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Thermodynamics of a Bose gas near the superfluid–Mott-insulator transition
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We study the thermodynamics near the generic (density-driven) superfluid–Mott-insulator transition in the
three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low
energy, the physics is controlled by the Gaussian fixed point and becomes universal. Thermodynamic quantities
can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class
while the microscopic physics enters only via two nonuniversal parameters, namely, the effective mass m∗ and
the “scattering length” a∗ of the elementary excitations at the quantum critical point between the superfluid and
Mott-insulating phases. A notable exception is the condensate density in the superfluid phase which is proportional
to the quasiparticle weight Zqp of the elementary excitations. The universal regime is defined by m∗a∗2T � 1
and m∗a∗2|δμ| � 1 or, equivalently, |n̄ − n̄c|a∗3 � 1, where δμ = μ − μc is the chemical potential shift from
the quantum critical point (μ = μc, T = 0) and n̄ − n̄c the doping with respect to the commensurate density n̄c

of the T = 0 Mott insulator. We compute Zqp, m∗, and a∗ and find that they vary strongly with both the ratio
t/U between hopping amplitude and onsite repulsion and the value of the (commensurate) density n̄c. Finally,
we discuss the experimental observation of universality and the measurement of Zqp, m∗, and a∗ in a cold-atomic
gas in an optical lattice.
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I. INTRODUCTION

The low-temperature thermodynamics of a dilute ultracold
Bose gas is well understood both theoretically and experimen-
tally. The equation of state, e.g., the pressure P (μ,T ) versus
chemical potential and temperature, turns out to be “universal”
to the extent that it depends only on a small number of
parameters such as the mass m of the bosons and their s-wave
scattering length a, and is otherwise independent of other
microscopic characteristics such as details of the atom-atom
interaction potential. From a theoretical point of view, the
thermodynamics of a dilute Bose gas is usually derived within
a low-density expansion using ma2μ (or n̄a3, with n̄ the mean
boson density) as the expansion parameter.

Strong correlations in an ultracold Bose gas can be achieved
by loading the gas into an optical lattice. It is then possible to
induce a quantum phase transition between a superfluid ground
state and a Mott-insulating phase by varying the strength of the
lattice potential [1]. The main features of the Mott transition
can be understood in the framework of the Bose-Hubbard
model, which describes bosons moving in a lattice with an
onsite repulsive interaction [2].

In the vicinity of the Mott transition, there is no small
parameter (such as density or interaction strength) that would
allow us to derive the equation of state perturbatively. Never-
theless, near the generic (density-driven) Mott transition, the
thermodynamics of a Bose gas turns out to be similar to that of
a dilute Bose gas up to some effective parameters. The origin
of this similarity can be understood as follows. By varying
the chemical potential from negative to positive values in a
dilute Bose gas, one induces a (zero-temperature) quantum
phase transition between a state with no particles (vacuum)
and a superfluid state with a finite density. This identifies the
point μ = T = 0 as a quantum critical point (QCP). Above the
upper critical dimension d+

c = 2, the boson-boson interaction
is irrelevant (in the renormalization-group sense) and the

critical behavior at the transition is mean-field like with a
correlation-length exponent ν = 1/2 and a dynamical critical
exponent z = 2. Elementary excitations at the QCP are free
bosons of mass m and their mutual interaction is determined
by the s-wave scattering length a in the low-energy limit. The
dependence of the equation of state of a dilute Bose gas on m

and a only is a direct consequence of the proximity of the QCP
between the superfluid phase and the vacuum: the thermody-
namics is controlled by the QCP. It follows that thermodynamic
quantities can be expressed in terms of universal scaling
functions of μ/T and an effective temperature-dependent
dimensionless interaction constant g̃(T ) = 8π

√
2ma2T [3].

This universal description holds in the critical regime of the
QCP defined by ma2|μ| and ma2T � 1.

The vacuum-superfluid transition of a dilute Bose gas and
the generic Mott transition of a Bose gas in an optical lattice
are described by the same low-energy effective theory [4].
They therefore belong to the same universality class and are
governed by the same (Gaussian) fixed point. Elementary
excitations at the QCP between the Mott insulator and the
superfluid phase are quasiparticles with effective mass m∗ and
their mutual interaction is described by an effective “scattering
length” a∗. Near the QCP, thermodynamic quantities can be
expressed with the universal scaling functions of the dilute
Bose gas universality class and the nonuniversal parameters
m∗ and a∗. This conclusion is correct everywhere near
the superfluid–Mott-insulator transition except in the close
vicinity of the multicritical points where the transition takes
place at fixed (commensurate) density (Fig. 1).

In this paper, we study the thermodynamics of the three-
dimensional Bose-Hubbard model using a nonperturbative
renormalization-group (NPRG) approach [5–7]. In Sec. II,
we derive scaling forms for various thermodynamic quantities
(pressure, density, compressibility, condensate density, super-
fluid stiffness, and superfluid transition temperature) of a dilute
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FIG. 1. (Color online) Zero-temperature phase diagram of the
Bose-Hubbard model on a cubic lattice showing the Mott insulators
(MI) with density n̄ = 0 (vacuum) and n̄ = 1, as well as the
surrounding superfluid phase (SF). Point C at the tip of the Mott
lobe shows the multicritical point where the transition occurs at fixed
density n̄ = 1. Away from this point, the transition is driven by a
density change. The finite-temperature pressure P (μc,T ) at point B is
shown in Fig. 5. The zero-temperature pressure P (μ,0), condensate
density n0(μ,0), superfluid stiffness ρs(μ,0), sound mode velocity
c(μ,0), and superfluid transition temperature Tc(μ) along the dotted
line AB are shown in Figs. 6–10.

Bose gas and discuss the scaling functions in some limiting
cases. The nonperturbative renormalization-group approach
to the Bose-Hubbard model is briefly reviewed in Sec. III.
In Sec. IV, we show that the NPRG approach enables us to
straightforwardly identify the elementary excitations at the
QCP governing the generic Mott transition, and compute their
effective mass m∗ and effective scattering length a∗ as well
as their spectral weight Zqp. Zqp, m∗, and a∗ are calculated
as a function of t/U . We then present various thermodynamic
quantities obtained from a numerical solution of the NPRG
equations and show that near the Mott transition, they satisfy
the scaling behavior characteristic of the dilute Bose gas
universality class, except for the condensate density which
is proportional to the quasiparticle weight. The experimental
implications of our results are discussed in Sec. V.

II. DILUTE BOSE GAS UNIVERSALITY CLASS

In this section, we discuss in detail the dilute Bose
gas universality class. We derive scaling forms for various
thermodynamic quantities and compute the corresponding
universal scaling functions in some limits.

A. Universal scaling functions

Let us consider a three-dimensional Bose gas described by
the (Euclidean) action

S =
∫ β

0
dτ

∫
ddr

{
ψ∗

(
∂τ − μ + ∇2

2m

)
ψ + g

2
(ψ∗ψ)2

}
,

(1)

where ψ(r,τ ) is a complex field and τ ∈ [0,β] an imaginary
time with β = 1/T the inverse temperature. μ denotes the
chemical potential. The interaction is assumed to be local in

space and the model is regularized by an ultraviolet momentum
cutoff 
. d = 3 and we set h̄ = kB = 1 throughout the paper.

The nature of the μ = T = 0 QCP between the vacuum
and the superfluid state can be understood from a RG analysis.
Since the μ = 0 ground state is the vacuum, there is no
renormalization of the single-particle propagator and the
correlation-length exponent ν = 1/2, the anomalous dimen-
sion η = 0 while the dynamical critical exponent z = 2. The
dimensionless interaction constant g̃ = 2mg
 satisfies the
(exact) RG equation

s
dg̃(s)

ds
= −g̃(s) − g̃(s)2

4π2
(2)

[with g̃(1) = g̃], when fluctuation modes with momenta
between 
 and 
/s are integrated out (with a proper rescaling
of fields, momenta, and frequencies in order to restore the
original value of the cutoff 
) [3,4]. From Eq. (2), we obtain

g̃(s) = 8π
a

s
for s � 1, (3)

where

a = mg

4π + 2
π
mg


(4)

is the s-wave scattering length which can be calculated from
the action (1) by solving the two-body problem. g̃(s) is thus
irrelevant (it vanishes for s → ∞) and the only fixed point
of Eq. (2) is g̃ = 0, in agreement with the fact that the
upper critical dimension for the vacuum-superfluid transition
is d+

c = 2.
There are two relevant perturbations about the Gaussian

fixed point μ = T = g̃ = 0: the chemical potential μ and the
temperature T , with scaling dimensions [μ] = 1/ν and [T ] =
z. In a RG transformation, they transform as μ(s) = s1/νμ and
T (s) = szT . In the critical regime near the QCP, the pressure
satisfies [8]

P (μ,T ) = s−d−zP (s1/νμ,szT ,g̃(s)). (5)

By choosing s ∼ T −1/z or s ∼ |μ|−ν and setting z = 1/ν = 2
(with d = 3), we can write the pressure in the scaling form

P (μ,T ) =
(

m

2π

)3/2

T 5/2F
(

μ

T
,g̃(T )

)
(6)

or

P (μ,T ) =
(

m

2π

)3/2

μ5/2G
(

T

μ
,g̃(μ)

)
. (7)

The overall factor m3/2 comes from dimensional consider-
ations, while the factor 1/(2π )3/2 is introduced for conve-
nience [3]. The energy-dependent effective (dimensionless)
interaction constant g̃(ε) ≡ g̃(s = 
/

√
2m|ε|) is defined by

g̃(ε) = 8π
√

2ma2|ε| (8)

and is entirely determined by the mass m of the bosons
and the scattering length a. F and G are universal scaling
functions characteristic of the three-dimensional dilute Bose
gas universality class. Equations (6) and (7) are valid in
the critical regime near the QCP defined by ma2|μ| � 1
and ma2T � 1. Note that the interaction constant g̃ is a
dangerously irrelevant variable (in the RG sense) and therefore
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can not be neglected: F and G are singular functions of
g̃(T ) or g̃(μ). Higher-order interactions, such as three-body
interactions, are not considered here since they are irrelevant
and give rise to subleading contributions to the pressure.

Equations (6) and (7) imply scaling forms for other
thermodynamic quantities. For example, the particle density
and compressibility read as

n̄(μ,T ) = ∂P

∂μ
=

(
m

2π

)3/2

T 3/2F (1,0)

(
μ

T
,g̃(T )

)
,

(9)

κ(μ,T ) = ∂2P

∂μ2
=

(
m

2π

)3/2

T 1/2F (2,0)

(
μ

T
,g̃(T )

)
,

respectively, where we use the notation F (i,j )(x,y) =
∂i
x∂

j
yF(x,y).
For positive chemical potential, there is a superfluid

transition at a temperature Tc. This transition corresponds to a
singularity of the scaling function F(x,y) when x = xc(y). It
follows that

μ

Tc

= H(g̃(Tc)), (10)

with H a universal scaling function. Equation (10) implies that
ma2Tc is a universal function of ma2μ.

In the superfluid phase, using [8]

n0(μ,T ) = s−d−z+2n0(s1/νμ,szT ,g̃(s)) (11)

with s ∼ |μ|−ν , one finds that the condensate density satisfies
the scaling form

n0(μ,T ) =
(

mμ

2π

)3/2

I
(

T

μ
,g̃(μ)

)
, (12)

with I a universal function and g̃(μ) defined by Eq. (8). The
superfluid density (or superfluid stiffness ρs = ns/m) satisfies
a similar scaling form

ns(μ,T ) =
(

mμ

2π

)3/2

J
(

T

μ
,g̃(μ)

)
. (13)

Galilean invariance implies that the T = 0 superfluid density
ns(μ,0) is equal to the fluid density n̄(μ,0) and is therefore
determined by the scaling function F [Eq. (9)]. The sound
mode velocity can be expressed in terms of the compressibility
and the superfluid stiffness ρs = ns/m (see, e.g., Ref. [9]),

c(μ,T ) =
√

ρs(μ,T )

κ(μ,T )
. (14)

At zero temperature, since ns = n̄, the Bogoliubov sound mode
velocity c(μ,0) is equal to the macroscopic sound velocity
[10].

B. Limiting cases

For a three-dimensional Bose gas, the scaling functions can
be obtained from perturbation theory (see Appendix A). In this
section, we discuss various limiting cases.

1. Dilute classical gas

When the chemical potential is large and negative, μ < 0
and |μ| � T , the system behaves as a dilute classical gas and

the pressure takes the form

P (μ,T ) =
(

m

2π

)3/2

T 5/2e−|μ|/T , (15)

which leads to

F(x,y) = ex for x < 0 and |x| � 1,

G(x,y) = x5/2e1/x for x < 0 and |x| � 1.
(16)

2. T = 0 superfluid phase

At low temperatures and positive chemical potential, the
scaling functions can be obtained from the Bogoliubov theory
[11,12]. At zero temperature,

P (μ,0) = mμ2

8πa

(
1 − 64

15π

√
ma2μ

)
, (17)

n̄(μ,0) = mμ

4πa

(
1 − 16

3π

√
ma2μ

)
, (18)

κ(μ,0) = m

4πa

(
1 − 8

π

√
ma2μ

)
, (19)

n0(μ,0) = mμ

4πa

(
1 − 20

3π

√
ma2μ

)
, (20)

and ρs(μ,0) = ns(μ,0)/m = n̄(μ,0)/m. The first term in
these equations is usually referred to as the mean-field result
and the second one as the Lee-Huang-Yang correction [13,14].
Equations (17)–(20) can be cast in the forms (7), (12), and (13)
with

G(0,y) = 4π3/2

y

(
1 − 4

√
2y

15π2

)
,

I(0,y) = 8π3/2

y

(
1 − 5

√
2y

12π2

)
, (21)

J (0,y) = 8π3/2

y

(
1 −

√
2y

3π2

)
.

From Eqs. (18) and (19), we deduce the expression of the
sound mode velocity (14),

c(μ,0) =
√

μ

m
, (22)

to leading order in ma2μ.

3. Quantum critical regime μ = 0

At vanishing chemical potential, the condensate density
vanishes and the Bogoliubov theory reproduces the free boson
result

P (0,T ) = − 1

β

∫
q

ln(1 − e−βεq ) = ζ (5/2)

(
m

2π

)3/2

T 5/2,

(23)

where ζ (x) is the Riemann zeta function and ζ (5/2) � 1.3415.
Equation (23) implies

F(0,y) = ζ (5/2) for y → 0. (24)
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4. Superfluid transition

The Bogoliubov theory correctly describes the ground state
and its elementary excitations but fails near the superfluid
transition temperature Tc. In particular, it predicts a first-
order phase transition [15]. The transition temperature can
nevertheless be determined from a perturbative approach in
the normal phase by considering the self-consistent one-loop
correction to the self-energy (self-consistent Hartree-Fock
approximation)

μ = 8πa

m
ζ (3/2)

(
mTc

2π

)3/2

, (25)

which leads to

H(x) = ζ (3/2)

4π3/2
x. (26)

III. LATTICE NPRG

In this section, we briefly review the NPRG approach to
the Bose-Hubbard model defined on a cubic lattice [5,6]. The
model is defined by the action

S =
∫ β

0
dτ

{ ∑
r

[
ψ∗

r (∂τ − μ)ψr + U

2
(ψ∗

r ψr)2

]

− t
∑
〈r,r′〉

(ψ∗
r ψr′ + c.c.)

}
, (27)

where ψr(τ ) is a complex field. {r} denotes the N sites of
the lattice and 〈r,r′〉 nearest-neighbor sites. U is the onsite
repulsion and t the hopping amplitude. We take the lattice
spacing as the unit length throughout the paper.

A. Scale-dependent effective action

The NPRG is implemented by considering a family of
models with action Sk = S + �Sk indexed by a momentum
scale k varying between a microscopic scale 
 down to
0 [16,17]. �Sk is a “regulator” term defined by

�Sk =
∫ β

0
dτ

∑
q

ψ∗(q)Rk(q)ψ(q), (28)

where ψ(q) is the Fourier transform of ψr and the sum over
q runs over the first Brillouin zone ]−π,π ]d of the reciprocal
lattice. The cutoff function Rk(q) modifies the bare dispersion
tq = −2t

∑d
i=1 cos qi of the bosons. In the lattice scheme,

R
(q) is chosen such that the effective (bare) dispersion
tq + R
(q) vanishes [18]. The action S
 = S + �S
 then
corresponds to the local limit of decoupled sites (vanishing
hopping amplitude).

In practice, we choose the cutoff function

Rk(q) = −ZA,kεksgn(tq)(1 − yq)�(1 − yq), (29)

with 
 = √
2d , εk = tk2, yq = (2dt − |tq|)/εk , and �(x) the

step function. The k-dependent constant ZA,k is defined below
(ZA,
 = 1). Since Rk=0(q) = 0, the action Sk=0 coincides with
the action (27) of the original model. For small k, the function
Rk(q) gives a “mass” ∼ k2 to the low-energy modes |q| � k

and acts as an infrared regulator as in the standard NPRG
scheme [16,17].

The scale-dependent effective action

�k[φ∗,φ] = − ln Zk[J ∗,J ] +
∫ β

0
dτ

∑
r

(J ∗
r φr + c.c.)

−�Sk[φ∗,φ] (30)

is defined as a (slightly modified) Legendre transform which
includes the explicit subtraction of �Sk[φ∗,φ]. Here, Zk[J ∗,J ]
is the partition function obtained from the action S + �Sk , Jr a
complex external source which couples linearly to the bosonic
field ψr, and

φr(τ ) = 〈ψr(τ )〉 = δ ln Zk[J ∗,J ]

δJ ∗
r (τ )

(31)

the superfluid order parameter. The variation of the effective
action with k is governed by Wetterich’s equation [19]

∂k�k[φ∗,φ] = 1
2 Tr

{
∂kRk

(
�

(2)
k [φ∗,φ] + Rk

)−1}
, (32)

where �
(2)
k is the second-order functional derivative of �k .

In Fourier space, the trace in Eq. (32) involves a sum over
momenta and frequencies as well as the two components of
the complex field φ.

We are primarily interested in two quantities. The first one
is the effective potential defined by

Vk(n) = 1

βN
�k[φ∗,φ]|φ const, (33)

where φ is a constant (uniform and time-independent) field.
The U(1) symmetry of the action implies that Vk(n) is a
function of n = |φ|2. Its minimum determines the condensate
density n0,k and the thermodynamic potential (per site) V0,k =
Vk(n0,k) in the equilibrium state.

The second quantity of interest is the two-point vertex

�
(2)
k,ij (r − r′,τ − τ ′; φ) = δ(2)�[φ]

δφir(τ )δφjr′(τ ′)

∣∣∣∣
φ const

, (34)

which determines the one-particle propagator Gk = −�
(2)−1
k

and enters the flow equation (32). Here, the indices i,j refer
to the real and imaginary parts of φ:

φr(τ ) = 1√
2

[φ1r(τ ) + iφ2r(τ )]. (35)

Because of the U(1) symmetry of the action (27), the two-point
vertex in a constant field takes the form [9]

�
(2)
k,ij (q; φ) = δi,j�A,k(q; n) + φiφj�B,k(q; n) + εij�C,k(q; n)

(36)

in Fourier space, where q = (q,iω), ω is a Matsubara fre-
quency, and εij the antisymmetric tensor. For q = 0, we can
relate �

(2)
k to the derivative of the effective potential

�
(2)
k,ij (q = 0; φ) = ∂2Vk(n)

∂φi∂φj

= δi,jV
′
k(n) + φiφjV

′′
k (n), (37)
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so that

�A,k(q = 0; n) = V ′
k(n), �B,k(q = 0; n) = V ′′

k (n),
(38)

�C,k(q = 0; n) = 0.

B. Initial conditions

Since the action S + �S
 ≡ Sloc corresponds to the local
limit, the initial value of the effective action reads as

�
[φ∗,φ] = �loc[φ∗,φ] +
∫ β

0
dτ

∑
q

φ∗(q)tqφ(q), (39)

where �loc[φ∗,φ] is the effective action in the local limit
(t = 0). It is not possible to compute the functional �loc[φ∗,φ]
for arbitrary time-dependent fields [6]. One can, however,
easily obtain the effective potential Vloc(n) and the two-point
vertex �

(2)
loc in a time-independent field φ. These quantities are

sufficient to specify the initial conditions of the flow within
the approximations discussed in the following.

The initial effective action �
 [Eq. (39)] treats the local
fluctuations exactly but includes the intersite hopping term
at the mean-field level, thus reproducing the strong-coupling
random-phase approximation (RPA) [20–24].

C. Approximate solutions of the NPRG equations

To solve the NPRG equations, we expand the effective
potential about its minimum,

Vk(n) = V0,k + δk(n − n0,k) + λk

2
(n − n0,k)2, (40)

where

δk = ∂Vk

∂n

∣∣∣∣
n0,k

, λk = ∂2Vk

∂n2

∣∣∣∣
n0,k

. (41)

V0,k determines the thermodynamic potential per site and in
turn the pressure P (μ,T ) = −V0,k=0. We also use a derivative
expansion where the two-point vertex �

(2)
k (q) ≡ �

(2)
k (q; n0,k)

in the equilibrium state is defined by

�A,k(q) = ZA,k(tq + 2dt) + VA,kω
2 + δk,

(42)
�B,k(q) = λk, �C,k(q) = ZC,kω.

The initial values ZA,
, VA,
, ZC,
, δ
, and λ
 are deduced
from �

(2)

 and V
(n). The flow equations of ZA,k , VA,k , ZC,k ,

δk , and λk are then obtained from the exact flow equation
(32) within a simplified Blaizot–Méndez-Galain–Wschebor
scheme [25,26]. We refer to Ref. [6] for a detailed discussion.

D. Infrared behavior

The infrared behavior can be obtained from the action

�k[φ∗,φ] =
∫ β

0
dτ

∫
d3r

[
φ∗(ZC,k∂τ − VA,k∂

2
τ

−ZA,kt∇2 + δk

)
φ + λk

2
(n − n0,k)2 + V0,k

]
.

(43)

Since we are interested in the low-energy limit, we consider
the continuum limit where r becomes a continuous variable.

Higher-order (in derivative or field) terms neglected in (43)
give subleading contributions to the infrared behavior. Most
physical quantities of interest can be directly deduced from
Eq. (43) [6]. The pressure is given by

P (μ,T ) = −V0,k=0. (44)

In the superfluid phase, the superfluid stiffness can be
expressed as

ρs(μ,T ) = 2tZA,k=0n0,k=0 (45)

and the sound velocity reads as

c(μ,T ) =
√

ρs(μ,T )

κ(μ,T )
, (46)

where κ = ∂2P/∂μ2 is obtained from Eq. (44).

IV. UNIVERSAL THERMODYNAMICS NEAR THE
MOTT TRANSITION

In this section, we first discuss the QCP between the
superfluid phase and the Mott insulator. We show that
elementary excitations are quasiparticles with spectral weight
Zqp, effective mass m∗, and effective “scattering length” a∗.
Zqp, m∗, and a∗ are computed as a function of t/U using the
NPRG equations. We then verify that near the generic Mott
transition, thermodynamics quantities, as obtained from the
NPRG approach, can be expressed in terms of the universal
scaling functions introduced in Sec. II.

A. Quantum critical point

At the quantum critical point (μ = μc, T = 0) between
the superfluid and Mott-insulating phases, the effective action
� ≡ �k=0 [Eq. (43)] takes the form

�[φ∗,φ] =
∫ β

0
dτ

∫
d3r

[
φ∗(ZC∂τ − ZAt∇2

)
φ + λ

2
|φ|4

]
(47)

up to a constant term βNV0 and neglecting higher-order (in
field and derivative) terms. Equation (47) is valid at a generic
QCP where the transition is driven by a density change.
At a multicritical point, where the transition takes place at
fixed (commensurate) density, ZC vanishes and the leading
time-derivative term −VA∂τ

2 must be included in the effective
action [5,6].

From Eq. (47), we can identify the elementary excitations
at the QCP. On the lower part of the transition line (for a given
Mott lobe), ZC is negative and it is convenient to perform a
particle-hole transformation φ ↔ φ∗ [which changes the sign
of the ∂τ term in Eq. (47)]. We can then define a quasiparticle
field

φ̄(r,τ ) =
√

|ZC |φ(r,τ ), (48)

and rewrite the effective action as

�[φ̄∗,φ̄] =
∫ β

0
dτ

∫
d3r

[
φ̄∗

(
∂τ − ∇2

2m∗

)
φ̄ + 1

2

4πa∗

m∗ |φ̄|4
]
,

(49)
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where

m∗ = |ZC |
2tZA

= m
|ZC |
ZA

, a∗ = m∗λ
4πZ2

C

, (50)

with m = 1/2t the effective mass of the free bosons moving in
the lattice. We deduce from Eqs. (48) and (49) that elementary
excitations are quasiparticles with mass m∗ and spectral weight

Zqp = |ZC |−1. (51)

They are particlelike if ZC > 0 and holelike if ZC < 0. The
effective interaction between two quasiparticles is determined
by the effective “scattering length” a∗.

The quantum phase transition at μ = −2dt between the
superfluid phase and the vacuum (which can be seen as a
Mott insulator with vanishing density) is a particular case of
a superfluid–Mott-insulator transition which differs from the
superfluid-vacuum transition discussed in Sec. II A only by the
presence of the lattice. In this case, ZA = ZC = 1 (the single-
particle propagator is not renormalized [3,4]), so that Zqp =
1 and m∗ = m = 1/2t . Furthermore, the interaction constant
λ = 4πa/m = 8πta can be calculated analytically and related
to the scattering length

a = 1

8π (t/U + A)
, A � 0.1264 (52)

of the bosons moving in the lattice [6], which gives a∗ = a.
For a generic QCP between the superfluid phase and a

Mott-insulating phase with nonzero density (n̄ = 1,2,3, . . .),
the values of Zqp, m∗, and a∗ can be obtained from the
numerical solution of the NPRG equations. Figures 2 and 3
show ZA,ZC,λ and Zqp,m

∗,a∗ as a function of t/U for the
transition between the superfluid phase and the Mott insulator
with density n̄ = 1. The vanishing of ZC at the multicritical
point implies that m∗ vanishes while Zqp and a∗ diverge as we
approach the tip of the Mott lobe. In addition to the NPRG
results, in Fig. 3 we show m∗ obtained from quantum Monte
Carlo (QMC) simulations [27] as well as m∗ and Zqp obtained
from the strong-coupling random-phase approximation (RPA)
(see Appendix B). The RPA value for the hopping amplitude
at the tip of the Mott lobe, tc/U � 0.0286, is far away
from the QMC (tc/U = 0.034 083) [27] or NPRG (tc/U =
0.0339) results [28]. Nevertheless, the RPA predictions for
the quasiparticle weight Zqp and the effective mass m∗, when
plotted as a function of t/tc, are in good agreement with the
NPRG and QMC results (Fig. 3). As expected, the results

0.015 0.02 0.025 0.03 0.035

-0.5

0

0.5

0

0

t/U

−
+

−

+

λ/U
ZC

0.015 0.02 0.025 0.03 0.035
1

1.02

1.04

0

t/U

−

+

ZA

FIG. 2. (Color online) ZC , λ, and ZA vs t/U at the QCP between
the superfluid phase and the Mott insulator n̄ = 1. The + and − signs
refer to the upper and lower parts of the transition line.
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FIG. 3. (Color online) Quasiparticle weight Zqp, effective mass
m∗, and scattering length a∗ vs t/tc at the QCP between the superfluid
phase and the Mott insulator n̄ = 1 (tc is the value of t at the tip of the
Mott lobe). The QMC data are taken from Ref. [27]. In the bottom
figure, the scattering length a of the free bosons in the lattice is given
by Eq. (52). The + and − signs refer to the upper and lower parts of
the transition line.

for the lower part of the transition line are trivial in the limit
t → 0: Zqp = m∗/m = a∗/a = 1 (they are simply obtained
by considering the motion of a hole in a Mott insulator with
one boson per site).

In Fig. 4, we show Zqp, m∗, and a∗ as a function of t/tc
for the transition between the superfluid phase and the Mott
insulator with density n̄ = 2. The results are similar to the case
of the transition to the first Mott lobe (n̄ = 1), but the behavior
for t → 0 is different. The limiting values of the effective mass
and quasiparticle weight are given by the strong-coupling RPA
(see Appendix B)

lim
t/U→0

Zqp = lim
t/U→0

m

m∗ =
{

n̄ (lowerbranch),

n̄ + 1 (upper branch),
(53)

043624-6



THERMODYNAMICS OF A BOSE GAS NEAR THE . . . PHYSICAL REVIEW A 86, 043624 (2012)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

_

+
Zqp

NPRG
RPA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

_

+m∗

m

NPRG
RPA

0 0.2 0.4 0.6 0.8 1
0

1

2

3

_+ _+

t/tc

a
a∗

FIG. 4. (Color online) Same as Fig. 3 but for the transition from
the superfluid phase to the Mott insulator with density n̄ = 2.

where n̄ denotes the (commensurate) density of the Mott
insulator and we distinguish between the upper (μ � Un̄) and
lower [μ � U (n̄ − 1)] branches of the transition line.

Since m∗/m and a∗/a are typically of order one (except
close to the Mott lobe tip), the characteristic energy scale
1/m∗a∗2 below which the physics is universal is roughly set
by the hopping amplitude t . As we approach the tip of the Mott
lobe (point C in Fig. 1), m∗a∗2 diverges and the energy scale
1/m∗a∗2 vanishes. The low-energy physics is then controlled
by the multicritical point.

B. Universal thermodynamics

Since the superfluid–Mott-insulator transition belongs to
the dilute Bose gas universality class, near the QCP the
thermodynamics can be expressed in terms of the universal
scaling functions introduced in Sec. II as well as the nonuni-
versal parameters m∗ and a∗. To ensure that there is no other
nonuniversal parameter, we must verify that the chemical
potential (or, more precisely, δμ = μ − μc) couples to the

elementary excitations with no additional renormalization.
Slightly away from the QCP, the shift δμ = μ − μc in
chemical potential implies a change

δS = −δμ

∫ β

0
dτ

∑
r

ψ∗
r ψr (54)

in the action. To lowest order in δμ, δS induces a correction

δ�[φ∗,φ] = −Zμδμ

∫ β

0
dτ

∫
d3r φ∗φ (55)

to the effective action (47) at the QCP, where Zμ is a
renormalization factor. Using the Ward identity Zμ = ZC (see
Appendix C), we obtain

δ�[φ̄∗,φ̄] = −ZμZqpδμ

∫ β

0
dτ

∫
d3r φ̄∗φ̄

= −sgn(ZC)δμ
∫ β

0
dτ

∫
d3r φ̄∗φ̄. (56)

We conclude that sgn(ZC)δμ acts as a chemical potential for
the elementary excitations at the QCP [29]. This implies that
±δμ/T will enter scaling functions with no additional scale
factor. This result agrees with general considerations on the
scaling of conserved densities near a continuous quantum
phase transition [30].

Near the superfluid–Mott-insulator transition we can there-
fore write the pressure as

P (μ,T ) = Pc + n̄cδμ +
(

m∗

2π

)3/2

T 5/2F
(

± δμ

T
,g̃(T )

)
(57)

or

P (μ,T ) = Pc + n̄cδμ +
(

m∗

2π

)3/2

|δμ|5/2G
(

± T

δμ
,g̃(δμ)

)
,

(58)

where

g̃(ε) = 8π
√

2m∗a∗2|ε| (59)

is obtained from Eq. (8) by replacing m and a by m∗ and a∗.
The + (−) sign in Eqs. (57) and (58) corresponds to particle
(hole) doping of the Mott insulator [i.e., the upper (lower) part
of the transition line]. Universality arguments imply that the
singular part of the pressure can be expressed in terms of the
scaling function F but do not allow us to determine the regular
part. To obtain the latter, we note that the compressibility
κ = ∂2P/∂μ2 vanishes in the T = 0 Mott insulator and has
therefore no regular part,

κ(μ,T ) =
(

m∗

2π

)3/2

T 1/2F (2,0)

(
± δμ

T
,g̃(T )

)
(60)

[see Eq. (9)]. Integrating this equation twice with respect to μ

yields Eq. (57) with Pc the value of the pressure at the QCP
and n̄c the density at the QCP [31].

The results obtained from a numerical solution of the
NPRG equations show that near the superfluid–Mott-insulator
transition, the pressure can be expressed in terms of the
universal scaling function F discussed in Sec. II. In the dilute
classical regime, sgn(ZC)δμ < 0 and |δμ| � T , our results
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FIG. 5. (Color online) Pressure P (μc,T ) vs temperature T

[t/U = 0.02 and μc/U � 0.15 (point B in Fig. 1)]. The dashed
(green) line corresponds to Eq. (62). The inset shows a log-log plot
and the T 5/2 dependence of P (μc,T ) − Pc.

are compatible with the expected result

P (μ,T ) = Pc + n̄cδμ +
(

m∗

2π

)3/2

T 5/2e−|δμ|/T (61)

[see Eq. (15)]. However, a precise comparison is prevented
by numerical difficulties due to the extremely small values of
the pressure in this regime. The finite-temperature pressure
at point B in Fig. 1 is shown in Fig. 5. We find a very good
agreement with

P (μc,T ) = Pc + ζ (5/2)

(
m∗

2π

)3/2

T 5/2 (62)

below a crossover temperature scale T ∼ 2t . Figure 6 shows
the T = 0 pressure at fixed t/U and for a density n̄ varying

FIG. 6. (Color online) Zero-temperature pressure P (μ,0) vs
chemical potential μ along the dotted line in Fig. 1 (the inset shows
the density n̄ = ∂P/∂μ). The bottom figures show the behavior near
the Mott-insulating phases n̄ = 0 and 1. The dashed (green) line
corresponds to Eq. (63) and the dashed-dotted (blue) one to the
“mean-field” result P = Pc + n̄cδμ + (δμ2)m∗/8πa∗.

between 0 and 1 (see the dotted line in Fig. 1). Near the Mott-
insulating phases (n̄ � 0 or 1), for |δμ| � t , there is a very
good agreement between the NPRG result and the universal
form

P (μ,0) = Pc + n̄cδμ + m∗(δμ)2

8πa∗

(
1 − 64

15π

√
m∗a∗2|δμ|

)
.

(63)

It should be noted that the agreement is better with the “Lee-
Huang-Yang correction” [last term of Eq. (63)] than without.
Differentiating (63) with respect to μ, we obtain

n̄(μ,0) = n̄c + m∗δμ
4πa∗

(
1 − 16

3π

√
m∗a∗2|δμ|

)
, (64)

κ(μ,0) = m∗

4πa∗

(
1 − 8

π

√
m∗a∗2|δμ|

)
. (65)

The condensate density n0(μ,T ) in the superfluid phase can
be expressed in terms of the scaling function I [Eq. (12)].
However, since only the coherent part of the excitations
(i.e., the quasiparticles) condenses, Eq. (12) can be used
for the condensate density |φ̄|2 of the quasiparticles while
|φ|2 = Zqp|φ̄|2, which leads to

n0(μ,T ) = Zqp

(
m∗|δμ|

2π

)3/2

I
(

T

|δμ| ,g̃(δμ)

)
(66)

near the superfluid–Mott-insulator transition. The fact that
n0(μ,T ), contrary to other physical quantities discussed in
this section, depends on the quasiparticle weight can be
understood by noting that φ is not invariant in the local gauge
transformation (C3) and therefore not “protected” by the Ward
identity (C4). At zero temperature,

n0(μ,0) = Zqp
m∗|δμ|
4πa∗

(
1 − 20

3π

√
m∗a∗2|δμ|

)
, (67)

where m∗|δμ|/4πa∗ � |n̄ − n̄c| is the density of excess
particles (or holes) with respect to the commensurate density n̄c

of the Mott insulator. The T = 0 condensate density along the
dotted line in Fig. 1 is shown in Fig. 7. Near the Mott-insulating
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0
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0.4
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0
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0
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0.15

μ/U

FIG. 7. (Color online) Condensate density n0(μ,0) vs μ along
the dotted line in Fig. 1. The insets show the behavior near the Mott-
insulating phases n̄ = 0 and 1. The dashed (green) line corresponds
to Eq. (67) and the dashed-dotted (blue) one to the “mean-field” result
n0 = Zqpm

∗|δμ|/4πa∗.
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FIG. 8. (Color online) Superfluid stiffness ρs(μ,0) vs μ along the
dotted line in Fig. 1. The insets show the behavior near the Mott-
insulating phases n̄ = 0 and 1. The dashed (green) line corresponds
to Eq. (69) and the dashed-dotted (blue) one to the “mean-field” result
|δμ|/4πa∗.

phases n̄c = 0 and 1, we find a very good agreement with
Eq. (67).

The superfluid stiffness can be expressed using the scaling
function J [Eq. (13)]:

ρs(μ,T ) = √
m∗

( |δμ|
2π

)3/2

J
(

T

|δμ| ,g̃(δμ)

)
. (68)

Using the results of Sec. II B, we obtain

ρs(μ,0) = |δμ|
4πa∗

(
1 − 16

3π

√
m∗a∗2|δμ|

)
= |n̄(μ,0) − n̄c|

m∗ ,

(69)

again in very good agreement with the NPRG approach
(Fig. 8). ρs , contrary to n0, is independent of the quasiparticle
weight Zqp. This follows from the fact that the superfluid stiff-
ness can be related to the current-current density correlation
function [32], which is a gauge-invariant quantity. As a result,
the ratio between condensate density and superfluid stiffness,

n0(μ,0)

m∗ρs(μ,0)
= Zqp (70)

(to leading order in m∗a∗2|δμ|), explicitly depends on the
quasiparticle weight while it is equal to unity in a dilute Bose
gas.

From Eqs. (65) and (69), we deduce

c(μ,0) =
√

ρs(μ,0)

κ(μ,0)
�

√
|δμ|
m∗ (71)

to leading order in m∗a∗2|δμ|. As the condensate density n0

and the superfluid stiffness ρs , c is related to the density of
excess particles (or holes) |n̄ − n̄c| rather than the full density
n̄. The NPRG results show that Eq. (71) is very well satisfied
near the Mott transition (Fig. 9).

The superfluid transition temperature is determined by the
scaling function H,

|δμ|
Tc

= H(g̃(Tc)), (72)

-0.1 -0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

μ/U

c

FIG. 9. (Color online) Sound mode velocity c(μ,0) along the
dotted line in Fig. 1. The dashed (green) line shows the expected
result near the Mott transition [Eq. (71)].

where H is the universal scaling function introduced in
Sec. II A. Using (26), we then obtain

Tc = 2π

m∗

(
m∗|δμ|

8πζ (3/2)a∗

)2/3

= 2π

m∗

( |n̄ − n̄c|
2ζ (3/2)

)2/3

(73)

(to leading order in m∗a∗2|δμ|) near the T = 0 Mott transition,
in very good agreement with the NPRG results (Fig. 10).

C. RG flows and approach to universality

Figure 11 shows the flow of the coupling constants ZC,k

and λk in the zero-temperature superfluid phase near a QCP.
Exactly at the QCP (δμ = 0), one can clearly distinguish two
regimes: (i) a high-energy (or short-distance) regime k � kx

where lattice effects are important and the dimensionless
coupling constant [6]

λ̃k = k

ZC,kZA,kt
λk (74)

is large, (ii) a weak-coupling (“Bogoliubov”) regime k � kx

where λ̃k � 1 and the flow is governed by the Gaussian
fixed point λ̃ = 0: λk , ZC,k , and ZA,k are then nearly equal
to their fixed-point values [Eqs. (50)], while λ̃k ∝ k vanishes
in agreement with its scaling dimension [λ̃k] = 4 − d − z =
−1 at the Gaussian fixed point (d = 3 and z = 2). In the
momentum regime |q| � kx , the quasiparticles with mass m∗
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0.04

0.05

μ/U

Tc

U

FIG. 10. (Color online) Superfluid transition temperature Tc vs
μ along the dotted line in Fig. 1. The dashed (green) line shows the
expected result near the T = 0 Mott transition [Eq. (73)].
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FIG. 11. (Color online) RG flows of λ̃k (λ̃
 � 37), λk , and ZC,k

at the QCP (t/U = 0.02, μc/U � 0.15, T = 0) (point B in Fig. 1)
and in the nearby superfluid phase δμ/U = −10−4 (λSF

k and ZSF
C,k). λ

and ZC stand for λk=0 and ZC,k=0, respectively.

and scattering length a∗ introduced in Sec. IV A are well
defined and the physics becomes universal. The crossover scale
kx between the two regimes is typically of the order of 
 = √

6
(k−1

x is equal to a few lattice spacings).
Away from the QCP, chemical potential and temperature

introduce two new momentum scales, the “healing” scale

kh =
√

2m∗|δμ| (75)

and the thermal scale

kT =
√

2m∗T . (76)

Universality requires kh,kT � kx . Since kx ∼ a−1 ∼ 1 (except
close to the tip of the Mott lobe), these conditions can be
rewritten as √

m∗a∗2|δμ| � 1, (77)
√

m∗a∗2T � 1. (78)

In the low-energy limit, the system behaves as a gas of
weakly interacting quasiparticles if the dimensionless coupling
constant

λ̃kh
= kh

ZC,kh
ZA,kh

t
λkh

� 8πkha
∗ (79)

is small. The last result in Eq. (79) is obtained using kh �
kx , which allows us to approximate ZC,kh

, ZA,kh
, and λkh

by
their k = 0 values. Since kx ∼ a−1 ∼ 1, universality (kh � kx)
implies weak coupling (kha

∗ � 1). Using Eq. (64), the weak-
coupling and universality condition kha

∗ � 1 [Eq. (77)] can

FIG. 12. Characteristic momentum scales in a dilute superfluid,
at the generic Mott transition (μ = μc), and in the superfluid phase
near the Mott transition. (In the dilute superfluid, 
−1 is of the order
of the scattering length a, while it is of the order of the inverse lattice
spacing in the Bose-Hubbard model.)

be rewritten as √
|n̄ − n̄c|a∗3 � 1. (80)

Equation (80) is similar to the usual condition for a boson
gas to be dilute except that it involves the excess density of
particles (or holes) |n̄ − n̄c| (with respect to the commensurate
density of the Mott insulator) rather than the full density n̄ of
the fluid.

For k � kh, λk and ZC,k depart from their fixed-point
values at δμ = 0 (Fig. 11) and vanish logarithmically below
a “Ginzburg” momentum scale kG which is exponentially
small at weak coupling (λ̃kh

� 1). In a dilute Bose gas, the
Ginzburg scale manifests itself by the appearance of infrared
divergences in the perturbation theory about the Bogoliubov
approximation. Although these divergences cancel out for
thermodynamic quantities, they do have a physical origin: they
result from the coupling between longitudinal and transverse
(phase) fluctuations and lead to a divergence of the longitudinal
susceptibility, a general phenomenon in systems with a broken
continuous symmetry [33]. For k ∼ kG, the RG flow crosses
over to a “Goldstone” regime where the physics is dominated
by phase fluctuations. We refer to Refs. [9,34,35] for a detailed
discussion of the infrared behavior in the superfluid phase. The
various regimes of the RG flow are summarized in Fig. 12.

V. EXPERIMENTAL DISCUSSION

Although cold gases are inhomogeneous and of finite size
due to the harmonic confining potential, using a local-density
approximation it is possible to deduce the equation of state
P (μ,T ) of the infinite homogeneous gas (with uniform
density) from the measured in situ density distribution [36,37].
On the basis of this method, the equation of state of the
two- and three-dimensional (homogeneous) Bose gas has
been experimentally determined [38–40]. Recently, the same
method has been used to obtain the equation of state of

043624-10



THERMODYNAMICS OF A BOSE GAS NEAR THE . . . PHYSICAL REVIEW A 86, 043624 (2012)

a two-dimensional Bose gas in an optical lattice near the
superfluid-vacuum transition [41].

For a three-dimensional Bose gas in an optical lattice near
the superfluid–Mott-insulator transition, the crossover length
scale k−1

x beyond which the physics becomes universal (i.e.,
controlled by quasiparticles with mass m∗ and scattering length
a∗) is typically of the order of a few lattice spacings (see the
discussion in Sec. IV C). This length scale is much smaller
than the characteristic length scale of the confining trap, which
implies that the local-density approximation is justified in the
low-energy (universal) regime. The experimental method used
to obtain the equation of state P (μ,T ) of a Bose gas near
the superfluid-vacuum transition [41] can therefore also be
used to determine the thermodynamics near the superfluid–
Mott-insulator transition. This opens up the possibility to
test the universality class of the generic three-dimensional
Mott transition and the predictions of the NPRG approach
regarding the values of Zqp, m∗, and a∗. A measurement of the
temperature dependence of the pressure in the quantum critical
regime at δμ = 0 [Eq. (62)] would directly provide us with the
value of the effective mass m∗. Quite interestingly, m∗ strongly
varies with both the ratio t/U and the commensurate value of
the density in the Mott insulator [Eq. (53)]. Measuring the
scattering length a∗ and the quasiparticle weight Zqp is more
challenging as it would require us to reach temperatures much
smaller than the crossover temperature T ∼ 2t below which
the thermodynamics becomes universal, which is not possible
yet in actual experiments.

VI. CONCLUSION

We have presented a detailed study of the thermodynamics
of a Bose gas near the generic (density-driven) Mott tran-
sition in the framework of the Bose-Hubbard model. In the
critical regime, the physics is governed by weakly interacting
quasiparticles with quasiparticle weight Zqp, effective mass
m∗, and “scattering length” a∗. Thermodynamic quantities
can be expressed using the universal scaling functions of the
dilute Bose gas universality class. They are independent of
the quasiparticle weight and the only nonuniversal parameters
entering the scaling functions are m∗ and a∗. A notable
exception is the condensate density n0, which is proportional
to Zqp, thus allowing us to determine the quasiparticle weight
from a thermodynamic measurement once m∗ and a∗ are
known. The NPRG enables us to compute Zqp, m∗, and a∗
as a function of t/U . We find that the strong-coupling RPA,
although rather inaccurate to determine the phase diagram,
gives reliable estimates of Zqp, m∗, and a∗ as a function of t/tc
(with tc the value of the hopping amplitude at the tip of the Mott
lobe). Finally, we have discussed to what extent the universality
class of the generic three-dimensional Mott transition and the
NPRG predictions regarding the nonuniversal parameters m∗
and a∗ could be experimentally verified (Sec. V).
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APPENDIX A: PERTURBATIVE CALCULATION
OF SCALING FUNCTIONS

In this appendix, we briefly review the perturbative calcula-
tion of the universal scaling functions of the three-dimensional
dilute Bose gas universality class (Sec. II B). At low tempera-
tures and positive chemical potential, the scaling functions can
be obtained from a one-loop calculation (Bogoliubov theory).
To organize the loop expansion [42], we introduce a parameter
l (which will eventually be set to 1) and consider the partition
function

Z[J ∗,J ] =
∫

D[ψ∗,ψ] e−l{S[ψ∗,ψ]−∫ β

0 dτ
∫

d3r(J ∗ψ+c.c.)} (A1)

in the presence of a complex external source J . The superfluid
order parameter is defined by

φ(r,τ ) = 1

l

δ ln Z[J ∗,J ]

δJ ∗(r,τ )
, φ(r,τ )∗ = 1

l

δ ln Z[J ∗,J ]

δJ (r,τ )
.

(A2)

We now introduce the effective action

�[φ∗,φ] = −1

l
ln Z[J ∗,J ] +

∫ β

0
dτ

∫
d3r(J ∗φ + c.c.),

(A3)

defined as the Legendre transform of the thermodynamic
potential −l−1 ln Z[J ∗,J ]. The loop expansion is an expansion
in 1/l. To one-loop order,

�[φ∗,φ] = S[φ∗,φ] + 1

2l
Tr ln

(−G−1
c [φ∗,φ]

) + O(l−2),

(A4)

where Gc[φ∗,φ] is the classical propagator

Gc[x,x ′; φ∗,φ] = −
(

δ(2)S
δφ∗(x)δφ(x ′)

δ(2)S
δφ∗(x)δφ∗(x ′)

δ(2)S
δφ(x)δφ(x ′)

δ(2)S
δφ(x)δφ∗(x ′)

)
(A5)

[we use the notation x = (r,τ ) and x ′ = (r′,τ ′)].
All thermodynamic quantities can be obtained from the

effective potential defined by

V (n) = 1

βV
�[φ∗,φ]|φ const (A6)

(V denotes the volume of the system), where φ is a constant
(uniform and time-independent) field. The U(1) symmetry of
the action (27) implies that V (n) is a function of the condensate
density n = |φ|2. The minimum of the effective potential
determines the condensate density n0 and the thermodynamic
potential V0 = V (n0) per unit volume in the equilibrium state.
The pressure is then given by

P (μ,T ) = −V0. (A7)

To compute the effective potential to one-loop order, we need
to evaluate the trace in Eq. (A4) with the classical propagator
Gc evaluated in a constant field,

G−1
c (q; φ∗,φ)

=
(

iωn − ξq − 2g|φ|2 −gφ2

−gφ∗2 −iωn − ξ−q − 2g|φ|2
)

, (A8)
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where ωn = n2π/β (n integer) is a bosonic Matsubara
frequency, ξq = εq − μ, and εq = q2/2m.

1. Zero temperature

Let us first consider the zero-temperature limit. Performing
the trace over Matsubara frequencies [43], we obtain

V (n) = −μn + g

2
n2 + 1

2l

∫
q
(Eq − ξq − 2gn) + O(l−2),

(A9)

where
∫

q = ∫
d3q/(2π )3 and

Eq = [(ξq + 2gn)2 − (gn)2]1/2. (A10)

The condensate density n0 in the equilibrium state is obtained
from V ′(n0) = 0, i.e.,

n0 = μ

g
− 1

2l

∫
q

[
1

Eq
(2ξq + 3gn0) − 2

]
+ O(l−2), (A11)

where Eq is defined by Eq. (A10) with n = n0.
Setting n0 = μ/g in the O(1/l) term, we obtain the

effective potential

V0 = −μ2

2g
+ 1

2l

∫
q
(Eq − εq − μ) + O(l−2), (A12)

where Eq = √
εq(εq + 2μ). To eliminate the dependence on

the momentum cutoff 
, we introduce the s-wave scattering
length a,

m

4πa
= 1

g
+

∫
q

�(
 − |q|)
2εq

, (A13)

and rewrite V0 as

V0 = −mμ2

8πa
+ μ2

4

∫
q

(
1

εq
− 1

Eq

)

+ 1

2

∫
q

(
Eq − εq − μ + μ2

2Eq

)
(A14)

setting l = 1. The sums over q are now convergent and we can
take the infinite cutoff limit 
 → ∞ with a fixed. Using∫

q

(
1

εq
− 1

Eq

)
= 2

π2
m3/2μ1/2,

(A15)∫
q

(
Eq − εq − μ + μ2

2Eq

)
= m3/2μ5/2

15π2
,

we finally obtained

V0 = −mμ2

8πa

(
1 − 64

15π

√
ma2μ

)
(A16)

and in turn Eq. (17). Equations (18) and (19) are then deduced
from n̄ = −∂V0/∂μ and κ = ∂n̄/∂μ.

Similarly, from Eq. (A11) and (A13), we deduce

n0 = mμ

4πa
− μ

2

∫
q

(
1

εq
− 1

Eq

)
+

∫
q

(
1 − εq + μ

Eq

)
(A17)

to one-loop order (setting l = 1), which leads to Eq. (20) using∫
q

(
1 − εq + μ

Eq

)
= − 2

3π2
(mμ)3/2. (A18)

The superfluid density ns is defined by the variation

δ� = β
ns

2m

∫
d3r(∇θ )2 (A19)

of the effective action when the superfluid order parameter
φ(r) = √

n0e
iθ(r) acquires a phase slowly varying in space.

For a dilute Bose gas, Galilean invariance implies that ns is
equal to the fluid density, i.e., ns(μ,0) = n̄(μ,0). To leading
order, the sound mode velocity c = √

ρs/κ = √
ns/mκ is

equal to
√

μ/m, in agreement with the small-q behavior of
Eq = √

εq(εq + μ).

2. Finite temperature

Similarly, we can compute the pressure P (0,T ) at vanishing
chemical potential. For μ = 0, the condensate density n0 = 0
in the equilibrium state. The effective potential V0 to one-loop
order is then simply given by the noninteracting result

V0 = 1

β

∫
q

ln(1 − e−βεq ) = −ζ (5/2)

(
m

2π

)3/2

T 5/2, (A20)

where ζ (x) is the Riemann zeta function.

3. Transition line

The one-loop approximation fails near the superfluid
transition temperature Tc [15]. The transition temperature can
nevertheless be determined from a perturbative approach in
the normal state by considering the self-consistent one-loop
self-energy correction (self-consistent Hartree-Fock approxi-
mation),

� = −2g

β

∑
ωn

∫
q

eiωn0+

iωn − ξq − �
= 2g

∫
q
nB(εq + � − μ),

(A21)

where nB(x) = (eβx − 1)−1 is the Bose-Einstein distribution
function. The transition occurs when the renormalized chemi-
cal μ − � vanishes,

μ = 2g

∫
q
nB(εq) = 2gζ (3/2)

(
mTc

2π

)3/2

. (A22)

To lowest order, g = 4πa/m, which gives Eq. (25).

APPENDIX B: STRONG-COUPLING RPA

In the strong-coupling RPA [20–24], the effective action
is given by Eq. (39). This implies that in the Mott-insulating
phase, the single-particle propagator takes the form

G(q,iω) = Gloc(iω)

1 − tqGloc(iω)
, (B1)

where

Gloc(iω) = n̄ + 1

iω + μ − Un̄
− n̄

iω + μ − U (n̄ − 1)
(B2)

is the local propagator. n̄ denotes the mean (integer) number
of bosons per site. The instability of the Mott insulator is
signaled by the appearance of a pole in the propagator, i.e.,
1 − tq=0Gloc(iω = 0) = 0, which reproduces the mean-field
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phase diagram [2]. The value of the hopping amplitude at the
tip of the Mott lobe is given by

2dtc

U
= 2n̄ + 1 − 2

√
n̄2 + n̄. (B3)

On the transition line, we obtain

G(q,iω) = Zqp

iω − q2/2m∗ (B4)

for q,ω → 0, with

Zqp = m

m∗ =
∣∣∣∣ Gloc(0)

2 dt G′
loc(0)

∣∣∣∣, (B5)

where G′
loc(iω) = ∂iωGloc(iω). As in Sec. IV A, we have

performed a particle-hole transformation when we consider
the lower branch of the transition line [hence the absolute
value in Eq. (B5)].

In the limit t → 0, Eq. (B5) leads to Eq. (53), a result
which can be understood as follows. Let us add a particle at
site r to a Mott insulator with n̄ particles per site. In the limit
t → 0, the only possible dynamics is due to the motion of the
additional particle. Hopping of this particle between sites r
and r′ involves the matrix element

〈n̄; r| ⊗ 〈n̄ + 1; r′|tψ̂†
r′ψ̂r|n̄ + 1; r〉 ⊗ |n̄; r′〉 = t(n̄ + 1)

(B6)

if we denote by ⊗ri
|ni ; ri〉 the state with ni particles at site ri .

The “particle” eigenstates are therefore plane-wave states

|q〉 = 1√
N

∑
r

eiq·r|n̄ + 1; r〉 ⊗r′ �=r |n̄; r′〉, (B7)

with a dispersion law λq = λ0 − 2t(n̄ + 1)
∑d

i=1 cos qi [with
λ0 a constant which takes the value 2 dt(n̄ + 1) at the quantum

critical point], which leads to an effective mass m∗/m =
1/(n̄ + 1). The single-particle propagator reads as

G(q,iω) = |〈q|ψ̂†(q)|0〉|2
iω − λq

, (B8)

where |0〉 = ⊗r|n̄; r〉 denotes the ground state of the Mott
insulator without the additional particle (in the limit t → 0).
We deduce the quasiparticle weight

Zqp = |〈q|ψ̂†(q)|0〉|2 = n̄ + 1. (B9)

A similar reasoning for the motion of a hole leads to Zqp =
m/m∗ = n̄.

APPENDIX C: WARD IDENTITY Zμ = ZC

To lowest order in δμ, the effective action (47) at the QCP
is modified by

δ�[φ∗,φ] = −Zμδμ

∫ β

0
dτ

∫
d3r φ∗φ. (C1)

This implies that the effective potential is given by

V (μ,n) = V (μc,n) − Zμnδμ. (C2)

The invariance of the action S in the local (time-dependent)
gauge transformation

ψr → ψre
iα, ψ∗

r → ψ∗
r e−iα, μ → μ + i∂τα (C3)

implies that ZC ≡ ZC(μc) satisfies the Ward identity [6]

ZC = − ∂2V

∂μ∂n

∣∣∣∣
μc,n=0

, (C4)

which gives

ZC = Zμ. (C5)
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