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Quantum criticality of a Bose gas in an optical lattice near the Mott transition
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We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model.
Near the density-driven Mott transition, the expression of the pressure P (μ,T ) versus chemical potential and
temperature is similar to that of a dilute Bose gas but with renormalized mass m∗ and scattering length a∗. Here
m∗ is the mass of the elementary excitations at the quantum critical point governing the transition from the
superfluid phase to the Mott-insulating phase, while a∗ is related to their effective interaction at low energy. We
use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio
t/U between hopping amplitude and on-site repulsion.
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I. INTRODUCTION

Quantum phase transitions play a crucial role in many
strongly correlated systems ranging from quantum antifer-
romagnets to heavy-fermion materials and high-Tc super-
conductors [1]. Although these transitions occur at zero
temperature, theory predicts that the finite-temperature ther-
modynamics in the vicinity of a quantum critical point
(QCP) is described by universal scaling relationships up to
rather high temperatures [2,3]. While understanding quantum
criticality in strongly correlated systems is often a challenge,
both experimentally and theoretically, cold atoms offer clean
systems for a quantitative and precise study of quantum phase
transitions. Quantum criticality in cold atoms has attracted
increasing theoretical interest in the last few years [4], and
the experimental observation of the quantum critical behavior
of a two-dimensional Bose gas in an optical lattice near the
vacuum-superfluid transition has recently been reported [5].

In ultracold gases, strong correlations can be achieved by
tuning the atom-atom interactions by means of a Feshbach
resonance, or by loading the atoms into an optical lattice
[6]. In the latter case, by varying the strength of the lattice
potential, it is possible to induce a quantum phase transition
between superfluid and Mott-insulating ground states in a
Bose gas [7]. The main features of this transition can be
understood in the framework of the Bose-Hubbard model,
which describes bosons hopping on a lattice with an on-site
repulsive interaction [8].

The density-driven Mott transition belongs to the same
universality class as the transition between the vacuum and
the superfluid phase in a dilute Bose gas: Both transitions
are governed by the same QCP [3,8]. It follows that the
pressure must take the same (universal) form near the QCP
(up to some nonuniversal parameters as will be explained in
detail below). In this Rapid Communication, we prove this
result by computing the pressure P (μ,T ) (as a function of
chemical potential and temperature) in various limits using a
nonperturbative renormalization-group approach to the Bose-
Hubbard model [9,10].

The equation of state of a dilute Bose gas is usually derived
from a low-density expansion. To next-to-leading order in the
parameter ma2μ, the pressure P (μ,T ) depends on only the
boson mass m and the s-wave scattering length a (and not

on the microscopic details of atom-atom interactions). The
equation of state can also be understood from the point of view
of phase transitions [3]. By varying the chemical potential from
negative to positive values at zero temperature, one induces a
quantum phase transition between a state with no particles
(vacuum) and a superfluid state. Elementary excitations at the
QCP are free bosons of mass m, and the interaction between
two elementary excitations is determined by the scattering
length a in the low-energy limit. Thus the equation of state
P (μ,T ) is uniquely determined by the QCP, which therefore
controls the thermodynamics of the dilute Bose gas.

The advantage of this point of view is that it allows
us to understand the density-driven Mott transition in the
Bose-Hubbard model along similar lines, using the fact that
it belongs to the dilute Bose gas universality class. At the
QCP between the Mott insulator and the superfluid phase, the
elementary excitations are quasiparticles with effective mass
m∗ and their mutual interaction is described by an effective
scattering length a∗. Thus when the boson density n̄ slightly
differs from the commensurate density n̄c of the Mott insulator,
the excess density |n̄ − n̄c| of particles (or holes) behaves as
a dilute gas of quasiparticles [8] (with effective parameters
m∗ and a∗) with an equation of state P (μ,T ) that must be the
same as the one of the dilute Bose gas up to some nonuniversal
parameters such as m∗ and a∗.

Our main results can be summarized as follows. Near the
density-driven Mott transition and for temperature T smaller
than the hopping amplitude t , the pressure takes the form

P (μ,T )=Pc + n̄cδμ + m∗3/2
T 5/2P̃

(
± δμ

T
, ± m∗a∗2δμ

)
,

(1)

where Pc and n̄c are the pressure and density (mean number
of bosons per site) at the QCP μ = μc, respectively, and δμ =
μ − μc. P̃ (x,y) is a universal scaling function characteristic
of the (three-dimensional) dilute Bose gas universality class.
The + (−) sign in Eq. (1) corresponds to particle (hole)
doping. Equation (1) is valid everywhere near the superfluid–
Mott-insulator transition except in the close vicinity of the
multicritical points where the transition takes place at fixed
(commensurate) density (Fig. 1). For μc = Pc = n̄c = 0,
m∗ = m, and a∗ = a, Eq. (1) reproduces the low-density
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FIG. 1. (Color online) Phase diagram of the Bose-Hubbard model
on a cubic lattice showing the Mott insulators (MI) with density n̄ = 0
(vacuum) and n̄ = 1, as well as the surrounding superfluid phase (SF).
Point C at the tip of the Mott lobe shows the multicritical point where
the transition occurs at fixed density n̄ = 1. Away from this point,
the transition is driven by a density change. The zero-temperature
pressure P (μ,T = 0) along the dotted line AB is shown in Fig. 4.
The finite-temperature pressure P (μc,T ) at point B is shown in
Fig. 5.

expansion of a dilute gas of bosons with mass m and scattering
length a. In this Rapid Communication, we discuss the
equation of state (1) in two different limits.

In the zero-temperature superfluid phase,

P (μ,T = 0) = Pc + n̄cδμ + m∗

8πa∗ (δμ)2

×
(

1 − 64

15π

√
m∗a∗2|δμ| + · · ·

)
, (2)

where the ellipses denote higher-order terms in the expansion
parameter m∗a∗2|δμ|. Taking the derivative of Eq. (2) with
respect to μ, we obtain

n̄ − n̄c = m∗δμ
4πa∗

(
1 − 16

3π

√
m∗a∗2|δμ| + · · ·

)
, (3)

where n̄ = dP/dμ is the boson density. Equations (2) and (3)
are similar to the known results for a dilute Bose gas. The
correction to the “mean-field” result P0 = m∗(δμ)2/8πa∗ is
known as the Lee-Huang-Yang correction [11].

At finite temperature and for μ = μc (quantum critical
regime),

P (μc,T ) = Pc + ζ (5/2)

(
m∗

2π

)3/2

T 5/2 + · · · (4)

for T � t , where t is the hopping amplitude between neighbor-
ing sites [see Eq. (5) below]. Once T is of order of the boson
dispersion t , the lattice starts to play a role, and the universal
description in terms of quasiparticles (with parameters m∗ and
a∗) breaks down. Equation (4) agrees with the well-known
expression of the pressure in the dilute Bose gas when
|μ| � T [3].

II. EQUATION OF STATE

To derive Eqs. (2) and (4), we start from the action of the
Bose-Hubbard model,

S =
∫ β

0
dτ

{ ∑
r

[
ψ∗

r (∂τ − μ)ψr + U

2
(ψ∗

r ψr)2

]

− t
∑
〈r,r′〉

(ψ∗
r ψr′ + c.c.)

}
, (5)

where ψr(τ ) is a complex field and τ ∈ [0,β] an imaginary
time with β = 1/T the inverse temperature. Here {r} denotes
the N sites of the lattice, U the on-site repulsion, and t the
hopping amplitude between nearest-neighbor sites 〈r,r′〉. We
set h̄ = kB = 1 and take the lattice spacing as the unit length
throughout the Rapid Communication.

The NPRG approach [9,10] allows us to compute the
effective action 	[φ∗,φ] defined as the Legendre transform
of the thermodynamic potential − ln Z[J ∗,J ]. Jr is an ex-
ternal source that couples linearly to the bosonic field ψr
and φr(τ ) = δ ln Z[J ∗,J ]/δJ ∗

r (τ ) = 〈ψr(τ )〉 is the superfluid
order parameter. Thermodynamic properties of the system can
be derived from the effective potential defined by V (n) =
(βN )−1	[φ∗,φ] with n = |φ|2 and φ a constant (uniform
and time-independent) field. Its minimum determines the
condensate density n0 and the pressure P = −V (n0) in the
equilibrium state. The single-particle propagator G = −	(2)−1

is related to the two-point vertex 	(2) defined as the second-
order functional derivative of 	.

At the QCP between the superfluid phase and the Mott
insulator, the effective action takes the form

	[φ∗,φ]=
∫ β

0
dτ

∫
d3r

[
φ∗(ZC∂τ−ZAt∇2)φ+λ

2
|φ|4+ · · ·

]

(6)

(with β → ∞) up to a constant (field-independent) term.
Since we are interested in the low-energy limit, we consider
the continuum limit where r becomes a continuous variable.
The ellipses denote higher-order (in derivative or field) terms.
Equation (6) is valid at a generic QCP where the transition is
driven by a density change. At a multicritical point, where the
transition occurs at fixed (commensurate) density, ZC vanishes
and one should explicitly include a ∂2

τ term; the quantum
phase transition is then in the universality class of the O(2)
model [9,10].

From Eq. (6), we can identify the elementary excitations at
the QCP. ZC is negative on the lower part of the transition line
(for a given Mott lobe). In that case it is convenient to perform a
particle-hole transformation φ ↔ φ∗ [which changes the sign
of the ∂τ term in Eq. (6)]. We can then define a quasiparticle
field φ̄ = |ZC |1/2φ and rewrite the effective action as

	[φ̄∗,φ̄] =
∫ β

0
dτ

∫
d3r

[
φ̄∗

(
∂τ − ∇2

2m∗

)
φ̄

+ 1

2

4πa∗

m∗ |φ̄|4 + · · ·
]
, (7)

where

m∗ = |ZC |
2tZA

= m
|ZC |
ZA

, a∗ = m∗λ
4πZ2

C

, (8)
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FIG. 2. (Color online) ZC , λ and ZA vs t/U at the QCP
between the superfluid phase and the Mott insulator n̄ = 1. The
+ and − signs refer to the upper and lower parts of the transition
line.

with m = 1/2t the effective mass of the free bosons moving
on the lattice. The elementary excitations are quasiparticles
with a quadratic dispersion law and mass m∗. They are
particle-like if ZC > 0 and hole-like if ZC < 0, and the
quasiparticle weight is |ZC |−1. The interaction between
two quasiparticles is determined by the effective scattering
length a∗.

At the QCP between the superfluid phase and the vacuum
(the Mott insulator with vanishing density), ZC = ZA = 1
(the single-particle propagator is not renormalized [10]) so
that m∗ = m = 1/2t . Furthermore, the interaction constant
λ = 8πta can be calculated analytically and related to the
scattering length a = [8π (t/U + A)]−1 (A � 0.1264) of the
bosons moving on the lattice [10], which gives a∗ = a. For a
generic QCP between the superfluid phase and a Mott phase
with nonzero density (n̄c = 1,2, . . .), the determination of
m∗ and a∗ is much more difficult as it requires to solve a
many-body problem. ZC , ZA, and λ can be obtained from the
numerical solution of the NPRG equations [10]. Figures 2 and
3 show ZC , ZA, λ, m∗, and a∗ as a function of t/U for the QCP
separating the superfluid phase from the Mott insulator n̄ = 1.
The vanishing of ZC at the multicritical point implies that m∗
vanishes and a∗ diverges when we approach the tip of the Mott
lobe (point C in Fig. 1). Note that it is numerically difficult to
determine m∗ and a∗ for t/U � 0.015 due to the degeneracy
between the states with density n̄ = p and n̄ = p + 1 when
μ/U = p (p integer) and t = 0.

FIG. 3. (Color online) Effective mass m∗ and scattering length
a∗ vs t/U at the QCP between the superfluid phase and the Mott
insulator n̄ = 1. The solid (red) line shows the scattering length a =
[8π (t/U + A)]−1 (see text).

FIG. 4. (Color online) Pressure P vs chemical potential μ along
the dotted line in Fig. 1, as obtained from the NPRG approach
(the inset shows the density n̄ = dP/dμ). The bottom figures show
the behavior near the Mott-insulating phases n̄ = 0 and n̄ = 1. The
dashed (green) line corresponds to Eq. (2) and the dash-dotted (blue)
one to the “mean-field” result P = Pc + n̄cδμ + (δμ2)m∗/8πa∗.

We are now in a position to verify that near the QCP the
zero-temperature pressure in the superfluid phase is given by
Eq. (2) [12]. Note that higher-order terms neglected in Eq. (6)
do not contribute to the pressure to the order considered [13].
Figure 4 shows P (μ,T = 0) at fixed t/U and for a density
varying between 0 and 1 (see the dotted line AB in Fig. 1).
Near the Mott-insulating phases n̄ = 0 and n̄ = 1, we find a
very good agreement between the NPRG result and Eq. (2). As
we approach the tip of the Mott lobe located at (t̄c,μ̄c), m∗a∗2

diverges and the domain of validity |δμ| � 1/m∗a∗2 of Eq. (2)
shrinks to zero. For t = t̄c and μ � μ̄c, the pressure varies as
P (μ,T = 0) � Pc + n̄cδμ + α(μ − μ̄c)4 with α a constant.

The finite-temperature pressure P (μc,T ) at point B in Fig. 1
is shown in Fig. 5. We obtain a very good agreement with
Eq. (4) as long as lattice effects can be ignored, i.e., T � t . One
can also compute the temperature dependence of the pressure

FIG. 5. (Color online) Pressure P (μc,T ) vs temperature T [t =
0.02U ]. The dash-dotted (blue) line corresponds to Eq. (4). The inset
shows a log-log plot and the T 5/2 dependence of P (μc,T ) − Pc.
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for μ 
= μc. In all cases, one recovers the known results of
the dilute Bose gas [3] but with m and a replaced by m∗
and a∗.

III. CONCLUSION

We have shown that the pressure P (μ,T ) of a Bose gas
near the density-driven Mott transition takes a universal form,
analog to that of a dilute Bose gas, once a certain set of
low-energy parameters have been fixed. These parameters
characterize the elementary excitations at the QCP and their
interactions, and can be systematically computed using the
NPRG approach. In three dimensions (i.e., above the upper
critical dimension dc = 2 of the T = 0 superfluid–Mott-
insulator transition), this set is formally infinite but to leading
order and for T � t only the mass m∗ and scattering length a∗
of the elementary excitations is needed [Eq. (1)]. At the upper
critical dimension dc = 2, our analysis still holds; universality
is even stronger, as only m∗ and a∗ need to be known (to all
orders in the small parameter m∗a∗2|δμ| and for T � t) to
determine the equation of state.

Recent experiments in cold-atom gases have shown that
it is now possible to deduce the pressure P (μ,T ) of an

homogeneous infinite system from the doubly integrated in situ
density profile

∫
dx dy n̄(x,y,z) of an harmonically trapped

gas [14]. The zero-temperature equation of state (including
the Lee-Huang-Yang correction) of a homogeneous Bose gas
of 7Li atoms has been measured using this technique [15].
Experiments with atoms loaded in an optical lattice [16]
are now approaching the low-temperature regime where our
predictions for P (μ,T = 0) [Eq. (2)] could be observed.
Recently quantum criticality of a two-dimensional Bose gas
near the vacuum-superfluid quantum phase transition has been
observed at finite temperature, thus explicitly demonstrating
that the equation of state of cold atomic gases gives direct
information about the QCP [5]. We expect that similar
measurements will allow to observe quantum criticality near
the (nontrivial) QCP governing the superfluid–Mott-insulator
transition, and verify our predictions for the effective mass
m∗ and scattering length a∗ in three-dimensional Bose
gases.
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