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Nonperturbative renormalization group approach to the Bose-Hubbard model
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We present a nonperturbative renormalization group (RG) approach to the Bose-Hubbard model. By taking
as initial condition of the RG flow the (local) limit of decoupled sites, we take into account both local and
long-distance fluctuations in a nontrivial way. This approach yields a phase diagram in very good quantitative
agreement with the quantum Monte Carlo results and reproduces the two universality classes of the superfluid–
Mott-insulator transition with a good estimate of the critical exponents. Furthermore, it reveals the crucial role
of the “Ginzburg length” as a crossover length between a weakly and a strongly correlated superfluid phase.
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Introduction. In the last two decades, the nonperturbative
renormalization group (NPRG) approach has been success-
fully applied to many areas of physics, from high-energy
physics to statistical and condensed-matter physics (for re-
views, see Refs. 1 and 2). Although the RG is often seen as a
powerful tool to study the low-energy long-distance physics in
the framework of effective-field theories, it has recently been
shown that the NPRG also applies to lattice models and enables
us to compute not only universal quantities (critical exponents)
but also nonuniversal quantities (such as phase diagrams,
transition temperatures, order parameters), which strongly
depend on the microscopic parameters of the model (lattice
type, strength of the interactions, etc.). This implementation
of the NPRG is referred to as the lattice NPRG.3

In this Brief Report, we report a NPRG study of the
Bose-Hubbard model.4 This approach yields a description
of the superfluid–Mott-insulator transition which takes into
account both local fluctuations (which drive the Mott transition
and determine the phase diagram) and critical fluctuations in
a nontrivial way. By comparing with the numerically exact
lattice quantum Monte Carlo simulation (QMC), we show that
the NPRG yields remarkably accurate results for the phase
diagram. Moreover, contrary to the QMC simulation, we obtain
the critical behavior at the Mott transition and recover the
existence of two universality classes.4 We also emphasize the
crucial role of the Ginzburg length ξG as a crossover length
between a weakly and a strongly correlated superfluid phase.

The nonperturbative RG. The d-dimensional Bose-
Hubbard model is defined by the (Euclidean) action

S =
∫ β

0
dτ

{ ∑
r

[
ψ∗

r (∂τ − μ)ψr + U

2
(ψ∗

r ψr)2

]

− t
∑
〈r,r′〉

(
ψ∗

r ψr′ + c.c.
) }

, (1)

where ψr(τ ) is a complex field and τ ∈ [0,β] is an imaginary
time with β → ∞ the inverse temperature. {r} denotes the N

sites of the lattice and 〈r,r′〉 nearest-neighbor sites. U is the on-
site repulsion, t is the hopping amplitude, and μ is the chemical
potential. (We take h̄ = kB = 1 throughout the paper.)

The strategy of the NPRG is to build a family of models with
action Sk = S + �Sk indexed by a momentum scale k varying
from a microscopic scale � down to 0. This is achieved by

adding to the action (1) the term �Sk = ∫ β

0 dτ
∑

q ψ∗
qRk(q)ψq

(ψq is the Fourier transform of ψr), where

Rk(q) = −ZA,ktk
2sgn(tq)(1 − yq)	(1 − yq), (2)

with tq = −2t
∑d

i=1 cos qi , yq = (2dt − |tq|)/tk2 and 	(x)
the step function (we take the lattice spacing as the unit
length). The k-dependent constant ZA,k is defined below. Since
Rk=0(q) = 0, the action Sk=0 coincides with the action (1).
On the other hand, for k = � = √

2d , R�(q) = −tq (we use
ZA,� = 1) and S� = S + �S� corresponds to the local limit
of decoupled sites (vanishing hopping amplitude), a limit that
is exactly solvable. For small k, the function Rk(q) gives a
mass ∼k2 to the low-energy modes |q| � k and acts as an
infrared regulator.

The Bose-Hubbard model (with action Sk=0) can be related
to the reference model (with action S�) by a RG equation. We
consider the scale-dependent effective action


k[φ∗,φ] = − ln Zk[J ∗,J ] +
∫ β

0
dτ

∑
r

(J ∗
r φr + c.c.)

−�Sk[φ∗,φ], (3)

defined as a (slightly modified) Legendre transform, which
includes the explicit subtraction of �Sk[φ∗,φ]. Here Zk[J ∗,J ]
is the partition function, Jr(τ ) is a complex external source
which couples linearly to the bosonic field and φr(τ ) =
δ ln Zk[J ∗,J ]/δJ ∗

r (τ ) is the superfluid order parameter. The
variation of the effective action with k is governed by
Wetterich’s equation,5

∂k
k[φ∗,φ] = 1

2
Tr

{
∂kRk(
(2)

k [φ∗,φ] + Rk)−1
}
, (4)

where 

(2)
k is the second-order functional derivative of 
k . In

Fourier space, the trace in Eq. (4) involves a sum over momenta
and frequencies as well as the two components of the complex
field φ. The initial condition of the RG equation is


�[φ∗,φ] = 
loc[φ∗,φ] +
∫ β

0
dτ

∑
q

φ∗(q)tqφ(q), (5)

where 
loc[φ∗,φ] = − ln Z�[J ∗,J ] + ∫ β

0 dτ
∑

r(J ∗
r φr + c.c.)

is the Legendre transform of the free energy − ln Z�[J ∗,J ]
of the reference system corresponding to the local limit
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FIG. 1. (Color online) Top panel: Phase diagram of the two-
dimensional Bose-Hubbard model showing the first Mott lob with
density n̄ = 1. The NPRG result is shown by the (blue) points and
the QMC data of Ref. 14 by the dashed line. Inset: density n̄ vs μ/U

for different values of t/U . Bottom panel: Transition lines obtained
from three different approximations (see text). The best one (iii) is
also shown in the top figure.

of decoupled sites. The effective action 
� reproduces the
strong-coupling random-phase approximation (RPA) theory
of the Bose-Hubbard model, which treats exactly the on-site
repulsion but takes into account the intersite hopping term
in a mean-field-type approximation.6–8 The strong-coupling
RPA theory describes qualitatively the phase diagram but is
not quantitatively accurate and breaks down in the critical
regime near the superfluid–Mott-insulator transition. In the
NPRG technique, fluctuations beyond the RPA are included
by solving the flow equation (4). Since the starting action S�

is purely local, our approach is to some extent reminiscent of
various t/U expansions of the Bose-Hubbard model.9

We are primarily interested in two quantities. The first one
is the effective potential defined by Vk(n) = 1

βN

k[φ∗,φ] with

φ a constant (i.e., uniform and time-independent) field and
n = |φ|2. Its minimum determines the condensate density n0,k

and the thermodynamic potential (per site) V0,k = Vk(n0,k) in
the equilibrium state. At the initial stage of the RG, V�(n) =
Vloc(n) − 2dtn, where Vloc(n) is the thermodynamic potential
in the local limit.

The second quantity of interest is the two-point vertex



(2)
k , which determines the single-particle propagator Gk =

−

(2)−1
k and therefore the excitation spectrum. Because of the

U(1) symmetry of the action (1), the two-point vertex in a

constant field takes the form



(2)
k,ij (q; φ) = δij
A,k(q; n) + φiφj
B,k(q; n) + εij
C,k(q; n)

(6)

in Fourier space, where q = (q,iω) and ω is a Matsub-
ara frequency. Here (φ1,φ2) = √

2(Re(φ),Im(φ)), n = |φ|2 =
1
2 (φ2

1 + φ2
2) and εij is the antisymmetric tensor. In order to

solve the flow equation (4), we use a derivative expansion
of 


(2)
k ,


A,k(q; n) = VA,k(n)ω2 + ZA,k(n)εq + V ′
k(n),


B,k(q; n) = V ′′
k (n), (7)


C,k(q; n) = ZC,k(n)ω,

where εq = tq + 2dt (εq � tq2 for |q| � 1). This derivative
expansion is similar to the one used in continuum models,10–12

but the initial conditions at scale k = � are here obtained from



(2)
� [Eq. (5)] and therefore already include on-site quantum

fluctuations. To reduce the numerical effort, one can further
approximate VA,k(n) by VA,k ≡ VA,k(n0,k) [and similarly for
ZA,k(n) and ZC,k(n)] and expand the effective potential to
quadratic order about its minimum,

Vk(n) =
{

V0,k + λk

2 (n − n0,k)2 if n0,k > 0,

V0,k + �kn + λk

2 n2 if n0,k = 0.
(8)

In the superfluid phase, Eqs. (7) and (8) yield a gapless mode
ω = ck|q| with velocity

ck =
(

ZA,kt

VA,k + Z2
C,k/(2λkn0,k)

)1/2

(9)

and a superfluid stiffness (defined as the rigidity with respect to
a twist of the phase of the order parameter) ρs,k = 2tZA,kn0,k .
All physical quantities of interest can now be obtained by
solving the flow equation (4) together with Eqs. (6) and (7)
[and, possibly, Eq. (8)].13 In the following, we focus on the
two-dimensional Bose-Hubbard model; the three-dimensional
model will be discussed elsewhere.

Phase diagram. For given values of t , U , and μ, the ground
state can be deduced from the values of the condensate density
n0,k=0 (n0,k=0 > 0 in the superfluid phase), while the density
is obtained from n̄ = − d

dμ
V0,k=0. It takes only a couple of

seconds (depending on the approximation scheme, see below)
to solve numerically the NPRG equations (for t , U , and μ

fixed) on a standard PC, so that the full determination of the
phase diagram requires at most an hour.

Figure 1 shows the phase diagrams obtained from three
different approximations: (i) the effective potential Vk(n) is
truncated [Eq. (8)] and the n dependence of VA,k(n), ZA,k(n),
ZC,k(n) is neglected, as explained above; (ii) the full n

dependence of ZC,k(n) is included; (iii) the full n dependence
of Vk(n) and ZC,k(n) is included. By including more functions
into the analysis [i.e., going from (i) to (iii)] we observe a nice
convergence of our results, which we therefore expect to be
close to the exact ones, with a typical error, estimated from the
difference between (ii) and (iii), roughly of order of 3%. This
expectation is confirmed by a direct comparison to the QMC
data:14 the tip of the Mott lob (t/U = 0.060, μ/U = 0.387)
differs from the QMC result only by (1.5%, 4%). It should
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FIG. 2. (Color online) NPRG flows in the weakly correlated
superfluid phase, t/U = 10 and kG � kh � � (top), and the
strongly correlated superfluid phase, t/U � 0.062 and kh ∼ kG ∼ �

(bottom), for a density n̄ = 1. The insets show ck , n0,k , and ρs,k vs
ln(�/k).

be noted that the accuracy of the NPRG (within similar
approximation schemes) in computing nonuniversal quantities
(phase diagrams and thermodynamics) has been reported in
other contexts, in particular in classical spin models3 and
finite-temperature field theory.15

Superfluid phase. In the weak-coupling limit, we recover the
results of previous NPRG studies in continuum models.10–12

The strong-coupling RPA (the initial condition of the RG flow)
is equivalent to the Bogoliubov approximation when U/t �
1.8 The condensate density n0,k , the superfluid stiffness ρs,k ,
or the Goldstone mode velocity ck vary weakly with k and are
well approximated by their Bogoliubov estimates n0,� � n̄,

TABLE I. Critical behavior at the superfluid–Mott-insulator
transition and infrared behavior in the superfluid and Mott-insulator
phases. The starred quantities indicate nonzero fixed-point values
and η denotes the anomalous dimension at the three-dimensional XY

critical point. ZA,k and VA,k stand for ZA,k(n0,k) and VA,k(n0,k).

ZA,k VA,k ZC,k λk n0,k

superfluid Z∗
A V ∗

A k k n∗
0

XY critical point k−η k−η k k1−2η k1+η

generic transition Z∗
A V ∗

A Z∗
C | ln k|−1 k2| ln k|−1

insulator Z∗
A V ∗

A Z∗
C λ∗ 0

FIG. 3. (Color online) Top panel: Dimensionless condensate
density ñ0,k and coupling constant λ̃k vs ln(�/k) at the XY

critical point [the inset shows ln Z̃C,k(ñ0,k) vs ln(�/k)]. Bottom
panel: (running) anomalous dimensions ηk = −k∂k ln ZA,k(n0,k) and
ηV,k = −k∂k ln VA,k(n0,k). The dynamical exponent is defined by
zk = (2 − ηk + ηV,k)/2.

ρs,� � 2t n̄, and c� � (2Utn̄)1/2 (Fig. 2). On the other hand,
from the strong variation of λk , ZC,k , and VA,k with k, we
can distinguish two regimes separated by the characteristic
(Ginzburg) momentum scale kG = ξ−1

G ∼
√

n̄(U/t)3: (i) A
(perturbative) Bogoliubov regime k � kG where λk � λ� �
U , ZC,k � ZC,� � 1, and VA,k � 0. The spectrum crosses over
from a quadratic dispersion to a linear soundlike dispersion at
the (healing) momentum scale kh = ξ−1

h � √
n̄U/t defined by

n0,kλk � ZA,ktk
2. (ii) A (nonperturbative) Goldstone regime

k � kG where λk , ZC,k ∼ k vanish with k → 0 and VA,k � V ∗
A

takes a finite value. This regime is dominated by phase fluc-
tuations, and characterized by the vanishing of the anomalous
self-energy �an,k(q = 0) = λkn0,k ∼ k and the divergence
of the longitudinal propagator G‖,k(q = 0) = 1/(2λkn0,k).16

A weakly correlated two-dimensional superfluid is char-
acterized by kG/kh ∼ U/t � 1; although the Bogoliubov
theory breaks down at low energy, it applies to a large part
(kG � |q| � kh � �) of the spectrum where the dispersion is
linear.

As t/U decreases, the ratio kG/kh increases and eventually
becomes of order 1 (with kh ∼ kG ∼ �). In this strongly
correlated superfluid phase, there is no Bogoliubov regime
anymore and the condensate density n0 ≡ n0,k=0, as well as the
superfluid stiffness ρs ≡ ρs,k=0, is strongly suppressed (Fig. 2).
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Critical regime. Our approach recovers the two universality
classes of the superfluid–Mott-insulator transition.4 Away
from the tip of the Mott lob, the transition is mean-field like
(with logarithmic corrections) with a dynamical exponent z =
2 (generic transition). At the tip, it belongs to the universality
class of the three-dimensional XY model. Figure 3 shows the
RG flows of the dimensionless coupling constants,

ñ0,k = k−d (ZA,ktk
2VA,k)1/2n0,k,

λ̃k = kdV
−1/2
A,k (ZA,ktk

2)−3/2λk,

Z̃C,k(ñ0,k) = (VA,kZA,ktk
2)−1/2ZC,k(n0,k), (10)

when the system is at the XY critical point. The plateaus
observed for the dimensionless condensate density ñ0,k

and coupling constant λ̃k , as well as for the (running)
anomalous dimensions ηk = −k∂k ln ZA,k(n0,k) and ηV,k =
−k∂k ln VA,k(n0,k), are characteristic of critical behavior. We
find the critical exponent ν = 0.699, the anomalous dimen-
sions η = 0.049, ηV = η(1 − η/4) = 0.049, and the dynam-

ical exponent z = (2 − η + ηV )/2 = 1.000, to be compared
with the best known estimates ν = 0.671 and η = 0.038
for the three-dimensional XY model.17 Table I summa-
rizes the infrared behavior of the two-dimensional Bose-
Hubbard model. Note that both in the superfluid phase
and at the XY critical point, the infrared behavior is
characterized by a relativistic symmetry (ZC,k → 0 for
k → 0).

Conclusion. The excellent agreement between our results
and the QMC data14 shows that the lattice NPRG, discussed
in Ref. 3 for classical systems, is a very efficient method to
study the Bose-Hubbard model. This RG approach, which is
implemented in momentum space, takes into account local
fluctuations and Mott physics while being able to describe
critical fluctuations.
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