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We present a nonperturbative renormalization-group approach to the Bose-Hubbard model. By taking as initial
condition of the renormalization-group flow the (local) limit of decoupled sites, we take into account both
local and long-distance fluctuations in a nontrivial way. This approach yields a phase diagram in very good
quantitative agreement with quantum Monte Carlo simulations, and reproduces the two universality classes of
the superfluid-Mott-insulator transition. The critical behavior near the multicritical points, where the transition
takes place at constant density, agrees with the original predictions of Fisher et al. [Phys. Rev. B 40, 546
(1989)] based on simple scaling arguments. At a generic transition point, the critical behavior is mean-field like
with logarithmic corrections in two dimensions. In the weakly correlated superfluid phase (far away from the
Mott insulating phase), the renormalization-group flow is controlled by the Bogoliubov fixed point down to a
characteristic (Ginzburg) momentum scale kG, which is much smaller than the inverse healing length kh. In the
vicinity of the multicritical points, when the density is commensurate, we identify a sharp crossover from a
weakly to a strongly correlated superfluid phase where the condensate density and the superfluid stiffness are
strongly suppressed and both kG and kh are of the order of the inverse lattice spacing.
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I. INTRODUCTION

In the last two decades, the nonperturbative renormalization
group (NPRG) approach has been successfully applied to many
areas of physics,1,2 from high-energy physics to statistical
and condensed-matter physics. It has proven to be a powerful
tool to study not only the low-energy long-distance properties
in the vicinity of second-order phase transitions but also
nonuniversal quantities. In particular, the NPRG approach
has been implemented in lattice models and used to compute
the transition temperature and the magnetization in classical
spin models (Ising, XY, and Heisenberg models).3 This
implementation of the NPRG is referred to as the lattice NPRG.

The strategy of the NPRG is to build a family of models
indexed by a momentum scale k, such that fluctuations are
smoothly taken into account as k is lowered from a microscopic
scale � down to 0. In practice, this is achieved by adding to the
action S of the system an infrared regulator term �Sk , which
vanishes for k = 0. For a scalar field theory, the regulator
term is a masslike term �Sk[ϕ] = 1

2

∑
q ϕ−qRk(q)ϕq, where

the cutoff function Rk(q) is chosen such that Rk(q) ∼ k2

for |q| � k and Rk(q) ∼ 0 for |q| � k, which effectively
suppresses the low-energy modes |q| � k. One can then
define a scale-dependent partition function Zk[J ] and a scale-
dependent effective action �k[φ] defined as a slightly modified
Legendre transform (see Sec. II A for the precise definition)
of − ln Zk[J ]. Here, J is an external source, which couples
linearly to the ϕ field and φ(r) = δ ln Zk[J ]/δJ (r). In the
standard implementation of the NPRG, at the microscopic
scale k = �, all fluctuations are frozen by the �S� term
so that ��[φ] = S[φ] as in Landau’s (mean-field) theory of
phase transitions. The effective action of the original model
is obtained for k = 0 (�Sk=0 = 0) and can be determined
by (approximately) solving the renormalization group (RG)
equation satisfied by �k .1,2

The lattice NPRG differs from the standard implementation
in the initial condition.3 The cutoff function Rk(q) is chosen

such that at the microscopic scale k = �, the action S + �S�

corresponds to the local limit of decoupled sites. Local
fluctuations are therefore included from the very beginning
of the RG procedure. The intersite coupling is then gradually
restored as k decreases from � down to 0. In the low-energy
limit, k � �, Rk(q) acts as an infrared regulator suppressing
fluctuations with momenta |q| � k. The lattice NPRG is then
equivalent to the standard NPRG and yields identical results
for the critical properties. The hallmark of the lattice NPRG is
thus to take into account both local and critical fluctuations in
a nontrivial way.

In this paper, we present a NPRG study of the Bose-
Hubbard model4 at zero temperature and in dimension d = 2
or 3. This model has been intensively studied in the last years
following the experimental observation of the superfluid-Mott-
insulator transition of an ultracold bosonic gas in an optical
lattice.5–8 Phase diagram and thermodynamic quantities are
known from the numerically exact lattice quantum Monte
Carlo (QMC) simulations.9,10 On the other hand, few studies
have addressed the critical behavior at the superfluid-Mott-
insulator transition,11 and most of our understanding goes back
to the seminal work of Fisher et al.4

The standard NPRG scheme does not capture the
superfluid-Mott-insulator transition in the Bose-Hubbard
model. The reason is that near the transition the mean-field
solution is too far away from the actual state of the system to
provide a reliable initial condition for the NPRG procedure.
The two-pole structure of the local (on-site) single-particle
propagator is crucial for the very existence of the transition
(see, e.g., Ref. 4). It is however impossible to reproduce this
structure from a RG approach starting from the mean-field
(Bogoliubov) theory within standard approximations of the
RG equation satisfied by the effective action �k . This prevents
a straightforward generalization of recent NPRG studies12–18

of interacting bosons to the Bose-Hubbard model.
By contrast the lattice NPRG, which takes into account

local fluctuations, is able to describe the superfluid-Mott-
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insulator transition.19 Since the starting action S + �S� is
purely local, this approach is to some extent reminiscent
of various t/U expansions of the Bose-Hubbard model.20–30

Moreover, the lattice NPRG is not restricted to the computation
of thermodynamic quantities and allows us to study the
critical behavior at the superfluid–Mott-insulator transition
and compare with the predictions of Fisher et al.4 based on
scaling arguments.

In addition to the phase diagram and the critical behavior at
the superfluid-Mott-insulator transition, the NPRG approach
can also address the superfluid phase. Deep in the superfluid
phase, localization effects are negligible and we expect the
Bogoliubov theory to provide a good description of the system.
However, even in this weak correlation limit, it is known
that the Bogoliubov approximation breaks down below a
characteristic (Ginzburg) momentum scale kG. In perturbation
theory about the Bogoliubov approximation, the Ginzburg
scale manifests itself by the appearance of infrared divergences
below three dimensions (d � 3). Although these divergences
cancel out in local gauge invariant quantities (condensate
density, sound mode velocity, etc.),31–34 they do have a physical
origin: they result from the coupling between longitudinal
and transverse (phase) fluctuations and reflect the divergence
of the longitudinal susceptibility35,36—a general phenomenon
in systems with a continuous broken symmetry.37–42 The
normal and anomalous self-energies, �n(q,ω) and �an(q,ω),
are nonanalytic functions of q and ω when |q|,|ω|/c � kG

and d � 3 (c denotes the velocity of the sound mode), while
�an(0,0) vanishes,43 in marked contrast with the Bogoliubov
approximation where the linear spectrum and the superfluidity
rely on a finite value of the anomalous self-energy. A weakly
correlated superfluid is defined by the condition kG � kh

where the healing scale kh is the inverse of the healing length
ξh = k−1

h .14,42,44,45 In this case, the Bogoliubov theory applies
to a large part of the spectrum where the dispersion is linear
(|q| � kh) and breaks down only at very low momentum
|q| � kG. The Goldstone regime |q| � kG, dominated by
phase fluctuations, is conveniently described by Popov’s
hydrodynamic theory (free of infrared divergences) based
on a density-phase representation of the boson field ψ =√

neiθ .46–48 The NPRG approach yields a unified description
of superfluidity, which includes both Bogoliubov theory (valid
for |q| � kG) and Popov’s hydrodynamic approach (valid for
|q| � kh).13,14,42 The Bose-Hubbard model gives us the oppor-
tunity to understand the fate of the weakly correlated superfluid
phase as we increase the strength of the interactions and move
closer to the Mott insulating phase in the phase diagram.

The paper is organized as follows. In Sec. II, we derive
the lattice NPRG formalism for the Bose-Hubbard model. We
introduce the scale-dependent effective action �k and compute
its initial value �� by solving the single-site Bose-Hubbard
model. We show that �� reproduces the result of the strong-
coupling random-phase approximation (RPA).49–53 We also
discuss the approximations used to solve the flow equation
satisfied by �k . The phase diagram obtained from the NPRG
equations is in very good quantitative agreement with the QMC
results (see Sec. III). Furthermore, the critical behavior derived
from the NPRG analysis is in complete agreement with the
predictions of Fisher et al. based on scaling arguments (see

Sec. IV).4 We find multicritical points in the universality class
of the (d + 1)-dimensional XY model where the transition
takes place at constant density. The XY critical behavior is
observed in the Mott gap, the condensate density, the com-
pressibility, and the superfluid stiffness when a multicritical
point is approached at constant chemical potential by varying
the ratio t/U between the hopping amplitude and the local
repulsion between particles. At a generic transition point,
we observe mean-field behavior, with logarithmic corrections
in dimension d = 2 (corresponding to the upper critical
dimension). The superfluid phase is discussed in Sec. V. In
the dilute limit, the renormalization-group flow is controlled by
the Bogoliubov fixed point down to a characteristic (Ginzburg)
momentum scale kG, which is much smaller than the inverse
healing length kh. The Goldstone regime k � kG, dominated
by phase fluctuations, is characterized by a (relativistic)
Lorentz invariance of the effective action �k .12,15 In the vicinity
of the multicritical points, when the density is commensurate,
we identify a sharp crossover from a weakly to a strongly
correlated superfluid phase where the condensate density and
the superfluid stiffness are strongly suppressed and both kG

and kh are of the order of the inverse lattice spacing. The main
results are summarized in Sec. VI.

II. LATTICE NPRG

The Bose-Hubbard model on a d-dimensional hypercubic
lattice is defined by the (Euclidean) action

S =
∫ β

0
dτ

{∑
r

[
ψ∗

r (∂τ − μ)ψr + U

2
(ψ∗

r ψr)2

]

− t
∑
〈r,r′〉

(ψ∗
r ψr′ + c.c.)

}
, (1)

where ψr(τ ) is a complex field and τ ∈ [0,β] an imaginary
time with β → ∞ being the inverse temperature. {r} denotes
the N sites of the lattice. U is the on-site repulsion, t the
hopping amplitude between nearest-neighbor sites 〈r,r′〉, and
μ the chemical potential. In the following, we will sometimes
write the boson field

ψr = 1√
2

(ψ1r + iψ2r) (2)

in terms of two real fields ψ1r and ψ2r.
We set h̄ = kB = 1 and take the lattice spacing as the unit

length throughout the paper.

A. Scale-dependent effective action

Following the general strategy of the NPRG, we consider
a family of models with action Sk = S + �Sk indexed by a
momentum scale k varying from a microscopic scale � down
to 0. The regulator term is defined by

�Sk =
∫ β

0
dτ

∑
q

ψ∗
qRk(q)ψq, (3)

where ψq is the Fourier transform of ψr and the sum over q
runs over the first Brillouin zone ]− π,π ]d of the reciprocal
lattice. The cutoff function Rk(q) modifies the bare dispersion
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FIG. 1. (Color online) Effective (bare) dispersion tq + Rk(q) for
k = �, 0 < k < �, and k = 0 with cutoff function (4). The (green)
dashed line shows the bare dispersion tq = −2t cos q. d = 1 and t is
taken as the energy unit.

tq = −2t
∑d

i=1 cos qi of the bosons. R�(q) is chosen such
that the effective (bare) dispersion tq + R�(q) vanishes.3 The
action S� = S + �S� then corresponds to the local limit of
decoupled sites (vanishing hopping amplitude). By choosing
R�(q) + tq = 0, rather than R�(q) + tq = 2dt as in Ref. 3, we
ensure that R�(q) does not modify the chemical potential but
only the kinetic energy.

In practice, we choose the cutoff function

Rk(q) = −ZA,kεksgn(tq)(1 − yq)�(1 − yq), (4)

with � = √
2d , εk = tk2, yq = (2dt − |tq|)/εk and �(x) the

step function (see Fig. 1). The k-dependent constant ZA,k is
defined below (ZA,� = 1). Since Rk=0(q) = 0, the action Sk=0

coincides with the action (1) of the original model. For small k,
the function Rk(q) gives a mass ∼k2 to the low-energy modes
|q| � k and acts as an infrared regulator as in the standard
NPRG scheme.1,2

The scale-dependent effective action

�k[φ∗,φ] = − ln Zk[J ∗,J ] +
∫ β

0
dτ

∑
r

(J ∗
r φr + c.c.)

−�Sk[φ∗,φ] (5)

is defined as a (slightly modified) Legendre transform, which
includes the explicit subtraction of �Sk[φ∗,φ]. Here, Zk[J ∗,J ]
is the partition function obtained from the action S + �Sk , Jr a
complex external source, which couples linearly to the bosonic
field ψr, and the superfluid order parameter is

φr(τ ) = δ ln Zk[J ∗,J ]

δJ ∗
r (τ )

, φ∗
r (τ ) = δ ln Zk[J ∗,J ]

δJr(τ )
. (6)

The variation of the effective action with k is governed by
Wetterich’s equation,54

∂k�k[φ∗,φ] = 1

2
Tr
[
∂kRk

(
�

(2)
k [φ∗,φ] + Rk

)−1]
, (7)

where �
(2)
k is the second-order functional derivative of �k . In

Fourier space, the trace in Eq. (7) involves a sum over momenta
and frequencies as well as the two components of the complex
field φ.

We are primarily interested in two quantities. The first one
is the effective potential defined by

Vk(n) = 1

βN
�k[φ∗,φ]

∣∣∣∣
φ=const

, (8)

where φ is a constant (uniform and time-independent) field.
The U(1) symmetry of the action implies that Vk(n) is a
function of n = |φ|2. Its minimum determines the condensate
density n0,k and the thermodynamic potential (per site) V0,k =
Vk(n0,k) in the equilibrium state.

The second quantity of interest is the two-point vertex

�
(2)
k,ij (r − r′,τ − τ ′; φ) = δ(2)�[φ]

δφir(τ )δφjr′(τ ′)

∣∣∣∣
φ=const

, (9)

which determines the one-particle propagator Gk = −�
(2)−1
k .

Here, the indices i and j refer to the real and imaginary parts
of φ [see Eq. (2)]. Because of the U(1) symmetry of the action
(1), the two-point vertex in a constant field takes the form14

�
(2)
k,ij (q; φ)=δi,j�A,k(q; n)+φiφj�B,k(q; n) + εij�C,k(q; n)

(10)

in Fourier space, where q = (q,iω), ω is a Matsubara fre-
quency, and εij the antisymmetric tensor. For q = 0, we can
relate �

(2)
k to the derivative of the effective potential,

�
(2)
k,ij (q = 0; φ) = ∂2Vk(n)

∂φi∂φj

= δi,jV
′
k(n) + φiφjV

′′
k (n), (11)

so that

�A,k(q = 0; n) = V ′
k(n), �B,k(q = 0; n) = V ′′

k (n),
(12)

�C,k(q = 0; n) = 0.

Parity and time-reversal invariance imply14

�A,k(q; n) = �A,k(−q; n) = �A,k(q, − iω; n),

�B,k(q; n) = �B,k(−q; n) = �B,k(q, − iω; n), (13)

�C,k(q; n) = −�C,k(−q; n) = −�C,k(q, − iω; n).

The one-particle propagator Gk = −�
(2)−1
k can be written

in a form analogous to Eq. (10) or in terms of its longitudinal
and transverse components,

Gk,ij (q; φ) = φiφj

2n
Gk,ll(q; n) +

(
δi,j − φiφj

2n

)
Gk,tt(q; n)

+ εijGk,lt(q; n), (14)

where

Gk,ll(q; n) = −�A,k(q; n)

Dk(q; n)
,

Gk,tt(q; n) = −�A,k(q; n) + 2n�B,k(q; n)

Dk(q; n)
, (15)

Gk,lt(q; n) = �C,k(q; n)

Dk(q; n)
,

with Dk = �2
A,k + 2n�A,k�B,k + �2

C,k . Note that the single-
particle propagator entering the flow equation (7) is defined by
−(�(2)

k + Rk)−1, which is the propagator associated with the
true Legendre transform, rather than −�

(2)−1
k .
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B. Initial conditions

Since the action S + �S� ≡ Sloc corresponds to the local
limit, the initial value of the effective action reads

��[φ∗,φ] = �loc[φ∗,φ] +
∫ β

0
dτ

∑
q

φ∗(q)tqφ(q), (16)

where

�loc[φ∗,φ] = − ln Zloc[J ∗,J ] +
∫ β

0
dτ

∑
r

(J ∗
r φr + c.c.)

(17)

is the Legendre transform of the thermodynamic potential
− ln Zloc[J ∗,J ] in the local limit. In Eq. (17), J is related
to φ by the relation φr (τ ) = δ ln Zloc[J ∗,J ]/δJ ∗

r (τ ) and Zloc

is the partition function obtained from Sloc.
It is not possible to compute the functional �loc[φ∗,φ]

for arbitrary time-dependent fields. One can however easily
obtain the effective potential Vloc(n) and the two-point vertex
�

(2)
loc in a time-independent field φ. These quantities are

sufficient to specify the initial conditions of the flow within
the approximations that we consider in Sec. II E.

To obtain Vloc and �
(2)
loc in a time-independent field, it is suf-

ficient to consider a single site with time-independent complex
external source J . The corresponding Hamiltonian reads

Ĥ = −μn̂ + U

2
n̂(n̂ − 1) − J ∗b̂ − J b̂†, (18)

where b̂† (b̂) is a creation (annihilation) operator and n̂ = b̂†b̂.
In the basis {|m〉} (n̂|m〉 = m|m〉 with m integer), the
Hamiltonian is represented by a tridiagonal matrix,

〈m|Ĥ |m′〉 = δm,m′

[
−μm + U

2
m(m − 1)

]
− δm+1,m′J ∗√m + 1 − δm−1,m′J

√
m, (19)

which can be numerically diagonalized in the truncated
Hilbert space m � mmax. The low-energy eigenstates are
independent of mmax if the latter is large enough. If we
denote by {|α〉,Eα} the source-dependent eigenstates and
eigenvalues—with {|0〉,E0} being the ground state—we
obtain the superfluid order parameter

φ = −∂E0

∂J ∗ , φ∗ = −∂E0

∂J
, (20)

and the effective potential

Vloc(n) = E0 + J ∗φ + Jφ (21)

(n = |φ|2) in the zero-temperature limit β → ∞. Figure 2
shows the superfluid order parameter φ as a function of the
external source J , and the local effective potential Vloc(n)
obtained by numerically inverting Eq. (20). The special case
where the ground state in the local limit is degenerate for
J = 0 (μ/U integer) is discussed in Appendix A.

To determine the two-point vertex �
(2)
loc, we start from

the (source-dependent) normal and anomalous local Green
functions:

Gn(τ ) = −〈Tτ b̂(τ )b̂†(0)〉 + |〈b̂〉|2,
(22)

Gan(τ ) = −〈Tτ b̂(τ )b̂(0)〉 + 〈b̂〉2,

FIG. 2. (Color online) (Top) Superfluid order parameter φ vs
external source J (here assumed real) in the local limit for various
values of the chemical potential μ. (Bottom) Effective potential
Vloc(n).

where b̂(†)(τ ) = eτĤ b̂(†)e−τĤ and Tτ is a time-ordering oper-
ator. The Fourier transforms Gn(iω) and Gan(iω) are easily
expressed in terms of the eigenstates |α〉 of the Hamiltonian,

Gn(iω) = −
∑
α �=0

[
|〈α|b̂|0〉|2

iω + Eα − E0
− |〈0|b̂|α〉|2

iω + E0 − Eα

]
,

(23)

Gan(iω) = −
∑
α �=0

〈α|b̂|0〉〈0|b̂|α〉 2(Eα − E0)

ω2 + (Eα − E0)2
.

From the relation �(2) = −G−1, we obtain

�loc,A(iω; n) = − 1

2D
[Gn(iω) + Gn(−iω) + 2Gan(iω)],

�loc,B(iω; n) = Gan(iω)

nD
, (24)

�loc,C(iω; n) = i

2D
[Gn(iω) − Gn(−iω)],

where D = Gn(iω)Gn(−iω) − Gan(iω)2. �(2) is expressed in
terms of the condensate density n (rather than the external
source J ) by inverting Eq. (20).

The large frequency limit of the two-point vertex is given
by55

lim
|ω|→∞

�loc,A(iω; n) = −μ − U
〈
ψ2

r

〉 + 2U 〈ψ∗
r ψr〉,

(25)

lim
|ω|→∞

�loc,B(iω; n) = U

〈
ψ2

r

〉
n

, lim
|ω|→∞

�loc,C(iω; n) = ω,
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FIG. 3. (Color online) [�loc,A(iω; n) − V ′
loc(n)]/U vs ω/U for

various values of n. μ = 0.2U (left) and μ = (
√

2 − 1)U (right).
The dotted lines show the large frequency limit (25).

where 〈ψr〉 = φ and 〈ψ2
r 〉 are assumed real (which corresponds

to a real external source J ),

〈ψ∗
r ψr〉 = −Gn(τ = 0−) + |φ|2

= −
∫ ∞

−∞

dω

2π
Gn(iω)eiω0+ + |φ|2, (26)

and 〈
ψ2

r

〉 = −Gan(τ = 0−) + φ2

= −
∫ ∞

−∞

dω

2π
Gan(iω)eiω0+ + φ2. (27)

The asymptotic forms (25) are reached for |ω| � U .
�loc,A(iω; n) and �loc,C(iω; n) are shown in Figs. 3 and 4.

1. Large-field limit

To obtain the large-field limit of the effective poten-
tial Vloc(n), we must compute the local partition function
Zloc[J ∗,J ] for |J | → ∞. Using a loop expansion about the
saddle-point approximation (see Appendix B), we find

Vloc(n) = −μ̄n + U

2
n2 + O(n0), (28)

where μ̄ = μ + U (1 − √
3/2).

FIG. 4. (Color online) �loc,C(iω; n)/U vs ω/U for various values
of n. μ = −0.2U , 0.2U , (

√
2 − 1)U , and 0.6U (from top left

to bottom right). In the large frequency limit, �loc,C(iωn; n) = ω

[Eq. (25)].

2. Strong-coupling RPA

The initial effective action �� [Eq. (16)] treats the local
fluctuations exactly but includes the intersite hopping term
at the mean-field level, thus reproducing the strong-coupling
RPA.49–53 The effective potential reads

V�(n) = Vloc(n) − 2dtn, (29)

while the two-point vertex takes the RPA-like form

�
(2)
�,ij (q; n) = �

(2)
loc,ij (iω; n) + δi,j tq. (30)

Expanding V�(n) about n = 0, we find

V�(n)=Vloc(0)+[
�

(2)
loc,11(iω = 0; n = 0) − 2dt

]
n + O(n2),

(31)

where

�
(2)
loc,ii(iω = 0; n = 0) = −Gn(iω = 0; n = 0)−1 (32)

is determined by the local Green function

Gn(iω; n = 0) = n̄loc + 1

iω + μ − Un̄loc
− n̄loc

iω + μ − U (n̄loc − 1)
(33)

for vanishing source (J ∗ = J = 0). Here, n̄loc is the number
of bosons per site in the local limit: n̄loc − 1 � μ/U � n̄loc

if μ � 0 and n̄loc = 0 if μ � 0. The ground state is a Mott
insulator as long as V ′

�(0) � 0. Thus the transition to the
superfluid state is determined by the criterion V ′

�(0) = 0, i.e.,

Gn(iω = 0; n = 0)−1 + 2dt = 0, (34)

which reproduces the mean-field (or strong-coupling RPA)
phase diagram.4 Equation (34) can also be obtained from
the condition det �(2)

� (q = iω = 0; n = 0), which signals the
appearance of a pole at zero momentum and frequency in the
one-particle propagator G� = −�

(2)−1
� .

In the strong-coupling RPA, the condensate density n0 in
the superfluid phase is determined by

V ′
�(n0) = V ′

loc(n0) − 2dt = 0. (35)

The hopping amplitude t acts as a source term for the local
potential Vloc(n). For t/U � 1, i.e., deep in the superfluid
phase, the source term is large and we are effectively in the
large field limit discussed in Sec. II B 1. From Eqs. (16), and the
fact that μ̄ + 2dt � μ + 2dt when t/U � 1, we then obtain
V�(n) � 1

βN
S[φ∗,φ] (with |φ|2 = n), which is nothing but

the result of the Bogoliubov approximation.14,56 The strong-
coupling RPA reduces to the Bogoliubov theory in the limit
t/U � 1.53 Table I compares the initial conditions given by
the Bogoliubov theory and the strong-coupling RPA.

It should be noted that the true Legendre transform is �loc

for k = �, since the action S� = S + �S� = Sloc is local.
The lattice NPRG is an expansion about the local limit.
The scale-dependent effective action �k is however the right
quantity to consider to analyze the physical properties of the
system with action S (without the regulator term). In �k , the
regulator term �Sk is compensated, in a mean-field manner,
by subtracting �Sk[φ∗,φ] from the true Legendre transform.
It follows that the physical quantities at scale k, such as the
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TABLE I. Initial conditions given by the Bogoliubov approxima-
tion and the strong-coupling RPA. In the weak-coupling limit the two
approximations become equivalent.

Bogoliubov RPA

V�(n) −(μ + 2dt)n + U

2 n2 Vloc(n) − 2dtn

�A,�(q; n) −μ + Un + tq �loc,A(iω; n) + tq
�B,�(q; n) U �loc,B (iω; n)
�C,�(q; n) ω �loc,C(iω; n)

condensate density n0,k , are obtained from �k rather than from
the true Legendre transform.

C. Gauge invariance and Ward identities

The invariance of the action S + �Sk in the local (time-
dependent) gauge transformation ψr → eiαψr, ψ∗

r → e−iαψ∗
r

and μ → μ + i∂τα imposes important constraints on the
effective action �k . In the superfluid phase, this implies that
the two-point vertex satisfies the Ward identities14

∂

∂ω
�C,k(q; n0,k)

∣∣∣∣
q=0

= − ∂2Vk

∂n∂μ

∣∣∣∣
n0,k

,

(36)
∂2

∂ω2
�A,k(q; n0,k)

∣∣∣∣
q=0

= − 1

2n0,k

∂2Vk

∂μ2

∣∣∣∣
n0,k

,

where the effective potential Vk(n,μ) is considered as a
function of both n and μ, the condensate density n0,k ≡ n0,k(μ)
being then defined by

∂Vk(n,μ)

∂n

∣∣∣∣
n0,k

= 0. (37)

Since Eq. (37) is valid for any μ, we deduce the relation

0 = d

dμ

∂Vk

∂n

∣∣∣∣
n0,k

= ∂2Vk

∂n∂μ

∣∣∣∣
n0,k

+∂2Vk

∂n2

∣∣∣∣
n0,k

dn0,k

dμ
, (38)

which will be used below together with Eq. (36).
In the Mott insulator (n0,k = 0), the Ward identities (36)

become

∂

∂ω
�C,k(q; n = 0)

∣∣∣∣
q=0

= − ∂2Vk

∂n∂μ

∣∣∣∣
n=0

,

(39)
∂2V0,k

∂μ2
= d2V0,k

dμ2
= 0,

which implies that the compressibility57

κk = dn̄k

dμ
= −d2V0,k

dμ2
(40)

vanishes. n̄k = −dV0,k/dμ denotes the boson density (mean
boson number per site).

D. Derivative expansion and infrared behavior

The low-energy behavior of the system is best understood
from a derivative expansion of the two-point vertex. Since the
cutoff function (4) acts as an infrared regulator, �

(2)
k (q; n) is a

regular function of q for q → 0. In the infrared limit, we can
therefore use the derivative expansion

�A,k(q; n) = ZA,k(n)tq2 + VA,k(n)ω2 + V ′
k(n),

(41)
�B,k(q; n) = V ′′

k (n), �C,k(q; n) = ZC,k(n)ω,

[V ′
k(n) = ∂Vk/∂n, etc.] in agreement with the symmetry

properties (13). For the following discussion, it is convenient
to introduce

δk = ∂Vk

∂n

∣∣∣∣
n0,k

, λk = ∂2Vk

∂n2

∣∣∣∣
n0,k

, (42)

with δk vanishing in the superfluid phase. If the spectrum
is gapped, Eq. (41) will always be valid for energy scales
below the gap. Otherwise their validity requires |q| � k and
|ω| � ω−

k , where ω−
k is the lowest excitation energy for |q| ∼ k

(see Sec. II E).

1. Superfluid phase

Using Eqs. (37) and (38), we can rewrite the Ward identities
(36) as

ZC,k(n0,k) = λk

dn0,k

dμ
, VA,k(n0,k) = − 1

2n0,k

∂2Vk

∂μ2

∣∣∣∣
n0,k

,

(43)

while the compressibility (40) is expressed as

κk = −∂2V0,k

∂μ2

∣∣∣∣
n0,k

−∂2V0,k

∂n∂μ

∣∣∣∣
n0,k

dn0,k

dμ

= 2n0,kVA,k + Z2
C,k

λk

. (44)

The superfluid stiffness ρs,k , defined as the rigidity with
respect to a twist of the phase of the order parameter, can be
obtained from the transverse part of the two-point vertex,14

�A,k(q,ω = 0; n0,k) = ρs,k

2n0,k

q2 (q → 0), (45)

which leads to

ρs,k = 2tZA,k(n0,k)n0,k. (46)

The excitation spectrum is given by the zeros of the
determinant of the 2 × 2 matrix �

(2)
k (q; n0,k) (after analytical

continuation iω → ω + i0+),

det �(2)
k (q) = �A,k(q)[�A,k(q) + 2n0,k�B,k(q)] + �C,k(q)2

� 2λkn0,k(ZA,ktq2 + VA,kω
2) + (ZC,kω)2 (47)

(all quantities are evaluated for n = n0,k) for |q|,|ω| → 0. This
equation yields a gapless (Goldstone) mode ω = ck|q| with a
velocity

ck =
[

ZA,k(n0,k)t

VA,k(n0,k) + ZC,k(n0,k)2/(2λkn0,k)

]1/2

=
(

ρs,k

κk

)1/2

, (48)

which can be expressed in terms of the compressibility and
superfluid stiffness.4 The existence of a gapless mode is a
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consequence of the Hugenholtz-Pines theorem,33 which, in
our formalism, reads14

�A,k(q = 0; n0,k) = V ′
k(n0,k) = 0. (49)

Equations (46) and (48) are identical to those obtained in
continuum models if we identify 1/2t with the (effective) mass
m of the bosons in the lattice potential. From det �(2)

k (q,ω +
i0+) = 0, we also obtain a gapped mode with a gap, which
is, however, larger than ω−

k ∼ ckk, and therefore beyond the
domain of validity of the derivative expansion (|q|,|ω|/ck �
k). The existence of two modes in the superfluid phase follows
from det �(2)

k (q) being of order ω4. Pushing the derivative
expansion to higher order in ω2 would yield additional modes.
These modes are not in the domain of validity of the derivative
expansion and do not show up in the spectral function.14,18

2. Mott insulator

In the Mott insulator (n0,k = 0), the Ward identities (39)
yield

ZC,k = −dδk

dμ
. (50)

Since Gan,k(q) = 0, the excitation spectrum is obtained from
G−1

n,k(q) = −�A,k(q) + i�C,k(q) = 0 after analytical continu-
ation iω → ω + i0+. This gives two gapped modes

ω±(q) = − ZC,k

2VA,k

± 1

2VA,k

[
Z2

C,k + 4VA,k(ZA,ktq2 + δk)
]1/2

= �k± ± ZA,ktq2(
Z2

C,k + 4VA,kδk

)1/2 + O(|q|4), (51)

where

�k± = − ZC,k

2VA,k

± 1

2VA,k

(
Z2

C,k + 4VA,kδk

)1/2
. (52)

When ZC,k �= 0, both modes have a quadratic dispersion
for small q. The modes ω+(q) and ω−(q) have positive and
negative effective mass, respectively. Thus ω+(q) [ω−(q)]
corresponds to a particle-like (holelike) excitation. At the
transition to the superfluid phase (δk=0 → 0), �k=0,+ (�k=0,−)
vanishes if ZC,k=0 > 0 (ZC,k=0 < 0), but the particle-hole
excitation gap �k=0 = �k=0,+ − �k=0,− remains finite. The
critical mode energy ω ∼ q2 being quadratic in q, the
dynamical critical exponent takes the value z = 2.

When ZC,k = 0, the excitation spectrum takes the particle-
hole symmetric form

ω±(q) = ±
(

ZA,ktq2 + δk

VA,k

)1/2

= ± (
c2
kq2 + �2

k

)1/2
, (53)

where

�k =
(

δk

VA,k

)1/2

, ck =
(

ZA,kt

VA,k

)1/2

. (54)

At the transition (δk=0 = 0), the particle-hole excitation
gap 2�k=0 vanishes and the dispersion ω±(q) = ±ck=0|q|
becomes linear, which implies that the critical dynamical
exponent takes the value z = 1.58 We can also understand

this result as a direct consequence of the (relativistic) Lorentz
invariance of the vertex �

(2)
k=0,ij [Eq. (41)] when ZC,k=0

vanishes. The quantum critical point δk=0 = 0 then coincides
with the critical point of the (d + 1)-dimensional XY model.

We conclude that the universality class of the superfluid-
Mott-insulator transition depends on whether ZC,k=0(n = 0)
vanishes or not.4,59 The same conclusion can be reached from
the superfluid phase by considering the spectrum in the limit
n0,k=0 → 0.

E. Flow equations

Since we do not have an explicit (approximate) form of
the effective action �k[φ∗,φ], we cannot directly use Eq. (7)
to obtain the RG equations satisfied by Vk(n) and �α,k(n)
(α = A,B,C). We can nevertheless obtain RG equations for
the effective potential Vk(n) and the two-point vertex �

(2)
k (q; n)

in a constant field within a simplified Blaizot-Méndez-Galain-
Wschebor (BMW) scheme.60,61

Equation (7) leads to the RG equations

∂lVk(n) = −1

2

∫
q

∂lRk(q)[Gk,ll(q; n) + Gk,tt(q; n)] (55)

and

∂l�
(2)
k,ij (p; φ)

= − 1

2

∑
q,i1,i2

∂̃lGk,i1i2 (q; φ)�(4)
k,ij i2i1

(p, − p,q, − q; φ)

− 1

2

∑
q,i1···i4

{
�

(3)
k,ii2i3

(p,q, − p − q; φ)

×�
(3)
k,j i4i1

(−p,p + q, − q; φ)[∂̃lGk,i1i2 (q; φ)]

×Gk,i3i4 (p + q; φ) + (p ↔ −p,i ↔ j )
}

(56)

(l = ln(k/�)) for the effective potential and the two-point
vertex in a constant field φ. Gk = −(�(2)

k + Rk)−1 is the
single-particle propagator. We use the notation

1

βN

∑
q

≡
∫

q

=
∫

q

∫
ω

=
∫

ddq

(2π )d

∫ ∞

−∞

dω

2π
, (57)

where the momentum integral is restricted to the Brillouin
zone ] − π,π ]d . The operator ∂̃l = (∂lRk)∂Rk

acts only on
the l dependence of the cutoff function Rk . The BMW
approximation is based on the following two observations.
(i) For a given momentum q, the frequency integral in Eq. (56)
is dominated by the region |ω| � ω−

k (q), where ω−
k (q) is the

lowest excitation energy defined by the propagator Gk . Since
the function ∂̃lGij (q; φ) is proportional to ∂lRk(q), the integral
over the loop momentum q in Eq. (56) is dominated by values
of |q| of the order or smaller than k. It follows that the important
frequency range for the loop integral is |ω| � ω−

k , where ω−
k

is the typical value of ω−
k (q) for |q| ∼ k. In the superfluid

phase, ω−
k ∼ ckk (ck is the velocity of the Goldstone mode),

while in the Mott-insulating phase ω−
k can be deduced from

Eqs. (51) and (53). (ii) Because of the cutoff function Rk(q),
the vertices �

(n)
k (q1 · · · qn) are smooth functions of momenta

and frequencies in the range |qi |/k,|ωi |/ω−
k � 1. These two

properties allow us to expand the vertices in the right-hand side
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of Eq. (56) in powers of q2/k2 and ω2/ω−
k

2. To leading order,
one simply sets q = 0 in the three- and four-point vertices in
Eq. (56). We can then obtain a closed equation for �

(2)
k by

noting that60

�
(3)
k,ij l(p, − p,0; φ) = 1√

βN

∂

∂φl

�
(2)
k,ij (p; φ),

(58)

�
(4)
k,ij lm(p, − p,0,0; φ) = 1

βN

∂2

∂φl∂φm

�
(2)
k,ij (p; φ).

Furthermore, properties (i) and (ii) allow us to use the
derivative expansion of the two-point vertex �

(2)
k [Eq. (41)]

to obtain the propagator Gk to be used in the RG equations
(55) and (56). Since it is however crucial to retain the full
lattice structure at the beginning of the RG flow (k � �), we
take

�A,k(q; n) = ZA,k(n)εq + VA,k(n)ω2 + V ′
k(n), (59)

which coincides with Eq. (41) for |q| � �. We have in-
troduced the shifted dispersion εq = tq + 2dt (εq � tq2 for
|q| � �). Following Ref. 3, we define ZA,k(n) as

ZA,k(n) = 1

t
lim
q→0

∂

∂q2
�A,k(q; n), (60)

so that ZA,k(n0,k) has the meaning of a field renormalization
factor (and should not be confused with a renormalization of
the hopping amplitude between nearest-neighbor sites3). For
k � �, Eqs. (59) and (60) are equivalent to the so-called LPA′
approximation (LPA stands for local potential approximation).
For k � �, these equations can be justified by noting that
in this limit, ZA,k(n) � ZA,�(n) = 1 so that approximating
the renormalized dispersion by ZA,k(n)εq, which is valid for
small q when ZA,k is defined by Eq. (60), is expected to
remain approximately valid in the whole Brillouin zone.3 The
derivative expansion of the local vertex �

(2)
loc is further discussed

in Appendix C.
Although the final flow equations rely on a derivative

expansion of the vertices, they cannot be derived directly from
a simple ansatz of the effective action �k . The reason is that it is
not possible to propose an ansatz for the initial effective action
��[φ∗,φ] [Eq. (16)] based on a derivative expansion, since
we do not know its expression for arbitrary time-dependent
fields. In the BMW approach, we deal only with quantities
computed in a constant field which, for k = �, can easily be
obtained from the Hamiltonian in the local limit as explained
in Sec. II B.

As far as the momentum dependence of the vertices is
concerned, our BMW approximation (supplemented with a
derivative expansion of �

(2)
k to obtain Gk) is as legitimate as the

original one.60–62 It is however more questionable regarding
the ω dependence. Contrary to the momentum integral, the
frequency integral in Eq. (56) is not exponentially cut off
by the regulator Rk(q). The integrand typically decays as
a power of 1/|ω| for |ω| � ω−

k (q), so that the contribution
of large frequencies is small but not negligible. The reason
why the BMW approximation nevertheless leads to accurate
results (see Sec. III) can be understood as follows. In the
weak-coupling limit, the frequency dependence of the vertices
�

(3)
k and �

(4)
k is weak,63 so that setting the loop frequency ω to

zero in �
(3)
k and �

(4)
k as well as using a derivative expansion of

�
(2)
k should be justified. In the strong-coupling limit, �

(3)
k and

�
(4)
k do depend on frequency but this dependence is controlled

by U as in the local limit. Since U � ω−
k (q), except deep in the

Mott phase where the strong-coupling RPA is already a good
approximation to the k = 0 results, it appears again justified to
set the loop frequency to zero in three- and four-point vertices
and use a derivative expansion to obtain the propagator Gk .
The use of a cutoff function Rk(q) acting both on momentum
and frequency would put the BMW approximation on a firmer
basis,14 but such a cutoff function would be incompatible with
the initial condition S + �S� = Sloc of the lattice NPRG.64

The numerical solution of the flow equations can be
further simplified by approximating VA,k(n) and ZA,k(n)
by VA,k ≡ VA,k(n0,k) and ZA,k ≡ ZA,k(n0,k).65 To obtain an
accurate description of the phase diagram, it is nevertheless
necessary to keep the full n dependence of ZC,k(n) and Vk(n).19

The n dependence of ZC,k(n) is also necessary for a good
description of the critical behavior at the multicritical points
(see Sec. IV).66 Away from the multicritical points and when
accuracy is not the primary goal, it is possible to approximate
ZC,k(n) by ZC,k(n0,k), and expand the effective potential to
quadratic order about its minimum,

Vk(n) =
{
V0,k + λk

2 (n − n0,k)2 if n0,k > 0,

V0,k + δkn + λk

2 n2 if n0,k = 0,
(61)

where δk and λk are defined in Eq. (42). The BMW equations
and their various approximations are detailed in Appendix D.

III. PHASE DIAGRAM

To alleviate the notations, we drop the subscript k whenever
we refer to a k = 0 quantity (e.g., n0 ≡ n0,k=0).

For given values of t , U , and μ, the ground state can be
deduced from the values of the condensate density n0 (n0 > 0
in the superfluid phase). To obtain thermodynamic quantities,
it is sufficient to integrate the RG flow down to k ∼ 10−5.
In Ref. 19, we have shown that by increasing the functional
character of the NPRG equations [e.g., by retaining the full n

dependence of Vk(n) rather than using the truncation (61)], we
observe a nice convergence of our results, which we therefore
expect to be close to the exact ones. The most accurate results,
obtained by keeping the full n dependence of Vk(n) and ZC,k(n)
are shown in Figs. 5 and 6. In both three and two dimensions,
the transition line between the superfluid phase and the Mott
insulator is very close to the QMC result;9,10 the tip of the Mott
lobe (t/U = 0.0339, μ/U = 0.3992) differs from the QMC
data only by (0.001%, 3%) in three dimensions, while in two
dimensions the tip is located at (t/U = 0.060, μ/U = 0.387),
which corresponds to a relative error of order (1.5%, 4%). For
comparison, in Figs. 5 and 6, we also show the mean-field
(or strong-coupling RPA) phase diagram as well as the one
obtained from dynamical mean-field theory (DMFT).67,68

An important characteristic of the Mott insulating phases
is the vanishing compressibility κ = dn̄/dμ = 0. The expres-
sion (44) enables us to determine the boson density n̄k directly
from n0,k , VA,k , ZC,k , and λk by integrating dn̄k/dμ. The
unknown integration constant is easily fixed since we know
that the density vanishes for μ = −2dt . Alternatively, one
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FIG. 5. (Color online) Phase diagram of the 3D Bose-Hubbard
model. Only the first Mott lobe (n̄ = 1) is shown. The (green) dashed
line shows the mean-field (or strong-coupling RPA) phase diagram.
The QMC data are obtained from Ref. 9 and the DMFT data from
Ref. 67.

can use the fact that the density is integer in the Mott insulator.
This method not only avoids to numerically compute dV0,k/dμ

(which requires to solve the RG equations for nearby values
of μ) but also turns out to be much less sensitive to numerical
noise. Figure 7 shows the density n̄ as a function of the
chemical potential μ for various values of t/U and d = 2. The
vanishing compressibility κ = 0 in the Mott insulating phase
n̄ = 1 is clearly visible. In the figure, the density is obtained
from κ and the condition n̄ = 1 in the Mott phase. If we
use the condition n̄(μ = −2dt) = 0, we obtain n̄ = 1 ± 0.03
(n̄ = 1 ± 0.045) in the three-dimensional (two-dimensional)
Mott phase n̄ = 1. The error is more pronounced near the tip
of the Mott lobe.

IV. CRITICAL BEHAVIOR

In Sec. II D, we have seen that the universality class of
the superfluid–Mott-insulator transition depends on whether
ZC(n = 0) vanishes or not. We must therefore determine the
value of ZC(n = 0) at the transition.

Let us consider the parameter δ(t,μ) = V ′(0) as a function
of t and μ (with U fixed). In the Mott insulator, the Ward
identity (50) becomes

ZC ≡ ZC(0) = − ∂δ

∂μ

∣∣∣∣
t

. (62)

FIG. 6. (Color online) Phase diagram of the 2D Bose-Hubbard
model. The QMC data are obtained from Ref. 10.

FIG. 7. (Color online) Density n̄ ≡ n̄k=0 vs μ/U for various
values of t/U and d = 2.

Since the transition line is defined by δ(t,μ) = 0, ZC vanishes
at the tip of the Mott lobe (μ = μc) where the tangent to the
transition line is vertical. Moreover, since δ(t,μ) � 0 in the
Mott phase, on the transition line ZC is positive (negative)
for μ > μc (<μc). We deduce that at the tip of the Mott
lobe, the quantum critical point coincides with the critical
point of the (d + 1)-dimensional XY model. The dynamical
critical exponent takes the value z = 1 in agreement with
the Lorentz invariance of the effective action when ZC = 0
(see Sec. II D 2). The upper and lower critical dimensions
are therefore d+

c = 3 and d−
c = 1, respectively. The transition

from the Mott insulator to the superfluid phase is driven by
the vanishing of the particle-hole excitation gap, while the
density is conserved.4,69 The critical point is a multicritical
point as two parameters (t/U and μ/U ) have to be fine tuned.
Away from the Mott lobe tip, ZC is nonzero and the dynamical
critical exponent takes the value z = 2. This transition, which
is driven by a density change, is mean-field like for d � 2
(with logarithmic corrections at the upper critical dimension
d+

c = 2).

A. Multicritical point

The critical behavior at the tip of a Mott lobe can be under-
stood from the linearized flow equations. If we set ZC,k(n) = 0,
we recover the flow equations of the (d + 1)-dimensional XY
model with one relevant direction in the space of parameters
of the effective action. The flow of the corresponding scaling
field (which we denote by r) determines the exponent ν. Since
ZC,k(n) enters the propagators quadratically, it does not enter
the linearized flow equations (except of course its own RG
equation). Thus ZC,k(n0,k) corresponds to the second relevant
direction of the flow and is orthogonal (in the parameter space
of the action) to the critical surface.

The behavior of the system near the multicritical point
(tc,μc) is best understood by considering the singular part
Vs(r,ZC) of the effective potential [ZC ≡ ZC(n0)].4 For small
r and ZC and d < 3,

Vs(r,ZC) = s−d−zVs(s
1/νr,sZC)

= |r|ν(d+z)Ṽs(|r|−νZC). (63)

Here, we anticipate that the eigenvalue related to the scaling
field ZC is equal to one (see below). Vs being finite and nonzero
in the limits r → 0 and ZC → 0, Ṽs(x) must behave like a
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TABLE II. Dimensionless variables [ZC,k ≡ ZC,k(n0,k)].

Multicritical point Generic transition

q̃ q/k q/k

ω̃
(

VA,k

ZA,kεk

)1/2
ω

(
ZC,k

ZA,kεk

)
ω

ñ k−d (VA,kZA,kεk)1/2n k−dZC,kn

Ṽk(ñ) k−d
(

VA,k

ZA,kεk

)1/2
Vk(n) k−d

(
ZC,k

ZA,kεk

)
Vk(n)

δ̃k (ZA,kεk)−1δk (ZA,kεk)−1δk

λ̃k kdV
−1/2
A,k (ZA,kεk)−3/2λk kd (ZC,kZA,kεk)−1λk

Z̃C,k(ñ) (VA,kZA,kεk)−1/2ZC,k(n) ...

ṼA,k ... ZA,kεkZ
−2
C,kVA,k

constant when x → 0 and like xd+z when x → ∞. Moreover,
r and ZC are presumably analytic functions of t − tc and μ −
μc, and must vanish linearly with t − tc as we approach the
multicritical point on a typical path [i.e., a path which is not
vertical in the (t/U,μ/U ) plane]. Since the critical exponent
ν of the XY model satisfies 1 − ν > 0 for all d + 1 � 3, the
argument of Ṽs in Eq. (63) vanishes as t − tc → 0. Given that
Ṽs(x) → const as x → 0, we conclude that ZC drops out of
the scaling relation (63) and the multicritical point looks like
an ordinary XY critical point as shown explicitly below by the
NPRG results.

To make the fixed point manifest when the system is critical,
we use the dimensionless variables defined in Table II. The
anomalous dimensions are defined by

ηA,k = −∂l ln ZA,k, ηV,k = −∂l ln VA,k. (64)

The dimensionless frequency variable ω̃ (see Table II) allows
us to define a (running) dynamical critical exponent zk = [ω]
from [ZA,k] = −ηA,k , [VA,k] = −ηV,k , and [ω̃] = 0, which
gives

zk = 1 − ηA,k − ηV,k

2
. (65)

Here, [X] denotes the scaling dimension of the variable
X (momenta having as usual scaling dimension one). At
the multicritical point, we expect ηA = ηV and z = 1. It is
however possible that the regulator Rk(q), which does not
satisfy the Lorentz invariance of the effective action at the
multicritical point, modifies the expected critical behavior.
Setting ZC,k(n) = 0 in the flow equations, we find

ηV,k = ηA,k − η2
A,k

d + 2
. (66)

Given the small value of the anomalous dimension in
the (d + 1)-dimensional XY model (d = 2,3), the results
ηA = ηV and z = 1 are nevertheless satisfied to a very good
accuracy (see below).

1. 2D multicritical point

Let us first discuss the two-dimensional case. We find that
ZC(n) vanishes for μ = 0.382 U , slightly away from the lobe
tip located at μ = 0.387 U (we now focus on the Mott insulat-
ing phase n̄ = 1). We ascribe this slight discrepancy to the fact
that the local gauge invariance (see Sec. II C), which leads to

FIG. 8. (Color online) (Top) Dimensionless condensate density
ñ0,k , coupling constant λ̃k , and Z̃C,k(ñ0,k) vs ln(�/k) at the multi-
critical point n̄ = 1 for d = 2. (Bottom) Anomalous dimensions ηA,k

and ηV,k vs ln(�/k). The inset shows that Eq. (66) is satisfied when
k → 0.

the Ward identity (62), is not strictly satisfied in our approach
since it is violated by both the BMW approximation and the
derivative expansion. On the other hand, the fact that the multi-
critical point lies very close to the tip of the Mott lobe indicates
that the local gauge invariance remains nearly satisfied, and all
consequences discussed in Secs. II C and II D apply.

Figure 8 shows the RG flow at the multicritical point. The
plateaus observed for the dimensionless condensate density
ñ0,k and coupling constant λ̃k as well as for the (running)
anomalous dimensions ηA,k and ηV,k are characteristic of
critical behavior. We clearly see the emergence of the Lorentz
invariance as k decreases: Z̃C,k(ñ0,k) ∼ k is suppressed, while
ηA,k and ηV,k become nearly equal (implying zk � 1). We
find the critical exponents ν = 0.699, ηA = 0.049, ηV =
ηA(1 − ηA/4) = 0.049, and z = 1.000, to be compared with
the best known estimates ν = 0.671 and η = 0.038 for the
three-dimensional XY model.70 The exponent ν is deduced
from the runaway flow from the critical surface when the
system is nearly critical (e.g., ñ0,k − ñ∗

0 ∝ e−l/ν with ñ∗
0 the

critical value of ñ0).
Figure 9 shows |Z̃C,k(ñ0,k)| near the multicritical point.

It first decreases toward zero as the multicritical point is
approached. Then |Z̃C,k(ñ0,k)| ∼ 1/k ∼ e−l increases as the
flow runs away from the critical surface, so that the critical
exponent associated with the scaling field Z̃C,k(ñ0,k) is equal
to one. The anomalous dimensions ηA,k and ηV,k show
the momentum range where the flow is controlled by the
multicritical point, as indicated by the plateaus in ηA,k and ηV,k

in Fig. 9. The end of the plateaus determines the Josephson
length71 ξJ ≡ k−1

J = k−1.
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FIG. 9. (Color online) (Left) ln Z̃C,k(ñ0,k) vs ln(�/k) near the
multicritical critical point. (Right) Anomalous dimensions ηA,k and
ηV,k . The end of the plateau determines the Josephson length ξJ =
k−1

J .

We now discuss the behavior of the system for μ = μc and
t → t+c . The condensate density must vanish with the critical
exponent 2β = ν(d + z − 2 + η),

n0 ∼ (t − tc)ν(d+z−2+η). (67)

From the scaling dimension [ρs] = d + z − 2 of the superfluid
stiffness and the fact that the Goldstone mode velocity c =√

ρs/κ remains finite due to the Lorentz invariance of the
effective action �k in the limit k → 0, we expect

ρs ∼ (t − tc)ν(d+z−2), κ ∼ (t − tc)ν(d+z−2). (68)

Equations (67) and (68) agree with the results obtained from
the numerical solution of the RG equations (see Fig. 10).

In the Mott phase, since the gap has scaling dimension
[�] = z, it must vanish as

� ∼ (tc − t)νz (69)

for t → t−c , again in agreement with the results obtained from
the RG equations (see Fig. 10).72

2. 3D multicritical point

In three dimensions, the system is at the upper critical
dimension (d + z = 4) and the transition is governed by the
Gaussian fixed point with logarithmic corrections due to the
marginally irrelevant coupling constant λ̃k . The numerical
solution of the flow equations show that λ̃k ∼ 1/| ln k|,

FIG. 10. (Color online) Condensate density n0, superfluid stiff-
ness ρs , compressibility κ , and Mott gap � vs |t − tc| near the
multicritical point (tc,μc) (d = 2). The crosses show the critical
behavior (67)–(69) with ν � 0.699 and η � 0.049.

FIG. 11. (Color online) Same as Fig. 8 but for a three-dimensional
system.

Z̃C,k(ñ0,k) ∼ k/| ln k|, and ηA,k,ηV,k ∼ 1/| ln k|2, while ñ0,k

converges to its fixed point value ñ∗
0 logarithmically (see

Fig. 11). Figure 12 shows ρs , κ , and c as a function of t − tc.

B. Generic transition

For all transition points away from the lobe tip, the VA,kω
2

term is irrelevant with respect to to the ZC,kω term. The
dynamical critical exponent is z = 2 and a simple dimensional
analysis shows that the upper critical dimension is d+

c = 2.
The transition is therefore governed by the Gaussian fixed
point (with logarithmic corrections for d = 2) defined by
ñ∗

0 = λ̃∗ = Ṽ ∗
A = 0 and η∗

A = η∗
C = 0, where

ηC,k = −∂l ln ZC,k(n0,k). (70)

The dimensionless variables used to study the generic transi-
tion are defined in Table II. Determining the dynamical critical

FIG. 12. (Color online) Superfluid stiffness ρs , compressibility
κ , and Goldstone mode velocity c = √

ρs/κ vs t − tc (d = 3).
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FIG. 13. (Color online) RG flow at the three-dimensional generic
transition. The dotted lines show fits to ñ0,k ∼ k, λ̃k ∼ k, ṼA,k ∼ k2,
and ηA,k,ηC,k ∼ k3.

exponent as in Sec. IV A, we find

zk = 2 − ηA,k + ηC,k. (71)

In three dimensions, linearization about the Gaussian fixed
point gives

∂lñ0,k = −3ñ0,k + 4

3π2
ṼA, ∂lλ̃k = λ̃k, ∂lṼA,k = 2ṼA,k,

(72)

and ηA,k = ηC,k = 0. We deduce that λ̃k ∼ k, ṼA,k ∼ k2 at
the critical point, in agreement with the numerical solution
of the flow equations (see Fig. 13). Figure 13 also shows
that ηA,k,ηV,k ∼ k3, while the relevant variable ñ0,k vanishes
linearly with k at the critical point.

When a generic transition point (tc(μ),μ) is approached on
a path of constant chemical potential μ by varying t − tc(μ),
we observe the mean-field behavior

ρs ∼ t − tc(μ), κ ∼ const, (73)

for t → tc(μ) (see Fig. 14). The compressibility κ remains
finite at the transition and the velocity c vanishes.

At the upper critical dimension (d = d+
c = 2), the mean-

field behavior is corrected by logarithmic terms. The
marginally irrelevant variable λ̃k is suppressed as | ln k|−1,
while the relevant variable ñ0,k vanish as | ln k|−1 at the critical

FIG. 14. (Color online) Superfluid stiffness ρs , compressibility κ ,
and Goldstone mode velocity c vs t − tc(μ) near a generic transition
point (tc(μ),μ) [μ = 0.7U , tc(μ) = 0.0219U , and d = 3]. The dotted
lines show the mean-field critical behavior (73).

FIG. 15. (Color online) Same as Fig. 14 but for the upper critical
dimension d+

c = 2. The compressibility diverges when t → tc(μ).

point. We observe a divergence of the compressibility κ as the
phase transition is approached [t → tc(μ)] (see Fig. 15).

V. SUPERFLUID PHASE

In Sec. V A, we show that our approach reproduces known
results in the weakly correlated (dilute) limit. In the following
sections (Secs. V B–V D), we discuss the properties of the
two-dimensional superfluid phase. The three-dimensional
superfluid phase is briefly discussed in Sec. V E.

A. The dilute limit

At sufficiently low density, we expect the lattice to be
irrelevant and the system to behave as a dilute superfluid gas
of bosons with mass m = 1/2t . The thermodynamics of a
dilute Bose gas is controlled by the zero-temperature fixed
point governing the quantum phase transition between the
vacuum (i.e., the Mott insulating phase with n̄ = 0) and the
superfluid phase.59 This quantum critical point is nothing but a
particular case of the generic quantum critical point discussed
in Sec. IV B.

Let us first consider the vacuum limit n̄k = n0,k = 0 and
μ = −2dt . The RG equations (D6) give

Z
(vac)
A,k = Z

(vac)
C,k = 1, V

(vac)
A,k = 0, (74)

in agreement with the fact that the single-particle (normal)
propagator is not renormalized: Gn,k(q) = (iω + μ − tq)−1.59

The coupling constant λ
(vac)
k is given by

λ
(vac)
k =

{ 8πta

1− 4
3π

ka
(d = 3),

− 4πt

ln( ka
2 )+C− 1

2
(d = 2),

(75)

for k � �, where C is the Euler constant and a the “s-wave”
scattering length for the Bose-Hubbard model,

a =
{

1
8π

1
t/U+A

(d = 3),
1

2
√

2
e−4πt/U−C (d = 2)

(76)

(recall that we take the lattice spacing as the unit length)
with A � 0.1264. Equations (75) and (76) are derived in
Appendix E. The dimensionless coupling constant λ̃

(vac)
k =

λ
(vac)
k kd/εk (see Table II) vanishes for k → 0 when d � 2 and

the quantum critical point governing the transition between the
vacuum and the superfluid phase is Gaussian. The logarithmic
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vanishing of λ̃
(vac)
k in two dimensions agrees with d = 2 being

the upper critical dimension (see Sec. IV B).
In the dilute limit, the finite condensate density n0,k

can be ignored as long as εk � 2λkn0,k .73 This defines the
characteristic momentum scale

kh �
(

λkh

t
n0,kh

)1/2

, (77)

which is nothing but the inverse healing length of the
superfluid: kh = ξ−1

h . The flow is governed by the Gaussian
fixed point ñ0 = λ̃ = 0 for k � kh, and is driven away from
that fixed point when k � kh due to the finite boson density.
For k � kh, we can approximate the RG equations of ZA,k ,
ZC,k , VA,k , and λk by Eqs. (74) and (75) to leading order in
(kh/k)2 = λkh

n0,kh
/εk . Moreover, to this order, the variation

with k of the condensate density is determined by the equation

∂k(λkn0,k) = 0 (78)

so that

n0,kh
� λ�n0,�

λkh

(79)

(see Appendix E). This equation allows us to relate the
chemical potential to the coupling constants at scale kh. In
the low-density limit,

V�(n) = Vloc(0) − (μ + 2dt)n + λ�

2
n2 + O(n3), (80)

where we have used λ� = V ′′
�(0) and Eq. (31) with n̄loc = 0.

From Eqs. (79) and (80), we deduce

μ + 2dt = λ�n0,� � λkh
n0,kh

(81)

for μ + 2dt � 0.
Below the healing momentum scale kh, the finite condensate

density cannot be ignored. The Bogoliubov approximation
amounts to ignoring any further renormalization as k decreases
from kh down to 0, that is approximating the k = 0 effective
action by its value at k = kh. The initial value λ� and the
first part of the RG flow (k � kh) takes care of T -matrix
renormalization of the coupling constant λk (which is usually
included in the Bogoliubov theory). This is what allows us
to express the final results in terms of the scattering length a

rather than the bare interaction U . We expect the Bogoliubov
approximation to be valid if the ratio between the mean
interaction energy per particle and the typical kinetic energy,

γ = λkh
n̄

t n̄2/d
= λkh

t
n̄1−2/d , (82)

is much smaller than unity.74 Note that in this equation, we
consider the coupling constant λkh

at scale kh. We can then
define the dilute (or weak-coupling) limit by the conditions
γ � 1 and kh � �. The latter inequality ensures that the
characteristic length scale associated with superfluid behavior
is much larger than the lattice spacing (thus making the lattice
irrelevant as far as the superfluid properties are concerned).75

We are now in a position to reproduce the standard
results in dilute Bose gases. In three dimensions, since a �
0.31 [Eq. (76)], the coupling constant λk � 8πta is roughly

constant for k � �. Given that kh � � in the dilute limit, we
deduce

kh �
√

8πan̄, λkh
� 8πat, μ + 2dt � 8πatn̄, (83)

while the sound mode velocity takes the value

c � √
2tλkh

n0,kh
� 2t

√
4πan̄. (84)

Since ZA,kh
� 1, the superfluid stiffness is given by

ρs � 2tn0,kh
� 2t n̄. (85)

We have used n0,kh
= n̄ to leading order in the gas parameter

γ ∼ an̄1/3 of the three-dimensional dilute Bose gas. In the limit
U/t � 1, where a ∼ U/8πt (the T -matrix renormalization of
the coupling constant is negligible), one finds

λkh
� U, kh �

√
U

t
n̄, μ + 2dt � Un̄, c �

√
2tUn̄. (86)

The domain of validity of the dilute limit is shown in Fig. 16.
In two dimensions, the logarithmic vanishing of λ

(vac)
k plays

a crucial role. One finds

kh �
(

4πn̄

| ln kha|
)1/2

�
(

4πn̄

| ln
√

n̄a|

)1/2

,

(87)

λkh
� 4πt

| ln kha| � 4πt

| ln
√

n̄a| ,

and

μ + 2dt � 4πtn̄

| ln
√

n̄a| , c � t

(
8πn̄

| ln
√

n̄a|

)1/2

, (88)

in agreement with the results obtained by Schick for a
dilute two-dimensional Bose gas.76–78 Note, in particular, that
the small parameter γ ∼ 1/| ln

√
n̄a|. When U/t � 1, the

scattering length a ∼ e−4πt/U is exponentially small [Eq. (76)]
and one recovers Eq. (86). The dilute limit is then simply
defined by kh ∼ √

(U/t)n̄ � � (see Fig. 16).
Even in the dilute limit γ � 1 and kh � �, the Bogoliubov

theory breaks down at the Ginzburg scale kG (see the
discussion in Introduction). The latter can be estimated from
the one-loop correction to the Bogoliubov approximation.
Using the results of Refs. 14 and 44 with the bare interaction U

replaced by λkh
to take into account fluctuations at momentum

scales larger than kh, we obtain

kG ∼
⎧⎨
⎩

kh exp(−const/
√

n̄a3) (d = 3),
kh

| ln
√

n̄a| (d = 2).
(89)

FIG. 16. Crossover line between the dilute limit (γ � 1 and kh �
�) and the strongly correlated limit.
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For U � t , Eq. (89) become

kG ∼
⎧⎨
⎩

kh exp[−const/
√

n̄(U/t)3/2] (d = 3),
U

t
kh (d = 2).

(90)

Thus, in the limit γ � 1, the Bogoliubov approximation
remains valid in a large part of the momentum range 0 � |q| �
kh, where the spectrum is linear, and breaks down only when
|q| � kG � kh. Thermodynamic quantities (n0,k,ρs,k,ck , etc.)
are nevertheless insensitive to the Ginzburg scale and can be
obtained from the Bogoliubov theory.14,44

B. RG flows

The RG flow is shown in Fig. 17 for t/U = 10 and n̄ = 1
(d = 2). For these values of t/U and n̄, the initial condition is
well approximated by the Bogoliubov theory,

n0,� � n̄, ρs,� � 2t n̄, c� � (2Utn̄)1/2,
(91)

λ� � U, ZC,� � 1, VA,� � 0,

and the T -matrix renormalization of λk for k � kh is negligi-
ble. The healing scale is deduced from the numerical results
and

ZA,kh
tk2

h = λkh
n0,kh

, (92)

which generalizes the definition (77) to cases where ZA,kh

may differ from unity. The thermodynamic quantities n0,k ,
ρs,k , and ck vary weakly with k and remain close to their
Bogoliubov estimates (91). On the other hand, the Ginzburg
scale kG manifests itself by a strong variation with k of λk ,
ZC,k , and VA,k . We determine kG from the inflection point in
VA,k ,79

∂2
l VA,k

∣∣
k=kG

= 0. (93)

Both kh and kG [Eqs. (92) and (93)] are in good agreement
with kh ∼ √

(U/t)n̄ and kG ∼ (U/t)kh.
In the (perturbative) Bogoliubov regime kG � k � �, λk ,

ZC,k , and VA,k remain nearly equal to their initial values (91).
We therefore expect the k = 0 propagators to read

Gll(q) = − εq

ω2 + E2
q
, Gtt(q) = −εq + 2Un̄

ω2 + E2
q

,

(94)
Glt(q) = ω

ω2 + E2
q
,

FIG. 17. (Color online) RG flow in the superfluid phase, t/U =
10, and n̄ = 1 (d = 2).

FIG. 18. (Color online) Same as Fig. 17, but for t/U = 0.05 and
n̄ � 10−4. The RG flow of λ

(vac)
k and Z

(vac)
C,k in the vacuum (n̄ = n0,k =

0) is also shown.

for |q| � kG, which is the familiar Bogoliubov form with
Eq = [εq(εq + 2Un̄)]1/2 the Bogoliubov excitation energy.
The spectrum crosses over from a quadratic dispersion to a
linear soundlike dispersion at the (healing) momentum scale
kh. For kG � |q| � kh, Eq � c�|q| with c� � (2Un̄t)1/2.

In the (nonperturbative) Goldstone regime, k � kG, λk ,
ZC,k ∼ k vanish with k → 0, while VA,k � VA,k=0 takes a
finite value. This regime is dominated by phase fluctuations,
and characterized by the vanishing of the anomalous self-
energy �an,k(q = 0) = λkn0,k ∼ k and the divergence of the
longitudinal propagator [see Eq. (95) below].35,42,43 The k = 0
propagators (15) are given by

Gll(q) = − 1

2λn0
= − 1

2n0C
√

ω2 + c2q2
,

Gtt(q) = − 1

VA(ω2 + c2q2)
= −2n0c

2

ρs

1

ω2 + c2q2
, (95)

Glt(q) = ZCω

2λn0VA(ω2 + c2q2)
= c2

ρs

dn0

dμ

ω

ω2 + c2q2
,

for |q|/|ω|/c � kG, where we have used c = (ZAt/VA)1/2,
κ = 2n0VA, ρs = 2tZAn0, and limk→0 ZC,k/λk = dn0/dμ

(see Sec. II D). The longitudinal propagator is obtained
from Gll,k(q = 0) = −1/(2λkn0,k) by replacing λk ∼ k with
C
√

ω2 + c2q2.14 In the Goldstone regime, the existence of
a linear spectrum at low energy is due to the (relativistic)
Lorentz invariance of the effective action (ZC,k → 0, while
VA,k → VA > 0) and not to the finite value of the anomalous
self-energy �an(q = 0) as in the Bogoliubov regime. Quite
remarkably however, the value of the sound-mode velocity
is insensitive to the Ginzburg scale kG. These results agree
with previous studies of interacting bosons in continuum
models.13,14,17,18

In Fig. 18, we show the RG flow for t/U = 0.05 and n̄ �
10−4. Although t/U � 1, the very small value of the density
ensures that the system is in the dilute limit with kG � kh � �

(lh � −3 and lG � −8).80 For k � kh, the flow of the coupling
constant λk coincide with the flow in vacuum (λk � λ

(vac)
k ). For

kG � k � kh, the variation of λk is weak; in the momentum
range kG � |q| � kh, the behavior of the system is well
described by the Bogoliubov theory but with renormalized
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FIG. 19. (Color online) Same as Fig. 17, but for t/U � 0.062
and n̄ = 1.

parameters (λkh
, n0,kh

, etc.). In the Goldstone regime k � kG,
we recover the infrared behavior discussed above.

As t/U decreases (at fixed density n̄), the dimensionless
coupling constant γ increases and eventually becomes of order
one. A typical flow in the strong-coupling regime γ � 1
is shown in Fig. 19 for t/U � 0.062 and n̄ = 1. There
is no Bogoliubov regime any more, kh ∼ kG ∼ �, and the
condensate density n0,k and the superfluid stiffness ρs,k , are
strongly suppressed.

It is instructive to compare the infrared behavior in
the superfluid phase or the Mott insulating phase with the
critical behavior at the superfluid-Mott-insulator transition (see
Table III). Both in the superfluid phase and at the multicritical
points, the infrared behavior is characterized by a (relativistic)
Lorentz invariance.

C. Characteristic momentum scales: kh and kG

Figure 20 shows kG, kh, n0, κ , ρs , and c vs t/U at fixed
density n̄ = 1. We see a sharp crossover between a weakly
correlated (kG � kh, n0 � n̄, and ρs � 2t n̄) and a strongly
correlated (kh ∼ kG ∼ �, n0 � n̄, and ρs � 2t n̄) superfluid
phase as t/U is decreased. Close to the multicritical point,
there is a critical regime where the flow of ñ0,k , λ̃k , ηA,k ,
and ηV,k shows plateaus characteristic of critical behavior
(see Sec. IV). The critical behavior ends at the Josephson
momentum scale kJ (see Sec. IV A), and for k � kJ , we
recover the Goldstone regime of the superfluid phase. The
behavior in the superfluid phase at fixed commensurate density
n̄ (n̄ integer) is summarized in Fig. 21. Except for lattice effects
(which force kh, kG, and kJ to be at most of order �) we recover
the behavior of the (d + 1)-dimensional O(N ) model.42

TABLE III. Infrared behavior of the two-dimensional Bose-
Hubbard model. The stared quantities indicate nonzero fixed-point
values and η denotes the anomalous dimension at the three-
dimensional XY critical point. ZC,k stands for ZC,k(n0,k).

ZA,k VA,k ZC,k λk n0,k

superfluid Z∗
A V ∗

A k k n∗
0

multicritical point k−η k−η k k1−2η k1+η

generic transition Z∗
A V ∗

A Z∗
C | ln k|−1 k2| ln k|−1

insulator Z∗
A V ∗

A Z∗
C λ∗ 0

FIG. 20. (Color online) Condensate density n0, superfluid stiff-
ness ρs , compressibility κ , velocity c, and characteristic scales kh

and kG vs t/U at fixed density n̄ = 1 (d = 2). Black dots show fits
kh ∝ √

n̄U/t and kG ∝ √
n̄(U/t)3.

Figure 22 shows kh and kG at fixed t/U for n̄ varying
between 0 and 1. In the small density limit γ � 1, our
numerical results for kh and kG agree with Eqs. (77) and
(87). For n̄ ∼ 0.5, kG and kh become of the same order and
γ � 1 as expected for a strongly correlated superfluid phase.
The behavior near the Mott insulating phase (1 − n̄ � 1) is
similar to the low-density limit and reflects the fact that the
transitions from the superfluid phase to the vacuum or the Mott
insulating phase n̄ = 1 belong to the same universality class.
In particular, near the transition to the Mott insulating phase
n̄ = 1, the system is effectively in the weakly correlated limit
(γ = λkh

/t � 1) in agreement with the fact that the quantum
critical point is Gaussian for d � 2. The analogy between the
limits n̄ � 1 and 1 − n̄ � 1 leads to interesting consequences
which will be discussed elsewhere.81

FIG. 21. Behavior of the superfluid phase vs momentum scale
k at fixed commensurate density n̄. kh is the healing scale, kG the
Ginzburg scale, and kJ the Josephson scale.
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FIG. 22. (Color online) Condensate density n0, superfluid stiff-
ness ρs , and characteristic scales kh and kG vs density n̄ for
t/U = 0.04 (d = 2). Black dots show fits kh ∝ (n̄/| ln

√
n̄a|)1/2 and

kG ∝ khλkh
/t [Eqs. (89) and (87)].

D. Low-energy spectrum

The knowledge of the infrared limit of the one-particle
Green’s function enables us to obtain the spectral function14

A(q,ω) = − 1

π
Im Gn(q,ω + i0+)

� − 1

2π
Im

[
Gll(q,ω + i0+) + Gtt(q,ω + i0+)

]
(96)

in the low-energy limit. From Eqs. (95), we deduce

A(q,ω) = n0c

2ρs |q| [δ(ω − c|q|) − δ(ω + c|q|)]

+ sgn(ω)

4πn0C

�(ω − c|q|)√
ω2 − c2q2

(97)

for |q|,|ω|/c � kG. In addition to the delta peak due to the
Goldstone mode, the spectral function exhibits a continuum of
excitations which is a direct consequence of the singularity
of the longitudinal propagator Gll. While the sound mode
extends up to |q| ∼ kh, the continuum is observed only at
momenta and energies |q|,|ω|/c � kG. In the weak-coupling
limit, where the lattice does not play an important role, these
results are in complete agreement with Popov’s hydrodynamic
theory.42,47 The latter gives C = (4t n̄/cn0)1/2, so that the ratio
of spectral weights carried by the continuum and the sound
mode is extremely small in the weak-coupling limit.14,83

It should be noted that there is no qualitative difference
between the weakly and strongly correlated superfluid phases
regarding the low-energy single-particle spectrum [Eq. (97)].
In the strong-coupling regime however, the continuum of
excitations due to the singular longitudinal propagator is
expected to extend up to momenta of order kG ∼ � (i.e.,
over most part of the Brillouin zone) and carry a significant
fraction of spectral weight. This expectation is confirmed by
the suppression of spectral weight of the sound mode as the
ratio t/U is decreased at fixed density. Figure 23 shows the
spectral weightZq = n0c/2ρs |q| of the sound mode for n̄ = 1,
normalized by its value in the weakly correlated limit t � U ,

Z̄ = 2|q|Zq

√
2t

Un̄
= n0c

ρs

√
2t

Un̄
. (98)

FIG. 23. (Color online) Normalized spectral weight Z̄ of the
sound mode [Eq. (98)] vs t/U (n̄ = 1 and d = 2).

Z̄ remains close to one in the weakly correlated superfluid
phase but is strongly suppressed in the strongly correlated
regime. It vanishes at the transition to the Mott insulating phase
(t = tc) with a critical exponent 2β − ν(d + z − 2) = νη,

Z̄ ∼ (t − tc)νη (99)

for t → t+c .
Being equivalent to the strong-coupling RPA, the initial

effective action �� predicts the existence of a gapped mode
in addition to the sound mode.51–53,82,84 Whether this gapped
mode is a true characteristic of the spectrum [which would
then show up in the propagator Gk=0(q; n0)] is an interesting
question, which, however, requires a more refined NPRG
analysis13,14,17,18 beyond the derivative expansion [Eq. (41)].85

E. The 3D superfluid phase

In the dilute limit γ � 1 (see Sec. V A), the initial
conditions of the RG flow are given by

n0,� � n̄, ρs,� � 2t n̄, c� � 2t
√

4πan̄,
(100)

λ� � 8πat, ZC,�(n) � 1, VA,�(n) � 0,

and reproduce the Bogoliubov approximation. The flow for
k � � is logarithmic and therefore very slow. This explains
why the Ginzburg scale is exponentially small in the dilute
limit [Eq. (89)] and irrelevant for most purposes. In the infrared
limit, Gtt and Glt are given by Eq. (95), while the longitudinal

FIG. 24. (Color online) RG flow in the three-dimensional super-
fluid phase for t/U = 0.034 and n̄ = 1.
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propagator

Gll(q) ∼ ln

(
ckh√

ω2 + c2q2

)
(101)

diverges logarithmically.
A typical RG flow in the strong-coupling limit, where

kh,kG ∼ �, is shown in Fig. 24 for n̄ = 1. Thermodynamic
quantities very rapidly converge to their k = 0 values. On the
other hand, the flow of λk,ZC,k(n0,k) ∼ | ln k|−1 and VA,k is
logarithmic.

VI. SUMMARY AND CONCLUSION

We have presented a detailed NPRG study of the Bose-
Hubbard model. Although we have only considered the
zero-temperature limit, it is straightforward to extend the
analysis to finite temperatures. The lattice NPRG seems to
be the only available technique which treats fluctuations at
all length scales on equal footing; (1) the lattice NPRG takes
into account on-site correlations, which are responsible for the
very existence of the superfluid-Mott-insulator transition. It
is exact in the local limit (vanishing hopping amplitude), the
latter corresponding to the initial condition of the NPRG at
the microscopic scale � = √

2d . (2) The lattice NPRG also
takes into account critical fluctuations at the superfluid-Mott-
insulator transition. In this respect, it is very similar to the
standard implementation of the NPRG in continuum models,
the cutoff function Rk(q) playing the role of an infrared
regulator. (3) As already known from previous studies in
continuum models,12–15,17,18 the NPRG is a method of choice
to study the superfluid phase. It is free of infrared divergences,
satisfies the Hugenholtz-Pines theorem, and is able to describe
both the (perturbative) Bogoliubov regime kG � k � � and
the (nonperturbative) Goldstone regime k � kG. The latter
is characterized by a vanishing anomalous self-energy and a
diverging longitudinal propagator. In the strong-coupling limit
where kG ∼ kh ∼ �, there is no Bogoliubov regime and the
whole RG flow becomes nonperturbative.

Our results agree with known results on the Bose-Hubbard
model. In particular, we reproduce the phase diagram obtained
from QMC calculations with a typical accuracy of 1–3 %
and at a very modest numerical cost.86 Moreover, we recover
the two universality classes of the superfluid-Mott-insulator
transition. The lattice NPRG enables a detailed study of the
critical behavior near multicritical or generic transition points,
which confirms the original predictions of Fisher et al.4 based
on scaling arguments.
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APPENDIX A: EFFECTIVE POTENTIAL IN THE LOCAL
LIMIT

In this Appendix, we discuss the solution of the local
Hamiltonian (18) when the ground state is degenerate for
vanishing external sources (μ/U integer). This degeneracy
has important consequences for the effective potential Vloc(n).

FIG. 25. (Color online) Ground-state energy E0 and occupation
number n̄ vs μ/U in the local limit (with vanishing external source).

When J ∗ = J = 0, the Hamiltonian is diagonal in the basis
{|m〉} (see Sec. II B). The ground state is the vacuum state |0〉
for μ < 0, and |m〉 for m < μ/U < m + 1. The ground-state
energy E0 and occupation number n̄ are shown in Fig. 25
as a function of μ/U . There is a quantum phase transition
whenever μ/U is integer due to a level crossing. When μ/U =
m (m integer), the states |m〉 and |m + 1〉 are degenerate.

For an infinitesimal external source and μ/U = m (m
integer), it is sufficient to consider the degenerate states |m〉
and |m + 1〉 to determine the ground state of the Hamiltonian
(18). In this subspace,

Ĥ ≡
(

εm −J ∗√m + 1

−J
√

m + 1 εm+1

)
, (A1)

with εm = εm+1 = −U
2 m(m + 1). Diagonalizing (A1), we find

the two states

|−〉 = 1√
2

(|m〉 + eiθ |m + 1〉),
(A2)

|+〉 = 1√
2

(|m〉 − eiθ |m + 1〉),

with eigenvalues

E− = εm − |J |√m + 1, E+ = εm + |J |√m + 1, (A3)

where θ denotes the phase of the complex source J = |J |eiθ .
The occupation number in the ground state |−〉 is

〈−|n̂|−〉 = m + 1

2
, (A4)

while the superfluid order parameter

〈−|b̂|−〉 = eiθ

2

√
m + 1 (A5)

is finite. We conclude that the U(1) symmetry is spontaneously
broken whenever μ/U is integer,

lim
|J |→0+

〈b̂〉 �= 0 (A6)

although 〈b̂〉 = 0 for |J | = 0.
Figure 26 shows the superfluid order parameter φ(J )

obtained from the numerical diagonalization of the full
Hamiltonian (18). For μ = 0, we find |φ(J = 0+)| = 1/2
in agreement with Eq. (A5). The effective potential Vloc(n)
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takes the usual form in a system with a spontaneous broken
symmetry, with a flat part [V ′

loc(n) = 0] for n � 1/4. By
contrast, for μ/U = 0.02, the superfluid order parameter
φ(J = 0+) vanishes and V ′

loc(n) > 0 for all values of n.

APPENDIX B: LARGE-FIELD LIMIT OF THE LOCAL
EFFECTIVE POTENTIAL Vloc(n)

The large-field limit of the effective action �loc[φ∗,φ] is
obtained by considering the partition function

Zloc[J ∗,J ] =
∫

D[ψ∗,ψ]e−Sloc[ψ∗,ψ]+∫ β

0 dτ (J ∗ψ+Jψ) (B1)

for |J | → ∞. In this limit, we expect the field to weakly
fluctuate about its saddle-point value ψc defined by

δSloc

δψ(τ )

∣∣∣∣
ψc

= J ∗(τ ),
δSloc

δψ∗(τ )

∣∣∣∣
ψc

= J (τ ). (B2)

Let us compute the effective action by including Gaussian
fluctuations about the saddle-point solution ψc (one-loop
order). The calculation is standard and gives87

�loc[φ∗,φ] = Sloc[φ∗,φ] + 1

2
Tr lnG−1

c [φ∗,φ], (B3)

where

G−1
c [τ,τ ′; φ∗,φ] = −δ(τ − τ ′)

(
∂τ ′ − μ + 2U |φ(τ )|2 Uφ(τ )2

Uφ∗(τ )2 −∂τ ′ − μ + 2U |φ(τ )|2
)

(B4)

is the inverse classical (local) propagator. By performing the
trace in (B3) for a time-independent field φ,88 we easily obtain
the effective potential

Vloc(n) = −μn + U

2
n2 + 1

2
{[(μ − 2Un)2 − U 2n2]1/2

+μ − 2Un} = −μ̄n + U

2
n2 + O(n0), (B5)

where

μ̄ = μ + U

(
1 −

√
3

2

)
. (B6)

FIG. 26. (Color online) Superfluid order parameter φ(J ) = 〈b̂〉
(top) and effective potential Vloc(n) (bottom) in the local limit. The
source J is taken real.

To one-loop order, the effective potential is given by the
microscopic action Sloc with a shift of the chemical potential.
It is straightforward to verify that higher-order contributions
(e.g., those coming from two-loop diagrams) are at most of
order O(n0) in the large-field limit. Equation (B5) is in very
good agreement with the numerical calculation of Vloc(n) (see
Fig. 27).

APPENDIX C: DERIVATIVE EXPANSION OF THE LOCAL
VERTEX �

(2)
loc

Figures 28 and 29 show the local vertices �loc,A and �loc,C

(also shown in Figs. 3 and 4) together with their derivative
expansions:

�loc,A(iω; n) = VA,loc(n)ω2 + V ′
loc(n),

(C1)
�loc,C(iω; n) = ZC,loc(n)ω.

The derivative expansion is remarkably accurate whenever the
chemical potential is negative or the condensate density large.
In both limits, �loc,A(iω; n) � V ′

loc(n) and �loc,C(iω; n) � ω.
Since a negative μ or a large n corresponds to a system deep in
the superfluid phase, we conclude that the derivative expansion
is fully justified in this limit.

FIG. 27. (Color online) Derivative V ′
loc(n) of the local effective

potential for various values of μ. The dotted lines show the large-field
limit (B5).
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More generally, we see that the derivative expansion is
always valid in the limit |ω| � U . As argued in Sec. II E,
except deep in the Mott phase (where the strong-coupling
RPA is a good approximation to the k = 0 results), U

is a very large energy scale in the strong-coupling limit,
and the knowledge of the vertices at energies |ω| � U is
sufficient to solve the flow equations. We therefore expect the
derivative expansion to be justified also in the strong-coupling
limit.

Figure 30 shows VA,loc(n) and ZC,loc(n) for various values
of the chemical potential μ.

APPENDIX D: FLOW EQUATIONS

The flow equations in the BMW scheme can be found
in Appendix C.1 of Ref. 14. When ZA,k(n) and VA,k(n) are
approximated by their values at the minimum n0,k of the
effective potential, the equations simplify into

∂lVk(n) = −1

2

∫
q

∂lRk(q)[Gk,ll(q; n) + Gk,tt(q; n)], (D1)

∂lZC,k(n) = −2nV ′′
k (n)2∂ω[3Jll,lt(q,n) − 3Jlt,ll(q,n) + Jlt,tt(q,n) − Jtt,lt(q,n)]q=0

− 4n2V
(3)
k (n)V ′′

k (n)∂ω[Jll,lt(q,n) − Jlt,ll(q,n)]q=0 − 4n2V
(3)
k (n)Z′

C,k(n)Jll,ll(q,n) − 1
2 Z

′
C,k(n) [Itt(n) + Ill(n)]

−Ill(n)nZ′′
C,k(n) − 2nV ′′

k (n)Z′
C,k(n)Jll,tt(0,n) − 6nV ′′

k (n)Z′
C,k(n)Jll,ll(0,n), (D2)

∂lVA,k = −n0,kλ
2
k∂

2
ω[J̄ll,tt(q) + 2J̄lt,lt(q) + J̄tt,ll(q)]q=0 + 2n0,kJ̄ll,ll(0)Z′

C,k(n0,k)2 + 4n0,kλkZ
′
C,k(n0,k)∂ω[J̄ll,lt(q) − J̄lt,ll(q)]q=0,

(D3)

ηA,k = 2λ2
kn0,kZA,kεkk

2

{
δd,2

2π
+

∫
q
θ (εk − εq)

[
∂2
qx

εq

εq
−

(
∂qx

εq
)2

ε2
q

]}∫
ω

(
1

D2−
+ 1

D2+

)
, (D4)

where

D− = (ZA,kεk + VA,kω
2)(ZA,kεk + VA,kω

2 + 2n0,kλk) + ZC,k(n0,k)2ω2,
(D5)

D+ = [ZA,k(4dt − εk) + VA,kω
2][ZA,k(4dt − εk) + VA,kω

2 + 2n0,kλk] + ZC,k(n0,k)2ω2,

ZA,k ≡ ZA,k(n0,k), VA,k ≡ VA,k(n0,k), ηA,k = −k∂k ln ZA,k ,
and l = ln(k/�).

When ZC,k(n) is approximated by ZC,k(n0,k) ≡ ZC,k and
Vk(n) truncated to quadratic order [Eq. (61)], we obtain

∂lV0,k = −1

2

∫
q

∂lRk(q)[Ḡk,ll(q) + Ḡk,tt(q)],

∂ln0,k = 3

2
Īll + 1

2
Ītt if n0,k > 0,

∂lδk = −2λkĪll if n0,k = 0,

∂lλk = −λ2
k[9J̄ll,ll(0) − 6J̄lt,lt(0) + J̄tt,tt(0)], (D6)

FIG. 28. (Color online) [�loc,A(iω; n) − V ′
loc(n)]/U vs ω/U for

various values of n. μ = 0.2U (left) and μ = (
√

2 − 1)U (right). The
dotted lines show the derivative expansion VA(n)ω2.

∂lZC,k = 2λ2
kn0,k

∂

∂ω
[J̄tt,lt(q) − J̄lt,tt(q)

− 3J̄ll,lt(q) + 3J̄lt,ll(q]q=0,

∂lVA,k = −2λ2
kn0,k

∂

∂ω2
[J̄ll,tt(q) + J̄tt,ll(q) + 2J̄lt,lt(q)]q=0,

FIG. 29. (Color online) �loc,C(iω; n)/U vs ω/U for various
values of n. The dotted lines show the derivative expansion ZC(n)ω.
μ = −0.2U , 0.2U , (

√
2 − 1)U , and 0.6U (from top left to bottom

right).
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FIG. 30. (Color online) VA,loc(n) and ZC,loc(n) vs n for various
values of the chemical potential μ.

with ηA,k given by (D4). We have introduced the coefficients

Iα(n) =
∫

q

∂̃lGk,α(q; n),

(D7)
Jαβ(q; n) =

∫
q ′

[∂̃lGk,α(q ′; n)]Gk,β(q + q ′; n),

where α,β = ll,tt,lt. To alleviate the notations, we have
omitted the subscript k in Iα and Jαβ . The notation Īα , J̄αβ , and
Ḡ means that these quantities are evaluated for n = n0,k . The
Green functions Gk,α in (D7) are defined as −(�(2)

k + Rk)−1,
with �

(2)
k approximated by its derivative expansion in Eqs. (41)

and (59). With ZA,k(n) and VA,k(n) approximated by their
values at the minimum n0,k of the effective potential, this gives

�A,k(q; n) = ZA,kεq + VA,kω
2 + V ′

k(n),
(D8)

�B,k(q; n) = V ′′
k (n), �C,k(q; n) = ZC,k(n)ω,

and

Gk,ll(q; n) = −�A,k(q; n) + Rk(q)

Dk(q; n)
,

Gk,tt(q; n) = −�A,k(q; n) + 2n�B,k(q; n) + Rk(q)

Dk(q; n)
, (D9)

Gk,lt(q; n) = �C,k(q; n)

Dk(q; n)
,

where

Dk(q; n) = [�A,k(q; n) + Rk(q)]2 + 2n�B,k(q; n)

× [�A,k(q; n) + Rk(q)] + �C,k(q; n)2. (D10)

1. Lattice regulator

The lattice cutoff function (4) differs from cutoff functions
used in the continuum, in particular due a symmetric treatment

of the low- and high-energy parts of the spectrum (see Fig. 1).
We can rewrite Rk(q) in the form

Rk(q) = −ZA,kεksgn(tq)yqr(yq), (D11)

where

r(y) = 1 − y

y
�(1 − y) (D12)

and

yq =
{ εq

εk
if tq < 0,

4dt−εq

εk
if tq > 0.

(D13)

This gives

∂lRk(q) = ZA,kεksgn(tq)yq[ηA,kr(yq) + 2yqr
′(yq)]

= ZA,kεksgn(tq)�(1 − yq)[ηA,k(1 − yq) − 2].

(D14)

Rk(q) enters the flow equations always in the combination

�A,k(q; n) + Rk(q) = ZA,kεq + VA,kω
2 + V ′

k(n) + Rk(q),

(D15)

where

ZA,kεq + Rk(q) =
{
ZA,kεk if εq � εk,

ZA,kεq if εq � εk

(D16)

for tq < 0, and

ZA,kεq + Rk(q) =
{
ZA,k(4dt − εk) if εq � 4dt − εk,

ZA,kεq if εq � 4dt − εk

(D17)

for tq > 0. Equations (D14), (D16), and (D17) lead to a sig-
nificant simplification of the coefficients Iα(n) and Jαβ(q; n).
A typical contribution to Iα or Jαβ reads

Fk =
∫

q

∫
ω

∂lRk(q)f (ZA,kεq + Rk(q),ω), (D18)

where f is a product of propagators Gk = −(�(2)
k + Rk)−1.

Since ∂lRk(q) restricts the momentum integral to the domain
yq � 1, where ZA,kεq + Rk(q) is independent of q,

Fk =
∫

q
�(−tq)∂lRk(q)

∫
ω

f (ZA,kεk,ω)

+
∫

q
�(tq)∂lRk(q)

∫
ω

f (ZA,k(4dt − εk),ω). (D19)

Introducing the lattice density of states

D(ε) =
∫

q
δ(ε − εq) (0 � ε � 4dt), (D20)
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we obtain∫
q
�(−tq)∂lRk(q)

=
∫ 2dt

0
dεD(ε)∂lRk(q)

= −ZA,kεk

∫ εk

0
dεD(ε)

[
ηA,k

(
1 − ε

εk

)
− 2

]
(D21)

and∫
q
�(tq)∂lRk(q)

=
∫ 4dt

2dt

dεD(ε)∂lRk(q)

= ZA,kεk

∫ 4dt

4dt−εk

dεD(ε)

[
ηA,k

(
1 − 4dt − ε

εk

)
− 2

]
.

(D22)

Since the hypercubic lattice density of states is symmetric,
D(ε) = D(4dt − ε), the last equation gives∫

q
�(tq)∂lRk(q) = −

∫
q
�(−tq)∂lRk(q), (D23)

which enables us to rewrite (D19) as

Fk =
∫

q
�(−tq)∂lRk(q)

×
∫

ω

[f (ZA,kεk,ω) − f (ZA,k(4dt − εk),ω)], (D24)

with the momentum integral given by Eq. (D21).
In the limit k � � (or εk � 2dt), the function

f (ZA,k(4dt − εk),ω) involves propagators with a large gap and
is therefore negligible with respect to f (ZA,kεk,ω); the flow
is then governed only by the low-energy modes. Moreover,
for εq � εk � 2dt , the lattice does not matter and we can
approximate εq � tq2, which leads to

D(ε) = 2vd

εd/2−1

td/2
(ε � 2dt) (D25)

and∫
q
�(−tq)∂lRk(q) = 8

vd

d
ZA,kεkk

d

(
1 − ηA,k

d + 2

)
, (D26)

where v−1
d = 2d+1πd/2�(d/2). We then obtain

Fk = 8
vd

d
ZA,kεkk

d

(
1 − ηA,k

d + 2

)∫
ω

f (ZA,kεk,ω), (D27)

which is the usual form for models in the continuum limit with
the theta cutoff function.89

APPENDIX E: THE VACUUM LIMIT

1. Scattering length on the lattice

Let us first recall how the s-wave scattering length a is
computed from the low-energy behavior of the T matrix in the

continuum. For a contact interaction U , the retarded T matrix
is defined by

1

T R(ω)
= 1

U
+ �R(ω), (E1)

where

�R(ω) =
∫

q

1

2εq − ω − i0+

= P
∫

q

1

2εq − ω
+ iπ

∫
q
δ(ω − 2εq) (E2)

(P denotes the principal part) and εq = q2/2m is the dispersion
of the free bosons. In three dimensions,

T R(q2/m) = 4πa

m

1

1 + i|q|a (|q| → 0), (E3)

while in two dimensions

T R(q2/m) = − 2π/m

ln
( |q|a

2

) + C − i π
2

(|q| → 0), (E4)

where C is Euler’s constant. Equations (E3) and (E4) define
the s-wave scattering length a in three and two dimensions,
respectively.

A scattering length can be defined similarly in the Bose-
Hubbard model. At low energy (εq � t), the lattice does not
matter and one can approximate the boson dispersion εq =
tq + 2dt by tq2. The bosons then behaves as free particles
with an effective mass m = 1/2t . Thus Eqs. (E1)–(E4) allow
us to define a scattering length provided that we replace m by
1/2t .

a. d = 3

In the low-energy limit 0 � ω � t ,

�R(ω) �
∫

q

1

2εq
+ iπ

∫
q
δ(ω − 2εq)

=
∫ 8t

0
dε

D(ε)

2ε
+ i

π

2
D
(

ω

2

)
, (E5)

where D(ε) = ∫
q δ(ε − εq) is the density of states of the

cubic lattice. The last integral in Eq. (E5) can be computed
numerically while D(ω) � √

ω/4π2t3/2 for small ω. This
gives

1

T R(ω)
= 1

U
+ A

t
+ i

8
√

2π

ω1/2

t3/2
(E6)

and

1

T R(2t |q|2)
= 1 + i|q|a

8πta
(E7)

for q → 0 with

a = 1

8π

1

t/U + A
(E8)

and A � 0.1264.

174513-21
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b. d = 2

To compute �R(ω) in two dimensions, we use

P
∫

q

1

2εq − ω
= P

∫
q

(
1

2εq − ω
− 1

2tq2 − ω

)

+P
∫

q

1

2tq2 − ω
. (E9)

Since the first integral in the right-hand side of Eq. (E9) is
convergent, we can set ω = 0, which gives∫

q

(
1

2εq
− 1

2tq2

)
= 1

2tπ2

(
G + π

4
ln

8

π2

)
, (E10)

where G � 0.916 is the Catalan constant. As for the last
integral in Eq. (E9), we obtain

P
∫

q

1

2tq2 − ω

= P
∫

q
�(π − |q|) 1

2tq2 − ω
+ P

∫
q
�(|q| − π )

1

2tq2 − ω

= 1

8πt
ln

(
2tπ2

ω

)
+ 1

4πt

(
ln 2 − 2

π
G

)
. (E11)

for 0 � ω � t . Since

iπ

∫
q
δ(ω − 2εq) � iπ

∫
q
δ(ω − 2tq2) = i

8t
, (E12)

we finally obtain

1

T R(2t |q|2)
= − 1

4πt

[
ln

( |q|a
2

)
+ C − i

π

2

]
(E13)

for q → 0 with

a = 1

2
√

2
e−4πt/U−C. (E14)

2. Coupling constant λk

The low-energy limit k � � of the coupling constant λk

in vacuum (n̄k = n0,k = 0) can be expressed in terms of the
scattering length a. λk can be obtained from the RG equation
(D6) (see Sec. E.3) or more simply from

1

λk

= 1

U
+ 1

2

∫
q

1

εq + Rk(q)
, (E15)

where εq + Rk(q) is given by Eqs. (D16) and (D17) with
ZA,k = 1. For k � �, we can ignore the effect of the cutoff
function on the high-energy part of the spectrum (tq > 0),

1

λk

= 1

U
+ 1

2

∫
q

�(εk − εq)

εk

+ 1

2

∫
q

�(εq − εk)

εq
. (E16)

a. d = 3

Using

1

2

∫
q

�(εk − εq)

εk

= k

12π2t
(E17)

and

1

2

∫
q

�(εq − εk)

εq
= 1

2

∫
q

1

εq
− 1

2

∫
q

�(εk − εq)

εq

� 1

2

∫
q

1

εq
− k

4π2t
(E18)

(we have approximated εq � tq2 for εq � εk � �), we finally
obtain

1

λk

= 1

U
+ 1

2

∫
q

1

εq
− k

6π2t

= 1

8πta

(
1 − 4

3π
ka

)
, (E19)

where a is the three-dimensional scattering length (E8).

b. d = 2

In two dimensions, we rewrite Eq. (E15) as

1

λk

= 1

U
+ 1

2

∫
q

1

tq2 + R̃k(q)

+1

2

∫
q

(
1

εq + Rk(q)
− 1

tq2 + R̃k(q)

)
, (E20)

where R̃k(q) is obtained from Rk(q) by replacing εq with tq2.
Since the last integral in Eq. (E20) is convergent for k → 0,
we can set k = 0 and use the result (E10). The first integral in
Eq. (E20) can be expressed as

1

2

∫
q

�(k − |q|)
εk

+1

2

∫
q

�(π − |q|)�(|q| − k)

tq2
+ 1

2

∫
q

�(|q| − π )

tq2

= k2

8πεk

+ 1

4πt
ln

π

k
+ 1

4πt

(
ln 2 − 2

π
G

)
. (E21)

We deduce

1

λk

= 1

U
+ 1

8πt
+ 1

4πt
ln

(
4
√

2

k

)

= − 1

4πt

[
ln

(
ka

2

)
+ C − 1

2

]
, (E22)

where a is the two-dimensional scattering length (E14).

3. RG equation ∂kλk

In the vacuum, ZA,k = ZC,k = 1, VA,k = 0, and n0,k = 0,
the two-point vertex is defined by

�A,k(q) = εq, �B,k(q) = λk, �C,k(q) = ω. (E23)
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The RG equation satisfied by λk takes the simple form

∂kλk = −λ2
k

∫
q

∂kRk(q)

D3
{22ω2[εq + Rk(q)]

− 10[εq + Rk(q)]3}, (E24)

where D = [εq + Rk(q)]2 + ω2. We deduce

∂kλk = λ2
k

2

∫
q

∂kRk(q)

[εq + Rk(q)]2
(E25)

and

1

λk

− 1

λ�

= 1

2

∫
q

(
1

εq + Rk(q)
− 1

εq + R�(q)

)

= 1

2

∫
q

1

εq + Rk(q)
− 1

4dt
. (E26)

λ� can be computed from the local action S� = Sloc in the
vacuum (μ = −2dt),

1

λ�

= 1

U
+

∫
ω

G(iω)G(−iω) = 1

U
+ 1

4dt
, (E27)

where G(iω) = (iω + μ)−1 is the local (normal) propagator
in vacuum. From Eqs. (E26) and (E27), we recover Eq. (E15).

4. RG equations in the dilute limit for k � kh

We now consider the RG equations at finite density but
in the dilute limit (kh � �) for k � kh. To leading order in
λkn0,k , λk satisfies Eq. (E24). To obtain the equation satisfied
by n0,k , we must expand the propagator to first order in λkn0,k ,

Gll(q) = −εq + Rk(q)

D
+ 2λkn0,k

D2
[εq + Rk(q)]2,

(E28)

Gtt(q) = −εq + Rk(q)

D
− 2λkn0,k

D2
ω2,

where D is defined in Sec. E3. We will show below that the
flow of ZA,k , ZC,k , and VA,k leads to higher-order corrections.
We can therefore set ZA,k , ZC,k , and VA,k to their vacuum
values. This gives

∂kn0,k =
∫

q

∂kRk(q)

D3
2λkn0,k{5ω2[εq + Rk(q)]

−3[εq + Rk(q)]3}. (E29)

Equation (78) follows from Eqs. (E24) and (E29).

Let us now show that the flow of ZA,k , ZC,k , and VA,k

give subleading contributions to Eq. (E29). To leading order
in λkn0,k , the RG equation of ZC,k reads

∂lZC,k = −λ2
kn0,k

∫
q

∂lRk(q)

[ε(q) + Rk(q)]3

= −λ2
kn0,k

∫
q
�(−tq)∂lRk(q)

[
1

ε3
k

− 1

(4dt − εk)3

]
.

(E30)

To estimate the order of magnitude of ∂lZC,k , we can
ignore the term (4dt − εk)−3 (which is smaller than ε−3

k )
and use the approximate density of states (D25). This
gives

∂lZC,k ∼ −8
vd

d
λ2

kn0,kk
dε−2

k

∼ −8
vd

dt
λkk

2
hk

d−4, (E31)

where we have used λkn0,k = tk2
h to leading order. Integrating

this equation between k = � and k � �, we obtain

ZC,k − 1 ∼ λkk
2
h

tk4−d
(E32)

(ignoring the dependence of λk on k). In the dilute limit and
for k � kh, the right-hand side is always small. For example,
in three dimensions, one finds ZC,kh

− 1 ∼ kha � 1.
Similarly, we obtain

∂lVA,k = −3

4
λ2

kn0,k

∫
q

∂lRk(q)

[ε(q) + Rk(q)]4

∼ −6λk

vd

dt2
k2
hk

d−6, (E33)

and therefore

VA,k ∼ λkk
2
h

t2k6−d
(E34)

for k � �. Since the frequency integrals extend up to ω ∼ tk2

while εq ∼ tk2, the VA,kω
2 term in the propagators can be

neglected if VA,k � 1/tk2. Equation (E34) shows that this is
indeed the case. For example, in three dimensions tk2

hVA,kh
∼

kha � 1.
Finally,

ηA,k ∼ 4λk

vd

dt
k2
hk

d−4, (E35)

where we have calculated the integral over q in Eq. (D4)
using εq = tq2. As ZC,k , ZA,k remains close to unity for
k � kh.
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B. Svistunov, Phys. Rev. A 77, 015602 (2008).

11W. Krauth and N. Trivedi, Europhys. Lett. 14, 627 (1991).

174513-23

http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://arXiv.org/abs/cond-mat/0702365
http://dx.doi.org/10.1103/PhysRevE.82.041128
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevB.75.134302
http://dx.doi.org/10.1103/PhysRevA.77.015602
http://dx.doi.org/10.1209/0295-5075/14/7/003
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