivn ,k! G2s~ ivn ,k!
D , ~2.15!

where

G6s~ ivn ,k!52^f6s~ ivn ,k!f6s
† ~ ivn ,k!&

52
ivn1e6~k!

vn
21e6

2 1D0
2

,

~2.16!
F6s~ ivn ,k!52^f6s~ ivn ,k!f7s

† ~ ivn ,k7Q!&

5
sgn~s!D0

vn
21e6

2 1D0
2

,

and we have used the relatione1(k1Q)52e2(k) in ob-
taining the above result.
e B. Fluctuations

We do not consider amplitude fluctuations, since they
gapped and decouple from the sliding and spin-wave mo
in the long-wavelength limit.1 We therefore write the auxil-
iary fields as

rHS5r0
HS1drHS,

r5r01dr, ~2.17!

D5D0ei (Q•r1u),

where dr, drHS, and u represent small fluctuations of th
fields about their mean-field values. The action can then
written asS5S081SI8 , with

S085(
n
E

0

b

dt dxS fn
†~t,x!$]t2eA02C02 idrHS

1vF@~2 i ]x2eAx2Cx!t32kF#

2D0~e2 i (Q•r1u)t2sz1c.c.!%fn~t,x!

2tb (
d561

fn
†~t,x!e2 i *nb

(n1d)b(Cy1eAy)dyfn1d~t,x! D ,

~2.18!

SI85(
n
E

0

b

dt dxS U

4
@drn~t,x!#21 idrn

HS~t,x!

3@r01drn~t,x!# D .
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The next step to obtain the effective action of the aux
iary fields dr, drHS, andu is to integrate out the Fermio
fields. This is most conveniently done by first introducing
new field f8 related to the fieldf through a unitary chiral
transformation:

f5Uchiralf85ei t3u/2f8. ~2.19!

This transformation leaves the interaction part of the act
SI8 invariant whileS08 is given by

S085(
n
E

0

b

dt dxH f8n
†~t,x!@]t2A0

tot

1vF~2 i ]xt32kF2Ax
tot!

2D0~e2 iQ•rt2sz1c.c.!#fn8~t,x!

2tb (
d561

fn8
†~t,x!e2 i *nb

(n1d)bAy
totdyfn1d8 ~t,x!J ,

~2.20!

where the gauge fieldAm
tot is given by

A0
tot5eA02

vF

2
]xu1 idrHS1C0 ,

Ax
tot5S eAx2

i

2vF
]tu1CxD t3 , ~2.21!

Ay
tot5eAy2

1

2
]yut31Cy .

The chiral transformation therefore eliminates the phaseu of
the order parameterD. The actionS08 @Eq. ~2.20!# therefore
acquires a simple form. The tradeoff, however, is that
Fermions are now subjected to an effective potentialAm

tot

which contains the derivatives of the phase fieldu. Notice
that in contrast to the superconducting case, the gradien
the phase couple to the external electromagnetic field
different manner. This is a consequence of the different b
ken symmetries in the two cases. Since we assume tha
fluctuations of the order parameter~we have takenuMF50)
are small, the gradients ofu must be small. As a result, on
can carry out a perturbative expansion of the action in]mu or
equivalently inAm

tot . The chiral transformation also produce
a nontrivial JacobianJ, which yields the additional contribu
tion SJ52 ln J to the action. We shall come back to th
origin of this nontrivial Jacobian and the method of its c
culation in more detail in Sec. II B 2.

We are now in a position to write the action in terms
the mean-field actionSMF @Eq. ~2.13!# and the part involving
fluctuations. The action then readsS5S081SI81SJ , where

S085SMF2(
n
E

0

b

dt dxH fn8
†~t,x!@A0

tot1vFAx
tot#fn8~t,x!

2tb (
d561

fn8
†~t,x!~e2 i *nb

(n1d)bAy
totdy21!fn1d8 ~t,x!J .

~2.22!
-

n

e

of
a
-

the

-

Using the fact thatAy
tot is a slowly varying weak field, we

expand the factor exp(2i*nb
(n1d)bAy

totdy)21 in S08 in powers of
Ay

tot . The terms in the expansion are written in a symme
way with respect ton andn1d. Here, we retain terms up to
the quadratic order inAy

tot . The corresponding contribution
to the action readsSy5Sy

linear1Sy
dia, where

Sy
linear5

i t bb

2 (
n,d56

E
0

b

dt dx fn8
†~t,x!@Ayn

tot~t,x!

1Ayn1d
tot ~t,x!#dfn1d8 ~t,x!,

~2.23!

Sy
dia5

tbb2

8 (
n,d56

E
0

b

dt dx fn8
†~t,x!@Ayn

tot~t,x!

1Ayn1d
tot ~t,x!#2fn1d8 ~t,x!.

The linear termSy
linear corresponds to the coupling ofAy

tot to
the paramagnetic current in the transverse direction, w
Sy

dia, which is quadratic inAy
tot , is the diamagnetic contribu

tion. If we had started with the original tight-binding Hami
tonian in thex direction, we would have come up, apart fro
the linear paramagnetic term, with a similar diamagne
term in thex direction given by

Sx
dia5

taa2

2 (
n
E

0

b

dt
dkxdpx

~2p!2
fn8

†~kx ,t!

3ueAxn~px ,t!1Cxn~px ,t!u2

3$cos~kxa!1cos@~kx2px!a#%fn8~kx ,t!,

~2.24!

where ta is the hopping parameter along the chain.Sx
dia,

which is not obtained if one uses a linear dispersion law fr
the very beginning, has to be included in the action in or
to maintain gauge invariance.

It is convenient to introduce the charge and spin curre
for the Fermions:

j 0
a5f8†saf8,

j x
a5f8†vFt3saf8,

~2.25!

j y
a52

i t bb

2 (
d561

d~fn2d8† safn81fn8
†safn1d8 !,

g52
i t bb

2 (
d561

d~fn2d8† t3fn81fn8
†t3fn1d8 !,

where the indexa runs over 0,x,y,z, s0 is the unit matrix,
j m
0 is the mth component of the charge current, andj m

a for
aÞ0 give different components of the spin current. The c
rent g is almost the same as the charge current in the tra
verse direction, except that it is chiral, i.e., it has oppos
sign for the left- and right-moving Fermions. This current
introduced for notational convenience, as we shall see la

Furthermore, since theCm fields are SU~2! gauge fields, it
is possible to write them in terms of thes matrices, namely,
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Cm5Am
n sn , where the indexm runs over 0,x,y and the in-

dexn overx,y,z. As a result, the fieldsAm
tot can be expresse

as

A0
tot5A0

01A0
nsn ,

Ax
tot5~Ax

01Ax
nsn!t3 , ~2.26!

Ay
tot5Ay

01Ay
nsn2

1

2
]yut3 ,

where the expressions forAm
0 can be deduced from Eqs

~2.21! and ~2.26! to be

A0
05eA02

vF

2
]xu1 idrHS,

Ax
05eAx2

i

2vF
]tu, ~2.27!

Ay
05eAy .

The action@Eq. ~2.22!# can be conveniently expressed
terms of the charge and spin currents asS5SMF1S91Sdia

1SI81SJ , where

S952(
n
E

0

b

dt dxS (
m

0,x,y,

(
a

0,x,y,z

Am
a j m

a2
1

2
g]yu D ,

~2.28!

andSdia5Sx
dia1Sy

dia is given by Eqs.~2.23! and ~2.24!.
Integrating out the Fermions, we obtain to quadratic or

in the fieldsAm
tot the effective action

Seff5SI81SJ1 K S91Sdia2
S92

2 L
MF

, ~2.29!

where^•••&MF means that the average is taken with resp
to the mean-field actionSMF .
r

t

The evaluation of̂ S9&MF is trivial. Only the term involv-
ing j 0

0 contributes. We thus obtain

^S9&MF52r0E
0

b

dt d2r S idrHS1eA02
vF

2
]xu D . ~2.30!

Here, we have taken the continuum limit at the end of
calculation and replaced the sum over the chains by an i
gral in they direction. It can be easily seen from Eqs.~2.18!
and ~2.30! that the first term in^S9&MF cancels the term
which is linear indrHS in the expression ofSI8 . Thus, we
finally obtain

^S9&MF52r0E
0

b

dt d2r S eA02
vF

2
]xu D ~2.31!

and

SI85E
0

b

dt d2r FU

4
~dr!21 idrHSdrG . ~2.32!

It may seem unphysical at first sight that the scalar pot
tial in the effective action couples to the constant mean-fi
density r0 and not to the full densityr5r01dr, as one
would intuitively expect. However, one should bear in mi
that one still has to integrate overdrHS. As shown by Palo
et al.30 in the context of superconducting systems, by re
fining the fielddrHS→drHS2@eA02(vF/2)]xu#, we imme-
diately get the coefficient of the scalar potential to be the
densityr and notr0.

In the next three subsections, we evaluate the diamagn
term ^Sdia&MF , the contributionSJ arising from the chiral
anomaly, and̂ S92&MF .

1. Diamagnetic contribution

In this section, we calculate the contribution of the d
magnetic term to the effective action. From Eq.~2.23!, one
can easily obtain in Fourier space
^Sy
dia&MF5

tbb2

2

1

b (
pn

E d2p

~2p!2 S e2uAy~ ipn ,p!u21 (
n

x,y,z

uAy
n~ ipn ,p!u21

py
2

4
uu~ ipn ,p!u2D 3

1

b (
a56,s,vn

E d2k

~2p!2
$cos~kyb!

1cos@~ky2py!b#%Gas~ ivn ,k!, ~2.33!

where we useAy* ( ipn ,p)5Ay(2 ipn ,2p) . . . for real fields andG6s is the mean-field propagator given by Eq.~2.16!. In the
limit tb@D0,31 we can ignore the effect of the gap and replaceG6s by its value in the metallic phase. To first order inpy

2 , we
then have

1

b (
a56,s,vn

E d2k

~2p!2
$cos~kyb!1cos@~ky2py!b#%Gas~ ivn ,k!

54N~0!S 12
py

2b2

4 D E dky

2p
cos~kyb!E

22tb

2tb
de Q@2e12tb cos~kyb!#5

2N~0!v'
2

tbb2 S 12
py

2b2

4 D , ~2.34!
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where v'5A2tb
2b2 is the velocity of the Fermions in th

transverse direction,N(0)51/pvFb is the density of states
per spin, andQ is the step function. Note that only the stat
near the Fermi level (ueu<2tb) contribute to the diamagneti
term ^Sy

dia&MF , so that the use of a linearized dispersion la
is justified. Substituting Eq.~2.34! in Eq. ~2.33!, we finally
get

^Sy
dia&MF5N~0!v'

2 1

b (
pn

E d2p

~2p!2 S 12
py

2b2

4 D
3S e2uAy~ ipn ,p!u21 (

n

x,y,z

uAy
n~ ipn ,p!u2

1
py

2

4
uu~ ipn ,p!u2D . ~2.35!

The calculation of the diamagnetic term in thex direction
should be done using the original tight-binding dispers
law, since it involves electronic states deep in the Fermi
which forbids the use of a linearized dispersion law. Fro
Eq. ~2.24!, we deduce

^Sx
dia&MF5

taa2

2

1

b (
pn

E d2p

~2p!2 S e2uAx~ ipn ,p!u2

1 (
n

x,y,z

uAx
n~ ipn ,p!u2D

3
1

b (
s,vn

E d2k

~2p!2
$cos~kxa!1cos@~kx2px!a#%

3Gs~ ivn ,k!, ~2.36!

whereGs
21( ivn ,k)5 ivn12ta cos(kxa)12tb cos(kyb)1m (m

being the Fermi level!. Again, we neglect the effect of th
gapD0. Neglecting corrections of ordertb /ta , we have

1

b (
s,vn

E d2k

~2p!2
$cos~kxa!1cos@~kx2px!a#%Gs~ ivn ,k!

5
2

pbE2p/a

p/a dkx

2p
cos~kxa!Q@2tacos~kxa!1m#5vF

2N~0!,

~2.37!

which yields

^Sx
dia&MF5N~0!vF

2 1

b (
pn

E d2p

~2p!2 S e2uAx~ ipn ,p!u2

1 (
n

x,y,z

uAx
n~ ipn ,p!u2D . ~2.38!

We do not consider the term of orderqx
2 , which is consistent

with the linearized dispersion law used in the rest of
calculation.
n
a

e

2. Chiral anomaly

In this subsection, we calculate the actionSJ due to the
Jacobian of the chiral transformation~2.19!. The latter pro-
duces not only a change of the gauge fieldsAm

tot @Eqs.~2.26!
and~2.27!#, but also changes the ground state of the syst
This nonperturbative effect shows up in the Jacobian of
chiral transformation. Chiral anomalies have been known
a long time in the context of DW systems.18–20,23,24Our
method of calculation is similar to that of Ref. 24.

The chiral transformation changes the local density
particle in the ground state~the total particle number remain
ing unchanged!. Since the particle density couples to th
gauge fieldA0

0, this yields an additional contribution,SJ , to
the action.32

Let us first calculate the density changedr(t,r ) due to an
infinitesimal chiral transformation,

Uchiral@du~t,r !#5e( i /2)t3du(t,r ), ~2.39!

which changes the phase of the order parameter fromu(t,r )
to u(t,r )2du(t,r ):

dr~t,r !5 lim
dr ,dt→0

^f†~t1dt,r1dr !~Uchiral
†

3@du~t1dt,r1dr !#Uchiral@du~t,r !#21!f

3~t,r !&, ~2.40!

where we use the point spitting regularization scheme
regularization is necessary to properly calculate the part
density.24 To lowest order indu, we obtain

dr~t,r !52
i

2
lim

dr ,dt→0
@du~t1dt,r1dr !2du~t,r !#

3^f†~t1dt,r1dr !t3f~t,r !&

52
i

2
lim

dr ,dt→0
@du~t1dt,r1dr !2du~t,r !#

3(
a,s

aGas~2dt,2dr !, ~2.41!

where Gas is the mean-field propagator defined in Se
II A. 33 Introducing the Fourier transformsdu( ipn ,p) and
Gas( ivn ,k), dr is rewritten as

dr~t,r !52
i

2b2

3 (
pn ,vn

E d2p

~2p!2E d2k

~2p!2
du~ ipn ,p!eip•r2 ipnt

3(
a,s

a@Gas~ ivn1 ipn ,k1p!2Gas~ ivn ,k!#,

~2.42!

after a trivial shift of integration variables, and in the lim
dt5dr50. Performing the sum overvn , we obtain
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dr~t,r !52
i

b (
pn

E d2p

~2p!2E d2k

~2p!2
du~ ipn ,p!eip•r2 ipnt

3(
a

a@na~k1p!2na~k!#, ~2.43!

where na(k)5Q@kF2akx1(2tb /vF)cos(kyb)# is the par-
ticle occupation number.@Note that na(k) has the same
value in the metallic and SDW phases atT50.# Using

na~k1p!2na~k!52S apx1
2tb

vF
py sin~kyb! D

3dS kF2akx1
2tb

vF
cos~kyb! D

~2.44!

we finally obtain, to lowest order inp,

dr~t,r !5
i

pbb (
pn

E d2p

~2p!2
pxdu~ ipn ,p!eip•r2 ipnt

5
1

pb
]xdu~t,r !. ~2.45!

By integrating out the Fermions, we have shown that
ground-state density of Fermions couples to the gauge
A0

0 @Eq. ~2.30!#. Since an infinitesimal chiral transformatio
changes the density bydr, it also produces the contributio
to the effective action34

dSJ52E
0

b

d2r dt drA0
0

52
1

pbE0

b

d2r dt ]xduS eA01 idrHS2
vF

2
]xu D .

~2.46!

Taking a variational integral of Eq.~2.46!, we obtain the
chiral anomaly contribution to the effective action

SJ52vFN~0!E
0

b

d2r dtF]xu~eA01 idrHS!2
vF

4
~]xu!2G ,

~2.47!

where we have used 1/pb5vFN(0).
In deriving the actionSJ , we have implicitly assumed tha

the chiral transformation only produces a change in the d
sity of the ground state. Following analogous steps leadin
Eq. ~2.45!, it can be shown that the chiral transformatio
does not change the spin density and the spin or charge
rents, so that the change in the density is the only nonpe
bative effect of the chiral transformation.

3. ŠS92
‹MF

In this subsection, we calculatêS92&MF . Using Eq.
~2.28!, we deduce
e
ld

n-
to

ur-
r-

^S92&MF5
1

b (
pn

E d2p

~2p!2 F (
ab

0,x,y,z

(
mn

0,x,y

Am
a~ ipn ,p!

3P j
m
a j

n
b~ ipn ,p!An

b~2 ipn ,2p!

1 (
a

0,x,y,z

(
m

0,x,y

Am
a~ ipn ,p!P j

m
ag~ ipn ,p!ipy

3u~2 ipn ,2p!1
py

2

4
uu~ ipn ,p!u2Pgg~ ipn ,p!G ,

~2.48!

whereP j
m
a j

n
b( ipn ,p), P j

m
ag( ipn ,p), andPgg( ipn ,p) are the

current-current correlators defined by

P j
m
a j

n
b~ ipn ,p!5^ j m

a~ ipn ,p! j n
b~2 ipn ,2p!&MF ,

P j
m
ag~ ipn ,p!5^ j m

a~ ipn ,p!g~2 ipn ,2p!&MF , ~2.49!

Pgg~ ipn ,p!5^g~ ipn ,p!g~2 ipn ,2p!&MF ,

and the currentsj m
a( ipn ,p) and g( ipn ,p) are the Fourier

transforms of the charge, spin, and chiral currents define
Eq. ~2.25!.

In the long-wavelength limit, we need to compute t
effective action to second order in a gradient expansion.
symmetry reasons, the correlatorsP j

m
x,yj

m8
0,z, P j

m
x,yg , P j

m
x j

m8
y ,

andP j
m
z g vanish, andP j

m
x j

m8
x 5P j

m
y j

m8
y . We also find that none

of the spin currentsj m
x,y,z couple to the charge currentsj m

0 or
g, which simply states that the sliding and spin-wave mod
decouple in the long-wavelength limit. Since the SU~2!
gauge fields are first order in gradient (Am

n }]mnn), we need
P j

m
n j

m8
n8 to zeroth order. This also holds for the correlat

Pgg , since it couples to (]yu)2. Based on similar reasoning
we must obtainPg j

m
0 to first order andP j

m
0 j

m8
0 to second

order. As shown in the Appendix, we thus obtain

P j
0
0 j

0
0~ ipn ,p!5N~0!

vF
2px

21v'
2 py

2

3D0
2

,

P j
x
0 j

x
0~ ipn ,p!52N~0!vF

2S 12
pn

2

6D0
2D ,

P j
y
0 j

y
0~ ipn ,p!52N~0!v'

2 S 12
py

2b2

4
2

pn
2

6D0
2D ,

P j
0
0 j

x
0~ ipn ,p!5N~0!vF

2 ipnpx

3D0
2

,

~2.50!

P j
0
0 j

y
0~ ipn ,p!5N~0!v'

2 ipnpy

3D0
2

,

P j
0
x j

0
x~ ipn ,p!5P j

0
y j

0
y~ ipn ,p!52N~0!,

P j
x
zj

x
z~ ipn ,p!52N~0!vF

2 ,

P j
y
z j

y
z~ ipn ,p!52N~0!v'

2 .
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Separating charge and spin contributions, we have2^S92&MF/25S2spin
eff 1S2phason

eff , where

S2spin
eff 52N~0!

1

b (
pn

E d2p

~2p!2
@ uA0

x~ ipn ,p!u21uA0
y~ ipn ,p!u21vF

2 uAx
z~ ipn ,p!u21v'

2 uAy
z~ ipn ,p!u2#,

~2.51!

S2phason
eff 52N~0!

1

b (
pn

E d2p

~2p!2 H ueA0~ ipn ,p!1 idrHS~ ipn ,p!u2S vF
2px

21v'
2 py

2

6D0
2 D 1e2uAx~ ipn ,p!u2vF

2S 12
pn

2

6D0
2D

1e2uAy~ ipn ,p!u2v'
2 S 12

py
2b2

4
2

pn
2

6D0
2D 2

1

4
uu~ ipn ,p!u2pn

22u~ ipn ,p!evFpnAx~2 ipn ,2p!

1
ipn

3D0
2 @eA0~ ipn ,p!1 idrHS~ ipn ,p!#@vF

2pxeAx~2 ipn ,2p!1v'
2 pyeAy~2 ipn ,2p!#J .
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This completes our derivation of the effective action.
the next sections, we shall use this effective action to ob
the spin-wave and the phason modes.

III. SPIN-WAVE MODE

A. NL sM

The contribution to the spin partSspin
eff of the effective

action comes from the terms involving the gauge fie
Am

x,y,z . From Eqs.~2.35!, ~2.38!, and~2.51!, we find

Sspin
eff 52N~0!(

n

x,y
1

b (
pn

E d2p

~2p!2
@ uA0

n~ ipn ,p!u2

2vF
2 uAx

n~ ipn ,p!u22v'
2 uAy

n~ ipn ,p!u2#. ~3.1!

The contribution from the diamagnetic terms@Eqs. ~2.35!
and ~2.38!# cancels the terms proportional toAm

z in Eq.
~2.51!, so that we are finally left with an effective actio
which depends only onAm

x andAm
y . This cancellation is ex-

pected since our effective action has to be gauge invari
As mentioned earlier, for the SU~2! fields Cm a gauge trans-
formation corresponds to an arbitrary rotation about thz
axis, and does not change the state of the system. Su
rotation changesAm

z →Am
z 11/2]mL, whereL is the rotation

angle.35 Thus to be gauge invariant, the effective action ca
not depend on theAm

z field. The diamagnetic terms in th
effective action are absolutely crucial for this cancellati
and hence for obtaining a gauge-invariant effective action
the spin-wave mode.

Using the identities35

tr~C(x,y)
2 !2tr~szC(x,y)!

25~A(x,y)
x !21~A(x,y)

y !25
~] (x,y)n!2

4
,

~3.2!

tr~C0
2!2tr~szC0!25~A0

x!21~A0
y!252

~]tn!2

4
,

we express the effective action@Eq. ~3.1!# in terms of gradi-
ents of then field:
in

s

t.

a

-

r

Sspin
eff 5

N~0!

4 E
0

b

d2r dt@~]tn!21vF
2~]xn!21v'

2 ~]yn!2#.

~3.3!

The effective action for the spins therefore turns out to
an anisotropic NLsM, as expected. SinceSspin

eff has been ob-
tained within a gradient expansion, it is valid fo
upnu,vFupxu,v'upyu!D0, the NLsM describes the behavio
of the model only in the low-energy long-wavelength lim
Thus, Eq. ~3.3! should be supplemented with cutoffsL0
;D0 in energy space andLx;D0 /vF and Ly;D0 /v' in
momentum space.

The action~3.3! can be expressed in a more convention
form36 as

Sspin
eff 5

1

2E0

b

d2r dt@x~]tn!21rsx~]xn!21rsy~]yn!2#,

~3.4!

where we have introduced the parametersx5N(0)/2, rsx

5N(0)vF
2/2, andrsy5N(0)v'

2 /2. Note that these values ar
only approximate. In order to obtain the correct low-ener
long-wavelength behavior, it would be necessary to integr
out all high-energy short-wavelength fluctuations. The lat
are expected to renormalize the bare values ofx, rsx , and
rsy quoted above.

To see the physical interpretation of the parameterx, we
note thatx5P j

0
n j

0
n( ipn50,p50)/4 (n5x,y). The correlators

P j
0
x j

0
x andP j

0
y j

0
y can be linked to the transverse spin susc

tibilities in the mean-field state, i.e., P j
0
x(y) j

0
x(y)

54^Sx(y)Sx(y)&MF , where Sm5f†smf/2. We see thatx
5^SxSx&MF5^SySy&MF and hence corresponds to the tran
verse static uniform spin susceptibility of the system in t
mean-field ground state.

The spin stiffness coefficientsrsx and rsy , on the other
hand, come from the diamagnetic terms@Eqs. ~2.35! and
~2.38!#, which are themselves related to the average kin
energy. To see this point more clearly, let us consider
diamagnetic term in they direction. We have
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N~0!v'
2 (

m

x,y
1

b (
pn

E d2p

~2p!2
uAy

m~ ipn ,p!u2

5
tbb2

2 (
m

x,y
1

b (
pn

E d2p

~2p!2
uAy

m~ ipn ,p!u2
1

b

3 (
ivn ,a,s

d2k

~2p!2
2 cos~kyb!Gas~ ivn ,k!

52
b2

2
^Ky&MF(

m

x,y
1

b (
pn

E d2p

~2p!2
uAy

m~ ipn ,p!u2,

~3.5!

where^Ky&MF is the average kinetic energy in they direction
per unit area in the mean-field state. But we can also w
the diamagnetic term as

N~0!v'
2 (

m

x,y
1

b (
pn

E d2p

~2p!2
uAy

m~ ipn ,p!u2

5
rsy

2 E
0

b

dt d2r S ]n

]yD 2

. ~3.6!

Comparing Eqs.~3.5! and~3.6!, we immediately see that th
spin-stiffness parameterrsy is related to the average kinet
energy in they direction. A similar result can be obtained fo
rsx , and we finally get

rsx52
a2^Kx&MF

4
,

~3.7!

rsy52
b2^Ky&MF

4
.

The velocities of the spin-wave mode,vx5(rsx /x)1/2 and
vy5(rsy /x)1/2, are then given by

vx5S 2a2^Kx&MF

4x D 1/2

5vF ,

~3.8!

vy5S 2b2^Ky&MF

4x D 1/2

5v' .

We find that the longitudinal velocity equals the Fer
velocity, because we have neglected the coupling of the s
wave mode with the long-wavelength fluctuations. Taki
into account the latter would lead to the renormalized sp
wave velocityvx5vF@12UN(0)#1/2.1

Finally, we note that we can carry out an appropriate
scaling of lengths to obtain an isotropic NLsM. Rescaling
the lengths asx85x/vx , y85y/vy , andt85t, we obtain

Sspin
eff 5

Arsxrsy

2 E
L8

d2r 8 dt8 (
m

t8,x8,y8

~]mn!2. ~3.9!

The cutoff L8;D0 ~in reciprocal space! is now isotropic.
The dimensionless coupling constant of the isotropic NLsM
te

i
n-

-

-

~3.9! equals D0 /(rsxrsy)
1/2. It is proportional to D0

}e22/UN(0) and hence approaches zero in the weak-coup
limit ( U→0).37

B. Berry phase term

In general, in addition to the usual dynamical terms,
action describing antiferromagnetic spin systems in one
two dimensions is expected to have a topological Be
phase term.36 Such a term was derived for antiferromagne
systems described by the 2D isotropic Hubbard model
Wen et al.25 We now derive this term for our action.

The Berry phase term comes from the term proportio
to A0

z in ^S9&MF . However, to get a nonzero result, it is n
sufficient to retain only the long-wavelength part of theR
matrix, since the Berry phase term precisely results from
2kF oscillating part. Instead of considering the more gene
structure of theR matrix, we go back to the original tight
binding dispersion law, which is a more direct way for o
taining the Berry phase term. The term proportional toA0

z in
^S9&MF then reads

SBerry52E d2r dt A0
z^f†szf&MF , ~3.10!

where^f†szf&MF is the spin density in the mean-field stat
Noting that^f†szf&MF becomeŝ f†(t01t11t2)szf&MF
in the continuous formulation, we obtain, using the mea
field equations@Eq. ~2.12!#,

SBerry52E d2r dt A0
z^f†~t01t11t2!szf&MF

52
4D0

U E d2r dt A0
z cos~Q•r !. ~3.11!

In general, it is not possible to express the fieldA0
z in terms

of the n vector, because the former is a gauge-depend
quantity. Nevertheless, it is still possible to express the va
tion of theA0

z field in terms ofn as25

A0
z52 i /2*0

1dh n~h!•@]hn~h!3]tn~h!#

,

whereh is an external parameter varying continuously fro
0 to 1,n(1) is the physicaln field, andn(0)50. The action
can then be written as

SBerry5 i
2D0

U E d2r dt cos~Q•r !

3E
0

1

dh n~h!•@]hn~h!3]tn~h!#. ~3.12!

Another equivalent way of writing the Berry term in th
effective action is to express the gauge fieldA0

z in terms of
the polar and azimuthal anglesa and f of the n vector.
Using A0

z52 i /2@12cos„a(t,r )…#]tf(t,r ), the Berry term
in the action then assumes the more familiar form36



e

by

es

PRB 61 13 503EFFECTIVE ACTION AND COLLECTIVE MODES IN . . .
SBerry5 i
2D0

U E d2r dt cos~Q•r !

3@12cos„a~t,r !…#]tf~t,r !. ~3.13!

For 2D and 3D antiferromagnets, it is generally believ
that the presence of the Berry phase term plays no role.36 The
i
r-
s

r-
ds

e
a

te
d

dynamics of the spin-wave mode is therefore determined
the NLsM @Eq. ~3.4!# derived in the preceding section.

IV. PHASON MODE

The contribution to the phason effective action com
from the diamagnetic terms@Eqs.~2.35! and~2.38!#, the chi-
ral termSJ @Eq. ~2.47!#, the interaction termSI @Eq. ~2.32!#,
andS2phason@Eq. ~2.51!#:
Sphason
eff 5

1

b (
pn

E d2p

~2p!2 S (
mn

0,x,y
1

2
$@eAm~ ipn ,p!1 idrHS~ ipn ,p!dm0#Pmn~ ipn ,p!@eAn~2 ipn ,2p!

1 idrHS~2 ipn ,2p!dn0#%

1 (
m

0,x,y

$@eAm~ ipn ,p!1 idrHS~ ipn ,p!dm0#Fm~ ipn ,p!u~2 ipn ,2p!%1
1

2
uu~ ipn ,p!u2D~ ipn ,p!

1 idr~ ipn ,p!drHS~2 ipn ,2p!1
U

4
udr~ ipn ,p!u2D , ~4.1!

where the polarization tensorPmn and the coupling coefficientsFm andD are given by

Pmn~ ipn ,p!5S 2
N~0!

3D0
2 ~vF

2px
21v'

2 py
2! 2

N~0!vF
2

3D0
2

ipnpx 2
N~0!v'

2

3D0
2

ipnpy

2
N~0!vF

2

3D0
2

ipnpx

N~0!vF
2

3D0
2

pn
2 0

2
N~0!v'

2

3D0
2

ipnpy 0
N~0!v'

2

3D0
2

pn
2
D ,

Fm~ ipn ,p!5„iN~0!vFpx ,2N~0!vFpn ,0…, ~4.2!

D~ ipn ,p!5
N~0!

2
~pn

21vF
2px

21v'
2 py

2!.
cy
The contribution from the diamagnetic terms in Eqs.~2.35!
and ~2.38! exactly cancels the gauge-noninvariant terms
S2phason. In fact, it can be explicitly checked that the pola
ization tensorPmn is transverse. Also, we note that the pha
field u couples to the~gauge-invariant! electric field Ex
52pnAx1 ipxA0. This, together with the transverse pola
ization tensorPmn , ensures that if we integrate out the fiel
dr, drHS, andu to obtain an effective actionSeff@Am#, it will
be gauge invariant. Since the coupling term betweenu and
A0 comes fromSJ , it turns out that the contribution from th
Jacobian of the chiral anomaly is crucial for obtaining
gauge-invariant effective action.

A. Equations of motion

We consider the electromagnetic field as being the ex
nal field, i.e., we neglect the phason-polariton mode.38 Vary-
ing the effective action with respect to the fieldsu, r, and
rHS, we obtain the three coupled equations
n

e

r-

D~ ipn ,p!u~ ipn ,p!1 (
m

0,x,y

Fm~ ipn ,p!@eAm~ ipn ,p!

1 idrHS~ ipn ,p!dm0#50, ~4.3!

F0~2 ipn ,2p!u~ ipn ,p!1dr~ ipn ,p!1 (
m

0,x,y

P0m~ ipn ,p!

3@eAm~ ipn ,p!1 idrHS~ ipn ,p!dm0#50, ~4.4!

U

2
dr~ ipn ,p!1 idrHS~ ipn ,p!50. ~4.5!

Using Eq.~4.5!, we can eliminate the HS fielddrHS. This
gives two coupled equations for the physical fieldsdr andu.
Substituting the expressions forD, Pmn , and Fm from Eq.
~4.2!, and retaining terms up to second order in frequen
and momenta, we get
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~pn
21vF

2px
21v'

2 py
2!u~ ipn ,p!

2 ivFpxUdr~ ipn ,p!12evFEx~ ipn ,p!50, ~4.6!

vFN~0!pxu~ ipn ,p!1 idr~ ipn ,p!50.

Thus, we obtain the well-known relation between charge
phase fluctuations:

dr~t,r !5vFN~0!]xu~t,r !5
1

pb
]xu~t,r !. ~4.7!

From Eq.~4.6!, we finally obtain the~decoupled! equations
of motion

~] t
22vph

2 ]x
22v'

2 ]y
2!u~ t,r !522evFEx~ t,r !,

~4.8!

~] t
22vph

2 ]x
22v'

2 ]y
2!dr~ t,r !52

2evF

pb
]xEx~ t,r !,

where we have Wick-rotated back to real timet, and vph

5vF@11UN(0)#1/2 is the renormalized phason velocit
This renormalization of the longitudinal phason velocity h
been obtained previously from a more conventional appro
based on Green-function calculations.1

B. Effective action S†u,Aµ‡

In this subsection, we derive the effective acti
Seff@u,Am# for the phase mode.

If we try to integrate out the HS fieldsdr and drHS in
Sphason

eff @dr,drHS,u,Am#, we immediately face the problem o
inverting the coefficientP00 of the quadratic term indrHS,
since P00

21 is singular atpn ,p50. Nevertheless, we not
from the results of the preceding section that this term d
not contribute to the equations of motion up to quadra
order in external momenta and frequency. We can there
ignore this term while integrating out the fielddrHS. As we
shall see, the effective action so obtained, although not ex
reproduces the correct equations of motion for the ph
field u.

Integration of thedrHS fields within the above-stated ap
proximation then gives a factor of)pn ,pd(dr2 ipxu/pb)
and we are left with the partition function

Z5E DdrDuDAmdS dr2
i

pb
pxu De2Seff[dr,Am ,u] ,

~4.9!

with the action
d

s
h

s
c
re

ct,
e

Seff@dr,Am ,u#

5
1

b (
pn

E d2p

~2p!2 S (
mn

0,x,y
1

2
@eAm~ ipn ,p!Pmn~ ipn ,p!

3eAn~2 ipn ,2p!#

1 (
m

0,x,y

@eAm~ ipn ,p!Fm~ ipn ,p!u~2 ipn ,2p!#

1
1

2
uu~ ipn ,p!u2D~ ipn ,p!1

U

4
udr~ ipn ,p!u2D .

~4.10!

Integrating outdr, one then gets the effective action

Seff@u,Am#5
1

b (
pn

E d2p

~2p!2 S (
mn

0,x,y
1

2
@eAm~ ipn ,p!

3Pmn~ ipn ,p!eAn~2 ipn ,2p!#

1eN~0!vFEx~ ipn ,p!u~2 ipn ,2p!

1
1

2
uu~ ipn ,p!u2D8~ ipn ,p!D , ~4.11!

whereD8( ipn ,p)5N(0)(pn
21vph

2 px
21v'

2 py
2)/2 is the effec-

tive inverse phason propagator. This clearly demonstrates
modification of the phason velocity due to the interacti
between the phase fieldu and the density fluctuationdr. It is
easy to check, by varying Eq.~4.11! with respect tou, that
this effective action reproduces the same equation of mo
for u as Eq.~4.6! derived in the earlier section.

C. Effective action S†dr,Aµ‡

To obtain the effective actionS@dr,Am# for the density
fluctuations dr, we start from the effective action
Seff@dr,u,Am# @Eq. ~4.10!#, and integrate out the phase fie
u. One then obtains the effective action

S@dr,Am#5
1

b (
pn

E d2p

~2p!2 F (
mn

0,x,y
1

2
@eAm~ ipn ,p!

3Pmn~ ipn ,p!eAn~2 ipn ,2p!#

2eS A0~ ipn ,p!2
pn

ipx
Ax~ ipn ,p! D

3dr~2 ipn ,2p!1
1

2
udr~ ipn ,p!u2xrr

21G ,

~4.12!

where we have introduced the density-density correlat
function

xrr~ ipn ,p!5^dr~ ipn ,p!dr~2 ipn ,2p!&

52N~0!
vF

2px
2

pn
21vph

2 px
21v'

2 py
2

. ~4.13!
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It is easy to see from the expression of the density-den
correlation function that the phason does not induce
transverse density fluctuations.

The currents in the longitudinal and transverse directi
are given by

j x~ ipn ,p!52
dS

dAx~2 ipn ,2p!
U

Am50

52
epn

ipx
dr~ ipn ,p!,

~4.14!

j y~ ipn ,p!52
dS

dAy~2 ipn ,2p!
U

Am50

50.

These expressions agree with the~real-time! continuity equa-
tion ] tr1“• j50. Also, we see that there is no current d
to the phason mode in they direction. The contribution to the
current across the chain comes entirely from the quasipar
excitations.39 From Eqs.~4.7! and ~4.14!, we obtain~in real
time!

j x~ t,r !52
e

pb
] tu~ t,r !. ~4.15!

Note that the expressions of the currents as a function of
phaseu @Eqs.~4.7! and~4.15!# have been obtained to lowe
order in a gradient expansion. They have been recently g
eralized to higher order in Ref. 40.

The current-current correlators can also be obtained f
the effective action. Using Eqs.~4.13! and ~4.14!, we find
that the current-current correlatorx j m j n

5^ j m j n& can be ex-
pressed in terms of the density-density correlation funct
as

x j xj x
~ ipn ,p!52

e2pn
2

px
2

xrr~ ipn ,p!

522N~0!e2
vF

2pn
2

pn
21vph

2 px
21v'

2 py
2

, ~4.16!

x j y j y
~ ipn ,p!5x j xj y

~ ipn ,p!50.

From the expression of the current-current correlator,
then obtain the ac conductivitysxx(v) as

sxx~v!52
1

pn
x j xj x

~ ipn ,p50!U
ipn5v1 i01

52N~0!e2vF
2F iPS 1

v D1pd~v!G , ~4.17!

whereP denotes the principal part. The real part of the co
ductivity therefore satisfies thef-sum rule,

E
2`

`

Re@sxx~v!#dv5
vp

2

4
, ~4.18!

wherevp5(8e2vF /b)1/2 is the plasma frequency. The ph
son mode completely exhausts the spectral weight and
obtain the well-known result1 that there is no contribution to
the longitudinal conductivity from the quasiparticle excit
tions in a clean SDW system.
ty
y

s
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e
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m

n

e

-

e

V. CONCLUSION

We have derived the effective action for the low-ener
collective modes of quasi-1D SDW systems. The introd
tion of a fluctuating spin-quantization axis in the function
integral allows us to consider the phason mode, the s
wave mode, and the long-wavelength charge fluctuations
equal footing.

We find that the spin-wave mode is governed by an i
tropic NLsM together with a topological Berry phase term
By a suitable length rescaling, one can obtain an isotro
NLsM with an effective dimensionless coupling consta
D0 /(rsxrsy)

1/2, wherersx andrsy are the spin-stiffness co
efficients. The coupling constant, proportional to the me
field gapD0}e22/UN(0), is small in the weak-coupling limit
UN(0)!1.

The sliding mode is governed by an effective Lagrang
L(u,r) which is a function of two independent fields: th
phaseu of the SDW condensate and the charge-density fi
r. From the coupled equations satisfied by these two v
ables, we obtain the phason dynamics and its contributio
the current-current and density-density correlation functio
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APPENDIX

In this section, we sketch the calculation of the curre
current correlators. These correlators are given by

P j
m
n j

m8
n8 ~ ipn ,p![P j j 8~ ipn ,p!

5^ j ~ ipn ,p! j 8~2 ipn ,2p!&MF . ~A1!

The currentsj m
n ~or j in the simplified notation! can be de-

fined using Eq.~2.25! as

j ~ ipn ,p!5
1

Ab
(
vn

E d2k

~2p!2 (
a

12

(
ss8

↑↓
fas8

†
~ ivn ,k!

3vass8~ky ,ky1py!fas~ ivn1 ipn ,k1p!,

~A2!

where we have set the area of the system to unity. The fu
tions vass8(ky ,ky1py) are the current operators which ca
be easily read off from the definition of the currents in E
~2.25!. For example, for the charge current in thex direction
j x
0 , vass8(ky ,ky1py)5vFadss8 . From Eq.~A2!, we then

deduce
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P j j 8~ ipn ,p!52
1

b (
vn

E d2k

~2p!2 (
a

12

(
ss8

↑↓
@vass8~ky2py ,ky!vas8s

8 ~ky ,ky2py!Gas8~ ivn ,k!Gas~ ivn2 ipn ,k2p!

1vass8~ky2py ,ky!v ās8s
8 ~ky1p/b,ky2py1p/b!Fas8~ ivn ,k!F ās~ ivn2 ipn ,k2p2aQ!#, ~A3!
y

e

whereā57 for a56 andG6s andF6s are the mean-field
propagators. We evaluate the frequency sum and thekx in-
tegral usingea(k2aQ)52eā(k) and expanding the energ
dispersionea in powers of external momenta:

ea~k!2ea~k2p!5ex1ey ,

ey52tbbpy sin~kyb!2tbb2py
2 cos~kyb!1O~py

3!, ~A4!

ex5avFpx .

Using these relations and Eq.~2.16!, one can evaluate th
frequency sum and thekx integral up to second order inpn

andeT5ex1ey„O(pn
2 ,eT

2,pneT)… to obtain
f

-
a

1

b (
vn

E dkx

2p
Fas8~ ivn ,k!F ās~ ivn2 ipn ,k2p2aQ!

5sgn~s!sgn~s8!
N~0!

2 S 1

2
2

pn
21eT

2

12D0
2 D ,

~A5!

1

b (
vn

E dkx

2p
Gas8~ ivn ,k!Gas~ ivn2 ipn ,k2p!

52
N~0!

2 S 1

2
2

pn
22eT

2

12D0
2

1
ipneT

6D0
2 D .

Substituting Eq.~A5! in the expression for the correlator@Eq.
~A3!#, we get
P j j 8~ ipn ,p!5
N~0!

2 E dky

2p (
a

12

(
ss8

↑↓ F vass8~ky2py ,ky!3vas8s
8 ~ky ,ky2py!3S 1

2
2

pn
22eT

2

12D0
2

1
ipneT

6D0
2 D

1vass8~ky2py ,ky!v ās8s
8 ~ky1p/b,ky2py1p/b!sgn~s!sgn~s8!S 2

1

2
1

pn
21eT

2

12D0
2 D G . ~A6!
nd

tly
s.
The dependence onky comes fromey and vass8 . The
latter is eitherky independent or depends onky through
the function f 5sin„(ky2py)b…1sin(kyb)52 sin(kyb)
2pybcos(kyb)2py

2b2 sin(kyb)/21O(py
3). To evaluate theky

integral in Eq.~A6!, we therefore need only a limited set o
integrals, which, up to orderpy

2 , are given by

^ f &ky
5^ey&ky

5^ f ey
2&ky

5^ f 2ey&ky
50,

^ f 2&ky
522

py
2b2

2
, ^ey

2&ky
5v'

2 py
2 , ~A7!

^ f ey&ky
52tbbpy , ^ f 2ey

2&ky
53v'

2 py
2 ,

where we have used the short-hand notation^•••&ky
for

*dky /(2p)••• .
From Eqs.~A6! and ~A7!, it is then a matter of straight

forward algebra to obtain the different correlators. As
 n

illustrative example we sketch the calculation ofP j
y
0 j

y
0. Since

the current operator in this case is given byvass8(ky ,ky
2py)5tbbdss8 f (ky ,py), we obtain

P j
y
0 j

y
0~ ipn ,p!5

N~0!tb
2b2

2

3(
a

12

(
ss8

↑↓
dss8K f 2S 12

pn
2

6D0
2

1
ipneT

6D0
2 D L

ky

52N~0!v'
2 S 12

py
2b2

4
2

pn
2

6D0
2D , ~A8!

where we have used Eq.~A7! to evaluate theky integrals to
obtain the last line and retained only terms up to seco
order in external frequency and momenta.

The other correlators can be obtained following an exac
similar procedure and in this way we finally obtain Eq
~2.50! for the charge and spin current-current correlators.
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